
3742 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

Energy Efficient Multi-Object Tracking
in Sensor Networks

Jason A. Fuemmeler, Member, IEEE, and Venugopal V. Veeravalli, Fellow, IEEE

Abstract—The problem of tracking multiple objects moving
through a network of wireless sensors is studied. It is assumed
that each sensor has a limited range for detecting the presence of
the object, and that the network is sufficiently dense so that the
sensors cover the area of interest. In order to conserve energy the
sensors may be put into a sleep mode with a timer that determines
the sleep duration. It is assumed that a sensor that is asleep cannot
be communicated with or woken up, and hence the sleep duration
needs to be determined at the time the sensor goes to sleep based
on all the information available to the sensor. The objective is
to track the location of the objects to within the accuracy of the
range of the sensor. Having sleeping sensors in the network could
result in tracking errors, and therefore there is a tradeoff between
the energy savings and the tracking errors that result from the
sleeping actions at the sensors. Sleeping policies that optimize this
tradeoff are designed, and their performance analyzed. This work
is an extension of previous work that considered the tracking of
only a single object.

Index Terms—Dynamic programming, multi-target tracking,
partially observed Markov decision process (POMDP), sensor
networks, sleep control.

I. INTRODUCTION

A DVANCES in technology are enabling the deployment
of vast sensor networks through the mass production of

cheap wireless sensor units with small batteries. Such sensor
networks can be used in a variety of application areas. Our focus
in this paper is on applications of sensor networks that involve
tracking, e.g., surveillance, wildlife studies, environmental con-
trol, and health care.

We study the problem of tracking multiple objects that are
moving through a network of wireless sensors. Each sensor has
a limited range for detecting the presence of the objects being
tracked, and the objective is to track the location of the objects to
within the accuracy of the range of a sensor. For such a tracking
problem to be well-posed we need to assume that the sensor field

Manuscript received August 24, 2009; accepted March 05, 2010. Date of pub-
lication March 29, 2010; date of current version June 16, 2010. This work was
supported in part by the U.S. Army Research Office MURI grant W911NF-06-1-
0094 through a subcontract from Brown University at the University of Illinois,
in part by a grant from the Motorola corporation, and in part by a National Sci-
ence Foundation Graduate Research Fellowship. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Dr.
Aleksander Dogandzic.

J. A. Fuemmeler is with the Rockwell Collins, Inc. Cedar Rapids, IA 52402
USA (e-mail: femler1@gmail.com).

V. V. Veeravalli is with the Coordinated Science Lab, Department of Elec-
trical and Computer Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 USA (e-mail: vvv@illinois.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2046896

is sufficiently dense so that the sensors cover the entire area of
interest. The objects follow random paths through the sensor
field whose statistics are assumed to be either known a priori or
estimated online.

The sensor nodes typically need to operate on limited energy
budgets. In order to conserve energy, the sensors may be put into
a sleep mode. The use of sleeping sensors in sensor networks
for tracking has been studied in the past. It appears that there
have been two primary approaches. The first has been to assume
that sleeping sensors can be woken up by external means on
an as-needed basis (see, e.g., [1]–[6]). Either the method used
for this wakeup is left unspecified or it is assumed that there
is some low-power wakeup radio at each sensor dedicated to
this function. The second approach has involved modifications
to power-save functions in MAC protocols for wireless ad hoc
networks (see, e.g., [7]–[9]).

In this paper, we wish to examine the fundamental theory
of sleeping in sensor networks for tracking, as opposed to the
design of protocols for this sleeping. We will assume that the
wakeup channel approach is impractical given current sensor
technology. In other words, we assume it is not feasible to
design a receiver that requires negligible power for operation.
Thus, we must consider alternatives to the wakeup channel ap-
proach. A straightforward approach is to have each sensor enter
and exit the sleep mode using a fixed or a random duty cycle.
A more intelligent, albeit more complicated, approach is to use
information about the objects’ trajectories that is available to
the sensor from the network to determine the sleeping strategy.
In particular, it is easy to see that the location of the objects (if
known) at the time when the sensor is put to sleep would be
useful in determining the sleep duration of the sensor; the closer
an object is to a sensor, the shorter the sleep duration should be.
We take this latter approach in this paper in designing sleeping
strategies for the sensors.

In [10], we used the above approach for the tracking of a
single object. An optimization problem was formulated that
took the form of a partially observable Markov decision process
(POMDP). While optimal solutions to this problem could not
be found, suboptimal solutions were devised that could be
demonstrated to be near optimal.

In this paper, we extend our analysis to the tracking of mul-
tiple objects. A discussion of the tracking of multiple objects,
often termed multitarget tracking (MTT), can be found in [11].
Tracking multiple objects is not a simple extension of tracking a
single object due to the data association problem. This problem
arises whenever the identity of the objects cannot be determined
from the observations. Thus, even if all locations where objects
are located are known exactly, it may not be known which lo-
cation corresponds to which object. This uncertainty leads to

1053-587X/$26.00 © 2010 IEEE

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

FUEMMELER AND VEERAVALLI: ENERGY EFFICIENT MULTI-OBJECT TRACKING IN SENSOR NETWORKS 3743

an explosion in the set of possibilities that must be considered
and makes optimal solution difficult. Suboptimal tracking al-
gorithms are then needed. Examples of such algorithms can be
found in [11].

A work of particular interest is the one in [12]. The authors
consider energy efficient tracking of multiple objects by se-
lecting duty cycles for the sensors based on the object locations.
The work is also interesting in that the statistics of the object
movement are not known a priori. The unknown object move-
ment means that they must learn to predict the objects’ move-
ments to achieve perfect tracking. Their method of solution is
to apply -learning to a Markov decision process (MDP). The
authors strive for perfect prediction and do not incorporate the
case where the object may become lost in their analysis. Such
an analysis would require a POMDP formulation, such as the
one presented in this paper.

In this paper, our focus is on the design of sleeping policies
for use in tracking multiple objects rather than on the tracking
performance itself. We therefore formulate a design problem
wherein we keep track of the full joint distribution for the ob-
ject locations. This approach is optimal but can quickly become
intractable for large numbers of objects. Our simulation results
will focus on the two-object case to make computation as simple
as possible. However, most of our analysis applies to the gen-
eral -object case and we indicate how our solutions scale with
increasing number of objects.

The results of our work are a set of suboptimal sleeping poli-
cies. These policies are compared with lower bounds on optimal
performance that are derived in the course of our analysis. Our
simulation results show how our suboptimal policies compare
with optimal performance. Our policies also perform signifi-
cantly better than naive approaches that do not use information
about the locations of the objects. Furthermore, one of our poli-
cies uses only information about the marginal distributions of
the objects and thus scales well with increasing numbers of ob-
jects and can be used in concert with suboptimal tracking algo-
rithms

The remainder of this paper is organized as follows. In
Section II, we describe the tracking problem in mathematical
terms and define the optimization problem. In Section III,
we derive our suboptimal solutions and the associated lower
bounds. In Section IV, we provide some numerical results that
illustrate the efficacy of the proposed sleeping policies. We
summarize and conclude in Section V.

II. PROBLEM FORMULATION

A. POMDP Formulation

We consider a sensor network with sensors. For simplicity,
we assume that the sensing ranges of the sensors completely
cover the region of interest with no overlap. In other words, the
region can be divided into cells with each cell corresponding
to the sensing range of a particular sensor. Each sensor can be
in one of two states: awake or asleep. A sensor in the awake
state consumes more energy than one in the asleep state. How-
ever, object sensing can be performed only in the awake state.
An awake sensor can only detect whether one or more objects is
within its range and can detect neither the exact number of ob-

jects present nor which objects are present. A more complicated
model for sensing would include the possibility of multiple sen-
sors receiving simultaneous noisy observations of the objects.
However, this would complicate the analysis considerably and
so we stick with our simpler model.

The movement of each object to be tracked is described by a
first-order Markov chain whose state is the current location of
the object to within the accuracy of a cell. However, we also ap-
pend an additional state that occurs when the object leaves the
network. Thus, there are possible states for each object
with states 1 through occurring while the object is in the net-
work and state representing the appended state. We impose
the constraint that the object must leave the network with prob-
ability 1. Once state is reached, the object remains in that
state. The statistics for each object movement can be described
using a probability transition matrix. We make
the simplifying assumption that state can always be ob-
served, regardless of the sensor states. To this end, we define a
“sentry” sensor at location that is always awake but con-
sumes no energy. This sentry sensor is like other sensors in that
it cannot determine which of the objects have left the network.
Our models for the movement of the objects are simplistic, but
do allow us to investigate sleeping policy design. The principles
we develop later in this paper should extend to more compli-
cated object movement models.

We are interested in tracking objects that move indepen-
dently according to their individual first-order Markov models.
We will write the combined state of the objects as a vector
of length . There are possible states for this vector.
The state is the terminal state that oc-
curs when all objects have left the network. Once this state is
reached, no further cost is incurred. We define a kernel such
that is the probability that the next state is given that
the current state is . We can predict time steps into the future
by defining and inductively as

(1)

Suppose is a function on such that is the
probability that the state is at the current time step. Then the
probability that the state will be at time steps in the future is
given by

(2)

We also use the notation to denote a function such that

if
else.

(3)

Let denote the state for the objects at time . Conditioned
on , the distribution for is given as

(4)

i.e., is distributed according to the probability mass func-
tion . This defines the evolution of the object locations.

To provide a means for centralized control, we assume the
presence of an extra node called the central controller. The cen-
tral controller keeps track of the state of the network and assigns

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

3744 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

sleep times to sensors that are awake. In particular, each sensor
that wakes up remains awake for one time unit during which
the following actions are taken: 1) the sensor sends a binary ob-
servation to the central unit that indicates whether one or more
objects are within its range, and 2) the sensor receives a new
sleep time (which may equal zero) from the central controller.
The sleep time input is used to initialize a timer at the sensor that
is decremented by one time unit each time step. When this timer
expires, the sensor wakes up. Since we assume that wakeup sig-
nals are impractical, this timer expiration is the only mechanism
for waking a sensor.

Let denote the value of the sleep timer of sensor at
time . We call the -vector the residual sleep times of
the sensors at time . Also, let denote the sleep time input
supplied to sensor at time . We add the constraints
and due to the nature of the sentry sensor at location

. We can describe the evolution of the residual sleep times
as

(5)

for all and . The first term on the right-hand
side of this equation expresses that if the sensor is currently
asleep (the sleep timer for the sensor is not zero), the sleep
timer is decremented by 1. The second term expresses that if
the sensor is currently awake (the sleep timer is zero), the sleep
timer is reset to the current sleep time input for that sensor.

Based on (4) and (5), we see that we have a discrete-time
dynamical model that describes our system. The state of the
system at time is described by and the state
evolution is defined in (4) and (5). Unfortunately, not all of
is known to the central unit at time since is known only if
the object locations are being tracked precisely. Thus, we have a
dynamical system with incomplete (or partially observed) state
information. If we denote the observation available to the central
unit at time by , then we have

(6)

where is a -vector of observations with

if and no objects are at locations
if and one or more objects are at locations
if

(7)
where is an erasure that provides no information. The total
information available to the control unit at time is given by

(8)

with denoting the initial (known) state of the system.
The control input for sensor at time is allowed to be a func-
tion of , i.e.,

(9)

The vector-valued function is the sleeping policy at time .
We now identify the costs present in our tracking problem.

The first is an energy cost of for each sensor that is awake.
This model is used for simplicity, although it would perhaps be

better to take vary the cost at each sensor as remaining battery
life decreases. The energy cost can be written mathematically as

(10)

The second cost is tracking error. We can further decompose
tracking error into two components. The first component is ob-
servation error that occurs when we fail to observe a particular
object. The second component is data association error that oc-
curs when the objects have been misidentified. To perform the
object identification, we define the vector of estimated object
locations at time to be . We can think of as an additional
control input that is a function of , i.e.,

(11)

Since does not affect the state evolution, we do not need
to include past values of this control input in . We combine
observation and data association errors by defining a tracking
error to have occurred when either an observation error or a data
association error has occurred. A cost of 1 is incurred for each
tracking error. Thus the tracking cost can be written as

(12)

Note that we need not have included observation error (note
that an observation error occurs for the th object whenever

) in our tracking cost since an object can some-
times be located through a process of elimination without being
observed. However, we include observation error to make the
problem easier to separate later on. The parameter is used to
trade off energy consumption and tracking errors.

Recall that the input does not affect the state evolution;
it only affects the cost. We can therefore compute the optimal
choice of , denoted as , using an optimization mini-
mizing the tracking error over a single time step. We can thus
write

(13)

Remembering that once the terminal state is reached no fur-
ther cost is incurred, we can write the total cost for time step
as

(14)

The infinite horizon cost for the system is given by

(15)

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

FUEMMELER AND VEERAVALLI: ENERGY EFFICIENT MULTI-OBJECT TRACKING IN SENSOR NETWORKS 3745

Since is bounded by and the expected time till the
object leaves the network is finite, the cost function is well-
defined. The goal is to compute the solution to

(16)

The solution to this optimization problem for each value of
yields an optimal sleeping policy. The optimization problem
falls under the framework of a POMDP.

B. Dealing With Partial Observability

Partial observability presents a problem since the informa-
tion for decision-making at time given in (8) is unbounded in
memory. To remedy this, we seek a sufficient statistic for opti-
mization that is bounded in memory. We see from (7) that the
vector of observations depends only on the state , which
in turn depends only on , , and . It is a standard
argument (e.g., see [13]) that for such an observation model, a
sufficient statistic is given by the probability distribution of the
state given . Such a sufficient statistic is referred to as a
belief state in the POMDP literature (e.g., see [14] and [15]).
Since the residual sleep times portion of our state is observable,
the sufficient statistic can be written as , where
is a probability mass function over . Mathemat-
ically, we have

(17)

The evolution of is difficult to write mathematically, but it
is a standard nonlinear filtering operation. The computation at
time can be described procedurally as follows.

1) Form . This is the distribution before incorpo-
rating the observations.

2) For all such that the is inconsistent with a state of
, change the value of to 0.

3) Normalize to create a probability distribution. This new
distribution is .

One example of a distribution update is shown in Fig. 1. For
notational convenience, we also define

(18)

In other words, is the marginal distribution for object .
The function that determines can now be written in

terms of and instead of . We can rewrite it as

(19)

(20)

Fig. 1. An example of a distribution update for � � � and � � �. In each
subfigure, a joint distribution for the objects is shown. In (a), it is known that
one object is located at position 3 and one is located at position 6. In (b), the
joint distribution at time � � � before incorporating observations is shown. In
generating (c), we suppose that sensors 1, 5, 6, and 8 are awake and have failed
to observe the object. The distribution in (c) is the one that results from incor-
porating these observations.

(21)

Thus, each component of the vector valued function can be
chosen according to

(22)

(23)

In other words, for each object we select the estimated object lo-
cation from among the locations where a sensor is awake. From
these locations, we select the one with the largest value of the
marginal distribution for that object. Note that has the same
form for every so we can drop the subscript and refer to as

.
We now wish to write our dynamic programming problem

in terms of the sufficient statistic. We first wish to rewrite the
cost at time step . Note that since only expected values of the
cost function appear in (15), we can take our cost function to
be the expected value of [defined in (14)] conditioned on
being distributed according to . Abusing notation, we call this
redefined cost . The cost can be written as

(24)

or more simply as

(25)

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

3746 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

However, from (23) we have that implies
. We can therefore rewrite this cost as

(26)

The selection of sleep times, originally presented in (9), can now
be rewritten as

(27)

The total cost defined in (15) becomes

(28)

and the optimal cost defined in (16) becomes

(29)

III. SUBOPTIMAL SOLUTIONS

Similar to the single object case in [10], an optimal policy
could be found by solving the Bellman equation

(30)

However, since an optimal solution could not be found in [10]
for the simpler single object case, we immediately turn our at-
tention to finding suboptimal solutions to our problem.

Our approach to generating suboptimal solutions is similar
to that used in [10]. Namely, we make unrealistic assumptions
that greatly simplify the evolution of . These assumptions also
allow the tracking and energy costs to be written as a sum of
costs, one for each sensor. The result is that the problem then
separates into a set of simpler subproblems, one for each
sensor, that can be more easily solved. The solution to the th
subproblem defines the policy for sensor . The performance
of the resultant policy depends on the assumptions made in the
simplification. In this paper, we do not include the mathematical
details of deriving the simpler subproblems, but the procedure
is straightforward and closely follows that in [10].

A. Policy

In the POMDP literature (e.g., see [14] and [15]), a
solution is one in which it is assumed that the partially observed
state becomes fully known after a control input has been chosen.
Note that this assumption implies that there will be no future
data association errors and thus the only tracking costs present

in designing this policy are observation errors. As a result, the
per-sensor Bellman equation for sensor is given by

(31)

Note that the three terms inside the minimization represent the
tracking cost, the energy cost, and the future cost, respectively,
given a sleep time of . Thus, (31) is a Bellman equation for
the per-sensor problem under the assumption of perfect future
observations.

This equation can be solved through the use of policy itera-
tion. Initially, a value is assigned to the function for each
possible state. The right-hand side of (31) is applied to compute
a new value for for each possible state. This process is con-
tinued until convergence is obtained. Note that the number of
states for our problem is . Thus, this solution may not
scale well as the number of sensors or the number of objects be-
comes large.

Note that for the solution, we are assuming more in-
formation than is actually available. Thus, the cost function ob-
tained under the assumption is a lower bound on optimal
performance. We will use this lower bound when we present our
numerical results.

B. First Cost Reduction (FCR) Policy

Suppose we assume that no observations will be available in
the future so that the evolution of is a straightforward appli-
cation of the kernel . Unfortunately, we find that the problem
does not separate under this assumption. This is because data
association errors do not allow the tracking cost to be written
as a sum of tracking costs for each sensor. To achieve separa-
tion, we can decide to use a tracking cost that only incorporates
observation errors. If we do this, then the per-sensor Bellman
equation for sensor is given by

(32)

Note that the three terms inside the minimization represent the
tracking cost, the energy cost, and the future cost, respectively,
given a sleep time of . Thus, (32) is a Bellman equation for the
per-sensor problem under the assumption of no future observa-
tions.

It is easy to verify that

(33)

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

FUEMMELER AND VEERAVALLI: ENERGY EFFICIENT MULTI-OBJECT TRACKING IN SENSOR NETWORKS 3747

is indeed a solution to (32). In other words, at each time step
we incur a cost that is the minimum of the expected observation
cost at sensor and the expected energy cost at sensor . The
sleeping policy for sensor is to select the first value of such
that

(34)

This gives rise to the name first cost reduction (FCR), since a
sensor comes awake only when the expected tracking cost when
not awake first exceeds the expected energy cost when awake.
Because policy iteration over a large number of states is not
required, the FCR policy does not have the scaling problems
associated with the policy.

However, by slightly altering the policy we can make it easier
to implement. Note that in the right-hand side of (34), a cost of

is incurred if at least one object remains in the network. We
can approximate the right-hand side of (34) by instead assuming
we incur a cost of for each object still in the network. This
approximation can be written as

(35)

Also note that the left-hand side of (34) can be rewritten as

(36)

Thus, we can define a new policy (which we term the FCR
policy) that is to select the first value of such that

(37)

Note that the inner summation on both sides of this inequality
can be written in terms of the marginal distributions for object

associated with . Because the objects move indepen-
dently, the marginal distributions in the absence of observations
also evolve independently. Note that we ignore the joint statis-
tics for the objects only when generating the sleeping policy; for
tracking we must keep track of the joint statistics to incorporate
the information from the observations. In suboptimal MTT algo-
rithms that only approximate the joint distribution (see [11] for
examples), it is usually still possible to determine the marginals
for each object and our FCR policy can be used in concert with
these algorithms.

C. All Awake (AA) Policy

The lower bound that results from the policy is likely
to be loose when data association errors dominate the tracking
cost. In this section, we design a -like policy that, instead
of assuming the state is known, assumes the following:

• at the current time step, after selecting sleep times all
sleeping sensors will be allowed to make observations
(with no energy cost);

• at future time steps, the distribution for the object location
will evolve as if all sensors are awake.

This gives rise to the term All Awake (AA policy). Note that the
AA assumption is like assuming we will have “perfect observa-
tions.” However, this does not imply perfect knowledge of the
state due to the presence of data association errors. Note that
since we are assuming more information than is actually avail-
able, the AA assumption does yield a lower bound on optimal
performance. Due to complexity issues, we will only design the
AA policy for the case.

The advantage of the AA assumption is it allows us to con-
siderably simplify the state space for . Since all the sensors
come awake at each time step, the set of at most two locations
where an object could be present is known exactly. Suppose for
the moment that there are two distinct locations where an object
is observed. Let with being the
locations where objects are present at time . Thus, belongs
to a subset of . To completely characterize
we need only specify the probability that . Denote this
probability as . Then with probability we have that

. Note that if there is only one distinct location
where an object is observed we can simply let and

.
Let . The state space for is not finite due to

. The approach we take is to quantize and con-
struct a kernel for this quantized version of . Note that in
doing this we no longer have a true lower bound; however, with
fine enough quantization we can well approximate such a lower
bound. Note that at the time when sleep times are selected, the
distribution may not be able to be written in the form .
However, we can compute the probability that a particular value
of will be the result of allowing all sensors to wake up in the
current time step. We can thus form a distribution from to
be used in the dynamic programming.

Even with these simplifications, the problem still does not
separate into a subproblem for each sensor. To see this, suppose
that . Then the expected tracking cost at time is
given by

(38)

This cannot be written in a linear form that allows us to sep-
arate the actions of the sensor at location from those at

. We would like to have separation so that we can eliminate
the residual sleep times and solve a set of simpler problems. To
achieve this and still yield a lower bound, we lower bound the
expected tracking cost expression as

(39)

Note that this lower bound is tight as long as at least one of the
sensors is awake. Note also that if (which implies
that) then we have that the expected tracking cost can
be written as

(40)

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

3748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

which it turns out can also be written in the form of (39).
To better see how this analysis leads to separation, we first

define functions and such that and
are the tracking costs incurred by sensor when it is awake and
asleep, respectively. We define these functions as

(41)

and

(42)

It is a simple matter to verify that

(43)

reduces to (39). Furthermore, this equation clearly separates into
a tracking cost associated with each sensor.

The per-sensor Bellman equation for sensor under the above
assumptions is given by

(44)

This equation can be solved through the use of policy iteration
to yield a policy and a lower bound. Due to the larger size and
irregular structure of the kernel, optimizing the right-hand
side of (44) over all is made difficult. In our simulation
results, we will optimize over where is
sufficiently large. This results in further approximation to the
actual AA lower bound.

IV. NUMERICAL RESULTS

In this section, we give some simulation results that illus-
trate the performance of the policies we derived in previous
sections. These results will be for one-dimensional sensor net-
works, but the general behavior should extend to two-dimen-
sional networks. In each simulation run, the objects were ini-
tially placed at the center of the network and the locations of
the objects made known to each sensor. This initial condition
would not occur in practice, but was used for simplicity. Al-
ternatively, we could assume a partially unknown initial state,
but the trends described in the simulation results below are ex-
pected to remain unchanged. A simulation run concluded when
all objects left the network. The results of many simulation runs
were then averaged to compute an average tracking cost and an
average energy cost. To allow for easier interpretation of our re-
sults, we then normalized our costs by dividing by the expected
time for a simulation run. We refer to these normalized costs
as costs per unit time, even though the true costs per unit time

Fig. 2. Tradeoff curves for � , FCR, and AA policies for Network A and
� � ����.

would use the actual times for each simulation run (the differ-
ence between the two was found to be small).

We first consider a network we term Network A. This net-
work is a one-dimensional network with seven sensors. The
small number of sensors was needed because the AA policy
must perform policy iteration for a number of states equal to

where is the number quantization
levels for . In our simulations, we used for a total of
596 states. Policy iteration for this number of states required sig-
nificant computation and the network could not be made much
larger. A value of was used in computing the AA
policy. The object movement in Network A is parametrized by
a scalar . Object 1 moves one cell to the left with prob-
ability and one cell to the right with probability in each
time step. Object 2 does just the opposite, moving one cell to the
left with probability and one cell to the right with proba-
bility . Note that the closer is to 0.5, the more difficult it is to
distinguish between the objects based on their movements. This
means that by varying we can investigate the performance of
our policies for various amounts of data association error.

We illustrate the performance of our policies for Network A
for the cases , , and in Figs. 2–4,
respectively. Curves are shown for the and AA lower
bounds as well as the , FCR, and AA policies. The curves
are tradeoff curves that examine the tradeoff between energy
cost and tracking cost as the parameter is varied. In examining
the tradeoff curves, the distance from the right-hand point of
each curve to the -axis is the average number of data associa-
tion errors when all sensors are awake. No tracking error smaller
than this can be achieved. From the figures we can draw the fol-
lowing conclusions.

• The lower bound due to the assumption is tight
when only a few sensors are awake (large). This is be-
cause the assumption incorporates only observation
errors and when few sensors are making observations, ob-
servation errors dominate.

• The lower bound due to the AA assumption is tight only
when many sensors are awake (small). This is because

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

FUEMMELER AND VEERAVALLI: ENERGY EFFICIENT MULTI-OBJECT TRACKING IN SENSOR NETWORKS 3749

Fig. 3. Tradeoff curves for � , FCR, and AA policies for Network A and
� � ����.

Fig. 4. Tradeoff curves for � , FCR, and AA policies for Network A and
� � ����.

the tracking cost approximation used in computing the AA
policy is loose when neither object is observed. Also, re-
member that the AA lower bound plotted is actually an ap-
proximation to the true lower bound due to quantization
effects and the use of a finite .

• The policy performs best when only a few sensors
are awake, and the AA policy performs best when many
sensors are awake. Not surprisingly, these are the same
regions where their bounds are tight.

• The FCR policy is the worst-performing policy. The dif-
ference between the FCR policy and the other policies,
while never especially large in terms of the tradeoff curves,
shrinks as data association errors become small.

We now turn our attention to simulating the FCR policy,
which scales better than the other policies, for a larger network,
termed Network B. Network B is a one-dimensional network
with 41 sensors. Note that policy iteration for the policy
would need to be performed over states
and the requirements for the AA policy would be even larger.

Fig. 5. Object movement distributions for Network B.

TABLE I
OBJECT MOVEMENT DISTRIBUTIONS FOR NETWORK B

Fig. 6. Tradeoff curves for FCR and duty cycle policies for Network B.

The distributions for the movement of the objects are given in
Table I and illustrated graphically in Fig. 5.

Since no lower bounds are available for Network B, we com-
pare the performance of our FCR policy to a duty cycle policy,
where each sensor comes awake with some fixed probability at
each time step. Fig. 6 shows tradeoff curves for these two poli-
cies. The tradeoff curve for the duty cycle policy is generated
by varying the probability that a sensor is awake between 0 and
1. The FCR tradeoff curve appears reasonable and significantly
outperforms the duty cycle policy.

V. CONCLUSION

In this paper, we formulated a problem for tracking multiple
objects in an energy-efficient manner. We found that while an

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

3750 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

optimal solution could not be found, it was possible to design
suboptimal solutions that approximate optimal performance, as
seen in our simulation results. Our results also indicate that the
tradeoff between energy consumption and tracking errors can
be considerably improved by using information about the loca-
tion of the object. Of the policies we designed, the FCR policy
exhibits the best scaling laws although there is some loss in per-
formance.

There are several avenues for future research. Since the
models for sensing, object movement, and energy usage used
in this paper were simplistic, more sophisticated models need
to be examined. Distributed strategies for the scenario where a
central controller is not available is another area for future re-
search. Finally, solving the tracking problem when the statistics
for object movement are unknown or partially known presents
another interesting challenge.

REFERENCES

[1] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target
classification and tracking in sensor networks,” Proc. IEEE, vol. 91, no.
8, pp. 1163–1171, Aug. 2004.

[2] S. Balasubramanian, I. Elangovan, S. K. Jayaweera, and K. R. Na-
muduri, “Distributed and collaborative tracking for energy-constrained
ad-hoc wireless sensor networks,” in Proc. IEEE Wireless Commun.
Netw. Conf., Mar. 2004, vol. 3, pp. 1732–1737.

[3] R. Gupta and S. R. Das, “Tracking moving targets in a smart sensor
network,” in Proc. IEEE 58th Veh. Technol. Conf., Oct. 2003, vol. 5,
pp. 3035–3039.

[4] H. Yang and B. Sikdar, “A protocol for tracking mobile targets using
sensor networks,” in Proc. 1st IEEE Int. Workshop Sens. Netw. Proto-
cols Applicat., May 2003, pp. 71–81.

[5] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for en-
ergy saving in object tracking sensor networks,” in Proc. IEEE Int.
Conf. Mobile Data Manage., 2004, pp. 346–357.

[6] L. Yang, C. Feng, J. W. Rozenblit, and J. Peng, “A multi-modality
framework for energy efficient tracking in large scale wireless sensor
networks,” in Proc. IEEE Int. Conf. Netw., Sens., Control, Apr. 2006,
pp. 916–921.

[7] C. Gui and P. Mohapatra, “Power conservation and quality of surveil-
lance in target tracking sensor networks,” in Proc. 10th Annu. Int. Conf.
Mobile Comput. Netw. (MOBICOM), Sep. 2004, pp. 129–143.

[8] C. Gui and P. Mohapatra, “Virtual patrol: A new power conservation
design for surveillance using sensor networks,” in Proc. 4th Int. Symp.
Inf. Process. Sens. Netw. (IPSN), Apr. 2005, pp. 246–253.

[9] N. A. Vasanthi and S. Annadurai, “Energy saving schedule for target
tracking sensor networks to maximize the network lifetime,” in Proc.
1st Int. Conf. Commun. Syst. Software and Middleware, Jan. 2006, pp.
1–8.

[10] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleeping policies for
energy efficient tracking in sensor networks,” IEEE Trans. Signal
Process. , vol. 56, no. 5, pp. 2091–2101, May 2008.

[11] J. Liu, M. Chu, and J. E. Reich, “Multitarget tracking in distributed
sensor networks,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 36–46,
May 2007.

[12] W.-L. Yeow, C.-K. Tham, and W.-C. Wong, “Energy efficient multiple
target tracking in wireless sensor networks,” IEEE Trans. Veh. Technol.,
vol. 56, no. 2, pp. 918–928, Mar. 2007.

[13] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd
ed. Belmont, MA: Athena Scientific, 2007.

[14] D. Aberdeen, “A (revised) survey of approximate methods for solving
partially observable Markov decision processes,” National ICT Aus-
tralia, Canberra, Australia, 2003 [Online]. Available: http://users.rsise.
anu.edu.au/~daa/papers.html

[15] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Proc. 12th Int.
Conf. Mach. Learn., 1995, pp. 362–370.

Jason Fuemmeler (M’07) received the B.E.E. de-
gree in electrical engineering from the University of
Dayton, Dayton, OH, in 2000 and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Illinois at Urbana-Champaign in 2004 and 2008,
respectively.

He has been awarded a NSF graduate research fel-
lowship and a Vodafone fellowship. He is currently
employed in the Advanced Technology Center at
Rockwell Collins performing research in electronic
warfare and wireless communications.

Venugopal V. Veeravalli (M’92–SM’98–F’06)
received the B.Tech. degree (Silver Medal Honors)
from the Indian Institute of Technology, Bombay, in
1985, the M.S. degree from Carnegie Mellon Uni-
versity, Pittsburgh, PA, in 1987, and the Ph.D. degree
from the University of Illinois at Urbana-Cham-
paign, in 1992, all in electrical engineering.

He joined the University of Illinois at Ur-
bana-Champaign in 2000, where he is currently
a Professor in the Department of Electrical and
Computer Engineering and a Research Professor

in the Coordinated Science Laboratory. He served as a Program Director for
communications research at the U.S. National Science Foundation, Arlington,
VA, from 2003 to 2005. He has previously held academic positions at Harvard
University, Rice University, and Cornell University, and has been on sabbatical
at MIT, IISc Bangalore, and Qualcomm, Inc. His research interests include
distributed sensor systems and networks, wireless communications, detection
and estimation theory, and information theory.

Prof. Veeravalli is a Distinguished Lecturer for the IEEE Signal Processing
Society for 2010–2011. He has been on the Board of Governors of the IEEE
Information Theory Society. He has been an Associate Editor for Detection and
Estimation for the IEEE TRANSACTIONS ON INFORMATION THEORY and for the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. Among the awards he
has received for research and teaching are the IEEE Browder J. Thompson Best
Paper Award, the National Science Foundation CAREER Award, and the Pres-
idential Early Career Award for Scientists and Engineers (PECASE).

Authorized licensed use limited to: University of Illinois. Downloaded on February 17,2011 at 21:23:31 UTC from IEEE Xplore. Restrictions apply.

