
Communication on Flat Fading Channels

Signaling Through Slow Flat Fading Channels

� We assume that the long-term variations in the channel are absorbed into Em. Then Em represents the
average received symbol energy (for symbol m) over the time frame for which the multipath profile may be
assumed to be constant. Then the received signal is given by:

y(t) = E(t)s(t) + w(t) = β(t)ejφ(t)s(t) + w(t) (1)

where E[β2(t)] = 1.

� For slow fading, β(t) and φ(t) may be assumed to be constant over each symbol period. Thus, for memo-
rlyless modulation and symbol-by-symbol demodulation, y(t) for demodulation over symbol period [0, Ts]
may be written as

y(t) = βejφsm(t) + w(t) (conditioned on symbol m being transmitted) (2)

Average probability of error for slow, flat fading

� The error probability is a function of the received signal-to-noise ratio (SNR), i.e., the received symbol
energy divided by the noise power spectral density. We denote the symbol SNR by γs, and the corresponding
bit SNR by γb, where γb = γ/ν and ν = log2 M .

� For slow, flat fading, the received SNR is

γs =
β2Es

N0
. (3)

The average SNR (averaging over β2) is given by

γs = E[β2]
Es

N0
=

Es

N0
. (4)

The corresponding bit SNR’s are given by

γb =
γ

ν
, and γb =

Es

N0ν
=

Eb

N0
. (5)

� Suppose the symbol error probability with SNR γs is denoted by Pe(γs). Then the average error probability
(averaged over the fading) is

Pe =

∫ ∞

0
Pe(x)pγs(x)dx (6)

where pγs(x) is the pdf of γs.

� For Rayleigh fading, β2 is exponential with mean 1; hence γs is exponential with mean γs, i.e.,

pγs(x) =
1

γs
exp

[

− x

γs

]

11{x≥0} . (7)
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� For Ricean fading, β2 has a ”Ricean-squared” pdf, and hence γs has pdf

pγs(x) =
κ + 1

γs
I0

(

2

√

xκ(κ + 1)

γs

)

exp

[

−x(κ + 1)

γs
− κ

]

11{x≥0} . (8)

� Pe for Rayleigh Fading

◦ Useful result (see problem 4 of HW#2):
∫ ∞

0
Q(

√
x )

e−x/γ

γ
dx =

1

2

[

1 −
√

γ

2 + γ

]

. (9)

◦ BPSK
Pb(γb) = Q(

√

2γb ) . (10)

Using (7) and (9), we get

Pb =

∫ ∞

0
Q(

√
2x )pγb(x)dx =

1

2

[

1 −
√

γb

1 + γb

]

≈ 1

4γb
(for largeγb). (11)

◦ Binary coherent orthogonal modulation (e.g. FSK)

Pb(γb) = Q(
√

γb ) . (12)

Here Pb is the same as that for BPSK with γb replaced by γb/2, i.e.,

Pb =
1

2

[

1 −
√

γb

2 + γb

]

≈ 1

2γb
(for large γb). (13)

◦ Binary DPSK

Pb(γb) =
1

2
e−γb . (14)

In this we case we may integrate directly to get

Pb =

∫ ∞

0

1

2
e−x e−x/γb

γb
dx =

1

2(1 + γb)
≈ 1

2γb
(for large γb). (15)

◦ Binary noncoherent orthogonal modulation (FSK)

Pb(γb) =
1

2
e−γb/2 . (16)

Here Pb is the same as that for DPSK with γb replaced by γb/2, i.e.,

Pb =
1

2 + γb
≈ 1

γb
(for large γb). (17)

◦ Similar expressions may be derived for other M-ary modulation schemes. Note that without fading
the error probabilities decrease exponentially with SNR, whereas with fading the error probabilities
decrease much more slowly with SNR (inverse linear in case of Rayleigh fading).
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� Pe for Ricean Fading

◦ Direct approach: Compute Pe using (6) and (8). This is cumbersome except in some special cases.

◦ Nakagami-m approach: Approximate pγs(x) by a Nakagami-m distribution for which integration of
Pe to produce Pe is relatively easy. (See Problem 7 of HW#2).

◦ Complex Gaussian approach: We begin by rewriting γs of (3) as

γs = β2γs = (E2
I + E2

Q)γs = Z2
I + Z2

Q = |Z|2 , (18)

where ZI =
√

γs EI , ZQ =
√

γs EQ, and Z = ZI + jZQ is PCG, with mean mZ and variance σ2
Z ,

conditioned on the LOS phase φ0, given by (see channel modeling notes)

mZ =
√

γs β0e
jφ0 =

√

γsκ

κ + 1
ejφ0 , and σ2

Z = E[|Z|2] =
γs

κ + 1
. (19)

◦ Without loss of generality, we may assume that φ0 = 0, since the pdf of γs is independent of φ0.

◦ General expression for Pe

Pe =

∫ ∞

0
Pe(x)pγs(x)dx =

∫

z∈C

Pe

(

|z|2
)

pZ(z) dz

=
1

πσ2
Z

∫

z∈C

Pe

(

|z|2
)

exp

(

−|z − mZ |2
σ2

Z

)

dz

(20)

◦ Useful result 1

Q(x) =
1

π

∫ π/2

0
exp

(

− x2

2 sin2 θ

)

dθ (problem 3 of HW#4) . (21)

This alternative representation was introduced recently by Simon and Divsalar [1] as a way to compute
general expressions for the error rates for digital modulation on fading channels. For more recent
results, see the book by Simon and Alouini [2].

◦ Useful result 2 The following result is also very useful in computing closed-form expressions for the
error probability in some special cases.

In(c) =
1

π

∫ π/2

0

(

sin2 θ

sin2 θ + c

)n

dθ = [A(c)]n
n−1
∑

i=0

(

n − 1 + i

i

)

[1 − A(c)]i (22)

with A(c) = 1
2

[

1 −
√

c/(1 + c)
]

. This result is derived in [3]. Note that In(c) also has the following
alternative expression whose form is similar to that obtained in Problem 7 of HW#2.

In(c) =
1

π

∫ π/2

0

(

sin2 θ

sin2 θ + c

)n

dθ =
1

2
−
[

1

2
− A(c)

] n−1
∑

i=0

(

2i

i

)

[A(c)]i [1 − A(c)]i . (23)
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◦ Pb for Binary Signaling with Ricean Fading

• BPSK

Pb =
1

πσ2
Z

∫

z∈C

Q

(
√

2|z|2
)

exp

(

− 1

σ2
Z

|z − mZ |2
)

dz

=
1

π

∫ π/2

0

[

1

πσ2
Z

∫

z∈C

exp

(

− |z|2
sin2 θ

)

exp

(

−|z − mZ |2
σ2

Z

)

dz

]

dθ

=
1

π

∫ π/2

0

(κ + 1) sin2 θ

γb + (κ + 1) sin2 θ
exp

(

− γbκ

(κ + 1) sin2 θ + γb

)

dθ .

(24)

where the last line follows after completion of squares inside the exponential to compute the
complex Gaussian integral.
Note that for κ = 0 (i.e. Rayleigh fading), we have

Pb =
1

π

∫ π/2

0

sin2 θ

γb + sin2 θ
dθ . (25)

Using (22) with n = 1, we can immediately see that the above expression is the same as the one
obtained in (11). Also, for κ → ∞, we see that we get back AWGN performance.

• Binary coherent FSK. Same as BPSK with γb replaced by γb/2.
• Binary DPSK.

Pb =
1

πσ2
Z

∫

z∈C

1

2
exp

(

−|z|2
)

exp

(

− 1

σ2
Z

|z − mZ |2
)

dz

=
κ + 1

2(κ + 1 + γb)
exp

[

− κγb

κ + 1 + γb

]

.

(26)

where the second line follows easily by completion of squares as done in class. Again, it is easy
to check that we get the Rayleigh result when κ = 0 and the AWGN result as κ → ∞.

• Binary noncoherent FSK. Same as DPSK with γb replaced by γb/2.
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Diversity Techniques for Flat Fading Channels

• Performance with fading is considerably worse than without fading, especially when the fading is Rayleigh.

• Performance may be improved by sending the same information on many (independently) fading channels

• For signaling on L channels, the received signal on the `-th channel is:

y`(t) = β`e
jφ`sm,`(t) + w`(t), ` = 1, 2, . . . , L, m = 0, 1, . . . ,M − 1 . (27)

where the noise w`(t) is assumed to be independent across channels.

• If {β`e
jφ`}L

`=1 are independent, we get maximum diversity against fading.

• How do we guarantee independence of channels? By separating them either in time, frequency or space.

◦ frequency separation must be � 1
τds

, where τds is the delay spread

◦ time separation must be � 1
fm

, where fm is the maximum Doppler frequency

◦ spatial separation must be � λc

2 , where λc is the carrier wavelength.

Memoryless linear modulation with diversity

• When symbol m is sent on the channels

y`(t) = β`e
jφ`
√

Es,` am ejθm g`(t) + w`(t), ` = 1, 2, . . . , L, m = 0, 1, . . . ,M − 1 , (28)

where g`(t) is a (possibly complex) unit energy shaping function on channel `, Es,` is the average symbol
energy on channel `, and the am’s are normalized so that

∑

m a2
m = 1. We assume that the fading and noise

are independent across channels. Note that {w`(t)} are independent PCG processes with PSD N0.

• Optimum receiver: If we assume that the phases {φ`} and the amplitudes {β`} are estimated perfectly at the
receiver, the optimum test statistic is formed by Maximal Ratio Combining (MRC) as

Y =

L
∑

`=1

β`

√

E` e−jφ`

∫

y`(t)g`(t)dt . (29)

We proved that his was optimum in class; also see [4, 5] and Problem 1 of HW#3.

• The sufficient statistic y may be rewritten as

Y =
L
∑

`=1

β2
`

√

Es,` am ejθm +
L
∑

`=1

β`

√

Es,` W` , (30)

where {W`} are independent CN (0, N0).
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• The MPE (ML) decision rule is the same as without diversity except that the constellation is scaled in
amplitude based on the fading on the channels.

Special Case: BPSK with diversity

• The sufficient statistic in this case takes the form

Y = ±
L
∑

`=1

β2
` Eb,` + W , (31)

where W =
∑L

`=1 β`

√

Eb,` W` is PCG with

E[|W |2] = N0

L
∑

`=1

Eb,` β2
` . (32)

• The MPE decision rule for equal priors (or the ML decision rule)is to decide +1 (bit ‘1’) if YI > 0, and −1
(bit ‘0’) if YI < 0.

• For fixed {β`},

Pb = P({YI > 0} | {bit ‘0’ sent}) = P

{

WI >

L
∑

`=1

β2
` Eb,`

}

= Q





√

√

√

√2

L
∑

`=1

β2
` Eb,`

N0



 = Q





√

√

√

√2

L
∑

`=1

γb,`



 = Q
(

√

2γb

)

(33)

where γb,` is the received bit SNR on the `-th channel, and γb =
∑L

`=1 γb,` is the total received bit SNR.

• The average BER is given by

Pb =

∫ ∞

0
Q
(√

2x
)

pγb
(x)dx . (34)

Thus, we may evaluate Pb by first finding the pdf pγb
(x). This works well for Rayleigh fading. However, as

shown below, Pb is more easily evaluated in the general case of Ricean fading using the complex Gaussian
approach of (20), and we get the Rayleigh fading result as a special case.

• General Ricean analysis using the complex Gaussian approach:

Assume that β` is Ricean with Rice factor κ`. Write γb,` = |Z`|2 where {Z`} are PCG with means and
variances:

m` =
√

γb,` β0,` ejφ0,` =

√

γb,` κ`

κ` + 1
ejφ0,` , and σ2

` = E[|Z`|2] =
γb,`

κ` + 1
. (35)
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Then

Pb =

∫ ∞

0
Q
(√

2x
)

pγb
(x)dx

=

∫

z

Q





√

√

√

√2

L
∑

k=1

|z`|2




L
∏

`=1

1

πσ2
`

exp

(

−|z` − m`|2
σ2

`

)

dz1 . . . dzL

=
1

π

∫ π/2

0

L
∏

`=1

[

∫

z`

exp

(

− |z`|2
sin2 θ

)

exp

(

−|z` − m`|2
σ2

`

)

dz`

]

dθ

=
1

π

∫ π/2

0

L
∏

`=1

(κ` + 1) sin2 θ

γb,` + (κ` + 1) sin2 θ
exp

(

− γb,` κ`

(κ` + 1) sin2 θ + γb,`

)

dθ .

(36)

This is best we can do for general Ricean fading. Further simplification is possible for Rayleigh fading.

• Special case: Rayleigh fading. If the fading is Rayleigh on all channels, i.e., κ` = 0, for ` = 1, 2, . . . , L,
then

Pb =
1

π

∫ π/2

0

L
∏

`=1

sin2 θ

γb,` + sin2 θ
dθ . (37)

◦ Case 1: γb,`’s are distinct for ` = 1, 2, . . . , L. Here

L
∏

`=1

sin2 θ

γb,` + sin2 θ
=

L
∑

`=1

C`
sin2 θ

γb,` + sin2 θ
, (38)

where

C` =
∏

i6=`

γb,`

γb,` − γb,i

. (39)

Thus

Pb =

L
∑

`=1

C`
1

π

∫ π/2

0

sin2 θ

γb,` + sin2 θ
dθ =

L
∑

`=1

C`

2

[

1 −
√

γb,`

1 + γb,`

]

(40)

where the second equality follows from (22)

◦ Case 2: γb,`’s are identical, i.e. γb,` = γb/L for all `. Here

Pb =
1

π

∫ π/2

0

(

sin2 θ
γb
L + sin2 θ

)L

dθ =

[

A

(

γb

L

)]L L−1
∑

`=0

(

L − 1 + `

`

)[

1 − A

(

γb

L

)]`

(41)

with

A

(

γb

L

)

=
1

2

[

1 −
√

γb

L + γb

]

. (42)

Note that the equation for Pb given in (41) is identical to that for BPSK in Nakagami-m fading with
m = L (see Problem 7 of HW#2).
For large γb,

A

(

γb

L

)

≈ L

4γb
and 1 − A

(

γb

L

)

≈ 1 . (43)
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Thus

Pb ≈
(

L

4γb

)L L
∑

`=1

(

L − 1 + `

`

)

=

(

L

4γb

)L (2L − 1

L

)

. (44)

Note that with diversity Pb decreases at (γb)
−L which is a significant improvement over the inverse

linear performance obtained without diversity. (See Figure 1.)
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Figure 1: BPSK with diversity on Rayleigh fading channels.
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