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In this thesis we obtain several new results in the areas of decentralized sequential detec-

tion and robust decentralized detection.

In the area of decentralized sequential detection, we first consider the case in which each

sensor performs a sequential test on its observations and arrives at a local decision about

the true hypothesis; subsequently, the local decisions of all of the sensors are used for a

common purpose. Here we assume that decision errors at the sensors are penalized through

a common cost function and that each time step taken by the detectors as a team is assigned

a positive cost. We show that optimal sensor decision functions can be found in the class of

generalized sequential probability ratio tests with monotonically convergent thresholds. We

present a technique for obtaining optimal thresholds.

We also consider the case in which each sensor sends a sequence of summary messages to a

fusion center in which a sequential test is carried out to determine the true hypothesis. Here

we assume that decision errors at the fusion center are penalized through a cost function and

that each time step taken to arrive at the final decision costs a positive amount. We show that

the problem is tractable when the information structure in the system is quasiclassical. In

particular, we show that an optimal fusion center policy has a simple structure resembling

a sequential probability ratio test and that a stationary set of monotone likelihood ratio

tests is optimal at the sensors. Finally, we compute the optimal decision functions for some

representative examples.

In the area of robust decentralized detection, we consider the case in which the sensor

distributions are assumed to belong to known uncertainty classes. We show for a broad class

of such decentralized detection problems that a set of least favorable distributions exists

for minimax robust testing between the hypotheses. We thus establish that minimax robust

tests are obtained as solutions to simple decentralized detection problems in which the sensor

distributions are specified to be the least favorable distributions.
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CHAPTER 1

INTRODUCTION

Statistical decision-making is a generic term referring to scenarios in which one or more

individuals (called decision makers) are confronted with the task of deciding between a

number of alternatives (finite or infinite) in an uncertain environment, so as to satisfy a

given objective or a set of objectives. The uncertain environment (sometimes called the state

of nature) generally has a complete probabilistic description that is known to all decision

makers, and the decisions are based on the measurements acquired (through sensors) on

the unknown state of nature. Such decision problems arise in the fields of communications,

control, and image and signal processing. If the number of alternatives is finite, they are

called detection, or hypothesis testing, problems.

Detection problems admit two types of classifications, according to whether the informa-

tion is centralized or decentralized, and subsequently to whether the decisions are static or

dynamic. A paradigm for a centralized detection problem is one in which all of the informa-

tion received by the sensors is sent to a central processor where a decision is made according

to a given criterion. Hence, even if more than one unit is involved in the detection problem,

in the centralized setting they can be viewed as a single decision maker. In the decentralized

setting, however, only a summary message from each sensor is sent to the central processor,

which therefore does not receive all of the available information. In static frameworks, each

decision maker makes only one decision, whereas in dynamic scenarios, decision makers up-

date their decisions as new information becomes available. Such dynamic problems are also

known as sequential detection problems — a class of problems first introduced by Wald [1].

Centralized detection problems are well-understood today and a very well-developed the-

ory exists for their analysis [2]. Decentralized detection, on the other hand, is a relatively

nascent field. A theoretical framework for decentralized detection is still in the process of

being developed; the goal of this thesis is to contribute to this development, for both static

and dynamic problems.
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1.1 Motivation

There are two main reasons why a decentralized setting, such as that introduced in [3],

may be preferable to the centralized setting. First of all, the decentralized scheme offers the

possibility for drastic reductions in the bandwidth requirements for communication between

the sensors and the central processor. Hence a natural application for the decentralized

scheme is a situation in which the sensors are far-removed from the central processor, and the

bandwidth available for communication is limited. Second, the decentralized setting allows

for distributed or shared information processing, thus reducing the burden on the central

processor. An application where it would be very desirable to have distributed processing

can be found in the context of fault detection in large scale systems such as power systems,

surveillance systems and VLSI circuits. In these systems, the sensors could monitor different

parts of the large scale system and send messages to a central unit, which would make the final

decision about the existence of a fault. Another application for decentralized detection—

one which has received a fair amount of attention recently—is in human decision-making

organizations, where subordinates play the role of the sensors and a supervisor takes on the

role of the fusion center (see, for example, [4, 5]).

It may seem that solutions to decentralized detection problems could be obtained readily

by applying classical detection theory. However, each decision maker1 in the decentralized

setting receives only partial information. Therefore, decentralized detection problems fall in

the general class of team decision problems, which are usually very difficult to solve, and

in many cases are known to be intractable [6]. However, definite progress can be made in

the particular case of decentralized detection problems. One of the main reasons for the

tractability of these problems is that the search for optimal decision functions can often be

restricted to classes that admit finite-dimensional parametrizations.

Decentralized detection theory is also very closely related to quantization theory [7, 8, 9,

10]. As in decentralized detection theory, the goal in quantization theory is to find an optimal

1Each sensor in the decentralized system can be regarded as a local decision maker even though the sensor
decisions may not be directly related to decisions about the hypothesis.
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way to quantize (summarize) the observations for decision making. However, there are some

differences in emphasis. In contrast with decentralized detection theory, quantization theory

typically assumes a single source of information and a large quantizer alphabet. Also, as

pointed out in [11], the probability-of-error performance criterion has been avoided in the

study of quantization problems for reasons of mathematical tractability, whereas it is the

most commonly used performance criterion in decentralized detection theory.

1.2 Bayesian Framework for Decentralized Detection

The basic framework for centralized detection is the Bayesian framework [2]. Hence, as

an introduction to decentralized detection, we first consider briefly a Bayesian framework for

the fusion configuration discussed earlier.

The basic structure for decentralized detection is the one in which there are N sensors,

S1, . . . , SN , and one fusion center, as shown in Figure 1.1. (Figures appear at the end of

chapters.) The hypothesis is denoted by a random variable H which is assumed to take on

values H0 and H1, with a priori probabilities ν and 1− ν, respectively. Sensor Si receives an

observation Xi, which is a random variable that takes values on a measurable space (Xi,Fi).

It is assumed that the joint probability distribution function of (X1, . . . , XN) conditioned

on each hypothesis is known. The sensor Si, upon receiving observation Xi, evaluates a

message ui = φi(Xi) where ui ∈ {1, . . . , Di}. The mapping φ : Xi 7→ {1, . . . , Di} is referred

to as a local decision function (rule). The fusion center then makes a final binary-valued

decision δ based on the information it receives from the sensors, i.e., δ = γ(u1, . . . , uN),

where γ : {1, . . . , Di} × · · · × {1, . . . , DN} 7→ {0, 1} is the fusion decision function. The

collection (φ1, . . . , φN , γ) is referred to as a strategy.

The decision functions at the sensors and the fusion center are chosen to meet certain

optimality criteria. A criterion that is commonly used is the Bayesian cost criterion in

which the objective is to minimize an expected cost. In a general Bayesian formulation, a

cost function W : {0, 1} × {1, . . . , D1} × · · · × {1, . . . , DN} × {H0, H1} 7→ IR is given, with
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W (δ, u1, . . . , uN , H) being the cost associated with the sensor and fusion center decisions

when the hypothesis is H. The Bayesian optimization problem is then to minimize the

expected value of W (δ, u1, . . . , uN , H) over all admissible strategies.

An example of a Bayesian cost criterion is the probability of error criterion. Here the cost

function W (δ, u1, . . . , uN , Hj) equals 1 when δ 6= j, and equals 0 otherwise. The objective

then is to minimize the probability of decision error at the fusion center.

The centralized Bayesian detection problem is well-known to be tractable and the solution

is a simple likelihood ratio test. However, even the most basic decentralized version of this

problem, described above, is not tractable unless we make certain assumptions. The most

important of these is the conditional independence assumption stated below.

Assumption 1.1 The observations received by the various sensors are conditionally in-

dependent given each hypothesis.

The importance of the Assumption 1.1 is elucidated by the following computational

complexity result which was proved in [12]. Consider the minimum probability of error

problem described above with N = 2 and D1 = D2 = 2, where the sets Xi, i = 1, 2 are finite.

Let K be a rational number. Then the problem of verifying the existence of a strategy for

which the expected Bayesian cost is less than or equal to K is NP -complete.

We now present some results for the Bayesian decentralized detection problem. Tenney

and Sandell [3] were the first to consider this problem, and they explored the case in which

N = 2 and D1 = D2 = 2. Under Assumption 1.1, they have shown that optimal decision

functions can be found in the class of likelihood ratio tests (LRTs). This means that the

search for optimal decision functions can be done over the finite-dimensional space of thresh-

old values, thus making the optimization problem tractable. The result was extended to the

general case of arbitrary N and Di in [11]. Such a result is not true without Assumption 1.1

as was shown by a counterexample in [13]. However, in the conditionally dependent case,

we can restrict the decision functions to the class of likelihood ratio tests and determine the

best decision functions in this class (see for example, [14], [15], [16]).
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In large-scale systems, symmetry assumptions are often made to simplify the analysis of

these systems. A natural symmetry assumption for decentralized detection is the following:

Assumption 1.2 The sensor observations are independent and identically distributed,

conditioned on each hypothesis.

Under Assumption 1.2 and for a cost function that is symmetric in (u1, . . . , uN), it may

at first seem optimal for all sensors to use the same likelihood ratio test. This is not true,

however, as illustrated by a counterexample in [13]. Despite the sub-optimality of identical

decision functions under Assumption 1.2, a number of papers have made this simplifying

restriction (see for example, [17], [18], [19]). With this restriction, the sensor decisions

(u1, . . . , uN) are independent and identically distributed. It is clear that for the special case

of binary sensor decisions, the number K, defined as the cardinality of the the set {i|ui = 1},
becomes a sufficient statistic for the fusion center. Thus, an optimal fusion rule has the form

γ(u1, . . . , uN) = 1 if and only if K ≤ k, where k is a threshold value. Such decision rules are

often referred to as “k-out-of-N” rules.

1.3 Variations from the Basic Formulation and Existing Results

Bayesian optimization for the fusion configuration was the focus of many of the early

papers in this field. But over the last decade a number of variations have been considered,

as discussed below:

1.3.1 Neyman-Pearson problems

Decentralized detection problems with the Neyman-Pearson optimality criterion are usu-

ally more involved than their Bayesian counterparts. As in centralized Neyman-Pearson

detection problems, we need to introduce a randomization factor in the decision functions.

There are two ways to randomize the decision functions: joint randomization, where

the decision functions are randomized together, and independent randomization, where the

decision functions are randomized independently. The class of jointly randomized strategies
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is larger than the class of independently randomized strategies, but joint randomization may

not be feasible in many applications.

In the class of jointly randomized strategies, it is quite straightforward to show that

optimal strategies for the Neyman-Pearson problem can be obtained by randomizing between

two deterministic LRT strategies [11]. In the class of independently randomized strategies,

however, it is not so easy to establish the optimality of randomized LRT strategies. Several

papers have been written on this topic (see for example, [20], [21], [22], [23]). However,

as pointed out in [11], the optimization arguments made in these papers are incorrect. A

correct argument was given in [24] for the case in which the sensors make binary decisions.

This argument was extended to the general case of nonbinary sensor decisions in [42].

1.3.2 Other sensor configurations

The case in which the fusion center is completely absent has been investigated in [3].

This case can be handled by a Bayesian analysis of the type described in Section 1.2 by

having a cost function W that does not depend on δ. In the special case in which Di = 2,

for i = 1, . . . , N , each of the sensor decisions can be regarded as decisions about the true

hypothesis, with these decisions being coupled through a common cost function.

Tree configurations with the base of the tree making the final decision have been studied

in [25] where the optimality of likelihood ratio tests was established under Assumption 1.1.

The optimality conditions were elaborated in [18] where special cases were studied in detail.

A tandem sensor configuration has been studied in [26]. Here the sensor at the end of

the tandem makes the final decision. This configuration generated some interest because

in the two-sensor case, it is at least as good as the fusion (parallel) configuration. This

is not true if the number of sensors is greater than two. In fact, the following asymptotic

result holds: Consider a tandem of N sensors which receive independent and identically

distributed observations, and where the sensors relay binary decisions. If the likelihood ratio

of the observation is bounded away from zero and infinity, the asymptotic error probability
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(as N → ∞) is bounded away from zero [27]. This is in sharp contrast with the exponential

decrease to zero of the error probability for the parallel configuration [13].

An important feature of this asymptotic result for the parallel configuration is that it is

asymptotically optimal for all of the sensors to use the same decision rule [13]. This fact

is intuitively appealing, and is sometimes used as a justification for using identical sensor

decision functions when the number of sensors is large and Assumption 1.2 holds.

1.3.3 Decentralized sequential detection

The detection problem described in Section 1.2 and the variations discussed thus far are

static problems in which the sensors receive either a single observation or a single block of

observations about the hypothesis. In a dynamic setting (which is a generalization of the

static setting), each sensor receives an entire sequence of observations and the detection

system has the option to stop at any time and make a final decision, or to continue taking

observations. There are two main categories of problems. In one case, each sensor sends

a sequence of summary messages to a fusion center where a sequential test is carried out

to determine the true hypothesis. In the other case, each sensor performs a sequential test

on its observations and arrives at a final local decision. If a fusion center is present, the

local decision is sent to the fusion center, which then makes the final decision about the

hypothesis. If there is no fusion center, the local decisions are used for a common purpose

at a site possibly remote to all the sensors.

Decentralized sequential detection problems are considerably more complex than their

static counterparts, and very few positive results have been obtained previously. These

problems will be the focus of Chapters 2 and 3 of this thesis. Since relevant previous results

will be discussed in the introductory sections of these chapters, a description of these is

omitted here.
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1.3.4 Robust decentralized detection

The design of optimal decision rules for decentralized detection problems is based on the

assumption that the probability distributions of the sensor observations (under each hypoth-

esis) are known. In many applications, however, the distributions of the sensor observations

are only specified as belonging to classes which are referred to as uncertainty classes. The

problem here is to design decision rules that are robust with respect to uncertainties in the

distributions. A common approach for such a design is the minimax approach where the

goal is to minimize the worst-case performance over the uncertainty classes.

This problem will be the focus of Chapter 4 of this thesis. Very little work has been done

previously on this problem, and relevant results will be discussed in Chapter 4.

1.4 Contribution of This Thesis

As evidenced in the above summary of existing results, simple static decentralized prob-

lems are well-understood and most tractable problems have been resolved. There has not

been, however, significant progress in the related fields of decentralized sequential detection

and robust decentralized detection. We attempt to address this situation by solving problems

in these areas which were either previously unsolved or which had not been resolved ade-

quately. In doing so, we hope to provide theoretical frameworks for analyzing the remaining

open problems in these fields, some of which are identified in Chapter 5.

1.5 Outline

The remainder of the thesis is organized as follows. In Chapter 2, we study decentralized

sequential detection problems in which the sensors perform sequential tests. The focus of

Chapter 3 is on decentralized sequential detection problems in which a fusion center performs

the sequential test. Next, we consider minimax robust decentralized detection in Chapter

4. Finally, the conclusions of the thesis are presented in Chapter 5, where we also identify

several problems that still remain open in the field, and provide some partial solutions and

ideas for future work.
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CHAPTER 2

DECENTRALIZED SEQUENTIAL DETECTION—PART I: SENSORS

PERFORMING SEQUENTIAL TESTS

2.1 Introduction

In centralized sequential binary hypothesis testing, the detector is required to determine

the true hypothesis based on a sequence of received observations. This decision problem can

be posed in a Bayesian framework as follows: The hypothesis H is assumed to take on the

two values, H0 and H1, with known prior probabilities ν and 1 − ν, respectively. A positive

cost c is associated with each observation (time step) taken by the detector. The detector

stops receiving additional measurements at time τ , which is assumed to be a stopping time

for the sigma field sequence generated by the observations, and makes a final decision δ

based on the observations up to time τ . Decision errors are penalized through a decision

cost function W (δ; H). The stopping rule together with the final decision rule represent the

decision policy of the detector. The total expected cost (risk) for a given decision policy is

given by E{cτ +W (δ; H)}. The centralized Bayesian sequential detection problem, which is

sometimes referred to as the Wald problem, is to find a decision policy leading to minimum

total expected cost. The solution to this problem for the case when the observations are i.i.d.,

conditioned on each hypothesis, is the well-known sequential probability ratio test (SPRT)

[28].

In decentralized sequential hypothesis testing, each one of a set of sensors receives a se-

quence of observations about the hypothesis. As we mentioned in Section 1.3.3, there are

two possible settings here. In this chapter, we consider the setting in which each sensor

in the decentralized system performs a sequential test and arrives at a local decision. It is

assumed that the sensor decisions are used for a common goal, possibly at some site remote

to all of the sensors.
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We consider a Bayesian formulation of this problem with two hypotheses1, and for sim-

plicity of presentation, we study the case of two sensors. We denote the sensors by S1 and

S2. Sensor Si stops at time τi, and makes a decision ui based on its observations up to

time τi. The combined decision policy of the two sensors is denoted by γ = (γ1, γ2), where

γi := (ui, τi) is the decision policy of sensor Si.

Since the two decisions u1 and u2 are used for a common goal, it is natural to assume

that decision errors are penalized through a common decision cost function W (u1, u2; H).

The choice of a time penalty is, however, not as unambiguous. If we are concerned with

processing cost at the sensors, then we associate a positive cost ci with each observation

taken by sensor Si. On the other hand, there may be situations in which we may wish to

limit the time it takes for both decisions to be available at the remote site. In this case

it may be more reasonable to associate a positive cost c with each time step taken by the

sensors as a team.

Teneketzis and Ho [30] considered the situation in which a positive cost ci is associated

with each observation taken by sensor Si. In this case, the total expected cost for a given

combined decision policy γ is E{c1τ1 + c2τ2 + W (u1, u2; H)}. The Bayesian optimization

problem is then to find the decision policy that minimizes this expected cost. A special case

here is one in which the decision cost function is decoupled, i.e., W (u1, u2; H) = W1(u1; H)+

W2(u2; H). This is equivalent to the assumption that the sensor decisions are used for

independent purposes. In this case, we have two decoupled Wald problems to solve, one

at each of the sensors, and the solution is two independent SPRTs. Teneketzis and Ho

showed in [30], using a rather involved argument, that even when there is coupling, optimal

sensor decision policies can be found within the class of SPRTs. Their result can be derived

immediately by recognizing that once the decision policy of sensor S2 is fixed, sensor S1 is

faced with a classical Wald problem. This point was later clarified in [31], where a continuous

time extension of this problem was solved.

1We will restrict our attention to binary hypothesis testing in this paper. Problems in sequential testing
of multiple hypotheses are known to be very difficult and do not admit closed-form solutions even when the
information is centralized [29].
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In our analysis, we associate a positive cost c with each time step taken by the detectors

as a team. The expected cost we wish to minimize over all admissible policies is then given

by

E{c max(τ1, τ2) + W (u1, u2; H)}.

The nonlinearity introduced by considering the maximum of the two stopping times makes

this problem more difficult than the one solved in [30].

The rest of this chapter is organized as follows: In Section 2.2, we provide a more formal

description of the problem we wish to solve. Then in Section 2.3, we focus on the structure of

optimal solutions to this problem. In particular, we show that optimal solutions can be found

in the class of generalized SPRTs (GSPRTs) with monotonically convergent thresholds. In

Section 2.4, we address the problem of finding optimal GSPRT thresholds numerically. In

Section 2.5, we present some numerical results for the case when the sensor observations

are Gaussian under each hypothesis. We also compare the performance of optimal GSPRTs

with the best performance that is obtained when the sensors are restricted to use SPRTs.

Finally, in Section 2.6, we summarize the main points.

2.2 Mathematical Description

We begin with a formal description of the decentralized sequential detection problem

we wish to analyze here.

1. The hypothesis is denoted by a binary random variable H which takes on values H0

and H1, with prior probabilities ν and 1 − ν, respectively.

2. At time k, sensor Si receives observation X i
k, i = 1, 2. The sequences {X1

k}∞k=1 and

{X2
k}∞k=1 are mutually independent i.i.d. sequences, conditioned on each hypothesis. The

probability distributions of the sensor observations are assumed to have densities, and we

denote the conditional density of X i
k given Hj by f i

j .

3. There is no communication between the sensors, i.e., the final decision at each sensor

is based only on its own observations.
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4. Let X i
k = σ(X i

j, j = 1, 2, ..., k). The decision policy γi for sensor Si involves the

selection of a termination time τi, and a binary valued decision ui. For an admissible policy,

τi is a {X i
k, k = 1, 2, ..}-stopping time, and ui is measurable X i

τi
. The set of admissible policies

is denoted by Γi.

5. If ui denotes the final decision at sensor Si, then the decision cost W (u1, u2; H) satisfies

the following inequalities for u2 = 0 and u2 = 1:

W (0, u2; H1) ≥ W (1, u2; H1),

W (1, u2; H0) ≥ W (1, u2; H1),

W (1, u2; H0) ≥ W (0, u2; H0),

W (0, u2; H1) ≥ W (0, u2; H0).

Similar inequalities hold for u1, i.e., at most one error is not more costly than at least one

error. Also, each unit of time taken by the sensors as a team costs a positive amount c.

The problem that we wish to solve is the following:

Problem P2.1

min
{γi∈Γi}i=1,2

E{c max(τ1, τ2) + W (u1, u2; H)}.
2

2.3 The Structure of Optimal Solutions

In this section we study the common structure of all person-by-person optimal (p.b.p.o.)

decision policies2. This structure would obviously be valid for globally optimal (g.o.) decision

policies as well, since every g.o. decision policy is also p.b.p.o.

If γ2 is fixed, possibly at the optimum, then u2 and τ2 have fixed distributions conditioned

on each hypothesis. At sensor S1, we are faced with the following optimization problem:

min
{γ1∈Γ1}

E{c max(τ1, τ2) + W (u1, u2; H)}. (2.1)

2A set of policies is said to be person-by-person optimal if it is not possible to improve the corresponding
team performance by unilaterally changing any one of the policies. Clearly, globally optimal decision policies
are also person-by-person optimal.
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This can be posed as an infinite-horizon dynamic programming (DP) problem [32]. A suffi-

cient statistic for this is given by

pk = P (H = H0|X 1
k ).

A recursion for pk is easily obtained by using Bayes’ rule,

pk+1 =
pkf0(X

1
k+1)

pkf0(X1
k+1) + (1 − pk)f1(X1

k+1)
, p0 = ν,

where fj(.) is the probability density of X1
k+1 conditioned on Hj, j = 0, 1. Note that the

conditional density of X1
k+1 given X 1

k , which we denote by f(pk; .), is given by

f(pk; x) = pkf0(x) + (1 − pk)f1(x).

We wish to solve the optimization problem of (2.1) using dynamic programming (DP).

To this end, we first restrict the stopping time τ1 to a finite interval, say [0, T ]. The finite-

horizon DP equations are derived as follows. The minimum expected cost-to-go at time k is

a function of the sufficient statistic pk, which we denote by JT
k (pk). It is easily seen that

JT
T (pT ) = min{G0pT + K0, G1pT + K1}

where

Ki =
1
∑

j=0

P1(u2 = j) W (i, j; H1), i = 0, 1,

Gi =
1
∑

j=0

P0(u2 = j) W (i, j; H0) − Ki, i = 0, 1,

and where Pj denotes the probability measure conditioned on Hj.

For 0 ≤ k ≤ T − 1, a standard DP argument yields the following recursion:

JT
k (pk) = min{G0pk +K0, G1pk +K1, c pk P0(τ2 ≤ k)+c (1−pk) P1(τ2 ≤ k)+ΛT

k (pk)}, (2.2)

where

ΛT
k (pk) = EX1

k+1
|X 1

k

{

JT
k+1

(

pkf0(X
1
k+1)

f(pk; X1
k+1)

)}

=
∫

JT
k+1

(

pkf0(x)

f(pk; x)

)

f(pk; x)dx. (2.3)
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In (2.2), the term G0pk+K0 represents the cost (conditioned on X 1
k ) of stopping at time k

and choosing H0, the term G1pk +K1 represents the cost of stopping at time k and choosing

H1, and the last term represents the cost of continuing at time k. Note that sensor S1 is

penalized for taking an additional step at time k only if sensor S2 has stopped before time

k.

The lemmas below present some useful properties of the functions JT
k and ΛT

k .

Lemma 2.1 The functions JT
k (p) and ΛT

k (p) are nonnegative concave functions of p, for

p ∈ [0, 1]. 2

Lemma 2.2 The functions JT
k (p), and ΛT

k (p) are monotonically nondecreasing in k, that

is, for each p ∈ [0, 1],

JT
k (p) ≤ JT

k+1(p), 0 ≤ k ≤ T − 1,

ΛT
k (p) ≤ ΛT

k+1(p), 0 ≤ k ≤ T − 2.
2

Lemma 2.3 The functions ΛT
k (p) satisfy the following properties:

ΛT
k (0) = min{K0, K1} = K1,

ΛT
k (1) = min{K0 + G0, K1 + G1} = K0 + G0.

2

The above lemmas are easily proven by simple induction arguments. We can use these

lemmas to derive the structure of finite-horizon optimal solutions as we did in [33]. Here we

focus on the infinite-horizon case.

2.3.1 Infinite-horizon optimization

In order to solve the problem P2.1, we need to remove the restriction that τ1 belongs to

a finite interval, by letting T → ∞. By an argument similar to the one in Section 3.3 of [30],

we can establish that for each k, the following limit is well-defined:

lim
T→∞,T>k

JT
k (p) = inf

T>k
JT

k (p) =: Jk(p).
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The function Jk(p) is the infinite-horizon cost-to-go at time k. Unlike the infinite-horizon

solution in [30], this limit need not be independent of k . In fact, if we let T → ∞ in Lemma

2.2, we see that the following monotonicity holds in the limit:

Jk(p) ≤ Jk+1(p), ∀k.

Also, it is clear that Jk(p) is bounded above by min{G0p + K0, G1p + K1} for all k. Hence,

the limit

lim
k→∞

Jk(p) = sup
k

Jk(p) =: J(p)

is also well-defined, and satisfies the Bellman equation [32]

J(p) = min

{

G0p + K0, G1p + K1, c +
∫

J

(

pf0(x)

f(p; x)

)

f(p; x)dx

}

. (2.4)

Teneketzis and Ho [30] obtain exactly the same Bellman equation in the context of the

decentralized Wald problem with linear time penalty, where they also show that the equation

has a unique solution (see Lemma 3.3 of [30]).

Now, by the Dominated Convergence Theorem the following limits are well-defined:

Λk(p) := lim
T→∞

ΛT
k (p) =

∫

Jk+1

(

pf0(x)

f(p; x)

)

f(p; x)dx,

and

ΛJ(p) := lim
k→∞

Λk(p) =
∫

J

(

pf0(x)

f(p; x)

)

f(p; x)dx.

Hence the infinite-horizon cost-to-go function satisfies the recursion

Jk(p) = min{G0p + K0, G1p + K1, c p P0(τ2 ≤ k) + c (1 − p) P1(τ2 ≤ k) + Λk(p)}. (2.5)

Taking limits as T → ∞ in Lemmas 2.1-2.3, we obtain the following result:

Lemma 2.4 The functions Λk(p) are concave and satisfy

Λk(p) ≤ Λk+1(p), ∀p ∈ [0, 1],

Λk(0) = K1, Λk(1) = K0 + G0.
2
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It follows from Lemma 2.4 that provided the condition

c + ΛJ(
K0 − K1

G1 − G0
) ≤ G1K0 − G0K1

G1 − G0
(2.6)

holds, we have the following result (see Section 6.3 of [32] for a similar analysis).

Theorem 2.1 For fixed γ2 ∈ Γ2, let condition (2.6) hold. Then, an optimal infinite-

horizon policy at sensor S1 is of the form

accept H0 if pk ≥ ak,

accept H1 if pk ≤ bk,

continue if bk < pk < ak,

where the scalars ak, bk, k = 0, 1, 2..., are obtained from the relations

G1bk + K1 = c bk P0(τ2 ≤ k) + c (1 − bk) P1(τ2 ≤ k) + Λk(bk),

G0ak + K0 = c ak P0(τ2 ≤ k) + c (1 − ak) P1(τ2 ≤ k) + Λk(ak).

Furthermore, {ak}∞k=1 is a nonincreasing sequence converging to a and {bk}∞k=1 is a nonde-

creasing sequence converging to b, where a and b satisfy

c + ΛJ(b) = G1b + K1,

c + ΛJ(a) = G0a + K0.

2

Remark 2.1 If condition (2.6) does not hold, then the sequences ak and bk are both

identically equal to (K0 − K1)/(G1 − G0) for all k larger than some positive integer m, i.e.,

termination is guaranteed by time m. Hence, condition (2.6) does not bring in any loss of

generality. 2

For any fixed γ2 ∈ Γ2, Theorem 2.1 gives us the structure of any optimal infinite-horizon

policy at sensor S1. A similar structure is optimal at sensor S2 for any fixed γ1 ∈ Γ1. Hence,

every p.b.p.o. decision policy (at either of the sensors) has the structure given in Theorem
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2.1. The existence of p.b.p.o. solutions can be established using sequential compactness

arguments3 as in [30]. However, unlike the result of [30], optimal sensor decision policies can

be found not in the class of SPRTs, but rather in the class of generalized SPRTs (GSPRTs),

which as shown above in Theorem 2.1 have monotonically convergent thresholds.

Remark 2.2 At this point it should be noted that the structure of p.b.p.o. decision

policies remains the same (as specified in Theorem 2.1) even when the number of sensors is

N (N > 2). To see this, we fix the decision policies of all of the sensors except sensor Si.

Then, we use a DP argument similar to the one used in establishing Theorem 2.1 to find

an optimal policy at S1. The structure of the optimal policy at S1 is identical to the one

in Theorem 2.1, with modified definitions for Gj and Kj and with Pj(τ2 ≤ k) replaced by

∏N
l=2 Pj(τl ≤ k), j = 0, 1.

2.4 Threshold Computation

We now address the problem of finding optimal GSPRT thresholds numerically. Since

the thresholds are known to be monotonically convergent, we could parametrize them as

functions of time involving only a few parameters, and then optimize the expected cost over

these parameters. This procedure would be facilitated if we could find good approximations

for the error probabilities as well as for E max(τ1, τ2) in terms of the parameters. The usual

Wald approximations, used in [30], cannot be used here; it is well known in sequential analysis

that such approximations for time-varying threshold tests are very difficult to obtain [34].

An alternative to the above technique for finding optimal thresholds is the following re-

cursive algorithm, that is motivated by the sequential compactness argument of the previous

section (see footnote 3):

3An outline of the existence proof is the following: Start with any fixed policy γ
(0)
2 at S2, and find

an optimal policy at S1, say γ
(1)
1 . Then fix the policy of S1 at γ

(1)
1 and find an optimal policy at S2,

say γ
(1)
2 . Continue in this fashion, alternately optimizing at S1 and S2 to generate sequences of policies

{γ(i)
1 , i = 1, 2, . . .} and {γ(i)

2 , i = 0, 1, . . .}. These sequences must have convergent subsequences by the
sequential compactness of the policy spaces [30]. The policies to which these subsequences converge define
a p.b.p.o. solution.
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1. Fix the decision policy of S1 (an SPRT policy would be a reasonable starting point).

2. Run a simulation to obtain the probability distributions of τ1 and error probabilities at

S1.

3. Use the result of step 2 in a DP recursion at S2 (with a sufficiently large horizon) to

obtain the thresholds at S2 as described in Theorem 2.1.

4. Run a simulation to obtain the probability distributions of τ2 and error probabilities at

S2.

5. Use the result of step 4 in a DP recursion at S1 to obtain a new set of thresholds at S1

as described in Theorem 2.1.

6. Stop if the policies at S1 and S2 have converged. Otherwise, go back to step 2.

If the above algorithm converges, it must converge to a p.b.p.o. solution of problem P2.1.

One of these p.b.p.o. solutions is a g.o. solution to P2.1, if a g.o. solution exists.

2.4.1 Optimal SPRT policies

The simplicity of the SPRT structure makes it a good candidate sequential test even

when it may not be an optimal test. Hence it is of interest to optimize the expected cost

of problem P2.1 over decision policies which use SPRTs at the sensors. However, even if we

restrict ourselves to using SPRTs, finding optimal thresholds numerically is difficult because

an approximation for E max{τ1, τ2} is required for this purpose. We have derived one such

approximation using characteristic functions, which we describe in the following.

An SPRT policy at sensor Si has the following form:

accept H0 if pi
k ≥ ai,

accept H1 if pi
k ≤ bi,

continue if bi < pi
k < ai,

where pi
k denotes the a posteriori probability of H0 given the observations up to time k at

sensor Si. The thresholds (ai, bi) are related to the thresholds (Ai, Bi) of the SPRTs written
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in terms of the likelihood ratio [1] in the following way:

Ai =
ν (1 − ai)

(1 − ν) ai
, Bi =

ν (1 − bi)

(1 − ν) bi
. (2.7)

Now let the error probabilities at Si under H0 and H1 be denoted, respectively, by αi

and βi. Then Wald’s approximations [1] give us the following approximate expressions for

αi and βi:

αi ≈
1 − Ai

Bi − Ai

, βi ≈
AiBi − Ai

Bi − Ai

. (2.8)

We can also use renewal theory approximations for the error probabilities, which are known

to be more accurate than Wald’s approximations when the error probabilities are small [35].

With γi as defined in Theorem 3.1 of [35], we have the following approximations:

αi ≈ γi/Bi, βi ≈ γiAi (2.9)

Using (2.7) and (2.8) or (2.9), we obtain an approximate expression for the expected decision

cost E{W (u1, u2; H)} in terms of the thresholds (ai, bi).

An approximation for E max{τ1, τ2} is not obtained as easily, since the basic Wald ap-

proximations are only for the first moments of τ1 and τ2, and we need the entire distributions

to compute this expectation. Fortunately, we could obtain an expression for this expectation

in terms of characteristic functions as given below.

E{max(τ1, τ2)} = E{τ2} +
1

4π

∫ π

0
cosec2(ω/2)Re(φ2(ω)(1 − φ1(ω)))dω

+
E{τ1}

2π

∫ π

0
(Re(φ2(ω)) + Im(φ1(ω)) cot(ω/2))dω,

where φi(ω) = E{exp(−ıωτi)}, i = 1, 2 and ı here is
√
−1. The conditional expectations of

τ1 and τ2 are given by the standard Wald approximations,

E{τi|H0} ≈ −2v(log(Ai)(1 − αi) + log(Bi)αi) i = 1, 2,

E{τi|H1} ≈ 2v(βi log(Ai) + log(Bi)(1 − βi)) i = 1, 2.
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The conditional characteristic functions under H1 and H0 can be approximated using Wald’s

fundamental identity (for details, see [1]). If we define, t10(ω), t20(ω), t11(ω) and t21(ω), by

t10(ω) = 0.5
(

1 +
√

1 − 8vωı
)

,

t20(ω) = 0.5
(

1 −
√

1 − 8vωı
)

,

t11(ω) = 0.5
(

−1 +
√

1 − 8vωı
)

,

t21(ω) = 0.5
(

−1 −
√

1 − 8vωı
)

,

then we can obtain the following approximations for the conditional characteristic functions

under H0:

E{exp(−ıωτi)|H0} ≈ Ai
t20(ω) − Ai

t10(ω) + Bi
t20(ω) − Bi

t10(ω)

Bi
t10(ω)Ai

t20(ω) − Ai
t10(ω)Bi

t20(ω)
. (2.10)

Similar expressions hold for E{exp(−ıωτi)|H1}, i = 1, 2, with 0 replaced by 1 in (2.10).

All the approximations given so far can be put together to yield an approximate expres-

sion for the total expected cost in terms of the thresholds (a1, b1, a2, b2). This expression is

then minimized over [0, 1]4 to obtain the best SPRT thresholds for problem P2.1.

2.5 Numerical Results

For the numerical results presented in this section, we assume that the observations

{X1
k}∞k=1 and {X2

k}∞k=1 are mutually independent i.i.d. Gaussian sequences with mean 0 and

variance v under H0, and mean 1 and variance v under H1. We also assume that the decision

cost is of the form

W (u1, u2; H) =



























0 if u1 = u2 = H

1 if u1 6= u2

ke if u1 = u2 6= H, 1 < ke < ∞.

In Table 2.1, we present optimization results for the best SPRT thresholds at the sensors.

The optimization was done using the approximate expected cost expression derived in the
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previous section. Renewal theory approximations were used for the error probabilities. Op-

timal thresholds and the corresponding expected cost are listed. We have also listed the

expected cost for these SPRT policies obtained by Monte-Carlo simulations.

We obtained optimal GSPRT policies by using the recursive algorithm described in the

previous section. The algorithm was initialized by using an SPRT policy at S1. We ex-

perimented with a variety of starting policies. A finite horizon of 100 was used for the DP

recursions. This was considered to be a reasonable choice for the horizon because in the

simulations of the SPRT policies the stopping time at either sensor never exceeded 50. The

resulting GSPRT thresholds at the end of 10 iterations are shown in Figure 2.1 for a rep-

resentative case. The policies at the two sensors converged to the same policy in all cases.

Also, the sup-norm difference between the threshold vectors at the 9th and 10th iterates was

less than 10−3 in all cases. The various choices of starting policies that we experimented

with converged to the same GSPRT policy (i.e., the resulting threshold vectors differed in

sup norm by less than 10−3) in 10 iterations. Table 2.2 lists the expected cost of the GSPRT

policies obtained from the DP recursions as well as by Monte-Carlo simulations for various

cases. The expected cost for the corresponding best SPRT policies are repeated in this table

for comparison. We note that, as expected, the GSPRT policies perform consistently better

than the SPRT policies, and the improvement in performance is about 15-20%. In a practical

application, a trade-off must be made between the simplicity of the SPRT policy and the

performance gain obtainable with the GSPRT policy.

2.6 Summary

In this chapter, we formulated an extension of the Wald problem to the decentralized case.

We used a DP argument to show that optimal sensor decision functions can be found in the

class of GSPRTs with monotonically convergent thresholds. We presented some numerical

results which illustrate a proposed technique to obtain optimal GSPRT thresholds. We also

compared the performance of the GSPRT policies with that of the best SPRT policies.
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Table 2.1: Optimization results for the best SPRT policies for the case in which c = 0.01,

v = 1.0, and ke = 4.0.

SPRT thresholds Expected Cost

ν 1 − a1 1 − a2 b1 b2 Optimization Simulation

0.1 4.87 × 10−3 4.87 × 10−3 5.14 × 10−3 5.14 × 10−3 4.96 × 10−2 5.90 × 10−2

0.2 4.25 × 10−3 4.25 × 10−3 4.36 × 10−3 4.36 × 10−3 5.59 × 10−2 7.16 × 10−2

0.3 4.04 × 10−3 4.04 × 10−3 4.03 × 10−3 4.03 × 10−3 5.98 × 10−2 7.83 × 10−2

0.4 3.93 × 10−3 3.93 × 10−3 3.91 × 10−3 3.91 × 10−3 6.17 × 10−2 8.15 × 10−2

0.5 3.88 × 10−3 3.88 × 10−3 3.88 × 10−3 3.88 × 10−3 6.23 × 10−2 8.26 × 10−2

Table 2.2: Comparison of the performance of GSPRT and SPRT policies for the case in

which c = 0.01, v = 1.0 and ke = 4.0.

Expected Cost

SPRT Policy GSPRT Policy

ν Optimization Simulation DP Recursion Simulation

0.1 4.96 × 10−2 5.90 × 10−2 4.80 × 10−2 4.91 × 10−2

0.2 5.59 × 10−2 7.16 × 10−2 5.16 × 10−2 5.99 × 10−2

0.3 5.98 × 10−2 7.83 × 10−2 5.34 × 10−2 6.56 × 10−2

0.4 6.17 × 10−2 8.15 × 10−2 5.45 × 10−2 6.86 × 10−2

0.5 6.23 × 10−2 8.26 × 10−2 5.53 × 10−2 6.97 × 10−2
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(a)

(b)

Figure 2.1: Optimal GSPRT thresholds for the case in which c = 0.01, v = 1.0 and ke = 4.0:

(a) 1 − ak (b) bk.
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CHAPTER 3

DECENTRALIZED SEQUENTIAL DETECTION—PART II: FUSION

CENTER PERFORMING THE SEQUENTIAL TEST

3.1 Introduction

In this chapter, we consider the decentralized sequential hypothesis testing problem in

which each sensor sends a sequence of summary messages (local decisions) to a fusion center

where a sequential test is carried out to determine the true hypothesis.

Let there be N sensors S1, . . . , SN in the system. At time k ∈ {1, 2, . . .}, sensor Sl

observes a random variable X l
k, and forms a summary message ul

k of the information it has

up to time k. In a general setting, we allow a two-way communication between the sensors

and the fusion center as shown in Figure 3.1. In particular, the fusion center could relay

past decisions from the other sensors. This means that at time k, each sensor has access to

all of its own observations up to time k, and the decisions of all of the other sensors up to

time k − 1.

We now introduce a Bayesian framework for this problem. The two hypotheses H0 and

H1 are assumed to have known prior probabilities. Also, the conditional joint distributions

of the sensor observations under each hypothesis are assumed to be known. A positive

cost c is associated with each time step taken for decision making. The fusion center stops

receiving additional information at a stopping time τ and makes a final decision δ based on

the observations up to time τ . Decision errors are penalized through a decision cost function

W (δ; H). The Bayesian optimization problem is then the minimization of E{cτ + W (δ; H)}
over all admissible decision policies at the fusion center and over all possible choices of local

decision functions of the sensors.

Throughout this chapter we shall make the following assumption:

Assumption 3.1 The sensor observations are independent, in time as well as from sen-

sor to sensor, conditioned on each hypothesis.
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We will also have occasion to use the following extension to Assumption 3.1, especially

when we consider infinite-horizon problems.

Assumption 3.2 The sensor observation sequences are independent (from sensor to

sensor) i.i.d. sequences, conditioned on each hypothesis.

Once the decision rules of the sensors are fixed, the fusion center is faced with a classical

sequential detection problem, and hence an optimal decision policy for the fusion center

can be found in the class of GSPRTs [36]. Namely, at time k, the fusion center forms a

likelihood-ratio Lk (as a function of all of the information it has accumulated) and compares

it to two thresholds ak and bk. If Lk ≤ ak, then H0 is chosen; if Lk ≥ bk then H1 is chosen;

if ak < Lk < bk then the decision is deferred.

Let us now consider the sensor decision functions. Several different cases can be consid-

ered depending on the information the sensor decisions are allowed to depend on.

Case A. System with neither feedback from the fusion center nor local memory

Here ul
k is constrained to depend only on X l

k, i.e.,

ul
k = φl

k(X
l
k).

This case was considered in [36], where it was easily shown that person-by-person optimal

(p.b.p.o.)1 sensor decision functions are likelihood ratio tests. The optimal thresholds satisfy

a set of coupled equations, which are however almost impossible to solve numerically even

if we restrict our attention to relatively short time horizons. Under Assumption 3.2, it may

seem that for this case, stationary sensor decision functions are optimal and that an SPRT

is optimal at the fusion center. Typically such “stationarity” results are established using

dynamic programming (DP) arguments [32]. Unfortunately, dynamic programming cannot

be used here because of the nonclassical2 nature of the information in the system [37, 38],

thus leaving this as an open problem.

1A set of decision functions is said to be person-by-person optimal if it is not possible to improve the
corresponding team performance by unilaterally changing any one of the decision functions. Clearly, globally
optimal decision functions are also person-by-person optimal.

2We refer to an information structure as nonclassical if, roughly speaking, all of the decision makers in
the system do not have the same dynamic information about the past.
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Case B. System with no feedback, but full local memory

ul
k = φl

k(X
l
1, . . . , X

l
k).

Hashemi and Rhodes [39] considered this case with a finite horizon and argued incorrectly

that p.b.p.o. sensor decision functions are likelihood ratio tests (a counterexample can be

found in [36] which predates [39]). We point out this mistake in [40], where we also argue that

likelihood ratio tests are indeed optimal if we restrict ul
k to depend on X l

k and (ul
1, . . . , u

l
k−1),

as given below in Case C.

Case C. System with no feedback, and local memory restricted to past decisions

ul
k = φl

k(X
l
k, u

l
1, . . . , u

l
k−1).

Here p.b.p.o. sensor decision functions are likelihood ratio tests with thresholds depending

on the past decision information. But just as in Cases A and B, we have a nonclassical

information pattern and dynamic programming arguments cannot be used.

Case D. System with full feedback and full local memory

Here ul
k is allowed to depend on all of the information that sensor Sl has access to in the

setting of Figure 1, i.e.3,

ul
k = φl

k(X
l
[1,k]; u

1
[1,k−1], . . . , u

N
[1,k−1]).

Then, as in Case B, likelihood ratio tests are not optimal. Furthermore, we still have a

nonclassical information pattern.

Case E. System with full feedback, but local memory restricted to past decisions

ul
k = φl

k(X
l
k; u

1
[1,k−1], . . . , u

N
[1,k−1]).

For this system, the past (one-step delayed) information at the fusion center and each of the

sensors is the same, and is nested at successive stages. This, together with the fact that the

cost function depends only on the local decisions (and through them on the observations),

3We use the notation [a, b] to represent the set of all time indices between a and b, inclusive.
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implies that the information structure for this case is quasiclassical. It is well known that

stochastic control or team problems with such an information structure are tractable via DP

arguments [37, 38].

In the remainder of this chapter we study Case E in detail. As we will show, definite

progress can be made in the analysis of this case. In Section 3.2, we provide a formal

mathematical description of the problem. In Section 3.3, we provide a useful characterization

of sensor decision functions. In Section 3.4, we consider a finite-horizon version of the problem

and establish the optimality of likelihood-ratio tests at the sensors. Then, in Section 3.5, we

study the infinite horizon optimization problem and show that stationary decision functions

are optimal at the sensors and that an optimal fusion center policy can be characterized by

two thresholds. In Section 3.6, we provide some numerical results. Finally, in Section 3.7,

we summarize the main points.

3.2 Mathematical Description

We begin with a formal description of the decentralized sequential detection problem we

wish to analyze here.

1. The hypothesis is denoted by a binary random variable H which takes on values H0

and H1, with prior probabilities ν and 1 − ν, respectively.

2. There are N sensors in the system. The observation sequence received by sensor

Sl is denoted by {X l
k}∞k=1, where k denotes the time index. Each observation at sensor Sl

comes from a set Xl. The sequences {X1
k}∞k=1, {X2

k}∞k=1, . . . , {XN
k }∞k=1 are independent, i.i.d.

sequences, when conditioned on each hypothesis. Let Pl|Hj
be the probability measure on Xl

that describes the conditional distribution of X l
1 given Hj.

3. At time k, sensor Sl sends, to the fusion center, a local decision ul
k which takes values

in the finite set {1, . . . , Dl}. Past decision information from all of the sensors is available at

each sensor for local decision making. We denote the past decision information at time k by
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Ik−1, which is given by

Ik−1 = {u1
[1,k−1], u

2
[1,k−1], . . . , u

N
[1,k−1]},

with the understanding that I0 is the null set. Now, let

D = {1, . . . , D1} × {1, . . . , D2} × · · · × {1, . . . , DN}.

Then the local decision function (LDF) at sensor Sl at time k is a measurable mapping from

Xl×Dk−1 to {1, . . . , Dl}. We denote this mapping by ϕl
k. The local decision ul

k is then given

by

ul
k = ϕl

k(X
l
k; Ik−1).

But for a particular realization ik−1 of Ik−1, the LDF ϕl
k can be considered to be a mapping

from Xl to {1, . . . , Dl}, which we denote by ϕl
k,ik−1

, i.e.,ϕl
k( · ; ik−1) ≡ ϕl

k,ik−1
( · ). The set of

all LDFs at time k is represented by the vector

ϕk =
(

ϕ1
k, . . . , ϕ

N
k

)

.

4. The fusion center performs a sequential test based on the information it receives from

the sensors. That is, the policy γ of the fusion center consists of selecting a stopping time τ

and a final decision δ ∈ {0, 1} based on the information up to time τ .

5. Decision errors are penalized through a cost function W (δ, H). For most of the

analysis, we will assume that the cost function W is of the form: W (0, H0) = W (1, H1) = 0,

and W (0, H1) = L0, W (1, H0) = L1, where L0 and L1 are positive. Also, each time step

taken for decision making is assumed to cost a positive amount c.

The total expected cost resulting from the sequential procedure described above is

E{cτ + W (δ, H)}. The problem that we wish to solve can now be stated as follows:

Problem P3.1:

Minimize E{cτ + W (δ, H)} over all admissible decision policies at the fusion center and

over all possible choices of local decision functions at each of the sensors. 2
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3.3 Local Decision Functions

The decision function ϕl
k,ik−1

defined in Section 3.2 is a mapping from Xl to {1, . . . , Dl}.
Let Φl denote the set of all mappings from Xl to {1, . . . , Dl}. We will refer to these mappings

as decision functions in the sequel. Now, consider a representative element φl ∈ Φl, and let

X l denote the “generic” random variable in the i.i.d. sequence {X l
k}∞k=1. Then, we define

the following:

qj

φl(dl) := Prob(φl(X l) = dl|Hj), dl = 1, . . . , Dl, j = 0, 1;

qj

φl :=
(

qj

φl(1), . . . , qj

φl(Dl)
)

, j = 0, 1;

qφl :=
(

q0
φl , q1

φl

)

.

The vector qφl describes the conditional distributions of φl(X l), conditioned on each of the

hypotheses. Let Ql :=
{

qφl |φl ∈ Φl
}

. We state the following result which was proved in [41]

in the context of optimal likelihood ratio quantizers.

Proposition 3.1 The set Ql is a compact subset of [0, 1]2Dl, for l = 1, . . . , N . 2

To utilize this result in our framework, we concatenate the mappings φl, l = 1, . . . N , into

the vector φ =
(

φ1, . . . , φN
)

, and define

qφ :=
(

qφ1 , . . . , qφN

)

.

Then qφ belongs to the set Q = Q1 × · · · × QN . By Proposition 3.1, Q is a compact set.

Now suppose that J : [0, 1]2D1×···×2DN 7→ IR is a continuous function, and that the cost of

using the decision function vector φ is given by J(qφ). Then by the Weierstrass theorem,

Proposition 3.1 implies the existence of a decision function vector (say φ̂) that minimizes J

over the set Q.

Now, since φl
k,ik−1

∈ Φl, l = 1, . . .N , the vector qφ
k,ik−1

is well-defined and describes the

joint distribution of the observation vector uk = (u1
k, . . . , u

N
k ), conditioned on each hypothesis
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and on the event that Ik−1 = ik−1. Note that two LDFs ϕl
k and ϕ̃l

k are equivalent, i.e., their

use results in the same expected cost for the sequential test by the fusion center, if

qϕl
k,Ik−1

= qϕ̃l
k,Ik−1

a.e.

That is, the LDFs for our problem are completely characterized by their corresponding

conditional distribution vectors.

3.4 Finite-horizon Optimization

Before we address the solution of the infinite-horizon optimization problem P3.1, we study

a finite-horizon version of it in which the stopping time τ is restricted to a finite interval,

say [0, T ]. In this case, the cost of the sequential procedure is a function of IT (which in

turn depends on all of the LDFs up to time T ), as well as the decision policy γ of the fusion

center and the hypothesis. We denote this cost by Gγ(IT , H). Let X [1,T ] denote the set of

all observations up to time T , i.e., {X1
[1,T ], . . . , X

N
[1,T ]}. Then, the finite-horizon optimization

problem can then be stated as follows:

Problem P3.2:

Minimize

EX [1,T ], H
Gγ

(

u1
[1,T ], . . . , u

N
[1,T ]; H

)

over all possible choices of γ and all possible choices of LDFs ϕl
k, l = 1, . . . , N, k = 1, . . . , T .

2

Now, before we consider globally optimal solutions to this problem, we first study the

common structure of all p.b.p.o. LDFs. This common structure would obviously be valid for

globally optimal LDFs as well.

3.4.1 The structure of optimal LDFs

We can characterize p.b.p.o. LDFs as follows. We first fix l, 1 ≤ l ≤ N , and k, 1 ≤ k ≤ T .

Then we fix the policy γ and all the LDFs in the set {ϕj
m , j = 1, . . . , N, m = 1, . . . , T},
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except ϕl
k. The expected cost we wish to minimize is then a function of ϕl

k alone, say Rϕl
k
.

The expectation needed for Rϕl
k

can be computed in two steps as given below:

Rϕl
k

= Eu1
[1,k−1]

,...,uN
[1,k−1]

, Xl
k
, H {

EXl
[k+1,T ]

,X1
[k,T ]

,...,Xl−1
[k,T ]

,Xl+1
[k,T ]

,...,XN
[k,T ]

| H {

Gγ

(

ϕl
k(X

l
k; Ik−1), Ik−1, u

1
k, . . . , u

l−1
k , ul+1

k , . . . , uN
k , u1

[k+1,T ], . . . , u
N
[k+1,T ]; H

)

}} .

In the inner expectation above, we do not need to condition on observations up to time k−1

because of the conditional independence assumption stated in Section 3.2. Also, the outer

expectation is taken with respect to the local decisions, since the local decision functions up

to time k − 1 are fixed. The inner expectation in the equation above is a function of Ik−1,

H and ϕl
k(X

l
k; Ik−1), say K

(

ϕl
k(X

l
k; Ik−1), Ik−1; H

)

. Therefore,

Rϕl
k

= EIk−1, Xl
k
, H

{

K
(

ϕl
k(X

l
k; Ik−1), Ik−1; H

)}

= EIk−1, Xl
k

{

Prob(H = H0|Ik−1, X
l
k) K

(

ϕl
k(X

l
k; Ik−1), Ik−1; H0

)

+Prob(H = H1|Ik−1, X
l
k) K

(

ϕl
k(X

l
k; Ik−1), Ik−1; H1

)}

.

Minimizing Rϕl
k

with respect to ϕl
k is equivalent to minimizing the quantity inside the ex-

pectation almost everywhere. Hence, every p.b.p.o. solution ϕ̂l
k for the LDF of sensor Sl at

time k (when it exists) satisfies the equation

ϕ̂l
k(X

l
k; Ik−1) = arg min

dl∈{1,...,Dl}

{

Prob(H = H0|Ik−1, X
l
k) K (dl, Ik−1; H0)

+ Prob(H = H1|Ik−1, X
l
k) K (dl, Ik−1; H1)

}

a.e. (3.1)

Our goal in this section is to show that p.b.p.o. local decision functions (when they exist)

can be found within a structured class of decision functions admitting a finite-dimensional

parametrization. To this end, we first define Ll : Xl 7→ [0,∞] as the likelihood ratio of

Pi|H1
with respect to Pi|H0

. In particular, if Xl is a Euclidean space and if the conditional

probability density function of X l
k given Hj is f l

j, then Ll is given by

Ll(X
l
k) =

f l
1(X

l
k)

f l
0(X

l
k)

w.p. 1.
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We now define a class of decision functions, based on this likelihood ratio, that can be

parametrized by a set of thresholds4.

Definition 3.4 (a) A decision function ϕl : Xl 7→ {1, . . . , Dl} is called a monotone

likelihood ratio test (MLRT) if there exist thresholds λ1, . . . , λDl−1 satisfying 0 ≤ λ1 ≤ λ2 ≤
. . . ≤ λDl−1 ≤ ∞ such that

ϕl(x) = dl only if Ll(x) ∈ Idl
, dl = 1, . . . , Dl,

where I1 = [0, λ1], IDl
= [λDl−1,∞], and Idl

= [λdl−1, λdl
], dl = 2, . . . , Dl − 1.

(b) A decision function ϕl : Xl 7→ {1, . . . , Dl} is called a likelihood ratio test (LRT) if there

exists a permutation mapping Σ : {1, . . . , Dl} 7→ {1, . . . , Dl} such that Σ ◦ ϕl is a monotone

likelihood ratio test.

Proposition 3.2 Person-by-person optimal local decision functions (when they exist)

can be found in the class of LRTs, with thresholds that depend on the past decision informa-

tion.

Proof: We know that a p.b.p.o. solution ϕ̂l
k for the LDF of sensor Sl at time k satisfies

(3.1). Using Bayes rule, we have

Prob(H = H1|Ik−1, X
l
k)

Prob(H = H0|Ik−1, X l
k)

= Ll(X
l
k)

(1 − pk−1)

pk−1
, w.p. 1, (3.2)

where pk denotes the posteriori probability of H0 given the decision information up to time

k, i.e.,

pk = Prob(H = H0|Ik), k = 0, . . . T.

From (3.2) it follows that ϕ̂l
k satisfies

ϕ̂l
k(X

l
k; Ik−1) =











































argmindl∈{1,...,Dl}

{

(1 − pk−1)K (dl, Ik−1; H1)Ll(X
l
k)

+ pk−1K (dl, Ik−1; H0)} if Ll(X
l
k) < ∞

argmindl∈{1,...,Dl} K (dl, Ik−1, H1) if Ll(X
l
k) = ∞.

4Similar definitions can be found in [42].
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From this it should be clear that (see Figure 3.2) there exists a solution for ϕ̂l
k in the class

of LRTs with thresholds that depend on Ik−1. 2

3.4.2 A sufficient statistic for DP

As we mentioned earlier, the information structure in the system under consideration is

of a quasiclassical nature. Hence, we would expect that a sufficient statistic for a dynamic

programming (DP) solution to problem P3.2 is the posteriori probability defined earlier, i.e.,

pk = Prob(H = H0|Ik), k = 0, . . . , T.

Using the independence assumptions, a recursion for pk can be obtained quite readily. Before

we proceed to write the recursion equations, we introduce two functions, g : D×Q× [0, 1] 7→
[0, 1] and f : D × Q × [0, 1] 7→ [0, 1], as follows:

For d = (d1, . . . , dN) ∈ D, φ ∈ Φ1 × · · · × ΦN , and p ∈ [0, 1],

g(d; qφ; p) := p q0
φ1(d1) · · · q0

φN (dN),

and

f(d; qφ; p) := g(d; qφ; p) + (1 − p) q1
φ1(d1) · · · q1

φN (dN).

Note that f( · ; qϕ
k,Ik−1

; pk−1) is the joint conditional distribution of uk = (u1
k, . . . , u

N
k ), given

Ik−1.

We now give the recursion for pk. For k = 0, . . . , T ,

pk+1 = Prob(H = H0|Ik+1)

= Prob(H = H0|u1
k+1, . . . , u

N
k+1, Ik)

=
Prob(H = H0|Ik) p(u1

k+1, . . . , u
N
k+1|H0, Ik)

p(u1
k+1, . . . , u

N
k+1|Ik)

=
g(uk+1; qϕ

k+1,Ik

; pk)

f(uk+1; qϕ
k+1,Ik

; pk)
, (3.3)
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with p0 = ν. However, we would not find this recursion useful unless we can show that the

RHS of (3.3) depends on Ik only through pk, i.e., that pk is indeed a sufficient statistic for

P3.2.

3.4.3 Finite-horizon DP

The DP equations for problem P3.2 are derived as follows. The (minimum) expected

cost-to-go at time k, 0 ≤ k ≤ T , is a function of the information available to the fusion

center at time k, i.e., Ik, which we denote by J̃T
K(Ik). It is easily seen that

J̃T
T (IT ) = min{(1 − pT )L0, pTL1},

where the first (respectively, second) term in the above minimum is the conditional expected

cost of choosing H0 (respectively, H1), given IT .

For 0 ≤ k ≤ T , we have the following backward recursion:

J̃T
k (Ik) = min











(1 − pk)L0, pkL1, c + inf
q
φ

∈Q
E
{

J̃T
k+1(Ik+1)|Ik

}











,

where the third term above is the minimum expected cost of continuing conditioned on Ik.

Proposition 3.3 (i) For each k, 0 ≤ k ≤ T , the function J̃T
k (Ik) can be written as a

function of only pk, say JT
k (pk).

(ii) For each k, 0 ≤ k ≤ T −1, the search for optimal LDFs at time k+1 can be restricted

to a class of decision functions that depend only on pk.

Proof: Clearly, J̃T
T (IT ) is a function of only pT , say JT

T (pT ). We now make the following

induction argument. For any k, 0 ≤ k ≤ T − 1, suppose that J̃T
k+1(Ik+1) is a function of only

pk+1, say JT
k+1(pk+1). Now,

J̃T
k (Ik) = min {(1 − pk)L0, pkL1,

c + inf
q
φ

∈Q

∑

d∈D

JT
k+1





g(d; qφ; pk)

f(d; qφ; pk)



 f(d; qφ; pk)











.
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In this equation, it is clear that the infimizing conditional distribution vector qφ
? is a function

of only pk. Both parts of the proposition follow from this fact. 2

The main consequence of Proposition 3.3 is that we do not lose optimality if we restrict

the local decision ul
k to be a function of only X l

k and pk−1. From here on, we impose this

restriction. Then, by a possible abuse of notation,

ul
k = φl

k(X
l
k; pk). (3.4)

For fixed p ∈ [0, 1], the mapping φl
k( · ; p) belongs to the set Φl defined earlier. We denote

this decision function by φl
k,p, i.e.,

φl
k( · ; p) ≡ φl

k,p( · ).

With the LDFs defined as in (3.4), we obtain the following useful recursion for pk. For

k = 0, . . . T − 1, we have

pk+1 =
g(uk+1; qφ

k+1,pk

; pk)

f(uk+1; qφ
k+1,pk

; pk)
(3.5)

with p0 = ν. All of the decision makers in the system need to retain only the sufficient

statistic pk, which they can easily update using (3.5).

For completeness, we rewrite the finite-horizon DP equations in terms of the redefined

LDFs:

JT
T (pT ) = min{(1 − pT ) L0, pT L1}, (3.6)

and for k = 0, . . . , T − 1,

JT
k (pk) = min

{

(1 − pk) L0, pkL1, c + AT
k (pk)

}

, (3.7)

where

AT
k (pk) := inf

q
φ

∈Q

∑

d∈D

JT
k+1





g(d; qφ; pk)

f(d; qφ; pk)



 f(d; qφ; pk). (3.8)
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3.4.4 Finite-horizon policy of the fusion center

Our goal in this section is to use the DP Equations (3.6) - (3.8) to find the structure

of an optimal finite-horizon policy of the fusion center. To this end, we first present some

useful properties of the functions JT
k and the functions AT

k in the following lemmas.

Lemma 3.1 The functions JT
k (p) and AT

k (p) are nonnegative concave functions of p, for

p ∈ [0, 1]. 2

Lemma 3.2 The functions JT
k (p) and AT

k (p) are monotonically nondecreasing in k, that

is, for each p ∈ [0, 1],

JT
k (p) ≤ JT

k+1(p), 0 ≤ k ≤ T − 1.

AT
k (p) ≤ AT

k+1(p), 0 ≤ k ≤ T − 2.
2

Lemma 3.3 The functions AT
k (p) satisfy the following property:

AT
k (0) = AT

k (1) = 0.

2

Lemmas 3.2 and 3.3 are easily proven by simple induction arguments. The proof of Lemma

3.1 is not as straightforward and is given in Section 3.8.

If we now assume that the condition given below holds,

AT
T−1

(

L0

L1 + L0

)

≤ L0L1

L1 + L0
, (3.9)

then Lemmas 3.1-3.3 give us the following threshold property of an optimal finite-horizon

fusion center policy (see Figure 3.3; also see Section 3.5 of [32] for a similar analysis).

Theorem 3.1 Let condition (3.9) hold. Then an optimal finite-horizon fusion center

policy has the form

accept H0 if pk ≥ aT
k ,

accept H1 if pk ≤ bT
k ,

continue if bT
k < pk < aT

k ,
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where the scalars aT
k , bT

k , k = 0, 1, ...T − 1, are determined from the relations

L0

(

1 − bT
k

)

= c + AT
k (bT

k ),

L1a
T
k = c + AT

k (aT
k ).

Furthermore, {aT
k }T−1

k=0 is a nonincreasing sequence and {bT
k }T−1

k=0 is a nondecreasing sequence.

2

Remark 3.1 If condition (3.9) does not hold, then the thresholds aT
k and bT

k of Theorem

3.1 are both identically equal to L0/(L0 + L1) for all k greater than some m, 1 ≤ m < T ,

which essentially reduces the finite horizon to m. Hence, condition (3.9) does not impose

any restrictions on the problem parameters. 2

3.4.5 Optimal finite-horizon LDFs

The DP equations (3.6)-(3.8) can also be used to find optimal LDFs stagewise, starting

from time T and going backwards. The concavity of the cost-to-go function JT
k+1 implies

that the function
∑

d∈D

JT
k+1





g(d; qφ; pk)

f(d; qφ; pk)



 f(d; qφ; pk)

is continuous in qφ. By Proposition 3.1, this fact implies the existence of optimal LDFs at

time k + 1.

We showed earlier (in Section 3.4.1) that the search for globally optimal LDFs at time

k + 1 can be restricted to the set of LRTs with thresholds depending on Ik. Propositions

3.1 and 3.3 further show that globally optimal LDFs at time k + 1 can be found in a class

of LRTs with thresholds depending only on pk. Now, suppose φ̂l
k+1 is a globally optimal

LDF for sensor l at time k + 1. Then we can replace φ̂l
k by φ̃l

k = Σl ◦ φ̂l
k,pk

, where Σl is

a permutation mapping that makes φ̂l
k,pk

a monotone likelihood ratio test (MLRT), without

changing the value of E{JT
k+1(pk+1) | pk}. Hence, globally optimal LDFs at time k + 1 can

be found in the smaller class of MLRTs with thresholds that depend on pk.
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Now suppose an MLRT φ̃l
k,pk

is characterized by the thresholds λ1(pk), . . . , λDl−1(pk).

Then

qj

φ̃l
k,pk

(dl) = Prob
(

L(X l
k) ∈ [λdl−1(pk), λdl

(pk)] |Hj

)

,

with the understanding that λ0(pk) = 0 and λDl
(pk) = ∞. Hence, the minimization to

obtain AT
k (pk) in (3.8) can be done over |D| thresholds.

Finally, if we define the set QM by

QM =
{

qφ ∈ Q : φ is a vector of MLRTs
}

,

then AT
k (pk) can be written as

AT
k (pk) := min

q
φ

∈Q
M

∑

d∈D

JT
k+1





g(d; qφ; pk)

f(d; qφ; pk)



 f(d; qφ; pk).

3.5 Infinite-horizon Optimization

In order to solve the original optimization problem P3.1, we need to remove the restriction

that τ belongs to a finite interval, by letting T → ∞. Toward this end, we first note the

inequality

JT+1
k (p) ≤ JT

k (p),

which holds because the set of stopping times increases with T . Furthermore, by leaving out

the third term in (3.7), we obtain

0 ≤ JT
k (p) ≤ η(p), ∀T, and ∀k ≤ T,

where

η(p) = min{L1p, L0(1 − p)}. (3.10)

The fact that JT
k is bounded below implies that, for each finite k, the following limit

lim
T→∞,T>k

JT
k (p) = inf

T>k
JT

k (p) =: J∞
k (p)
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is well-defined. Also, due to the i.i.d. nature of the observations, a time-shift argument

easily shows that

J∞
k (p) = J∞

k+1(p),

for all k, and we can denote the common value by J(p), which we will refer to as the

infinite-horizon cost-to-go function.

Now, by the Dominated Convergence Theorem, the following limit is well-defined for all

k:

lim
T→∞

AT
k (p) = min

q
φ

∈Q
M

∑

d∈D

J





g(d; qφ; p)

f(d; qφ; p)



 f(d; qφ; p).

This limit, which is independent of k, is denoted by AJ(p). It follows that the infinite-horizon

cost-to-go function J(p) satisfies the Bellman equation

J(p) = min {L1p, L0(1 − p), c + AJ(p)} . (3.11)

We note that the optimum cost for problem P3.1 is J(ν).

3.5.1 The structure of an optimal fusion center policy

If we compute the infinite-horizon cost-to-go function J(p), p ∈ [0, 1], then an optimal

policy of the fusion center can be obtained from the RHS of (3.11). However, it is possible to

obtain the qualitative structure of an optimal fusion center policy without actually computing

J(p). To this end, we state the following result, whose proof follows by taking limits as

T → ∞ in Lemmas 3.1-3.3.

Lemma 3.4 The functions J(p) and AJ(p) are nonnegative concave functions of p, p ∈
[0, 1]. Furthermore, they satisfy the end-point conditions

J(0) = J(1) = AJ(0) = AJ(1) = 0.

2

From Lemma 3.4 it is clear that, provided the condition

J
(

L0

L1 + L0

)

<
L1L0

L1 + L0
(3.12)
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holds, an optimal policy of the supervisor will have the threshold property given in the

theorem below (see Figure 3.4; also see Section 6.3 of [32] for a similar analysis).

Theorem 3.2 Let condition (3.12) hold. Then an optimal fusion center policy for prob-

lem P3.1 has the form

accept H0 if pk ≥ a

accept H1 if pk ≤ b

continue taking observations if b < pk < a,

where the thresholds a and b are determined from the relations

L0(1 − b) = c + AJ(b),

L1a = c + AJ(a).

2

Remark 3.2 It should be noted that if condition (3.12) does not hold, then it would be

optimal for the fusion center to ignore all of the data it receives from the sensors, and base

its decision solely on the value of the prior probability ν. Hence condition (3.12) does not

bring any loss of generality to the result of Theorem 3.2 above. 2

3.5.2 Uniqueness of J(p) and its consequences

Let S ⊂ C[0, 1] be the set of all concave functions on [0, 1] that are bounded (in sup

norm) by the function η(p), p ∈ [0, 1], defined in (3.10). For G ∈ S, we define

WG(qφ; p) :=
∑

d∈D

G





g(d; qφ; p)

f(d; qφ; p)



 f(d; qφ; p).

It is clear that the infinite-horizon cost-to-go function J belongs to the set S. Furthermore,

the Bellman equation that J satisfies can be written as

J(p) = min











L1p, L0(1 − p), c + min
q
φ

∈Q
M

WJ(qφ; p)











.
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Then, we define the mapping T : S 7→ S by

T G(p) = min











L1p, L0(1 − p), c + min
q
φ

∈Q
M

WG(qφ; p)











, for G ∈ S.

Theorem 3.3 The infinite-horizon cost-to-go function J is the unique fixed point of the

mapping T .

Proof: Let G be any fixed point of T , and let φ?
p be such that

qφ
?

p

= arg min
q
φ

∈Q
M

WG(qφ; p).

Fix p0 = ν ∈ [0, 1], and let p1, p2, . . ., be defined recursively by

pk+1 =
g(uk+1; qφ

?

pk

; pk)

f(uk+1; qφ
?

pk

; pk)
.

Now define a stopping time N and a decision rule δN as follows:

N = min
{

k ≥ 0
∣

∣

∣

∣

η(pk) ≤ c + WG(qφ
?

pk

; pk)
}

,

and

δN =











1 if L1pN ≤ L0(1 − pN )

0 if L1pN > L0(1 − pN ).

From the definition of N and the fact that G is a fixed point of T , we obtain the following

relations:

G(ν) = c + E {G(p1)}

G(p1) = c + E {G(p2)|I1}

.

.

.

G(pN−1) = c + E {G(pN )|IN−1}

G(pN ) = η(pN ).
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Substituting backwards and taking expectations, we obtain

G(ν) = E {cN + W (δN , H)} ≥ J(ν),

where the last inequality follows from the definition of J .

To show the reverse inequality, we first note that for each p ∈ [0, 1],

G(p) ≤ η(p) = JT
T (p), ∀T.

Now fix T , and suppose that for some m < T − 1, JT
m+1 ≥ G(p). Then

JT
m(p) = min











η(p), c + min
q
φ

∈Q
M

WJT
m+1

(qφ; p)











≥ min











η(p), c + min
q
φ

∈Q
M

WG(qφ; p)











= G(p).

By induction, it follows that for each p ∈ [0, 1],

JT
k (p) ≥ G(p), ∀T, and ∀k ≤ T.

Fixing k and taking the limit as T → ∞ in the above equation, we obtain

J(p) ≥ G(p). 2

The first important consequence of Theorem 3.3 is that J(p) can be obtained by successive

approximation. We can show, using an induction argument, that

T n+1η(p) ≤ T nη(p), for each p ∈ [0, 1].

This means that T nη converges monotonically to J as n → ∞.

3.5.3 Optimal infinite-horizon LDFs

Theorem 3.3 also implies that a stationary vector of LDFs is optimal for the infinite-

horizon problem P3.1, as the following argument shows. Let φ?
p be such that

qφ
?

p

= arg min
q
φ

∈Q
M

WJ(qφ; p),
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where J(p) is the infinite-horizon cost-to-go function for problem P3.1. Then, in the problem

setting for P3.1, we restrict ourselves to the singleton vector of LDFs φ? = (φ1?, . . . , φN?),

where φl? : X l × [0, 1] 7→ {1, . . . , Dl} is such that

φl?( · ; p) ≡ φl?
p ( · ).

In other words, for each l, l = 1, . . . , N ,

ul
k = φl?(Xk

l ; pk−1), ∀ k.

We denote the optimization problem with this restriction by P3.1′. We can solve P3.1′ in

a manner parallel to the way we solved P3.1, i.e., by first solving the corresponding finite-

horizon problem and then extending this solution to the infinite-horizon case. The Bellman

equation for the infinite-horizon cost-to-go function J ′(p) for problem P3.1′ satisfies

J ′(p) = min
{

L1p, L0(1 − p), c + WJ ′(qφ
?

p

; p)
}

.

By Theorem 3.3, it follows that J(p) = J ′(p), ∀p ∈ [0, 1], which implies the optimality of the

stationary vector of LDFs φ? for problem P3.1.

3.6 Numerical Results

For all of the examples presented in this section we assume that the local decisions are

binary. For these examples, it is convenient to write the LDFs in terms of the log-likelihood

ratio. In this section, the function L(·) represents the log-likelihood ratio of the observations.

We consider three cases in increasing order of complexity.

Case A. Single Sensor

Here the LDF is characterized by a single threshold λ. Hence, for each G ∈ S, WG is

a function of only λ and p. Let X denote the generic random variable in the set of i.i.d.

observations that the system receives. Then

WG(λ, p) =
2
∑

d=1

G

(

g(d, λ, p)

f(d, λ, p)

)

f(d, λ, p),
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where

g(d, λ, p) = p [P0(L(X) > λ)]d−1 [P0(L(X) ≤ λ)]2−d ,

f(d, λ, p) = g(d, λ, p) + (1 − p) [P1(L(X) > λ)]d−1 [P1(L(X) ≤ λ)]2−d .

An optimal threshold (as a function of p) is obtained by minimizing WG(λ, p) over λ ∈ IR.

It is easy to see that

lim
λ→∞

WG(λ, p) = lim
λ→−∞

WG(λ, p) = G(p).

Also, by the concavity of G, for fixed p ∈ [0, 1]

WG(λ, p) ≤ G(p), ∀λ.

In addition it is easy to show that, for fixed p, WG(λ, p) has bounded left- and right-hand

derivatives for every λ ∈ IR. This means that the minimizing threshold can be found to

within a desired accuracy by a systematic search procedure [43].

Example 3.1 The observations that the sensor receives are i.i.d. Gaussian random vari-

ables with mean 0 and variance v under H0 and mean 1 and variance v under H1. In this

case L(X) is N(−1/2v, 1/v) under H0 and N(1/2v, 1/v) under H1. An optimal stationary

LDF threshold λ?(p) and the infinite-horizon cost-to-go function are obtained by successive

approximation. As indicated earlier, we start the iteration with η(p) and repeatedly apply

the transformation T , and stop at iteration n if T nη is sufficiently close to T n+1η.

Numerical experimentation suggests that WG(λ, p) is unimodal in λ, for all G ∈ S. We

have hence used a golden section search procedure [43] to obtain an optimal threshold at

each stage of the successive approximation. Representative results are shown in Figure 3.5.

A hundred iterations were run, and the norm difference between the 99th and 100th iterates

was less than 10−4. The figure indicates the values of the optimal fusion center thresholds a

and b. The optimal local decision threshold as a function of p is also plotted.

It is interesting to observe that λ?(p) is a discontinuous function in both cases (the spikes

around the points of discontinuity and at the end points are attributed to quantization

and finite precision). This might be surprising at first, but such behavior is commonly

observed in control systems where “bang-bang” control is optimal. For example, if we
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consider f(u, x) = −ux, and we wish to minimize f over u ∈ [−1, 1] for each fixed x,

then the minimizing u as a function of x is sgn(x).

Case B Two Identical Sensors

Here, in addition to Assumption 3.2, we assume that the observations received by the

two sensors are identically distributed conditioned on each hypothesis. The vector of LDFs

is characterized by two thresholds λ1 and λ2, with λi being the threshold at sensor Si. Hence

WG is a function of λ1, λ2 and p, and is given by

WG(λ1, λ2, p) =
2
∑

d1=1

2
∑

d2=1

G

(

g(d1, d2, λ1, λ2, p)

f(d1, d2, λ1, λ2, p)

)

f(d1, d2, λ1, λ2, p)

where

g(d1, d2, λ1, λ2, p) =
2
∏

l=1

p [P0(L(X) > λl)]
dl−1 [P0(L(X) ≤ λl)]

2−dl ,

f(d1, d2, λ1, λ2, p) = g(d1, d2, λ1, λ2, p)

+
2
∏

l=1

(1 − p) [P1(L(X) > λl)]
dl−1 [P1(L(X) ≤ λl)]

2−dl .

Optimal thresholds (as functions of p) are obtained by minimizing WG(λ1, λ2, p) over

(λ1, λ2) ∈ IR2.

Example 3.2 The observations received by the system are i.i.d. Gaussian random vari-

ables with mean 0 and variance v under H0 and mean 1 and variance v under H1. In this

case L(X) is N(−1/2v, 1/v) under H0 and N(1/2v, 1/v) under H1.

Here also, numerical experimentation suggests that for each G ∈ S, WG(λ1, λ2, p) is uni-

modal on the set {(λ1, λ2) : (λ1, λ2) ∈ IR2}. The unimodality would imply that the search

for optimal thresholds can be restricted to the set {(λ1, λ2) : λ1 = λ2}. This is confirmed in

the optimization results (see Figure 3.6) where the optimal thresholds λ?
1(p) and λ?

2(p) are

seen to be identical functions of p. A hundred iterations were used to obtain these results,

and the norm difference between the 99th and 100th iterates was less than 10−4. We note

that the same results are obtained if we set λ1 = λ2 = λ and optimize WG over the single

threshold λ.
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Case C. Two Nonidentical Sensors

This case is similar to Case B above except that functions f and g are given by

g(d1, d2, λ1, λ2, p) =
2
∏

l=1

p [P0(L(Xl) > λl)]
dl−1 [P0(L(Xl) ≤ λl)]

2−dl ,

f(d1, d2, λ1, λ2, p) = g(d1, d2, λ1, λ2, p)

+
2
∏

l=1

(1 − p) [P1(L(Xl) > λl)]
dl−1 [P1(L(Xl) ≤ λl)]

2−dl ,

where Xl denotes the generic random variable in the i.i.d. sequence of observations received

by sensor Sl.

Example 3.3 The observations received by sensor S1 are i.i.d. Gaussian random vari-

ables with mean 0 and variance v under H0 and mean 1/2 and variance v under H1.

The observations received by sensor S2 are i.i.d. Gaussian random variables with mean

0 and variance v under H0 and mean 1 and variance v under H1. In this case L(X1) is

N(−1/8v, 1/4v) under H0 and N(1/8v, 1/4v) under H1, and L(X2) is N(−1/2v, 1/v) under

H0 and N(1/2v, 1/v) under H1.

Here again, numerical experimentation suggests that for each G ∈ S, WG(λ1, λ2, p) is

unimodal on the set {(λ1, λ2) : (λ1, λ2) ∈ IR2}. Optimal thresholds at each iteration were

hence found by a two-dimensional golden section search procedure. Representative results

are shown in Figure 3.7. A hundred iterations were run, and, as before, the norm difference

between the 99th and 100th iterates was less than 10−4.

3.7 Summary

As we demonstrated in the preceding sections, the information pattern that we assumed

for our analysis (Case E of Section 3.1) gave rise to a very tractable problem. Our main

results are:

(i) At each stage k, it is optimal for each sensor to quantize its current observation using a

likelihood ratio test whose thresholds are determined by the past decision information Ik−1.

(ii) The optimal thresholds at the sensors at stage k depend on the Ik−1 only through the

one-dimensional sufficient statistic pk−1. Furthermore, the sufficient statistic can be updated

using a simple recursion.
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(iii) An optimal policy for the fusion center is a sequential test based on pk, with fixed

boundaries (a and b) in the infinite-horizon case. Also for the infinite-horizon problem, a

stationary set of decision functions is optimal at the sensors. That is, the optimal MLRT for

each sensor is a time-invariant function of the current observation and the sufficient statistic

of the past decision information. This reduces the complexity of the design considerably.

3.8 Proof of Lemma 3.1

The assertion is true for k = T since JT
T (p) is the minimum of two affine functions of p.

Now suppose JT
m+1(p) is concave in p, p ∈ [0, 1]. This is possible if, and only if, there exists

a collection of affine functions {λzp + µz : z ∈ Z}, for some index set Z, such that [44]

JT
m+1(p) = inf

z∈Z
{λzp + µz}.

Then,

AT
m(p) = inf

q
φ

∈Q

∑

d∈D

inf
z∈Z

{

λzg(d; qφ; p) + µzf(d; qφ; p)
}

= inf
q
φ

∈Q
inf
z∈Z

∑

d∈D

{

λzg(d; qφ; p) + µzf(d; qφ; p)
}

.

Hence, AT
m(p) is concave in p, because each term in the above infimum is affine in p. This

further implies that JT
m(p) is concave in p, which completes the proof.
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Figure 3.1: General setting for decentralized sequential detection with a fusion center per-
forming the sequential test.
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Figure 3.2: Illustration for Proposition 3.2.
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Figure 3.3: Illustration for Theorem 3.1.
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Figure 3.4: Illustration for Theorem 3.2.
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(a)

(b)

Figure 3.5: Results for the single sensor case with c = 0.01, v = 1.0, and L0 = L1 = 1.0 :
(a) Infinite-horizon cost-to-go function (b) Optimal stationary LDF threshold.
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(a)

(b)

Figure 3.6: Results for the case of two identical sensors with c = 0.01, v = 1.0, and
L0 = L1 = 1.0 : (a) Infinite-horizon cost-to-go function (b) Optimal stationary LDF thresh-
olds.
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(a)

(b)

Figure 3.7: Results for the case of two nonidentical sensors with c = 0.01, v = 1.0, and
L0 = L1 = 1.0 : (a) Infinite-horizon cost-to-go function (b) Optimal stationary LDF thresh-
olds.
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CHAPTER 4

MINIMAX ROBUST DECENTRALIZED DETECTION

4.1 Introduction

The design of optimal decision rules in detection problems requires the knowledge of the

conditional probability distributions of the observations, given each hypothesis. In many ap-

plications, however, the probability distributions are not specified completely. In these cases,

the probability distributions are usually specified to belong to classes (sets) of distributions,

often termed as uncertainty classes. One way to design decision rules when the probability

distributions are given to belong to uncertainty classes is the minimax approach, where the

goal is to minimize the worst-case performance over the uncertainty classes. The decision

rules thus obtained are said to be robust to the uncertainties in the probability distributions.

Minimax robust detection problems with two hypotheses1 and with centralized informa-

tion have been the subject of numerous papers (for an excellent survey of results in this

area, see [46]). The solutions to these problems invariably involve identifying a pair of least

favorable distributions (LFDs), and subsequently designing a simple hypothesis test between

the LFDs.

An extension of the minimax robust detection problem to a decentralized setting with

two sensors and without a fusion center was considered by Geraniotis [47]. The problem was

formulated in a Bayesian framework with the observations at each of the sensors belonging

to uncertainty classes generated by alternating capacities of order two. The binary sensor

decisions about the hypothesis were assumed to be coupled through a common cost function.

For a specific choice of cost structure, it was shown in [47] that the task of finding LFDs

at the sensors can be decoupled into two independent tasks, one at each of the sensors.

This implies that the LFDs for the decentralized problem are the same as those for two

independent centralized detection problems at the sensors.

1Minimax robust detection problems with more than two hypotheses are known to be difficult and do not
admit closed-form solutions [45].
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Minimax robust decentralized detection with a fusion center has also been studied. In

the only existing analyses of this problem ([48] and [49]), the authors restricted their study

to a Bayesian formulation and to binary sensor decisions. They further limited the scope of

their study by only considering the following special cases: (i) the case of identical sensors

using identical decision rules, (ii) the asymptotic case of a large number of sensors and (iii)

the asymptotic case of large observation block lengths.

In this chapter, we attempt to find a more comprehensive solution to robust decentralized

detection problems. We study both the cases with and without a fusion center. For the case

when a fusion center is present, we give a solution to the minimax robust detection problem

for the general case of finite number of sensors, finite observation block length, and non-

binary sensor decisions. This solution covers all of the block detection cases considered in

[48] and [49]. Furthermore, our analysis is not restricted to Bayesian detection. For the

case when no fusion center is present, we extend the work in [47] to more than two sensors

and more general cost functions. We also give sufficient conditions for the decoupling of the

minimax robust detection problem.

The remainder of this chapter is organized as follows: In Section 4.2, we give a detailed

introduction to robust centralized detection. The purpose of this introduction is twofold:

first, we believe that we have provided a framework whereby most of the previous results

in robust centralized detection are unified; second, the results here are used explicitly in

the solution to the decentralized problems in the subsequent sections. In Section 4.3, we

consider decentralized detection problems where a fusion center is present, and in Section

4.4 we consider the case where the fusion center is absent. Finally, in Section 4.5, we

summarize the main points.

4.2 Robust Centralized Detection

We begin with a description of a minimax robust detection problem which was first

introduced by Huber [50]. The basic setup is as follows: Let (X ,F) be a measurable space,
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and let P0 and P1 be distinct probability measures on it. Let X be an observation taking

values in X , and let the distribution of X be P0 (respectively, P1) under H0 (respectively,

H1). A decision δ about the true hypothesis is to be made based on X, i.e., δ = φ(X).

The objective here is to construct a hypothesis test between H0 and H1, when P0 and P1

are not specified completely. The approach taken by Huber was to first define classes of

allowable distributions (or uncertainty classes) under H0 and H1, and then solve a minimax

test between this pair of classes. If we denote the uncertainty class under Hj by Pj, then

the minimax robust versions of Bayesian, minimax and Neyman-Pearson formulations of the

hypothesis test between H0 and H1 are given respectively by

(a) min
φ

[

ν sup
P0∈P0

PF (φ, P0) + (1 − ν) sup
P1∈P1

PM(φ, P1)

]

,

(b) min
φ

max

{

sup
P0∈P0

PF (φ, P0), sup
P1∈P1

PM(φ, P1)

}

,

(c) min
φ

sup
P1∈P1

PM(φ, P1) subject to sup
P0∈P0

PF (φ, P0) ≤ α,

where PM(φ,P1) = P1(δ = 0) and PF (φ,P0) = P0(δ = 1).

The classes considered in [50] are neighborhood classes containing, under each hypothesis,

a nominal distribution and distributions in its vicinity. The two types of neighborhood classes

studied in [50] are the ε-contamination and the total variation. For each case, Huber showed

[50] that a pair of LFDs can be found for the minimax robust detection problems described

above. He also gave a characterization of a least favorable pair in terms of the parameters

of the uncertainty neighborhoods, and showed that the corresponding minimax robust tests

are “censored” versions of the nominal likelihood ratio tests.

Huber and Strassen [51] have shown in a later paper that pairs of LFDs can be found for

the cases when the neighborhood classes can be described in terms of alternating capacities

of order 2. When the observation set is compact, several uncertainty models such as ε-

contaminated neighborhoods, total variation neighborhoods, band-classes and p-point classes

are special cases of this model with different choices of capacity.
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The proofs of existence of LFDs in [50] and [51] rely on the following property possessed

by all of the pairs of uncertainty classes considered in [50] and [51]:

Definition 4.1 (Joint Stochastic Boundedness): A pair (P0,P1) of classes of distri-

butions defined on a measurable space (X ,F) is said to be jointly stochastically bounded by

(Q0, Q1), if there exist distributions Q0 ∈ P0 and Q1 ∈ P1 such that for any (P0, P1) ∈ P0×P1

and all t ≥ 0,

P0(lq(X) > t) ≤ Q0(lq(X) > t), P0(lq(X) < t) ≥ Q0(lq(X) < t)

and

P1(lq(X) < t) ≤ Q1(lq(X) < t), P1(lq(X) > t) ≥ Q1(lq(X) > t)

where lq is the likelihood ratio between Q1 and Q0. 2

Example 4.1 ε-contamination uncertainty classes:

Pi :=
{

Q ∈ H |Q = (1 − εi)P̃i + εiMi, Mi ∈ H
}

where H denotes the set of all probability measures on X , and P̃0 and P̃1 are distinct prob-

ability measures with densities p̃0 and p̃1 with respect to some measure µ. It can be shown

[50] that this pair (P0,P1) is jointly stochastically dominated by the pair of distributions Q0

and Q1 which have densities with respect to µ given by

q0(x) =











(1 − ε0)p̃0(x) if lp(x) < c0

(1 − ε0)p̃1(x)/c0 if lp(x) ≥ c0

and

q1(x) =











(1 − ε1)p̃1(x) if lp(x) > c1

c1(1 − ε1)p̃0(x) if lp(x) ≤ c1

,

where c0 and c1 are such that the densities integrate to 1, and lp(x) = p̃1(x)/p̃0(x). 2

It can be shown [50, 51] that the distributions Q0 and Q1 in Definition 4.1 are LFDs for

minimax robust hypothesis testing between P0 and P1. That is, the solutions to (a), (b) and

(c) are obtained as solutions to the following simple hypothesis testing problems:
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(a′) minφ [ν PF (φ, Q0) + (1 − ν) PM(φ, Q1)],

(b′) minφ max{PF (φ, Q0), PM(φ, Q1)},
(c′) minφ PM(φ, Q1) subject to PF (φ, Q0) ≤ α.

In many applications, the observation X is a vector (block) of independent observations

(X1, . . . , Xn), where the observation Xi takes values in a measurable space (Xi,Fi) and has

a distribution which belongs to the class P i
j when the hypothesis is Hj. In this chapter, the

set Pj := P1
j × · · · × Pn

j represents a class of distributions on (X ,F) which are products of

distributions in P i
j, i = 1, . . . , n. To further clarify this point, let P i

j denote a typical element

of P i
j. Then Pj := (P 1

j , . . . , P n
j ) ∈ Pj represents the product distribution P 1

j × · · · × P n
j .

In the above context, we have the following result2:

Lemma 4.1 For each i, i = 1, . . . , n, let the pair (P i
0,P i

1) be jointly stochastically

bounded by (Qi
0, Q

i
1). Then the pair (P0,P1) is jointly stochastically bounded by (Q0, Q1).

Proof: Let lq denote the likelihood ratio between Q1 and Q0, and let liq denote the likelihood

ratio between Qi
1 and Qi

0. Then for any t ≥ 0, we have

{lq(X) > t} =

{

n
∏

i=1

liq(Xi) > t

}

=
⋃

t1,...,tn≥0, rational :
∏n

i=1
ti ≥ t

{

n
⋂

i=1

{

liq(Xi) > ti
}

}

.

By the joint stochastic boundedness property of (P i
0,P i

1), each event in the countable union

above has a larger probability under P0 than under Q0. This proves the first condition

required for the joint stochastic boundedness of (P0,P1) by (Q0, Q1). The other conditions

are proved similarly. 2

Lemma 1 implies the following: Suppose we are given a minimax robust detection problem

with a block of independent observations, and with uncertainty classes satisfying the joint

stochastic boundedness property. Then, this problem can be reduced to a single observation

problem without sacrificing the joint stochastic boundedness property.

2The reader may be familiar with other forms of Lemma 4.1. We believe that the one given here is the
most general form.
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The above description of centralized robust detection problems, we believe, unifies most

of the results in this area. Hence the material of Section 4.2 should be of independent interest

to the reader.

4.3 Robust Decentralized Detection with a Fusion Center

A description of the decentralized detection system considered in this section is given

in Fig. 1.1. The hypothesis H takes values H0 and H1. There are N sensors and one

fusion center. The sensor Si receives an observation Xi which is assumed to take values

on a measurable space (Xi,Fi). By virtue of Lemma 4.1, Xi could represent a block of

independent observations. The observations at the sensors are independent, and Xi has a

distribution which belongs to the class P i
j when the hypothesis is Hj. For each i, the pair of

uncertainty classes (P i
0,P i

1) is jointly stochastically bounded by (Qi
0, Q

i
1) (see Definition 4.1).

Let Pj := P1
j × · · · × PN

j . Then Pj = (P 1
j , . . . , P N

j ) ∈ Pj represents the product distribution

P 1
j × · · · × P N

j .

By Lemma 4.1, the pair (P0,P1) is jointly stochastically dominated by (Q0, Q1). Hence,

if all of the information received by the sensors is made available to the fusion center, then

(Q0, Q1) are LFDs for robust hypothesis testing between H0 and H1. But in the decentralized

setting, only a summary of the sensor observations is available at the fusion center. At sensor

Si, there is a decision function φi which maps the observation vector Xi to a local decision

ui ∈ {1, . . . , Di}, and the fusion center makes a final binary-valued decision δ based on the

information it receives from the sensors, i.e., δ = γ(u1, . . . , uN). For compactness of notation,

we represent the set of local decision functions (φ1, . . . , φN) by φ.

We consider here, in detail, a Bayesian formulation of the robust decentralized detection

problem where the objective is to minimize the worst-case error probability at the fusion

center. The minimax and Neyman-Pearson formulations are discussed briefly at the end of

this section. The hypothesis is assumed to take on values H0 and H1, with prior probabilities

ν and 1 − ν, respectively. Let PF (P0, φ, γ) := P0(δ = 1) and PM(P1, φ, γ) := P1(δ = 0).
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Then the problem we wish to solve is the following:

Problem P4.1:

inf
φ,γ

[

ν sup
P0∈P0

PF (P0, φ, γ) + (1 − ν) sup
P1∈P1

PM(P1, φ, γ)

]

In the following, we will establish that (Q0, Q1), which were LFDs for the centralized

problem, are LFDs for Problem P4.1 as well. That is, the solution to P4.1 is obtained as

the solution to the simple decentralized detection problem P4.1′ given below.

Problem P4.1′:

inf
φ,γ

[ ν PF (Q0, φ, γ) + (1 − ν) PM(Q1, φ, γ) ]

Optimal decision rules for Problem P4.1′ are monotone likelihood ratio tests (MLRTs)

[11] of the form:

φR
i (Xi) =



























1 if liq(Xi) < λi
1

d if λi
d−1 ≤ liq(Xi) < λi

d, d = 2, . . . , Di − 1

Di if liq(Xi) ≥ λi
Di

and

γR(u1, . . . , uN) =











1 if lq(u1, . . . , uN) > t

0 otherwise
,

where

lq(ν1, . . . , νN) =
N
∏

i=1

Qi
1,u(νi)

Qi
0,u(νi)

.

In the above expressions, liq denotes the generalized likelihood ratio between Qi
1 and Qi

0.

Also, Qi
j,u denotes the distribution induced on ui by Qi

j.

Theorem 4.1 Let φR, γR be any set of MLRTs based on Q0 and Q1. Then for all

(P0, P1) ∈ P0 × P1, we have

PF (Q0, φ
R, γR) ≥ PF (P0, φ

R, γR),

PM(Q1, φ
R, γR) ≥ PM(P1, , φ

R, γR).



63

Before we address the proof of this result, we consider its implications. Suppose φ?, γ?

constitute a solution to P4.1′. Then

ν sup
P0∈P0

PF (P0, φ
?, γ?) + (1 − ν) sup

P1∈P1

PM(P1, φ
?, γ?)

= νPF (Q0, φ
?, γ?) + (1 − ν)PM(Q1, φ

?, γ?)

≤ νPF (Q0, φ, γ) + (1 − ν)PM(Q1, φ, γ)

≤ ν sup
P0∈P0

PF (P0, φ, γ) + (1 − ν) sup
P1∈P1

PM(P1, φ, γ), (4.1)

for any φ, γ. This means that (Q0, Q1) are LFDs for P4.1, and that φ?, γ? solve P4.1.

We now state and prove the following lemma which will be used in the proof of Theorem

4.1.

Lemma 4.2 For each i and for any λ1, λ2, λ3, λ4 satisfying 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 < ∞,

Qi
1(λ1 ≤ liq(Xi) ≤ λ2)

Qi
0(λ1 ≤ liq(Xi) ≤ λ2)

≤ Qi
1(λ3 ≤ liq(Xi) ≤ λ4)

Qi
0(λ3 ≤ liq(Xi) ≤ λ4)

.

Proof: The LHS above can be written as

1

Qi
0(λ1 ≤ liq(Xi) ≤ λ2)

∫

{λ1≤liq(x)≤λ2}
liq(x)dQi

0(x).

This means that the LHS is the average of liq(x) with respect to the distribution Qi
0 on the

set {λ1 ≤ liq(x) ≤ λ2} and hence is in between λ1 and λ2. Similarly the RHS is between λ3

and λ4. The lemma follows. 2

Proof of Theorem 4.1 For any (P0, P1) ∈ P0 × P1,

PF (P0, φ
R, γR) = P0 (lq(u1, . . . , uN) > t) .

First, we note that

{lq(u1, . . . , uN) > t} =

{

N
∏

i=1

Qi
1,u(ui)

Qi
0,u(ui)

> t

}

=
⋃

t1,...,tN≥0, rational :
∏N

i=1
ti ≥ t

{

N
⋂

i=1

{

Qi
1,u(ui)

Qi
0,u(ui)

> ti

}}

. (4.2)
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By Lemma 4.2, Qi
1,u(ui)/Q

i
0,u(ui) is a nondecreasing function of ui and hence

{

Qi
1,u(ui)

Qi
0,u(ui)

> ti

}

= {liq(Xi) > λti},

for an appropriately chosen λti . Now, an application of the joint stochastic boundedness

property of the pairs (P i
0,P i

1) gives us that

Q0

(

N
⋂

i=1

{liq(Xi) > λti}
)

=
N
∏

i=1

Qi
0(l

i
q(Xi) > λti)

≥
N
∏

i=1

P i
0(l

i
q(Xi) > λti)

= P0

(

N
⋂

i=1

{liq(Xi) > λti}
)

,

i.e., each event in the countable union of (4.2) has a larger probability under Q0 than under

P0. The first part of the theorem follows. An analogous argument can be used to establish

the second part. 2

The minimax and Neyman-Pearson versions of P4.1 can be stated as follows:

Problem P4.2:

inf
φ1,...φN ,γ

max

[

sup
P0∈P0

PF (P0, φ, γ), sup
P1∈P1

PM(P1, φ, γ)

]

Problem P4.3:

inf
φ1,...φN ,γ

sup
P1∈P1

PM(P1, φ, γ) subject to sup
P0∈P0

PF (P0, φ, γ) ≤ α.

Just as in the simple versions of P4.2 and P4.3, we extend the class of allowable decision

functions to include jointly randomized decision rules [11]. In the class of jointly randomized

strategies, the simple versions of P4.2 and P4.3 have solutions that are randomized tests

obtained by joint randomization between two deterministic MLRT strategies. Hence, an

argument similar to the one given in (4.1) can be used to show that (Q0, Q1) are LFDs for

P4.2 and P4.3. The corresponding robust tests are then obtained as solutions to the simple

decentralized detection problems in which the sets P0 and P1 are replaced by the singletons

Q0 and Q1, respectively.
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4.4 Robust Decentralized Detection without a Fusion Center

The system under consideration here is similar to the one in Section 4.3, with the only

differences being that the local decisions ui are binary and that there is no fusion center. This

setup is useful only in a Bayesian framework in which we assume that the local decisions are

coupled through a common cost function W (u1, . . . , uN ; H). The expected cost is a function

of the conditional distributions at the sensors and the local decision functions. Thus the

expected cost is given by

C(P0, P1, φ) = ν EP0{W (u1, . . . , uN ; H0)} + (1 − ν) EP1{W (u1, . . . , uN ; H1)}.

The Bayes minimax robust detection problem at hand is then the following:

Problem P4.4:

inf
φ

sup
(P0,P1)∈P0×P1

C(P0, P1, φ).

If the distributions of the observations are known, i.e., if the uncertainty classes P i
j are

singletons, then the optimal decision rules for P4.4 are binary likelihood ratio tests (LRTs)

[11, 3]. Here we have assumed that for each i, the pair (P i
0,P i

1) is jointly stochastically

bounded (Qi
0, Q

i
1). We showed in Section 4.3 that (Q0, Q1) are LFDs for the Bayesian

decentralized detection problem P4.1. Although a similar result cannot be proved in its

most generality for problem P4.4, we will show below that there are many interesting cases

where (Q0, Q1) are indeed LFDs for P4.4.

The distributions (Q0, Q1) are LFDs for P4.4, if for any LRTs φR based on Q1 and Q0,

the following inequality holds:

C(Q0, Q1, φ
R) ≥ C(P0, P1, φ

R), ∀(P0, P1) ∈ P0 × P1. (4.3)

Now suppose that φ? constitutes a solution to the following problem:

inf
φ

C(Q0, Q1, φ).

Then, by an argument similar to one following Theorem 4.1, we can show that φ? solves

P4.4.
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Of course, any likelihood ratio test φR
i at sensor Si based on Qi

1 and Qi
0 has the form

φR
i (Xi) =











1 if liq(Xi) ≥ ti

0 if liq(Xi) < ti

.

We now consider some special cases.

4.4.1 The two-sensor case

Here the expected cost has the form:

C(P0, P1, φ
R
1 , φR

2 ) = ν W (0, 0; H0)
(

1 − P 1
0 (l1q(X1) ≥ t1)

) (

1 − P 2
0 (l2q(X2) ≥ t2)

)

+ ν W (0, 1; H0)
(

1 − P 1
0 (l1q(X1) ≥ t1)

)

P 2
0 (l2q(X2) ≥ t2)

+ ν W (1, 0; H0)P
1
0 (l1q(X1) ≥ t1)

(

1 − P 2
0 (l2q(X2) ≥ t2)

)

+ ν W (1, 1; H0)P
1
0 (l1q(X1) ≥ t1)P

2
0 (l2q(X2) ≥ t2)

+ similar terms in W (i, j; H1).

If W (0, 0; H0) = W (1, 1; H1) = 0, then for (4.3) to hold, it is sufficient that the following

conditions hold:

W (1, 1, H0) ≥ W (0, 1; H0) + W (1, 0; H0)

and

W (0, 0; H1) ≥ W (0, 1; H1) + W (1, 0; H1).

A special case of the above conditions is found in [47] where it is assumed that the cost

function is of the form:

W (u1, u2; H) =



























0 for u1 = u2 = H

e for u1 6= u2

f > 2e for u1 = u2 6= H.

4.4.2 The case of fixed symmetric fusion rules

Bayesian decentralized detection problems with binary local decisions and fixed fusion

rules such as the “AND” rule and the “OR” rule can be posed in the framework of this

section with an appropriately chosen cost function W .
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For the “AND” rule, a final decision in favor of H1 is made whenever all of the local

decisions are 1; otherwise, a decision in favor of H0 is made. If the Bayesian criterion is

to minimize the error probability at the fusion center, then the corresponding cost function

W (u1, . . . , uN ; H) has the form:

W (u1, . . . , uN ; H1) =











0 for u1 = u2 = · · · = uN = 1

1 otherwise
,

and

W (u1, . . . , uN ; H0) =











1 for u1 = u2 = · · · = uN = 1

0 otherwise
.

In this case the expected cost is

C(P0, P1, φ
R) = ν

N
∏

i=1

P i
0(l

i
q(Xi) ≥ ti) + (1 − ν)

(

1 −
N
∏

i=1

P i
1(l

i
q(Xi) ≥ ti)

)

.

A straightforward application of the joint stochastic boundedness property shows that con-

dition (4.3) holds. That is, (Q0, Q1) are LFDs for P4.4 in this case. A similar result holds

for the “OR” fusion rule.

4.5 Summary

In this chapter, we studied decentralized detection problems in which the sensor distri-

butions were not specified completely, i.e., the sensor distributions were assumed to belong

to known uncertainty classes. We showed, for a broad class of problems, that a set of least

favorable distributions exists for minimax robust testing between the hypotheses. These

LFDs can be obtained by previously known techniques [46], and the corresponding minimax

robust tests are solutions to simple decentralized detection problems for which the sensor

distributions are specified to be the LFDs.
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CHAPTER 5

CONCLUSIONS

The primary purpose of our work has been to explore problems in decentralized sequential

detection and robust decentralized detection. In the first chapter, however, we have first

provided a unified summary of existing results in the general area of decentralized detection

in order to facilitate an understanding of the field as a whole and to place significance of the

results of the subsequent chapters in proper perspective.

In the area of decentralized sequential detection, we first considered the case in which

the sensors perform sequential tests (Chapter 2). We formulated a Bayesian problem with

the assumptions that decision errors at the sensors are penalized through a common cost

function, and that each time step taken by the detectors as a team is assigned a positive

cost. We then showed that optimal sensor decision functions can be found in the class of

GSPRTs with monotonically convergent thresholds and introduced a technique to obtain

optimal GSPRT thresholds. We also compared the performance of the GSPRT policies with

that of the best SPRT policies, and we noted that a trade-off must be made between the

simplicity of the SPRT policy and the performance gain obtainable with the GSPRT policy.

The analysis contained in Chapter 2 can easily be extended to the general case in which

there are N (N > 2) sensors, without any conceptual difficulties. Also, the case in which the

stopping time penalty is of the form c1τ1 + c2τ2 + c max(τ1, τ2) is also easily handled through

minor modifications. Here again it can be shown that optimal solutions can be found in the

class of GSPRTs with monotonically convergent thresholds.

In Chapter 3, we explored the class of decentralized sequential detection problems where

the sequential test is carried out at a fusion center. We introduced a Bayesian framework

for this problem and showed that the problem is tractable when the information structure

in the system is quasiclassical (Case E of Section 3.1). In particular, we showed that an

optimal fusion center policy has a simple SPRT-like structure and that a stationary set of

MLRTs is optimal at the sensors.
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At this point it is important to note that, in general, an optimal scheme for the in-

formation pattern of Case D (of Section 3.1) could outperform an optimal scheme for the

information pattern we adopted in Chapter 3. However, as we pointed out, Case D is highly

intractable, and even if an optimal scheme were found, it would most likely require the sen-

sors to retain all information from the past. One might wonder if some ad hoc scheme for

Case D which uses only a one-dimensional sufficient statistic of the past information would

perform better than an optimal scheme for our case. Performance analysis for the ad hoc

scheme would still be difficult and we might have to resort to simulations. We have some

simulation results for an obvious scheme for Case D with N = 1 (for Example 1 in Section

3.6) which show that this scheme performs consistently worse than an optimal scheme for

Case E.

We were able to use dynamic programming arguments in our analysis to obtain optimality

results because all decision makers in the system have the same information about the past.

This is not true for the information patterns of Cases A, B, C and D, as discussed in Section

3.1. An interesting open problem for these cases would be to investigate if stationary LDFs

are optimal under Assumption 3.2. Such a result would be useful especially for Cases A and

C since we have already established the optimality of likelihood ratio tests. Also, if we do

not allow the fusion center to send messages back to the sensors, then Case E reduces to

Case C. Hence, any results for the infinite-horizon problem in Case C would tie in very well

with the results presented in Chapter 3.

In Chapter 4, we studied decentralized detection problems in which the sensor distribu-

tions were not specified completely, i.e., the sensor distributions were assumed to belong to

known uncertainty classes. We showed for a broad class of such detection problems that

LFDs exist for minimax robust testing between the hypotheses. These LFDs can be ob-

tained by previously known techniques, and the corresponding minimax robust tests are

then obtained as solutions to simple decentralized detection problems in which the sensor

distributions are specified to be the LFDs.
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We note that the analysis presented in Chapter 4 was restricted to static or block de-

tection schemes. Robustification of decentralized sequential detection schemes such as those

presented in Chapters 2 and 3 remains an interesting problem for further research.

5.1 Some Open Research Topics

While the work done here has provided significant progress in the area of decentralized

detection, there still remain many problems which need to be explored further:

1. Previously, decentralized detection by a tandem of sensors has been considered mainly

in the context of attempting to determine necessary conditions for the error probability to go

to zero asymptotically [27], [52]. We are unaware of any results on the rates of convergence

of the error probabilities.

If we consider the special case in which the sensor observations are i.i.d. N(−µ, σ2) under

H0 and i.i.d. N(µ, σ2) under H1, then an argument given in [27] shows that if we pick

uk =



























1 if Xk >
√

2σ2 log k

0 if Xk < −√
2σ2 log k

uk−1 otherwise,

then the asymptotic error probability is indeed zero. Now, if we let pn denote the error

probability for n stages, then we have some preliminary results which show that: (1) for any

fixed positive integer m, pn(log n)m goes to zero as n → ∞, and (2) pn goes to zero at a

subexponential rate as n → ∞. So far we have not been able to identify the exact rate at

which pn goes to zero.

2. As we commented in Chapter 1, in the two-sensor case, the tandem configuration

is always at least as good as the parallel configuration. This is because for N = 2, the

detector which makes the decision in the tandem configuration has more information than

the fusion center for the parallel configuration. This advantage over the fusion configuration

can be maintained for N > 2 if in the tandem configuration we allow the decision at the k-th

stage to depend on all past decisions rather than on only the most recent decision. Under
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Assumption 1.1, it is clear that the asymptotic (minimum) error probability for the modified

tandem configuration is zero and that the error probability goes to zero at an exponential

rate. The open problem here is to find the optimum error exponent, and to see if this error

exponent is achieved by a stationary sensor decision policy.

3. Consider the decentralized detection problem where the distributions of the obser-

vations are known but the prior probabilities of the hypotheses are unknown, i.e., ν is

unknown. Suppose the goal is to find a strategy that minimizes the worst-case Bayesian

cost (for ν ∈ [0, 1]). Just as in the centralized version of this problem, we extend the class

of allowable decision functions to include randomized decision functions. As we remarked

in Section 1.3.1, there are two ways to randomize the decision functions: joint randomiza-

tion and independent randomization. If we allow jointly randomized strategies, then it is

quite straightforward to show that an optimal strategy (equalizer rule) can be obtained by

randomizing between two deterministic LRT strategies. The open question here is whether

equalizer rules exist in the smaller, more useful class of independently randomized strategies,

a question akin to the existence of behavioral strategies in dynamic games [53].
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