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Abstract—The capacity of noncoherent time-selective Rayleigh-
fading channels is studied under various models for the variations
in time. The study includes both single-input and single-output
(SISO) and multiple-input and multiple-output (MIMO) sys-
tems. A block-fading model is first considered where the channel
changes correlatively over each block period of length , and
independently across blocks. The predictability of the channel is
characterized through the rank of the correlation matrix of
the vector of channel gains in each block. This model includes, as
special cases, the standard block-fading model where the channel
remains constant over block periods ( = 1), and models where
the fading process has finite differential entropy rate ( = ).
The capacity is initially studied for long block lengths and some
straightforward but interesting asymptotes are established. For
the case where is kept fixed as , it is shown that the non-
coherent capacity converges to the coherent capacity. For the case
where both , with being held constant, a bound
on the capacity loss due to channel unpredictability is established.
The more interesting scenario of large signal-to-noise ratio (SNR)
is then explored in detail. For SISO systems, useful upper and
lower bounds on the large SNR asymptotic capacity are derived,
and it is shown that the capacity grows logarithmically with SNR
with a slope of , for . Next, in order to facilitate the
analysis of MIMO systems, the rank- block-fading model is
specialized to the case where each -symbol block consists of
subblocks of length , with the channel remaining constant over
each subblock and changing correlatively across subblocks. For
this model, it is shown that the log growth behavior of the
capacity is the same as that of the standard block-fading model
with block length . Finally, the SISO and MIMO channel models
are generalized to allow the fading process to be correlated across
blocks in a stationary and ergodic manner. It is shown that the
log growth behavior of the capacity is not affected by the
correlation across blocks.

Index Terms—Correlated fading, high signal-to-noise ratio
(SNR), multiple-antenna channels, multiple-input multiple-output
(MIMO), wireless channels.

I. INTRODUCTION

RECENT work on noncoherent fading channels, where nei-
ther the transmitter nor the receiver knows the channel

states, has generated many interesting results. The capacities
of these channels and the corresponding optimal input distribu-
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tions have been investigated in the literature due to their theoret-
ical and practical importance in mobile wireless communication
systems. Studies of capacity provide fundamental transmission
limits for such channels, and explorations of the optimal input
distribution suggest practical signaling schemes.

Abou-Faycal et al. [1] study a single-input single-output
(SISO) memoryless Rayleigh-fading channel. While they do
not explicitly obtain the noncoherent capacity of this channel,
they prove that the capacity-achieving distribution is discrete
with a finite number of mass points. Asymptotically firm upper
and lower bounds on the noncoherent capacity for this channel
model are derived by Lapidoth and Moser [2], and we describe
this work in more detail below. Another study of optimal input
distributions for noncoherent Gaussian Markov channels is
performed by Chen et al. in [3].

Marzetta and Hochwald [4], [5] study multiple-input mul-
tiple-output (MIMO) Rayleigh-fading channels where the com-
ponents of the channel matrix fade independently. A key as-
sumption made in that work is that the channel remains constant
over blocks consisting of several symbol periods, and changes
independently from block to block—we refer to this model as
the standard block-fading model. Under the block-fading as-
sumption, Marzetta and Hochwald characterize the capacity-
achieving input distribution and suggest useful code-design cri-
teria. Furthermore, for the special case of SISO channels, they
obtain asymptotic expressions for the capacity for large block
lengths and for high signal-to-noise ratio (SNR). Zheng and Tse
[6] extend these SISO asymptotic results to the MIMO case, and
also provide a geometric interpretation for the capacity. In all
cases, the capacity of standard block-fading channels is shown
to grow logarithmically with SNR.

Lapidoth and Moser [2] study MIMO channels without the re-
strictions of block fading, Rayleigh statistics, and independent
channel matrix components. Furthermore, they allow for par-
tial side information about the channel at the receiver. However,
a couple of key assumptions are made in this work. The first
is that the fading process is stationary on a symbol-by-symbol
basis. The second is that the fading process has finite differen-
tial entropy rate, and that the mutual information rate between
the fading process and the side information is finite. Under this
model, they prove that the channel capacity grows only double-
logarithmically in SNR at high SNR. They also evaluate the
second-order term in the high SNR asymptotic expansion of
the capacity (which is called the fading number) in some spe-
cial cases, and provide corresponding fading number achieving
input distributions. We note that the double-logarithmic growth
in SNR of the capacity is pessimistic, and it is due to the finite
entropy rate assumption on the fading process.
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In this paper, we also assume that neither the transmitter
nor the receiver knows the channel state information with both
knowing the channel statistics. We consider a generalization of
the standard block-fading model, where the channel changes
over the block period rather than remaining constant. We refer
to this model as the time-selective block-fading model. We first
consider the scenario where the fading is independent from
block to block, and later we further generalize the model to
allow the fading process to be correlated across blocks. As in
[1], [3]–[6], we restrict our attention to Rayleigh-fading (or
zero-mean complex Gaussian) channels. For MIMO channels,
we make the further restriction that the components of the
channel matrix fade independently. With independent blocks,
our model includes as special cases the standard block-fading
model studied in [4]–[6] and the memoryless fading model
studied in [1]. When we allow for correlation across blocks,
our model covers the one studied in [2], where the fading
is stationary on a symbol-by-symbol basis, albeit under the
restriction to Rayleigh fading and independent channel matrix
components. We characterize the capacity of such generalized
block-fading channels through bounds and asymptotic analysis.

The paper is organized as follows. In Section II, we explain
our notation and introduce our time-selective block-fading
models for SISO and MIMO systems. We also provide a phys-
ical justification for the model we use based on a study of the
underlying continuous-time waveform channel. In Section III,
we review some known results on the capacity of fading chan-
nels which are useful in our analysis. In Section IV, we analyze
the SISO model in detail. We provide bounds on the capacity,
and based on these bounds, we characterize the asymptotic
capacity for large block lengths. Then we move on to the
high-SNR regime, and characterize the capacity more precisely
in this asymptotic regime. In Section V, we extend the lower
bound on the capacity for the SISO case to the MIMO case, and
characterize the capacity for long block lengths. To study the
capacity in the high-SNR regime, we consider a special case of
the MIMO model (that we term the subblock-correlated fading
model), which is simpler to analyze and reasonably realistic.
For this model, we obtain the first-order term in high-SNR
expansion of the capacity. In Section VI, we generalize our
time-selective block-fading models further to allow the fading
process to be correlated across blocks, and study the
growth behavior of the capacity at high SNR. In Section VII,
we summarize our results.

II. SYSTEM MODEL AND NOTATION

A. Notation

The following notation is used in this paper. For deterministic
objects, upper case letters denote matrices, lower case letters de-
note scalars, and underlined lower case letters denote vectors.
Random objects are identified by corresponding boldfaced let-
ters. For example, denotes a random matrix, denotes the
realization of , denotes a random vector, and denotes a
random scalar. Superscripts are used to indicate the entries of
matrices. For example, the symbol denotes the compo-
nent at the th row and th column of the random matrix .

Although upper case letters are typically used for matrices,
there are some exceptions, and these exceptions are noted ex-
plicitly in the paper. For example, and denote block lengths,
and in the formulas denotes the SNR.

Some symbols have special meanings throughout the paper.
For example, denotes Euler’s constant which is defined by

and represents a random variable with Gamma distribution
, where the probability density function (pdf) of

is given by

The unit step function is denoted by , i.e., for
and for .

The proper complex Gaussian distribution with mean and
variance is denoted by , and the joint distribution
of a proper complex Gaussian vector with mean and covari-
ance matrix is denoted by .

The trace of a matrix is denoted by , the Hermitian con-
jugation and the transpose of a matrix are denoted by and

, respectively, and the Euclidean norm of a vector is denoted
by .

Some special matrices and vectors are denoted as follows.
The -by- identity matrix is denoted by , the -by- ma-
trix with all components equal to is denoted by , and the
vector with dimension and all components equal to zero is
denoted by .

The differential entropy of is denoted by , and the mu-
tual information between and is denoted by . The
logarithmic function to the base is denoted by . The dif-
ferential entropy is defined to the base as well.

B. SISO Continuous-Time Flat-Fading Model and
Discrete-Time Approximation

While the information-theoretic analysis in this paper is car-
ried out in discrete time, we first study the fading channel in
continuous time (before discretization) in order to motivate our
time-selective block-fading models.

Continuous-Time Flat-Fading Model: In wireless channels,
the signal leaving the transmitter reaches the receiver along
several paths after reflections by scatterers in the environment.
Fading in wireless channels is caused by movements in the
transmitter, receiver, or the scatterers. These movements cause
the linear complex baseband channel connecting the transmitter
and the receiver to become time varying. For movements that
are of the order of a few wavelengths, the path gains and delays
can be assumed to be constant and the time variations are
primarily due to changes in the phases of the different paths
that connect the transmitter and receiver [7]. We denote the
time interval corresponding to such small scale variations by

. Note that is not to be confused with the coherence
time of the channel, which is the time period for which the
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channel does not vary significantly, i.e., even the path phases
are roughly constant.

Now consider the case where the transmitter and receiver are
each equipped with one antenna (SISO system). If the trans-
mitted signal is narrowband relative to inverse of the delay
spread of the paths at the receiver, the channel is said to be
frequency flat and the output signal can be approximately
written as

(1)

where is additive white Gaussian noise, and is the flat
fading process. We make the flat fading assumption throughout
the paper.

We model as a stationary, zero-mean proper complex
Gaussian (or Rayleigh-fading) process over intervals of duration

. The zero-mean proper complex Gaussian model is based
on two implicit assumptions about the scattering environment: i)
the scattering is diffuse, i.e., there are a large number of roughly
equally strong paths, and ii) the path phases are independent and
uniformly distributed on .

Stationarity follows from the assumption that the Doppler fre-
quency shift along each path is constant so that the path phase
varies linearly with time with an initial random phase that is
uniformly distributed on . In particular, the autocorrela-
tion function of can be expressed compactly in terms of the
Doppler power density as follows [7]:

(2)

The function represents the distribution of path powers as
a function of Doppler frequency. It is clear that is also the
power spectral density of the process . Note that the support
of is , where is the maximum Doppler
frequency for all paths. If the maximum possible speed for the
mobile units (terminals or scatterers) is , then

, where is the carrier wavelength. The bandwidth
of the process is upper-bounded by . We refer
to as the Doppler bandwidth.

Remark 1: While the stationarity of seems natural and
convenient for analysis, it is important to treat this assumption
with some caution in information-theoretic analyses where we
let the time horizon for transmission go to infinity (as in [2]).
The fading process is accurately modeled to be stationary
only over time durations that are smaller than . Beyond

, large-scale variations in the path gains and delays cause
the stationary model to break down.

Note that (2) implies that is a strictly bandlimited
process. We emphasize the bandlimitedness of is not an
approximation since it follows directly from the physical limits
on the speed of the mobile units. Now consider the time interval

, where . Over , has a Fourier series
representation. The bandlimitedness of can be exploited to
truncate the Fourier series to obtain the following approximate
representation (in the mean-squared sense):

(3)

where . Furthermore, the coefficients
are approximately independent zero-mean proper complex
Gaussian random variables. The approximation of course
improves with increasing .

Remark 2: It is important to note that the approximation for
given in (3) is not necessarily stationary unless we assume

that the coefficients are independent.

Treating the approximation of (3) as an equality, we see that
the randomness of is captured by the independent
(not necessarily identically distributed) random variables ,

.
Slow Fading and Discretization: We are now ready to dis-

cretize the system model given in (1). Let denote the symbol
period for discrete-time signaling on the channel. We make the
so-called slow fading assumption that the symbol period is
much smaller than the inverse of the Doppler bandwidth ,
i.e.,

(4)

This is a reasonable assumption for most modern terrestrial
wireless communication systems [8].

Under the slow fading assumption, is approximately
constant over the symbol interval . Thus, discretizing the
model of (1) via standard symbol matched filtering and sam-
pling yields the following system model:

(5)

where is an appropriately scaled input sequence,
is a sequence of independent and identically distributed (i.i.d.)
zero-mean proper complex Gaussian random variables, and

(6)

with being independent zero-mean proper complex
random variables. Note that the independence of implies
that the discrete-time process is stationary.

Note that since the continuous-time model of (1) is valid
over time intervals of duration less than , the discrete-
time model is valid for blocks of symbols of block length less
than . This leads us to the time-selective block-fading
model that we now introduce.

C. SISO Time-Selective Block-Fading Model

Consider the discrete-time system of (5) over a symbol
block, with

(7)

where we normalize the system so that the channel inputs
have power constraint , the channel gains
have unit variance, and is a sequence of i.i.d.
random variables. The term then represents the SNR.

We collect the channel gains corresponding to one block in
the vector
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Under our Rayleigh-fading model, is a zero-mean proper com-
plex Gaussian vector with covariance matrix that has all the
diagonal components equal to . Based on the model for
given in (6), the sequence is stationary within the
block, and hence is Toeplitz.

The rank of is denoted by and it satisfies the inequality

(8)

where the last equality is obtained by setting in (3).
For slow fading, . This implies that

for reasonably large , we have , i.e., that is highly
rank deficient. In the standard block-fading model [4], [5] it is
assumed that the channel gain is constant over each block (i.e.,

), which is a good approximation for sufficiently small
Doppler bandwidths.

The question that now remains is how one should model the
channel variations from one block to the next. In the standard
block-fading model, the channel is assumed to change in an i.i.d.
manner from block to block. The independence can be justified
in certain time-division or frequency-hopping systems, where
the blocks are separated sufficiently in time or frequency to un-
dergo independent fading. The independence assumption is also
convenient for information-theoretic analysis as it allows us to
focus on one block in studying the capacity.

Without time or frequency hopping, the channel variations
from one block to the next are dictated by the long-term varia-
tions in the scattering environment. If we assume that the vari-
ations in average channel power are compensated for by other
means, such as power control, it is reasonable to model the vari-
ation from block to block as stationary and ergodic.

Remark 3: The block stationary model does not imply that
the fading process is stationary on a symbol-by-symbol basis as
in the analysis of [2]. But as we explained earlier in Remark 1,
the symbol-by-symbol stationary model is not realistic for time
intervals that are larger than symbols anyway. For
this reason, it may be more accurate to model the fading process
using a block-fading model with possible correlation across
blocks than it is to model it as a symbol-by-symbol stationary
process.

Throughout the paper, we assume that neither the transmitter
nor the receiver knows the channel state information (realiza-
tions of channel gains), but both know the channel statistics.
In our analysis of the noncoherent capacity of time-selective
block-fading channels, we will first assume that the fading is
independent from block to block. We will consider the general-
ization to dependent block fading in Section VI.

D. MIMO Time-Selective Block-Fading Model

We now generalize our time-selective block-fading model to
MIMO systems that employ multiple antennas at the transmitter
and receiver.

The channel output , corresponding to the th
symbol vector within a block of symbol vectors, is given by

(9)

where and denote the numbers of transmit and receive
antennas, respectively, and is a sequence of i.i.d.

random vectors. The channel input
has power constraint

(10)

where denotes the Euclidean norm of vector . We use
to denote the channel gain matrix at time instant ,

and to denote its entry at the th row and th column. We
assume that the scattering is sufficiently rich so that the channel
gains corresponding to different antenna pairs are independent;
hence, each has i.i.d. entries. We then group the channel
gains from time instant to corresponding to the th receive
and th transmit antenna pair into a vector

(11)

Under our Rayleigh-fading model, each is a zero-mean
proper complex Gaussian vector. All the antenna pairs, of
course, have identically distributed channel gains, and hence
the covariance matrix of is the same for all pairs .
We denote this covariance matrix by . As in the SISO
time-selective model, the channel gains are normalized so that
all the diagonal components of equal , and denotes the
rank of the Toeplitz matrix .

We initially assume that the channel matrix changes indepen-
dently from block to block and later allow for correlation across
blocks. Also, in order to facilitate the analysis of the MIMO
system, we specialize the rank- block-fading model to the case
where each -symbol block consists of subblocks with length

, with the channel remaining constant over each subblock and
changing correlatively across subblocks. This special case will
be described in detail in Section V-B.

III. KNOWN RESULTS

In this section, we review some existing results on the channel
capacity for a MIMO system with transmit antennas and
receive antennas. The channel at time instants is given by

(12)

where is the channel matrix at time instant with i.i.d.
entries.

Various channel models may follow from (12) by different
assumptions about the time variations of the channel matrix se-
quence and about the availability of channel state infor-
mation. The channel capacities of some of these channel models
are summarized below.

The first result concerns the coherent capacity of a MIMO
system, and is derived in [9], [10].

Lemma 1: In (12), assume that the channel matrix varies
in a stationary and ergodic manner over time . If the channel
state information is perfectly known at the receiver only, then
the coherent capacity is given by

(13)

where denotes the random matrix with i.i.d. entries.
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In particular, the coherent capacity for a single antenna
system is

(14)
where is a random variable with distribution of , and

is defined in Section II-A.
A lower bound on the capacity in (13) is given by

(15)
where is defined in Section II-A.

The noncoherent capacity of the standard block-fading
MIMO channel is computed in [6]. We summarize the main
result here.

Lemma 2: In (12), assume the standard block-fading model,
where the channel matrix remains constant for -symbol
blocks, and changes independently from block to block. Let

. If , the noncoherent capacity
is given by

(16)

where is a constant that does not depend on , and
goes to zero as goes to infinity. In the general case, in-
cluding , the capacity satisfies

(17)

Here, and are constants that do not depend on the SNR,
and . At high SNR, the optimal input
must have antennas transmitting signals with power much
higher than the noise level.

For a MIMO channel with the fading process being stationary
and ergodic on a symbol-by-symbol basis and having finite en-
tropy rate, the noncoherent capacity is derived in [2].

Lemma 3: Consider a MIMO fading channel given in (12),
where is stationary and ergodic (not necessarily Gaussian
with possibly correlated matrix components), satisfying

Assume that is independent of and , and that

Then the noncoherent capacity satisfies

(18)

Moreover, define the second-order term in the high-SNR ex-
pansion of the capacity as the fading number, i.e.,

(19)

where variance of the noise is assumed to be . Then the fol-
lowing lemma provides results for the fading number.

Lemma 4: For the channel model described in Lemma 3, as-
sume that the channel is memoryless and rotation commutative

in the generalized sense (as defined in [2]), then the in (19)
is also a and the fading number is given by

(20)
where is any deterministic unit-vector in . This fading
number is achievable by inputs that can be expressed as the
product of a random vector and an independent circularly
symmetric scalar random variable . The vector is uniformly
distributed on the unit -sphere, and the distribution of
is such that is uniformly distributed over the interval

for any satisfying

and

In the special case of the MIMO Rayleigh-fading channel where
, the fading number is given by

(21)

where

(22)

For the SISO Rayleigh-fading case, the above fading number
reduces to .

IV. NONCOHERENT CAPACITY FOR THE SISO TIME-SELECTIVE

BLOCK-FADING MODEL

We first study the SISO time-selective block-fading model
given in Section II-C with independent fading across blocks.
In Section V, we extend our results to MIMO channels. In
Section VI, we generalize the results to time-selective models
with correlated fading across blocks.

In the following result we provide a lower bound on the non-
coherent capacity.

Proposition 1: For the SISO time-selective block-fading
model given in Section II-C with independent fading across
blocks, a lower bound on the capacity as a function of SNR is
given by

(23)

where and have the Gamma distributions defined in
Section II-A, and is the coherent capacity (see (14)).

Proof: The result follows as a special case of Proposi-
tion 5, which is a more general result for MIMO channels. See
Appendix I for the proof of Proposition 5.

The coherent capacity is an obvious upper bound
on the noncoherent capacity . Thus, we have

(24)
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A. Long Block Length Asymptotic Capacity

To proceed further with the analysis, we resort to asymp-
totic analyses. We begin by studying the capacity for long block
lengths, with the understanding that this asymptote needs to be
treated with some caution as we point out in Section II (Remarks
1 and 3). In particular, the block length should be less than

in order for our block-fading model to be of practical
relevance. Thus, large values of are relevant only in scenarios
where the fading is very slow compared to the symbol rate. On
the other hand, the large asymptote does provide some useful
insights into the role of channel predictability in determining the
noncoherent capacity.

We have the following result by letting in (24).

Proposition 2: For the SISO time-selective block-fading
model given in Section II-C with independent fading across
blocks, the noncoherent capacity converges to the coherent
capacity as and is fixed, i.e.,

Furthermore, if , with being fixed

(25)

The first part of the proposition (with fixed ) corresponds
an environment where, in addition to the fading being very slow,
the scattering is very sparse so that only a finite number of effec-
tive scatterers contribute to the fading. For such a scenario, the
coherent capacity is asymptotically achievable without channel
state information at the receiver. This is reasonable since we can
send a finite number of training symbols to accurately estimate
the channel state at the receiver, and then the channel state can
be assumed to be perfectly known in the remaining (infinite)
channel uses.

The second part of Proposition 2 corresponds to a rich scat-
tering scenario where the number of effective scatterers that
contribute to the fading increases linearly with . In fact, for the
slow-fading model (see Sections II-B and II-C ), it can be argued
that approximately equals . In such a scenario, the
asymptotic result suggests that the capacity remains bounded
away from the coherent capacity. The capacity loss relative to
the coherent capacity is captured by the second term in (25), and
this loss is due to channel unpredictability.

B. High-SNR Asymptotic Capacity

The coherent capacity served as a sufficiently tight upper
bound for the study of the asymptotic capacity for long block
lengths. In the high-SNR regime, however, the coherent capacity
is no longer a sufficiently tight upper bound. In the following,
we first compute the high SNR expansion of the lower bound
given in Proposition 1. Then we derive another upper bound on
the capacity whose first-order term is asymptotically tight in the
high-SNR regime.

The following proposition gives a high-SNR asymptotic
lower bound on the capacity.

Proposition 3: The lower bound on the capacity (23) has the
following asymptotic expansion in SNR:

(26)

where is Euler’s constant as defined in Section II-A and
goes to zero at high SNR.

Proof: See Appendix II.

Before we give an upper bound for the general case
, we present in the following lemma an upper bound for the

special case when . This lemma is useful in deriving the
upper bound for the general case.

Lemma 5: 1 For the SISO time-selective block-fading model
defined in Section II-C with independent fading across blocks,
assume . The capacity is bounded by

(27)

where is the capacity of the i.i.d. Rayleigh-fading
channel with channel gain having distribution of at
each time instant. In the upper bound, the symbol
denotes the minimal eigenvalue of , and it can be easily seen
that . The upper bound has the following asymp-
totic expansion in SNR:

(28)

Proof: See Appendix III for the proof of the left inequality
in (27). The right inequality in (27) follows as a special case
of Lemma 6 (of Section V-B) with and . The
inequality (28) follows directly from (27) and Lemma 4.

Lemma 5 indicates that although the channel gains in one
block may have memory, as long as the covariance matrix
has full rank, the capacity increase due to channel memory re-
mains bounded as SNR approaches infinity.

We now generalize the upper bound in (27) to the case
.

Proposition 4: Consider the SISO time-selective block-
fading model given in Section II-C with independent fading
across blocks. For , an asymptotic upper bound on
the capacity is given by

(29)

where is one of the full-rank principal submatrices
of .

Proof: See Appendix V.

1A similar upper bound as in (27) is also derived by Lapidoth and Moser in
[2, Lemma 4.3]. However, there are differences in the conditions required in the
proofs. Our derivation does not require the fading process to be stationary, which
allows the result to be extended to other scenarios such as the orthogonal fre-
quency-division multiplexing (OFDM) model of Corollary 1, where the fading
coefficients are generally not stationary across frequency tones. The proof given
in [2] requires the fading process to be stationary and ergodic, but it is valid for
more general fading distributions than the Rayleigh and Ricean.
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The asymptotic bounds given in Propositions 3 and 4 can be
combined to lead to the following result on the high SNR be-
havior of the capacity.

Theorem 1: Consider the SISO time-selective block-fading
model given in Section II-C with independent fading across
blocks. For , the high-SNR asymptotic capacity satis-
fies the relationship

(30)

It is instructive to interpret the intuition behind this result.
From our assumption that the rank , random vari-
ables completely determine the channel coefficients in the entire
block. Theorem 1 suggests that we have to essentially give up

out of channel uses in the high-SNR regime. In particular,
consider the training scheme that takes channel uses to esti-
mate the channel. As , this training scheme can effec-
tively obtain perfect estimates of the channel gains in the entire
block, and remaining channel uses can assume perfect
channel knowledge. Our results say that such a training scheme
achieves the first-order term of the high SNR expansion of the
capacity. Our proof for the lower bound also suggests that using
i.i.d. Gaussian inputs is another way to achieve this first-order
term.

Our analysis thus far has considered only time-selective
fading. In the following result, we show that frequency se-
lectivity can also be incorporated in our approach, under the
restriction of OFDM signaling [11].

Corollary 1: Consider a SISO system with taps in the
delay spread of the channel. Let denote the
channel gains corresponding to the taps. Then the output at
time is given by

(31)

Assume that is a circularly complex
Gaussian random vector with mean zero and covariance matrix
having full rank. Suppose we use an OFDM signaling scheme
with tones in the frequency domain . Further assume
that the channel gains remain constant for the duration of one
OFDM symbol and change to new independent realizations for
the next OFDM symbol. Then, ignoring the loss in capacity due
to the use of prefix symbols, the noncoherent capacity satisfies
(30).

Proof: The discrete Fourier transform (DFT) of
is given by

Similarly, let , , and be the DFTs
of , , and , respectively.

Then, in the frequency domain, the output from the th tone
is given by

(32)

Since

is a circularly complex Gaussian random vector with covariance
matrix having rank , (32) is identical to (7), except that the
channel gains may not have the same variances. But this does not
affect the first-order high-SNR expansion term of the capacity.
So the result follows from Theorem 1.

The same approach can also be generalized to doubly se-
lective (both time and frequency-selective) underspread fading
channels, under restriction of the pulse-shaped OFDM modula-
tion [12] or short-time Fourier signaling [13].

V. NONCOHERENT CAPACITY FOR MIMO TIME-SELECTIVE

BLOCK-FADING MODEL

In the previous section we studied the asymptotic properties
of the noncoherent capacity for SISO channels. We now extend
this study to MIMO time-selective block-fading channels.

A. Lower Bound on Capacity and Long Block-Length
Asymptotics

We first derive a lower bound on the noncoherent capacity for
the MIMO time-selective block-fading model with independent
fading across blocks. We then show that this lower bound is
asymptotically tight for long block lengths.

Proposition 5: For the MIMO time-selective block-fading
model given in Section II-D with independent fading across
blocks, a lower bound on the capacity as a function of SNR is
given by

(33)

where and are the numbers of transmit and receive an-
tennas actually used that maximize the lower bound.

Proof: See Appendix I.

Proposition 5 suggests that in multiple-antenna systems we
may not want to use all the available antennas. The reason is that
although using more antennas can create more equivalent par-
allel channels, which contributes positively to capacity, this also
introduces more unknown channel gains in one block, which
contributes negatively to capacity. This point is further clarified
if we consider the following example training scheme. In each
block, we estimate the channel for a certain number of symbol
periods and then use the remaining symbol periods coherently.
When the block length is long enough, we may use all the an-
tennas to make the number of parallel channels as large as pos-
sible. This is because after channel estimation, there are still
enough symbol periods for coherent transmission in the block.
The gains offered by using all possible parallel channels will
offset the losses in estimating the unknown channel gains. How-
ever, when the block length is small, if we use too many an-
tennas, the block may end before we estimate all the channel
gains so that we transmit little or no information in the block.
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Hence, there is a tradeoff between the number of parallel chan-
nels we want to create and the number of unknown channel gains
we have to estimate. Choosing to use the optimal number of an-
tennas will balance this tradeoff and maximize the transmission
rate.

As in the SISO case, we first consider the large asymptote
to establish some interesting boundary values for the capacity.
For the case where remains fixed as , if we set
and in (33) and compare it to the simple upper bound
given by coherent capacity of Lemma 1, we immediately get
the asymptotic result shown in the following proposition. In this
case, using all the available antennas is optimal. For the case
where both , with being held constant, as in the
SISO case, we are able to bound the capacity loss due to channel
unpredictability. Note that in this case using all the available
antennas may not be optimum.

Proposition 6: For the MIMO time-selective block-fading
model given in Section II-D with independent fading across
blocks, where with being fixed, the noncoherent
capacity converges to the coherent capacity

Furthermore, if , with being fixed

where and need to be chosen to make the lower bound
tightest.

B. Subblock-Correlated Model and High-SNR Asymptotic
Capacity

We now move on to the more interesting high-SNR regime.
It would be natural to follow the same steps as in the high
SNR analysis for the SISO model. However, finding a tight
upper bound for the capacity for the general model given in Sec-
tion II-D appears to be difficult. Therefore, we will study a spe-
cial case of the general model, subblock-correlated model, that
is simpler to analyze and still reasonably realistic.

For the MIMO time-selective block-fading model given in
Section II-D, we assume a special structure for the vector
in (11). Suppose each symbol block has subblocks with
each subblock undergoing constant fading, and the fading across
subblocks being correlated. The length of each subblock is ,
with and . Hence, can be written as

(34)

Let denote the covariance matrix of such , and note
that it is same for all pairs as assumed before. The channel
gains from each of the subblocks can be grouped into a new
vector

with covariance matrix (same for all pairs) which
is assumed to have full rank . The relationship between

and can be expressed as where
denotes the Kronecker product and denotes the matrix
with all components equal to . So each subblock follows
the standard block fading model, and the correlation between
the subblocks is described by . We call this model the
subblock-correlated model. For the above subblock-correlated
model, if the subblocks have independent fading coefficients,
we use to denote the covariance matrix of . Then

, where denotes identity matrix.
We call this model the subblock-independent model. Note that
if the channel matrix changes independently from one block
to another, the subblock-independent model is nothing but the
standard block-fading model with block length equal to .

The following lemma relates the capacities of the subblock-
correlated and the subblock-independent models.

Lemma 6: Assume that the channel matrix changes in-
dependently from one block to another. Let and

denote the capacities of the subblock-correlated
model and subblock-independent model, respectively. Then

(35)
where , which is less than , denotes the minimal
eigenvalue of .

Proof: The proof of the left inequality in (35) is a
straightforward extension of the proof in Appendix III. See
Appendix IV for the proof of the right inequality in (35).

The above lemma implies that the subblock-correlated model
with subblock length (with independent fading across blocks)
has the same first-order term in the high SNR expansion of the
capacity as that of the standard block-fading model with block
length , i.e., the two channels have the same growth
behavior. As in the SISO case, the capacity gain due to the cor-
relation between subblocks is bounded as SNR approaches in-
finity. By applying (17) in Lemma 2 for the capacity
of the subblock-independent model, we obtain the following
asymptotic result for the subblock-correlated model.

Corollary 2: The capacity of the MIMO subblock-correlated
model given in (34) with independent fading across blocks
satisfies

(36)

where .

Now we note that the high SNR expansion of the lower bound
given in Proposition 5 yields an asymptotic lower bound on
the capacity of the general MIMO time-selective model given
in Section II-D. This lower bound is, of course, applicable for
the subblock-correlated model, and it happens to be tight in the
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first-order term in this special case, i.e., it achieves the
growth behavior shown in (36).

Proposition 7: For the MIMO time-selective block-fading
model given in Section II-D with independent fading across
blocks

(37)

where , and is a constant that does
not depend on SNR.

In particular, for the subblock-correlated model given in (34)

(38)

where is defined in Corollary 2.
Proof: By applying Proposition 5, we get

(39)

Using (15) and Lemma 7 in Appendix II, the lower bound can
be expanded as

(40)

where is a constant that does not depend on SNR. Optimizing
the first term in (40) subject to and ,
we get the tightest bound shown in (37). This lower bound is
achieved when .

For the subblock-correlated model, the result in (38) follows
from the fact that .

The derivation of the lower bound in Proposition 5 and Propo-
sition 7 show that with i.i.d. Gaussian components achieves
the first-order term for the subblock-correlated model if
transmit and receive antennas are used.

Although the exact first-order term of the high SNR expan-
sion of the capacity is only obtained for the SISO time-selective
block-fading model and the MIMO subblock-correlated model,
the intuition behind these results leads us to make the following
conjecture.

Conjecture 1: For the MIMO time-selective block fading
model given in Section II-D with independent fading across
blocks, the lower bound given in Proposition 7 is tight in the
first-order high SNR expansion term of the capacity, i.e., the
capacity satisfies

(41)

An explanation for this conjecture is as follows. If we use
transmit and receive antennas, we may use symbol

periods to estimate the fading gains in the first channel

matrices in each block. Then the channel matrices in the entire
block can be assumed to be known, and the remaining symbol
periods can be used coherently to achieve

(42)

as the first-order term in the high SNR expansion of the non-
coherent capacity. While we may not necessarily explicitly es-
timate the channel, Theorem 1 and Corollary 2 suggest that the
training scheme achieves the first-order term in the capacity
asymptotics. We now need to optimize (42) subject to

and . The solution is to choose and
, and the first-order term of the capacity is then as

given in the above conjecture.

VI. GENERALIZATION TO DEPENDENT BLOCK FADING

Thus far, we have considered time-selective models with in-
dependent fading across blocks. In the following, we allow for
correlation across blocks in these models and show that the main
results in the previous sections remain unchanged.

A. SISO Case

Consider the SISO time-selective block-fading model given
in Section II-C. Let indicate the vector of fading coefficients
corresponding to the th block. In Section IV, we have consid-
ered the case where the fading process is independent across
blocks, i.e., the sequence of vectors is an i.i.d.
vector random process. We now consider a more general case
where is allowed to be a stationary ergodic vector
process such that the channel is stationary and ergodic across
blocks (see [14, Ch. 9.3] for a precise definition). Stationarity
of course implies that has the same marginal distribution for
each , and as described in Section II-C, is zero-mean proper
complex Gaussian with covariance matrix having rank .
To be consistent with our previous nomenclature, we still refer
to the above model as a time-selective block-fading model, but
with correlated fading across blocks.

We now further assume that the correlation between blocks
is such that the rank of the vector of channel coefficients cor-
responding to blocks is , i.e., for any , perfect predic-
tion of is not possible from . Note that this is
consistent with the physical model of (6). This predictability as-
sumption can be expressed more precisely in the following way.
Without loss of generality, assume that the vector of the first
fading coefficients in a block has a full-rank covariance matrix.
We then group the first fading coefficients from each of the
first blocks into one vector
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where indicates the th fading coefficient in the th
block. Let be the covariance matrix of . Then the
predictability assumption stated above is expressed compactly
by

(43)

It can be readily seen that the SISO time-selective model de-
fined in Section II-C with independent fading across blocks sat-
isfies (43). We now give an example of the model with correlated
fading across blocks. Assume that the sequence is
a vector Gaussian Markov process that evolves as

(44)

where . The initial random vector has the dis-
tribution , and the sequence is i.i.d.

. We also assume that the sequence
and the sequence are statistically independent.

Let denote the covariance matrix of the vector corre-
sponding to the first fading coefficients in a block. Then it is
easy to show that

(45)

where

...
...

...
. . .

...

(46)

The minimum eigenvalue of then satisfies

We further note that this vector Gaussian Markov channel
is ergodic because it satisfies the asymptotically memoryless
condition [14, Ch. 9.4]. This channel provides an example of a
time-selective channel with correlated fading across blocks that
satisfies the assumption given in (43).

We now consider the capacity of this class of channels (time-
selective channels with correlated fading across blocks). Since
these channels are stationary and ergodic on the block-by-block
basis, the general formula on the capacity (normalized by the
symbol period) is given by [14, Ch. 12.4] and [15]

(47)

with and denoting the inputs and outputs of the first
blocks, respectively.
To lower-bound the capacity, we can still use i.i.d. Gaussian

input symbols and get the same results as in Propositions
1 and 3. For the upper bound, we can use the approach in
Section IV-B to get the same results as in Proposition 4, except
that in (29) is replaced by . Combining these
lower and upper bounds, we obtain the following result.

Proposition 8: Consider the SISO time-selective block-
fading model with correlated fading across blocks. Assume
(43) is satisfied and that . Then Theorem 1 still holds,
i.e.,

(48)

Therefore, the growth behavior of the SISO time-se-
lective model with correlated fading across blocks is the same
as that of the model with independent fading across blocks, pro-
vided that (43) is satisfied.

B. MIMO Case

Consider the MIMO subblock-correlated model defined in
(34). We have considered the case where the fading process
changes correlatively from one subblock to another, and
changes independently across blocks. We now consider a more
general case, where the fading process is also correlated across
blocks. Interestingly, after this generalization, the boundaries
between blocks are indistinguishable (statistically) from the
boundaries between subblocks. We therefore refer to the sub-
blocks as blocks, and the model is one where the channel matrix
remains constant within blocks, and changes correlatively from
one block to another. Hence, this model is nothing but the
standard block-fading model with correlation across blocks.

We now let denote the channel matrix of the th block.
We assume that the sequence of matrices is a sta-
tionary and ergodic process. Define the vector as

(49)

where denotes the fading coefficient associated with the
th receive and th transmit antenna in block . Let denote

the covariance matrix of , and assume that it is the same for
all pairs. As in the SISO case, we assume that the matrix

satisfies

(50)

The following proposition follows from the same reasoning
as in the SISO case.

Proposition 9: Consider the MIMO block-fading model with
the fading being constant within blocks and correlated across
blocks. Assume that (50) is satisfied and that the block length

. Then Corollary 2 still holds, i.e.,

(51)

where .

VII. CONCLUSION

For noncoherent channels, channel memory represented by
the correlation of fading gains over time plays a key role in de-
termining the capacity. In this paper, we studied time-selective
block-fading channels, where channel memory is characterized
by the rank of the covariance matrix of the fading gains
over one block.
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For the SISO time-selective block-fading model we proved
that at high SNR the noncoherent capacity grows logarithmi-
cally with SNR, with a slope of . This result explicitly
shows that channel memory affects the capacity through . For
channels with having full rank , correlated channels
may have higher capacity than the i.i.d. channel. We showed that
the difference between the capacities is bounded by a constant
that is determined by the minimal eigenvalue of . This result
suggests that channels with having the same rank
may differ in the second-order high SNR expansion term of the
capacity and this term depends on more detailed characteristics
of .

It is interesting to compare our capacity result with a recent
result by Lapidoth [16] on the noncoherent capacity for a dis-
crete-time stationary and ergodic fading channel without the
restriction to block fading. From Section II-C, we know that
block rank is approximately equal to , where is the
Doppler bandwidth of the fading process and is the symbol
period. Furthermore, is approximately the inverse of the sig-
naling bandwidth, which we denote by . Now the
growth behavior of the capacity in Theorem 1 can be written as

(52)

which is the ratio of the length of the frequency band where
the spectral density of the fading process is null to the total
bandwidth. This is consistent with the capacity result of (50)
given in [16] for the stationary ergodic fading channel. Note that
in our time-selective block-fading model, the blocks of fading
gains are a discretized version of a time slice of the continuous
stationary fading process. Each block retains the “limiting pre-
dictability” of the original fading process, which determines the
high-SNR behavior of the capacity. This is why the
growth behavior of the two channels are consistent.

We also generalized our model to include MIMO systems and
introduced a subblock-correlated model as a special case. We
pointed out that as long as has full rank, i.e., we do not have
perfect prediction across subblocks, the growth be-
havior is the same as that of the standard block fading with sub-
blocks having independent fading. Furthermore, we showed for
the SISO time-selective and MIMO subblock-correlated models
that correlation across blocks does not affect the dominant term
( term) of the capacity, as long as perfect prediction is
not possible across blocks.

In this paper, we have focussed on the first-order term of
the high SNR expansion of the capacity. As future work, the
bounds on the capacity can be further refined in order to obtain
the second-order expansion term. It would be interesting to see
how this term relates to the correlation matrix . It is also of
interest to study MIMO channel models where the elements of
the channel matrix are correlated.

APPENDIX I
PROOF OF PROPOSITION 5

We derive a lower bound on capacity by using transmit
antennas and receive antennas. The lower bound can then be
tightened by maximizing over and .

The output vectors and input vectors in one block can be
grouped into two matrices and denoted by

and

respectively. The channel matrices are denoted by

We have the following general bound on the mutual information:

Let denote the input vector when it has Gaussian distribution
with i.i.d. components. Now assume that the se-

quence of input vectors over the block is i.i.d. with each vector
being , and define . We
then get the following lower bound on the capacity per channel
use:

(53)

The first term can be shown to be

(54)

where is a matrix with i.i.d. entries.
In the following, we use to denote the th component of

the vector .
Conditioned on the input matrix in one block, the output

from the th antenna at time instant is given by

(55)

It is easy to see that is complex circularly Gaussian with

zero mean. The correlation between and can be com-
puted by
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where if , and if . Hence, the outputs
from different antennas are independent, and the second term in
(53) becomes

where is defined as

(56)

with being a diagonal matrix

(57)

Let . Then

The trace of the matrix satisfies

Note that the matrix can have at most nonzero eigen-
values. Without loss of optimality, we assume , be-
cause leads to a looser lower bound. Let ,

, denote the largest eigenvalues of (some of
them could be zero). Clearly, for all . Then

(58)

Hence,

(59)

where for the above inequality we used the Lagrange Multiplier
Rule to get maximum value under the constraint (58) and the
constraints for .

Since are i.i.d. , has the
distribution and is denoted by .

Then (59) can be expressed as

(60)

Plugging (54) and (60) into (53), we get the lower bound on
the capacity shown in Proposition 5.

APPENDIX II
PROOF OF PROPOSITION 3

We first present two lemmas that will be used in the proof of
Proposition 3.

Lemma 7: Let denote a random variable with distribution
and . Then

(61)

where goes to zero as goes to infinity.
Proof:

(62)
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We may bound the third term in the preceding equation in the
following way:

Hence, the last two terms in (62) together can be expressed by
and the desired result follows.

Lemma 8: For

(63)

where is Euler’s constant.

The proof of Lemma 8 follows from elementary calculus
steps.

Now we are ready to prove Proposition 3. Using Proposi-
tion 1, and Lemmas 7 and 8, we obtain

APPENDIX III
PROOF OF THE LEFT INEQUALITY IN (27) OF LEMMA 5

The inequality essentially says that the channel with memory
has better performance than the memoryless channel provided
that the two channels have the same marginal distributions for
fading and noise. Although comparing the mutual informations
of the two channels is a straightforward way to execute the
proof, manipulating the chain rules of mutual information and
entropy could overshadow the insight in the inequality. The
following proof uses a codebook base argument and is more
insightful.

Consider a sequence of codebooks with fixed rate, denoted
by , with equal to the codeword length. For notational
simplicity, we do not necessarily explicitly write the index . A
code achieves rate on a channel if it has rate , and when

is applied to the channel, the average error probability goes to
zero as goes to infinity.

The left inequality in (27) of Lemma 5 is true if we can show
that the following statement is true. For any code that achieves
rate on i.i.d. fading channel, there exists a corresponding
code that achieves the same rate on the correlated fading
channel. Note that throughout this proof.

For a code achieving rate on the i.i.d. fading channel, let
, i.e.,

for

Then the code has length and rate . We want to prove
that the code achieves rate on the correlated fading channel.
Given a codeword , we apply it to con-
secutive blocks of the correlated fading channel in the following
way. We use for the first time instant of each of the blocks,
use for the second time instant of each block, and so on, for
all . Since the fading gains in different blocks
are independent, each experiences an i.i.d. fading channel.
The receiver then separately decodes each of ac-
cording to the decision region used when is applied to the i.i.d.
fading channel. So although the codeword ex-
periences correlated fading, the decoder does not use the cor-
relation information. It remains to show that the average error
probability when using tends to zero as the codeword length

goes to infinity.
Assuming that the codewords are equally likely to be sent

through the channel, the average error probability satisfies

is sent

is sent

is sent

is sent

is sent

is sent

is sent

is sent

is sent

is sent

where denotes the decoded codeword. Since achieves rate
on the i.i.d. fading channel, the average error probability

goes to zero as length goes to infinity. Therefore, goes to
zero as the length of goes to infinity. Therefore, code
achieves rate on the correlated fading channel.

APPENDIX IV
PROOF OF THE RIGHT INEQUALITY OF LEMMA 6

In the following proof, we use the letters without tilde to de-
note the objects for the subblock-correlated model, and use the
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corresponding letters with tilde to denote the objects for the sub-
block-independent model.

Define the maximum mutual information between the inputs
and outputs for the two channel models as

Then, the right inequality in (35) that we want to prove becomes

(64)

The proof follows by bounding the difference between the
mutual informations of the two channels, using appropriate ma-
trix inequalities.

We first define some index sets. For

(65)

Each contains the time indexes corresponding to the th
subblock in the subblock-correlated channel.

For any given probability distribution sat-
isfying the power constraint (10), there is a corresponding prob-
ability distribution

(66)

where

is the marginal distribution of . Clearly,
also satisfies the power con-

straint (10).
We use as the input distribution for the

subblock-correlated channel and
for the subblock-independent channel. By the definition of the
two channel models, we have the following relationship for the
output distributions of the two channels:

(67)

where

is the joint distribution of .
Since are in-

dependent, we have

(68)

To bound the difference of the mutual informations of the two
channels, we need to bound the following entropy difference.
For notational simplicity, we use to denote the sequence
of vectors . Then

(69)

where is as defined in Appendix I. The matrices
and are covariance matrices of fading

gain vectors within one block for the subblock-correlated
channel and subblock-independent channel, respectively.

We note the following property of matrices [17].
Let be -by- Hermitian matrices, and assume that

is positive definite and that is positive semidefinite. Then

(70)

Let denote the smallest eigenvalue of . Then
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where the last step used (70) and the fact that the matrix

is positive semidefinite.
Applying the above result to (69), we get

(71)

where the second inequality follows from (70) and .
Combining (68) and (71), we can bound the difference of the

mutual informations by

Now, let denote the input that achieves maximum
of the subblock-correlated channel, and let

denote the corresponding input for the subblock-inde-
pendent channel with distribution defined by (66). Then

(72)

APPENDIX V
PROOF OF PROPOSITION 4

The covariance matrix is positive semidefinite with rank
, and so it has a positive-definite principal subma-

trix denoted by [17]. Without loss of generality, suppose
is the covariance matrix of the first components of the

vector .
In the following, we use to denote the sequence of

components . Then

(73)

By Lemma 5, the first term can be bounded as

(74)

The second term in (73) is zero because conditioned on the
first inputs, the first outputs only depend on the fading
coefficients and noise, which are independent of the remaining

inputs.
The third term in (73) can be bounded by

(75)

where we used the fact that .
Combining (74) and (75), and exploiting the fact that the

upper bound does not depend on the input distribution of ,
we have
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