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Locally Optimal Soft Handoff Algorithms
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Abstract—The design of soft handoff algorithms for cellular algorithm design problem was studied by Rezaidail. [4],
radio systems is considered. The design problem is posed as aAsawa and Stark [5], and Veeravalli and Kelly [6]. Since op-
tradeoff between three mefrics: the rate of handoffs, the mean i a) handoff algorithms are impractical, a locally optimal (LO)
size of the active set, and the link quality. It is argued that the . .
algorithm that optimizes the tradeoff between these metrics is approach Wa? suggested [6] to get suboptimal '?Ut practical hard
impracticaL Hence, a |0ca||y op’[ima| (LO) handoff a|gorithm handoff algorltth. In further work on LO algo”thms, Prakash
is derived as a practical approximation to the optimal handoff and Veeravalli [7] studied the adaptation of LO hard handoff al-
algorithm. The LO algorithm is shown to yield a significantly  gorithms to changing system parameters, and Akar and Mitra

better tradeoff than the static threshold handoff algorithm used in ; ; T
second-generation code-division multiple-access (CDMA) systems.[8] applied the LO technique to handoff delay optimization.

Itis also shown that the dynamic threshold algorithm, whichisan ~ Optimizing soft handoff is still largely an open problem with
ad hoc algorithm proposed for third-generation CDMA systems, most of the previous work focusing aad hocanalyses. An
achieves nearly the same performance as the LO algorithm. Thus, overview of recent work on soft handoff has been provided by
an analytical justification is developed for the dynamic threshold Wong and Lim [9]. The second-generation 1S-95 standard [10]

algorithm. Further, handoff algorithm design is separated into .
independent design problems on the forward and reverse links. recommends the use of an ad hoc static threshold soft handoff al-

The forward link LO algorithm is shown to be computationally ~90rithm. Zhang and Holtzman [11] have provided tools to study
intensive but is also shown to be closely approximated by the the performance of the static threshold algorithm but have not

simpler reverse link LO algorithm. considered techniques for handoff algorithm design. Asawa and
Index Terms—Cellular systems, code-division multiple access Stark [5] have applied a limited lookahead approach to the de-
(CDMA), handover. sign of soft handoff algorithms and demonstrated improvement

over the static threshold algorithm. To improve the performance
of the static threshold handoff algorithm, the third-generation
. . cdma2000 [12, Section 3.2.3.3] standard recommendslythe
T HE problem of soft handoff arises in a cellular communamic thresholdhandoff algorithm. In this paper, we introduce

nication system where the mobile can communicate Wifh |0 soft handoff algorithm and compare its performance with
multiple base stations at the same time. The set of base statigiigr algorithms.

with which the mobile communicates at a given time is called primary objective of a soft handoff algorithm is to pro-

theac.:t.ive setAs the mobile _position and the system traf“ficlloaq/-de good signal quality. Signal quality can be improved by in-
conditions change, the active set needs to be changed in oy ﬁﬁing more base stations in the active set, but this comes at the

to maintain acceptable signal qu.ality. This change in the actix t of increased use of system resources. To lower the active set
set is the soft handoff event and is governed by the soft hand& e, one option is to frequently update the active set to main-

aIgForlthma divisi itiol CDMA N tain, at each time instant, the smallest active set with sufficient
or coge-dvision multiple-access ( .) Systems ems’ignal quality. However, frequent updates or handoffs bring with
ploylng d|y§r3|ty reception, the ability to be |n.sof.t har'dOﬁIhem switching costs. Thus, as has been seen earlier [5], [11], a
I-e., the ability to have more than one base station in the actiygqe ot eysts among the following three metrics: the rate of ac-

set, resglts in added diversity and |mp'roved signal qua“{x/e set updates, the mean size of the active set, and the average
[1, Section 5.5]. The consequent capacity and cell Covera%nal quality

ins h b lyzed by Vitediial. [2] and Send i
gains have been analyzed by Vitegtial. [2] and Sendonaris A handoff algorithm is said to be optimal if it attains the best

and Veeravalli [3]. However, these works do not deal with the deoff tthe cl ¢ all handoff alorith Th
design of algorithms to select the active set. Our focus is on t gdeolramongst he class of all handolf algorithms. 1he proce-
design of soft handoff algorithms to select the active set, ure for the design of optimal soft handoff algorithms is similar

In contrast to soft handoff, the design of hard handoff alg(BQ that for hard handoff [5], [6] and uses a cost function that

rithms has received much attention. The optimal hard hand pends on many stepg into the future. The design _Of optimal
andoff algorithms requires a model for the future trajectory of

' _ _ _ _ the mobile. We assume that information about the future trajec-
Manuscriptreceived June 13, 2001, revised April 5, 2002. This work was S“gé%ry is not readily available, making itimpractical to use optimal
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time-scale, over which the motion of the mobile can be appro®S-3 are transmitting to the mobile at tinie Similarly, the
imated by a straight line. Simulation results show that the L@verse-link active set,.. r is the set of base stations that listen
algorithm offers significant improvement in performance ovdp the traffic signal of the given mobile. As stated earlier, we
the ad hoc static threshold algorithm of 1S-95 [10]. In contrastjlow for A¢or r # Arev,k-
the ad hoc dynamic threshold algorithm of cdma2000 [12] per-Both the reverse and forward link active sets are selected
forms close to the LO algorithm. Furthermore, the structure bhsed on the pilot signal strengths, which are influenced by
the dynamic threshold algorithm resembles that of the LO algshort-term and long-term fading. Handoff algorithms cannot re-
rithm. Since the LO algorithm has a theoretical basis, the abosgond to short-term fading because handoff involves the set-
observations give a theoretical justification for the use of the dijng up of connections between base stations and the delay in
namic threshold algorithm. connection setup is often significantly more than the time scale
Another issue we explore is the use of different active sat$ short-term fading. Thus, we assume that the handoff algo-
on the forward and reverse links, i.e., base stations that receidbm responds only to long-term fading and that the pilot signal
a given mobile’s signal may not transmit to it, and vice versatrength is averaged to remove the effect of short-term fading.
This asymmetry may be attractive because forward and reverséet X, ; (dBm) be the averaged pilot signal strength from
link active sets require different resources, which may have dBS- at time k. Given the pilot source strengthp and the
ferent costs, e.g., a large forward link active set contributestt@ansmitted traffic signal strength,, (both in dBm), the traffic
forward link interference, but a large reverse link active set doeBannel signal strengtﬁ’kﬂ received by the mobile from base
not influence interference. We separate the handoff algorittstation: at timek is
design problem into separate problems for the forward and re- -
verse links. We show that although the structure of the forward Xii = Xii + Pror — Pp. 1)

link L.O algorith.m Is more complex than the reverse LQ IinkI'hus the pilot signal strength;. ; can be used to determine
algorithm, the simpler reverse link LO algorithm gives satlsfacf‘- s;gnal strengttky, ; on the traffic channel from each base

tory p.erfor.mance on the forward link. Thus,_ a separate handéfﬁtion. On the forward link, maximal ratio combining [1, Sec-
algorithm is not necessary for the forward link.

The rest of this paper is structured as follows. The chan tiqn 5.5.3] is used to combine the signals from base stations in
pap . r[ﬁe active sefl,, ;. Given an interference levé} (dBm) at the
model and the definition of the soft handoff problem are de- " L e .
. . . mobile, the forward link signal-to-interference ratio (SHR): x
veloped in Section II. Performance metrics to measure the PE: . . 2 . ’
: ; after maximal-ratio combining is given in dB by
formance of soft handoff are constructed in Section IlI-A. In

Section 11I-B, the simulation environment is described and sim-
ulation results for a static threshold soft handoff algorithm are Yior.k = 101log Z 105k:/10 | _p 2)
given. The locally optimal soft handoff algorithm for the reverse i€ Aron 1

link is developed in Section IV-A. In Section IV-B, the perfor-

mance of the LO algorithm is compared with the static and dyhis can be rewritten as

namic threshold handoff algorithms. In Section I1V-C, the for-

ward link LO algorithm is constructed and its performance an- Vior b = Xeor g+ Pror = Pp — I )
alyzed. Conclusions and comments are presented in Sectioq¥,qre
. PRELIMINARIES Xtor . = 101og Z 10Xk /10 ) (4)
In this section, we describe the channel model and define the 1€ Awr.k

soft handoff problem. We adopt a discrete time model with sam-pare Xiorx Can be regarded as the effective pilot signal

pling timet,. As is usual in discrete time models, we refer @Qyrength from all base stations in the forward active set. We have
sample instank simply as timek. We consider mobile assisted,ssymed a rake receiver [1, Section 8.3.1] with enough fingers
handoff, where at timé, the mobile transmits the pilot signalsy, 4 paths to base stations ity . Without this assumption,
strength measurements of base stations in the candidate sgfl0g|R at the mobile would depend on the algorithm for
the controlling base station. These measurements are the Qéil'ecting the paths to be combined at the rake receiver.

mary source of information for the soft handoff algorithm. In £qr the reverse link, if the combined interference and noise

addition to the pilot signal strength measurements, handoff mayq| at BS; is I, ; (dBm), then the SIR at BSis given by
also be based on the geographic traffic load pattern. Though we ’

do not consider handoff based on traffic load in this paper, in Vi = Xkyi + Prev — Pp — It (5)
Section V, we comment on how traffic-load information may be
incorporated in the handoff algorithm. whereP,.. is the transmit power of the mobile. Typically, selec-

For a given mobile trajectory, we focus on the part where thelign diversity is used on a frame-by-frame basis on the reverse
are B base stations BS-1, ., BS-B in the candidate set. Theselink, i.e., the signal at the base station with the larggstis
base stations have pilot signals strong enough to make thBlare probably used for demodulation. Thus, the reverse link
potential candidates for the active set. The set of base statiSHg is
that transmit to the given mobile at tinieis the forward active
set Ago; . For example Ao, » = {2, 3} means that BS-2 and Trev ke = Hax (Xi = Ini) + Prev = Pp. ®6)
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This shows that the pilot signal strength can be used to determine
the signal quality on the reverse link.

=
The pilot signal strength from BSundergoes shadow fading g" ADD_TH = /\ A
according to the following model [1, Section 2.4]: = / U
<
Xii =Pri+ Zii @) 5 DROP_TH
Py.; =p; — 10m; log dy. ; (8) “ \j

whereP;, ; (dBm) is the local mean pilot power atf, ; (dBm) b t, Time

is the Sha_dOW fad_ing at sampling ti_meThe local mean pilot Fig. 1. Operation of the static threshold soft handoff algorithm. The mobile is
power varies log-linearly with the distandg ; from BS<, and in soft handoff during the time interval to t..
u; andn; are constants.
To further develop the statistics of the received pilot pOWer, o handoff algorithm selects the active set at the next time
we concentrate on a part of the trajectory where the mOb"‘?stant using a decision functiaf,
is moving on a straight line with fixed velocity and use a
first-order autoregressive (AR-1) model for the autocorrelation Ajr1 = dn (Te) - (13)
function of {Z; ;}. Gudmundson [14] showed that the AR-1
model matches field measurements well. The AR-1 model hage resulting handoff policy is the collectiai of the handoff
been used earlier in the analysis of handoff algorithms [4], [6fiecision functions;, at all sample instancds If the decision
Under the AR-1 model, the shadow fading autocorrelatiqinctions do not vary with time, the handoff policy is said to be

function is given by stationary. To support different active sets on the forward and
> I reverse links, separate decision functigis , and ¢yey 1, as
EZyiZimi) = 05a; . well as handoff policie®,, and ®,., can be defined for the

. . . _ ~ forward and reverse links, respectively.
Here,o; is the shadow fadingarianceanda; is the correlation  An example of a soft handoff algorithm is the static threshold

coefficient of{ Zy.;}, i.e., handoff algorithm [10], which uses the same active set on the
forward and reverse links. This algorithm is characterized by

a; = exp <_1_’t8> (9) two parameters: an add threshalkb_TH and a drop threshold
i DROP_TH. The difference between these two parameters is the

o . . . hysteresis levellThe working of this handoff algorithm is illus-
whered; is the shadow fadingorrelation distance trated in Fig. 1. When the pilot from a base station goes below

“Under this model, it is easy to check (see, e.g., [6]) that thge grop threshold, the base station is removed from the ac-
distribution of X1, ; conditioned onX; is independent of (e set. When the pilot from a base station goes above the add
earlier received power samples and is described completelyRyashold, the base station is added to the active set. For the static
its conditional mean and variance threshold handoff algorithm, the decision functighsare the
same for allk.

E[Xet1i [ Xii oo Xoi] =E[Xigri | Xl The task of the soft handoff algorithm is to select an appro-

=Pry1,i + a; (Xn,i — Pr.i) priate handoff policyd (if necessary separate polici®s,, and
(10) Prev) to optimize the values of the performance metrics intro-
Var[Xes1s | Xii... X1 =Var[Xpe1: | Xedl duced in the next section.
—(1—a2) o2
= (1 -aj) o, (11) ll. M EASURING PERFORMANCE

We assume that the shadow fading processes from base statioh this section, we describe performance metrics that can be

i andj are correlated in such a way that the random variablgsed to characterize the performance of soft handoff algorithms.

Zy; andZy, ; have correlation for i # j. In Section IV, we use these metrics to compare the performance
The information available to the handoff algorithm is the inof different handoff algorithms.

formation vectorZ;,, which consists of all the past measured

pilot strengthsX}, ;, all the past active sets, and the past conft. Performance Metrics

bined interference and noise levels at the mobile as well as thexg stated in Section |, the performance of a soft handoff

base stations, i.e., algorithm can be measured by three performance metrics: rate
L of handoffs, average active set size, and the average signal
_ B , B . quality. The performance metrics are functions of both the
Iy = U {UL 1 X, Atorny Avevins In, Uiy {Ini}} - (12) handoff policy for the link under consideration and the system
parametersS (e.g., mobile velocityv and shadow fading
In practice, however, information may be available only abouabrrelationa;). In case different active sets are used on the
the recent past (rather than the entire past), and this limited forward and reverse links, each of the three metrics will be
formation is enough for the algorithms we study. replaced by two different metrics, one for each link.

n=1
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Expressions for the three performance metrics are developdate that under the assumption that interferefcaloes not
next. vary with time, the threshold\s,, is constant in time.
1) Rate of handoffs A reverse link degradation (RLD) occurs if the reverse link
SIR Y;ev,1; gO€S below a thresholfd,..,.. Under a perfect reverse
1 & link power control algorithm, the mobile transmits with peak
A (2,5) =E lﬁ Z H{A#Akl}] (14) power Prev max Whenever an RLD is imminent. Using (6), it
k=1 follows that a RLD occurs when
wherell is the indicator function, which takes values of <
one or zero depending on whether the argument is true ica (Xni = i) < Arev + Pp = Prevmax. (19)
or false. A soft handoff is said to have occurred at t#ne i the interference levels are fixed at all base stations and do not
if A1 # Ak Thg metricAg r_epresent§ the swﬂchmgvary with time, i.e.,
load associated with changes in the active set.

2) Average active set size Iivi=ley, i=1,...BK'=1,...,k
| N then the RLD event reduces to
Aa(®,8)=E [N ; | Akl - (15) {lergax (Xpi) < Arev} (20)
= 1€ Arev, k

The metric )4 represents the additional channel cardihere
and network backbone requirements of a mobile in soft
handoff. During soft handoff, signals need to be carried

between base stations in the active set, causing additiona}; shoyld be noted that the link degradation event defined
traffic on the network backbone. In addition, because @fye is not the same as a frame error event. The frame duration
the extra base stations transmitting to a mobile in sqft typically small (e.g., 20 ms in 1S-95) and frame error events
handoff, the interference level seen by other mobiles Qfiq influenced by slow as well as fast fading. This is in con-
the forward link can increase. If sophisticated power-Cofga st with link degradation events, which depend only on slow
trol schemes are used to take advantage of the forwaiging Even though the two events are not exactly the same,
link diversity gain in soft handoff, it may be possible to, the frame error rate and the link degradation rate are metrics
reduce (instead of increase) the total interference seendiy,yerage signal quality. As argued in Section II, the handoff
other mobiles. However, we assume that even if a larggyorithm cannot respond to fast fading and must base its de-
active set results in interference reduction, the resultingsions only on slow fading levels. For this reason, we use the

gains do not offset the the extra cost of increased netwqgky gegradation rate and not the frame error rate as a metric of
load and channel card usage. Thus, we use a cost func%m quality.

Arev = Are\' + PP - Prev,max + Irev-

that increases with increasing active set size. ~Inthe case where separate handoff algorithms are used on the
3) Average signal quality (quantified by the rate of linkoyard and reverse links, it can be seen that there will be three
degradation events) metrics for the forward link and three separate metrics for the re-
N verse link. For the forward link, the description of the three met-
ALp(®,S) =E % Z 1 {Link Degradation at timek} | - rics is similar to that given in (14), (15), and (16), with A,
1 and LD replaced by+,,, Asor 1, and FLD, respectively. Met-

(16) rics for the reverse link can be obtained similarly. Further, the
metrics for one link will depend only on the handoff algorithm
The metricA,p measures the signal quality as the fractiogeing used on that link and not on the algorithm on the other
of time for which the link is in a degraded state. The linkink. Thus, the analysis of the forward and reverse link handoff
degradation event is defined in detail next. algorithms can be carried out separately by studying the tradeoff
First, consider the forward link degradation (FLD) event. Thgetween the three corresponding metrics.
FLD event occurs if the SIRy., . at the mobile rake com-  |f the system architecture constrains the active set to be the
biner output is below an SIR threshalxt,.. We assume a per- same for the forward and reverse links, the rate of handoff and
fect forward link power-control algorithm that sets the transmjke active set size metrics will be the same for both links. The
power of all base stations to a maximum lev&l; max When-  |ink quality metrics, however, would be different for each link.
ever an FLD is imminent. This is a reasonable assumption Bf-this case, either the forward or the reverse link can be con-
cause power control operates on a much faster time-scale thgared constraining for the system capacity, and the quality
handoff. Given the forward active sét., i, from (2) it follows  of the constraining link can be considered to be the effective
that an FLD event occurs when the effective forward link pilafnk quality metric. Handoff algorithms can then be analyzed in
strengthXo,, i in (4) goes below a thresholtis,, i.e., terms of the tradeoff among the active set size, rate of handoffs,
Xeor < Aor (17) and effective link quality.

B. Tradeoff Surfaces and Handoff Algorithm Design

. In this section, we define the tradeoff surface and demonstrate
Ator = Ator — Prormax + Pp — Ii. (18) its role in handoff algorithm design. In Section IlI-A, the per-

where



PRAKASH AND VEERAVALLI: LOCALLY OPTIMAL SOFT HANDOFF ALGORITHMS 351

,0\ BS-4

300

Fig. 2. Mobile trajectory.

20
formance metricsXg, A4, ALp) Were shown to be a function
of (®,S). In this section, we assume that the system param
tersS are fixed. Then, the performance metrics are a functiol
just of the policy®. Given a handoff algorithm, the handoff 3
policy ® depends on the handoff algorithm parametersor 10
example, for the static threshold handoff algorithm (Fig. 1)
¢ = (ADD_TH, DROP_TH) determinesb. The tradeoff surface
describes the range of performance a given handoff algorith
offers as the parametefsare changed.

To define the tradeoff surface, we represent the performanc
metrics (g, A4, ALp) as a point in a three-dimensional space 3 ‘
(each dimension corresponding to a performance metric). Tt 2 r 5(’) 1(‘30 1&‘30 260 250
locus of operating points attained by varyiigs defined to be A Ay
the tradeoff surface for the given handoff algorithm.

Given a handoff algorithm, a|0ng with parametérshe per- Fig. 3. Tradeoff surface for th_e static _threshold soft handoff_ algorithm. Rates
formance metrics in (14)—(16) are difficult to compute analytﬁre measured with respect to tifierequired to traverse the trajectory.
cally. In the absence of any analytical techniques, we follow pre-
vious works [5], [11] in resorting to simulations. We consider a
simulation environment where the mobile traverses a trajectory
in the vicinity of B = 4 base stations arranged on the vertice: D= 2000 meters,  distance from BS-1 to BS-2

TABLE |
PARAMETERS USED FOR ALL SOFT HANDOFF SIMULATIONS

of a square (Fig. 2), with the maximum active set size limited ti ;= 108 dBm, base station signal strength
three. =3, path loss exponent
Fig. 3 shows a tradeoff surface for the static threshold handc ;= 8 dB, shadow fading std. dev.
algorithm under the simulation parameters in Table I. To repre v= 10 m’s, mobile velocity
sent three-dimensional surfaces on paper, we show top and s @= 30 meters, correlation distance
views. The tradeoff between different metrics is illustrated by 4= 0 dBm, threshold of link degradation
the tradeoff surface. For example, it is possible to redge ~ ts= 0-55, sample time
by exploiting greater diversity at the expense of a larggr M= 20, window length for estimation
Also, it is possible to reducé, at the expense of a largag;, =03 correlation between shadow fading from
by frequently updating the active set to maintain the smalle: ‘%‘ffefe“t base stations .
sufficient active set at each time instant. T =280s time it takes to complete one trip
The effect of the threshold and hysteresis levels on the ope. (as shown in Fig. 2)

ating points can be studied using the tradeoff surface. Consider

points A, B, C, and D in Fig. 3. For a high add threshold (point Tradeoff surfaces have two important uses. Given a handoff
C), both A4 and Ay are low, though at the expense of a higlalgorithm, the tradeoff surface may be used to select a desirable
ArLp. Given a low add threshold (points A, D), increasing theperating point and thus select the handoff algorithm parame-
hysteresis level reduces; while maintaining a lowA;,p and a ters. A desirable operating point is one that achieves the given
high A 4. At point B, a low hysteresis level results in alowp  system design goals, e.g., to minimize a cost function of the

at the expense of a highy. three metrics, or attain a strict bound on the link quality metric
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ALp- An ad hoc definition of a desirable operating point is th&he goal of the LO algorithm at timfeis to select an active set to
knee region of the tradeoff surface [13]. The other use of tradeafinimize the expectation of the incremental cost function, i.e.,
surfaces is for comparing the performance of different handoff, .

algorithms: the Iowzr thg tradgoff surface, the better the algorevk+1 = #& T B Jrev.iner (Arevi1) o, Arev ]
rithm. (23)

The definition of tradeoff surfaces we gave earlier was fdrhus, the LO algorithm does not need a model for the mobile’s
handoff algorithms with a two-dimensional internal parametéuture trajectory; and, as we will show below, it is easily imple-
£. For higher dimensiond], the locus of operating points & mentable.
is varied can cover a volume rather than a surface in the per-The implementation of the LO algorithm involves the evalu-
formance metric space. In such a case, the tradeoff surface ratign of the expectation in (23) for all possibigey x+1. The
be defined to be the lower envelope of all attainable operatingmber of possibilities may be large depending on the value
points. Alternatively, a simple heuristic would be to fix all bubf B. The following guidelines help to narrow down the pos-
two parameters il to obtain a tradeoff surface. By selectingsibilities. An incoming base station must be the strongest of
different values for the fixed parameters, different tradeoff suthose in the neighbor list, and an outgoing base station must be
faces can be obtained and the “best” of these designated asthigeweakest one in the active set. In addition, system constrains

actual tradeoff surface. may further reduce the number of possilllg. ;. choices that
need to be considered. For example, hard handoff from BS-1 to
IV. DESIGN OF SOFT HANDOFF ALGORITHMS BS-2, i.e., an event where the active set changes from {1} to

{2} may be disallowed. Any such system constraints can be in-
In the previous section, we identified techniques for me@orporated into the LO algorithm by considering only the valid

suring the performance of soft handoff algorithms. In this segr . choices in the minimization (23).
tion, we consider the design of soft handoff algorithms. As was Tg give a concrete form to the objective function of the min-
mentioned in Section Ill-A, we have independent design profnization (23), consider each of the terms in (22) individually.
lems on the forward and reverse links. We begin with handofhe conditional expectation of the last two terms is evaluated
algorithm design for the reverse link. immediately from the knowledge of ., and A,ey 41. FoOr

the term corresponding to the RLD event (20), we are interested
A. The LO Soft Handoff Algorithm for the Reverse Link in evaluating the expectation

For hard handoff, the LO algorithm was developed as an altgs- _ '
native to the impractical optimal hard handoff algorithm [6]. I;IE [H{RLD st timet+1) | Tk, Arev’kﬂ]
the same spirit, we first consider the optimal soft handoff algo= P <{ max (Xgq14) < Amv} | Zy., Am,_k+1> . (24)
rithm and focus on the reverse link in this section. The Bayesian i€Arev it / /
cost function for soft handoff has two (relative) cost parametet$ie distribution ofX;; ;, conditioned orf;, can be obtained
ca andcy. Parameter 4 is the cost of maintaining one extrausing (10) and (11). The probability in (24) takes the following
member in the active set, whitg; is the cost of handoff. These values for different active set sizes.
costs are relative to a cost of one unit for a link degradation 1) When the active set size is one, edyov k1 = {i}, then
event. The Bayes cost under a poligy,, and system parame- (24) reduces to
tersS is given by

E Xkt | Xii] — Arev
J<(DreV7S) = )\LD ((Drews) P(Xk-i—lﬂ < Arcv | Ik) B Q < g/ 1-— a? )
+eaAE (Prev, S) + cada (Prey, S) . (21 . (25)

e ) eadral ). @ where Q(z) = (1/v2x) [.° e™¥ /2dy. The equation
The optimal soft handoff algorithm is one that minimizes the =~ above is obtained in a manner similar to the LO hard
Bayes cost and can be obtained using dynamic programming handoff algorithm [6].
(DP). To solve the DP problem, the active set at tinsbouldbe ~ 2) When the active set size is two, .d+1 = {i,j}, then
selected to minimize the costincurred several time steps into the  (24) reduces to
future. Since the cost function depends on the trajectory of the 4 '
mobile, computation of the DP solution requires a (stochastic or P(max (Xi1,i; Xer,) < Arev | Zi)
deterministic) model for the mobile’s future trajectory [4], [6]. _I (E [(Xrqri | Xii] = Arev
Such a model may not be available in the system. Furthermore, mm
numerical solution of the DP problem is difficult because the

size of the state vector is large (equal to the number of entries E[Xk+1,j | Xk j] — Arev
in the candidate set). For these reasons, the optimal algorithm is ' - '\/m ’
impractical. J J

The LO algorithm overcomes the deficiencies of the optimal (26)

algorithm by minimizing an incremental cost functidp incr,

L . Here, theL function is the cumulative distribution func-
which is in effect a one-step lookahead Bayes cost, i.e.,

tion for bivariate Gaussian random variables

Jrev,incr<Arev,k+1> = Il{RLD at timek+1} + CA|Arev,k+1| L (y17y27p) =P (Yl < y17Y2 < y?) )
+CHH{Rovcrsc link handoff at timek} - (22) WhereY17 Y2 ~ N2(07 07 17 17 p)
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Tables and evaluation methods fbrfunctions can be 20| & :gg :E:Z:E :&ic ' -
f_ound in the_literature [15], [16]. We evaluate thdunc- +  add thresh dynamic x
tions numerically. 15| —— drop thresh LO X
3) When the active set size is three, edy..1 = {i, 7, m}, o dropthreshstatic |
(24) reduces to 10F
P({IH&X (Xk+17i7Xk+l,j7Xk+17m) < Arev} | Ik) (27) 5l
This probability is evaluated numerically using the distri- <
bution function of trivariate Gaussian random variables o £666660660606007

[15, ch. 36].
The expected incremental cost need not be evaluated fc -5f
larger active sets because the maximum allowed active set si:
in our simulations is three. In the case where larger active sel -10¢
are allowed, numerical evaluation of the link degradation prob-
ability is difficult. A possible approximation can be obtained -3, 5, 0
by assuming independence between the fading on differer X
base stations. _ N _ _ , ,
 The evaluation of the reverse link degradation probabiliig, & Decsr en beunsares o e feere I [0 agorify and e
in (25)—(27) requires the statistics of the Gaussian random vaJ;7— 4z = 5 d.
able X 41, conditioned onZ;. These statistics are given by
(10) and (11); however);, ; ando; /1 — a? may be unknown,
making it impossible to evaluate the required statistics perfec
To get around this problem, we usg, ; as an estimator for

5 10 15 20

t[egion can be used to find the handoff decision instead. Fur-
Her simplification can be achieved by storing a piecewise linear
approximation to the decision region. Since the decision re-

E[Xg41, | Xii and construct the estimatogsanda for o g5, boundary is smooth, such a piecewise linear approximation
anda, respectively. These estimators were originally develop uld be easy to construct

for hard handoff algorithms [7], [17], where their accuracy was ap jmportant aspect of the LO reverse link decision regions

studied. is. their scalability. Consider a normalized decision region cor-

For completeness, we give the following expressions t ponding tA .. = 0 andoyv/I —a? = 1. A decision re-

ShOV_V that the e_zstmatonsanda can be constructed from a Slzegion for an arbitrary set of system parameters can be obtained
M history of pilot signal strength samples

by shifting the normalized decision region By, and scaling

) R it by a factorov/1 — a?. Thus, it is enough to compute the de-

o =1/C+ 9 cision region for one set of system parameter values and use its
C scaled version when the system parameters change.

a ZW The decision regions obey the following commonsense

“rule”: as the signal quality offered by the current active set

whereC’ and 2 are given by improves, the addition of a new base station to the active set

1 Ml - - should be discouraged and the dropping of a base station from
c =1 Z (Xp,i = X) (Xpp1, — X) the active set should be encouraged. The LO add and drop
k=1 thresholds in Fig. 4 obey this rule. In contrast, the ad hoc static

1 Ml ) threshold algorithm (decision region shown in Fig. 4) does not

R =M _1 Z (Xki = Xey1) obey the rule; and, as shown in the next section, it results in

k=1 inferior performance.

with X = 1/M S22, X .. ,

Note that the nature of the LO algorithm allows for the use & Reverse Link Performance
any other estimators. In this paper, the focus is not on the desigf®we now examine the improvement in performance that
of estimators, but rather on the design of the handoff algorithtmhe LO algorithm offers over the static threshold algorithm.
Therefore, we use the estimators from [7] in our simulations.Tradeoff curves for both of the algorithms are shown in Fig. 5.

Next, we determine the decision regions for the reverse lifile results are obtained by simulation under the environment
LO algorithm. The decision region is the region in the signalescribed in Section IlI-B. It is immediately clear from Fig. 5
strength space where the handoff algorithm generates a handbfit the LO algorithm offers a significantly better tradeoff than
A handoff algorithm is completely specified by decision regionthe static threshold algorithm, i.e., for the saMmeg, and Ay,
for all possible transitiond . to Ax1 . Fig. 4 shows the decision the LO algorithm results in a much lowar . This is because
region boundary for two handoff scenarios: the addition of oribe LO algorithm follows the rule described earlier. Simulations
base station to an active set with size one and the removal of ahew that the superior performance of the LO algorithm is
base station from an active set with size two. If more than twoaintained when a timer is included with the drop threshold of
base stations are involved in the handoff, the decision regiortle static threshold algorithm.
higher dimensional and difficult to represent on paper. The dynamic threshold handoff algorithm of cdma2000 [12]

To implement the LO algorithm, the decision rule (23) neeidhproves on the static threshold algorithm by adopting the
not be evaluated at each decision instant. The stored decidiguristic rule discussed in Section IV-A. The decision region
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7‘A 1 7‘H Fig.6. A comparison of the tradeoff surfaces of the LO and dynamic threshold

20 handoff algorithms (reverse link).

—— static threshold
— LO

gorithm, while the LO algorithm is developed here using pre-
15 . cise analytical tools. The match in the performance of the two
algorithms and the similarity of their decision regions together
provide an analytical justification for the use of the dynamic

a0 threshold algorithm.
<
C. Forward Link LO Soft Handoff Algorithm
5 The forward link LO algorithm is derived as an approxima-
tion to the forward link optimal handoff algorithm. The objec-
tive of the forward link LO algorithm is to select, r+1 t0
0 — minimize the expected value of the following forward link in-
oe S cremental cost
2.0 T T T 1
N 15 50 100 150 200 Jtor,incr (Afor, k+1) = L{FLD at time k+1} + €A |Afor, k1]
A

H +CHII{Forward link handoffat time k} (28)
Fig. 5. Comparison of the tradeoff surfaces of the LO and static threshold seﬁ,ing
handoff algorithms (reverse link).

* _ .
Afor k41 = arg8 i
for, k+1

of this improved algorithm is shown in Fig. 4. In contrast to
the static Ft)hresholdgand LO algorithms, thg dynamic threshold B [Jior iner (Ator, k1) | Zes Ator k] - (29)
algorithm has more than two parameters (the slopes and Titee expectation of the last two terms in (29) can be evaluated
intercepts of the decision region boundary for both the addsily, but the first term corresponding to the FLD event defined
and the drop thresholds constitute four additional parameteiis) (17) presents a challenge because the power S in
Sample tradeoff surfaces for the dynamic threshold hand¢®) is difficult to study analytically. Santuceit al. [18] have
algorithm are obtained by varying only two parameters arsudied the sum of correlated lognormal random variables in
fixing the slope and intercept parameters. Such sample surfattescontext of computing interference statistics in cellular radio.
are obtained for various values of the fixed parameters, a@e of the methods they consider is Wilkinson’s approximation
the surface that is lowest in the knee region is designatedrasthod, which models the sum of log-normal random variables
the tradeoff surface. Our judgment about the lowest surfaceais a log-normal random variable with appropriately matched
somewhat subjective, but in the absence of any analytical toatsgan and variance (see [18] for details).
it is the only option available. Fig. 8 compares the exact and Wilkinson approximation de-
The tradeoff surfaces for the dynamic threshold and LO atision regions for the forward link LO algorithm. It can be seen
gorithms are compared in Fig. 6. The two algorithms result that the two methods result in nearly the same decision region.
comparable performance. The match is particularly good in thé@us, Wilkinson’s method can be used for simulation without
knee region of the curve, where the operating pointis most likedygnificant loss of accuracy. As with the reverse link, the estima-
to be selected. The reason for this match may stem from the stors required to implement the forward link handoff algorithm
ilarity in the shapes of the decision regions of the two algorithnase borrowed from the hard handoff analysis [7], [17].
(Fig. 4). The dynamic threshold algorithm’s decision region can For implementation purposes, there is a significant difference
be considered as a first-order approximation to the LO algorithoetween the reverse and forward link LO algorithms. Unlike the
decision region. reverse link LO algorithm, the forward link LO algorithm’s de-
The dynamic threshold algorithm was originally developedsion region does not scale with changesil — a2 andAy,.
as an ad hoc improvement over the static threshold handoff @his can be seen from the structure of the sum of log-normal sta-
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— Reverse link LO From these results, it is demonstrated that in spite of the dif-
- - - Forward link LO ferent handoff region shapes of the forward and reverse link
LO algorithms, the algorithms actually perform quite similarly.
Therefore, the simpler reverse link LO algorithm can be used to
0 : T, decide the forward link active set.
- : The following issue must be stressed. We have not shown
that the decision functions,., and®,, can be made the same.
WhenA,., # Ag, or the relative cost parameters andcy
are different on the forward and reverse links, we will actually
require that®,., # Pg,.. What we have shown is thdig,,
can be implemented using a decision function with the same
structural form as the reverse link LO algorithm, but with the
forward link parameters in place of the corresponding reverse
link parameters.

To understand why the reverse link algorithm works well on
the forward link, consider the decision region boundary asymp-
Fig. 7. Forward link performance of the reverse and forward link LQotes. For the case of handoff frofa} — {4,j}, the reverse

algorithms. link LO decision region is shown in Fig. 4. Under the estimator
5 of choice [ Xy+1,:|X«,:] = Xk,:), the boundary of the reverse
—=— add thresh for Wilkinson link LO region satisfies
—o— drop thresh for Wilkinson
10| —e— actual add thresh 8 1 L Xi — Apey XJ — Aoy . Xi— Arev
—— actual drop thresh ‘ o ) o 0| +eaten =Q o
5 (30)
wheres’ = o+/1 — a2. To obtain the horizontal asymptote, we
0 _ set X; = —oo, and to obtain the vertical asymptote, we set

X = oo. The resulting reverse link asymptotes are

Xj - Arev :UIQ_l(l —CA — CH)
X, — Apev :UIQ_l(CA + CH). (31)

For the forward link, the decision region is shown in
. Fig. 8. Though the decision region boundary depends on the
complicated statistics of the sum of log-normals, the asymp-
295 0 5 5 m 20 totes are relatively simple to evaluate using the following
X fact. Let X; ;3 = 10log(10¥:/10 4 10%:/10) be the power
sum of Gaussian random variables (r.v.%) and X;. Then
Fig. 8. Accuracy of Wilkinson’s approximatior:f = 0.23, ¢y = 0.22, P{X{i’j} < 0} is equal to zero when eitheX; or X, has
gvi—a = b dB). The add threshold corresponds to the handolf = infinite mean and equal tQ(E[X;]/0;) when E[X;] = —cc.
.}, and the drop threshold corresponds to the transio} — {i}. It can be verified from the above fact that whan., = A,
the decision region asymptotes on the forward link are the same
tistics. Thus, implementation will involve either storage of thgs that on the reverse link (31). This equivalence can also be
decision region for a large set of possible’1 — a2 and A, verified for the handoffi, j} — {i}.
values or evaluation of the statistics of the sum of log-normals\yhen three base stations are involved in the handoff, the deci-
each time the system parameters change. sion region lies in a three-dimensional space and the asymptotes
Implementation of the forward link LO algorithm presents thgre not the same for the forward and reverse links. This, along
following two difficulties. The exact decision region is difficultyith the difference in handoff region shapes, may account for

to compute, and the decision region does not scale with systg{a sjight difference in performance between the LO algorithms
parameters in a simple manner. Since the reverse link LO alggssigned for the two links.

rithm is relatively simple to implement, as an approximation,
we consider using the reverse link LO algorithm on the forward
link. We consider the reverse link LO algorithm witk,., set
equal toAs,, and use the corresponding decision rule to selectWe developed a LO soft handoff algorithm and showed that it
the forward link active set. outperforms the static threshold handoff algorithm. Further, we
Under the simulation parameters of Table | the forward linkhowed that the ad hoc dynamic threshold algorithm is a good
performance of both the forward and reverse link LO algorithn@&pproximation to the LO algorithm. This provides an analytical
is shown in Fig. 7. It can be seen that both the algorithms achigustification for the use of the dynamic threshold algorithm.
nearly the same performance. For brevity, simulation results arg-or the forward link, we developed an LO algorithm and
given for only one set of parameter values (Table I). The resshowed that its structure is complicated. However, the simpler
was also seen to hold for a range of mobile velocities (10, 2@verse link LO algorithm gives nearly the same performance as
40 m/s) andA values (0 and 10 dBm). the forward link LO algorithm. Thus, we have shown that there

V. CONCLUSIONS
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is no need to design separate LO handoff algorithms for the fof43] N. zhang and J. M. Holtzman, “Analysis of handoff algorithms using
ward link. both absolute and relative measurementSEE Trans. Veh. Technol.

Anissue deserving further exploration is the adaptation of thﬁ‘”

vol. 45, pp. 174-9, Feb. 1996.
M. Gudmundson, “Correlation model for shadow fading in mobile radio

LO soft handoff algorithm to varying system parameters, along  systems, Electron. Lett, vol. 27, no. 23, pp. 21452146, Nov. 1991.
the same lines as the adaptation of the LO hard handoff a|gd15] N. L. Johnson and S. KotBistributions in Statistics: Continuous Mul-

rithm [7]. In particular, adaptation to varying traffic load is a [16]

tivariate Distributions New York: Wiley, 1972.
“Tables of the bivariate normal distribution function and related func-

topic of interest. The traffic load directly influences the interfer- tions,” National Bureau of Standards, ser. Applied Mathematics Series,
ence levels at the mobile and the base station. The interferenge 1959

levels in turn influence the link degradation threshalds, and
Arev

17] R. Prakash, “Analysis of handoff algorithms,” M.S.thesis , School of
. Electrical Engineering, Cornell Univ., Ithaca, NY, 1999.
[see (17) and (20)]. This dependence allows for some de48] F. Santucci, M. Pratesi, M. Ruggeiri, and F. Graziosi, “A general analysis

gree of adaptation to changing traffic patterns. For example for of signal strength handover algorithms with cochannel interference,”

a heavily loaded cell, the SIR thresholds will be low, resulting in

IEEE Trans. Communvol. 48, pp. 231-241, Feb. 2000.

easier dropping of the cell from the active set. Similarly, a lightly
loaded cell will be more likely to be added into the active set.
Although handoff based on traffic conditions is not the focus of

our work, the argument above shows that the LO algorithm m
be able to accommodate such considerations by adjustmen
the link degradation thresholds.
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