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Abstract—The problem of initial acquisition of the channel
parameters of a wideband CDMA signal received in a multipath
fading environment with multiaccess interference is considered.
Since the signal is wideband, the fading is frequency selective
and the parameters of interest are the (complex) gains and delays
in the corresponding tapped delay line model for the channel.
The scenario considered is one where a single new user is to be
acquired on the reverse link by the base station, and where the
channel parameters of the interfering users are known. Following
a minimum mean squared error (MMSE) strategy for suppressing
the multiaccess interference, the parameter estimation problem is
posed in a maximum likelihood framework. To reduce complexity,
the solution is implemented in two stages: first, the estimated tap
delays are restricted to be at chip spacings; second, the number
of taps is reduced by allowing for arbitrary spacing between
them. The performance of the proposed techniques is studied
through numerical simulations. It is shown that significant gains
can be obtained by exploiting the structure of the interference and
acquiring the channel parameters jointly.

Index Terms—Bandlimited communication, code division mul-
tiaccess, fading channels, least mean square methods, maximum
likelihood estimation, multiuser channels.

I. INTRODUCTION

CODE DIVISION multiple access (CDMA) signals,
particularly wideband CDMA signals, are likely to have

bandwidths that are considerably larger than the inverse of the
delay spread of the multipath propagation environment. Hence,
CDMA signals typically undergo frequency selective fading,
and the channel appears as a tapped delay line to the signals.
Accurate estimates of the channel parameters (i.e., tap delays
and complex gains) are needed prior to diversity combining and
symbol detection. The process of obtaining initial estimates of
these parameters is calledacquisition.

The acquisition problem is relatively easy on the forward link
of a cellular communication system for two reasons: 1) there is
usually a pilot signal that assists channel estimation; and 2) the
signals of all the in-cell interferers see the same channel that the
intended signal sees. Our focus is hence on the reverse link of
a CDMA system, where the received signal at the base station
consists of the sum of the asynchronous signals of the users,
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each of which sees a different multipath channel. The acquisi-
tion of a new user by the base station is hence severely affected
by multiaccess interference (MAI). Our goal is to design acqui-
sition schemes that are resistant to MAI.

The conventional approach to multitap channel acquisition,
that is used in IS-95 based CDMA systems [19, p. 84], involves
acquiring one tap of the desired signal (usually the strongest),
and then searching for additional taps around the acquired tap. In
addition, the conventional acquisition scheme treats the MAI as
additive random noise without exploiting any of its structure. In
recent work, Rick and Milstein [10] considered thejoint acquisi-
tion of the taps for a single user in additive white Gaussian noise.
Clearly, acquisition can be further improved if the MAI can be
cancelled or suppressed. There have been several papers on ac-
quisition schemes that are resistant to MAI, some of which are
applicable to multitap channel acquisition. These include sub-
space-based decomposition techniques (e.g., [12]), maximum-
likelihood techniques involving sample statistics [14], [13], and
joint MMSE acquisition and detection [3], [4]. The underlying
assumption in all of this work is that the spreading sequences
of the users repeat every symbol period (shortsequences). But
short sequences may be impractical for the asynchronous re-
verse link. Short sequences allow for the possibility that two (or
more) users have signals that are highly correlated over several
bit intervals, reducing the worst case performance and reuse ef-
ficiency [18], [17], [8].

Practical wireless CDMA systems, such as those specified in
the IS-95 standard [16] and the CDMA 2000 proposal [15], ran-
domize the users’ signals on the reverse link by using spreading
sequences whose periods are much greater than the spreading
factor. It is of interest to develop acquisition schemes that are ap-
plicable to such systems and are resistant to MAI. In this work,
we extend the single-path MAI resistant acquisition proposed in
[7], to the joint acquisition of the taps of a frequency selective
fading channel. Although our scheme is derived for systems that
use long spreading sequences, it can be applied to those that use
short spreading sequences as well.

We consider the situation where the channel parameters of a
single new user need to be estimated. If more than one user en-
ters the system at the same time, we can assume that the users
are acquired one at a time. Hence, since the existing users in the
system have already been acquired and are being successfully
demodulated, it is reasonable to assume that their channel pa-
rameters are known. In such a situation, it is possible to acquire
the new user by using an interference cancellation approach,
where the interfering signals are reconstructed and subtracted
from the received signal (see, e.g., [1]). However, such a scheme
would have to use code-symbol estimates, which may be unreli-
able for low rate error control coding and matched-filter detec-
tion that is typically used in conjunction with long sequences.
Alternatively, the decoded symbols would have to be used to
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reconstruct the code symbols, which may be impractical due
to the complexity and decoder delay involved. Consequently,
we do not assume knowledge of the code symbols of the in-
terfering users. Instead, we implicitly use soft estimates based
on a minimum mean squared error (MMSE) criterion, and pose
the channel estimation problem in a maximum-likelihood (ML)
framework based on the resultant signal. It is important to note
that in random sequence CDMA systems, MMSE detection of
the data symbols may be impractical, since the detector needs to
be updated at the symbol rate. However, using MMSE symbol
estimates for acquisition with a sufficiently long preamble does
not have the same timing constraints and should be practical.

The frequency selective fading channel may be modeled as
a tapped delay line with equally spaced taps where the number
of taps is determined by the delay spread of the channel [9, p.
795]. However, this model may lead to an unnecessarily large
number of taps if only a subset of the taps capture significant
signal energy. Hence, we consider ways to reduce the number
of taps (and hence, the complexity of postacquisition processing
at the receiver) while retaining most of the signal energy. In
order to improve the approximation with the smaller number of
taps, we allow for arbitrary spacing between them. We consider
an optimal approach to reducing the number of taps based on
maximizing a correlation performance metric, as well as two
suboptimal approaches that are easier to implement.

The paper is organized as follows. In Section II, we briefly
review the frequency selective channel model, and apply it to
an asynchronous CDMA system. In Section III, we derive the
ML acquisition scheme under the framework outlined above.
We also develop schemes to reduce the number of taps. In Sec-
tion IV, we study the performance of the various joint tap ac-
quisition schemes, and also compare the performance with that
of a simple tap-by-tap acquisition scheme. Finally, in Section V,
we give our conclusions and outline topics for future research
on this problem.

II. SYSTEM MODEL

Consider a band-limited signal with complex baseband
bandwidth of (i.e., a passband bandwidth of ) trans-
mitted through a multipath propagation channel. The channel
is well modeled as a linear time varying system [9], with im-
pulse response that we denote by . The received signal
can then be written as

(1)

Without loss of generality, we can assume that the channel is of
bandwidth as well,1 i.e.,

for

Hence, applying the sampling theorem to , we have

sinc (2)

1Of course, the time variations in the channel will result in a Doppler
spreading of the bandwidth; we are assuming thatW=2 includes guard bands
that account for this Doppler spread.

Plugging (2) into (1) we get

sinc

(3)

Thus, the channel can be represented by a set of discrete taps
of strength spaced at intervals of ; this is the
tapped delay linechannel model. Note that the representation is
independent of the origin of theaxis. In particular, (3) is valid
even when we have flat fading for which the channel can be
represented by a single path with time varying gain and delay,
i.e.,

sinc

sinc (4)

and is not a multiple of . Here, * represents the con-
volution operation, and convolving with sinc in (4) ban-
dlimits the channel to . Hence, although the channel is re-
ally a single tap channel with arbitrary time-varying delay ,
it can be represented by a tapped delay line with taps spaced at
fixed delays . However, to get a reasonable approxima-
tion with the tapped delay line, we would need multiple taps.

For the representation (3) to be valid in general, we must
allow for an infinite number of taps. However, for a frequency
selective fading channel with delay spread , is
significant only for a finite number, , of the taps. Since the
taps are restricted to be at spacing with respect to the origin
on axis, may in general be greater than (as in
the flat fading case noted above). Assume that the first signif-
icant tap is at delay , where is some multiple of
and could possibly vary with time. The band-limited channel re-
sponse can then be written as

sinc

sinc

sinc (5)

In CDMA systems that use chip waveforms that approxi-
mate Nyquist sinc pulses, the chip period , and
the above approach allows us to consider a chip-synchronous
model even when the users are asynchronous. However, the
number of taps in such a model may be prohibitively large,
and we will be interested in reducing the number of taps by
allowing for arbitrary spacing between the taps. Clearly, for a
channel model consisting of taps with time-varying complex
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gains at delays , the
band-limited channel response is

sinc

sinc (6)

For the remainder of the paper, we consider the channel to be
invariant over the observation window for the acquisition stage,
i.e., the fading is assumed to beslow. We hence drop the time
variable in denoting the channel response.

We now apply the channel model discussed above to the asyn-
chronous (reverse link) CDMA system with users and linear
modulation. The received complex baseband2 signal is given by

(7)

where
is symbol of user , and is the symbol period;
is the average received symbol energy summed over
all the paths of user; and
is given by

where is the chip period, and the ratio
is thespreading factorof the system.

The sequence is the (complex) chip sequence of theth

user. If for all and , the sequence is said to be

short. If does not exhibit this periodicity, then it is said to
long or random.

The chip waveform has unit energy, and the spreading
waveform corresponding to each symbol is also normalized to
have unit energy by normalizing the corresponding chip se-
quence. We assume that is chosen to be a good approxima-
tion to the Nyquist sinc pulse, i.e., sinc .
In the numerical results, we model as a sinc pulse truncated
to a length of 9 chips.

• is the number of taps of theth user channel. Note
that on the reverse link the users see different propagation
channels.

• is the channel gain at tapof user , and the tap
gains are, in general, modeled as random variables with
variances normalized so that

• is the offset due to propagation delay of user, which
can be assumed to be an integer without loss of generality

2If y (t) is a real passband signal with carrier frequencyf , and
y (t) is the corresponding baseband complex envelope, we assume that
y (t) = Re[

p
2 y (t)e ].

(based on the arguments given in the beginning of this
section).

• is a zero mean circularly complex Gaussian (CCG)
process with autocorrelation function

Note that may be assumed to include out-of-cell interfer-
ence as well.

We consider an observation interval that encompasses
symbol intervals. If the users are synchronous, the fading
is flat, and the chip waveform is limited to , then
exactly symbols of each user contribute to the observation
interval. However, since the users are asynchronous, the fading
is frequency selective, and we consider chip waveforms that
span several chips, more than symbols could contribute.
The number of symbols that contribute significantly to the
observation interval is denoted by .

The new user entering the system is assumed to be the one
corresponding to . In addition, we assume the following
about the system.

• The initial timing uncertainty is chips, i.e.,
.

• The new user transmits a preamble with known symbols
over the observation interval. Without loss of generality,
we can assume that , for .

• The channel responses of the interfering users are known
since they are already being demodulated. However, the
(code) symbols transmitted by the interfering users are not
known.

Under the above assumptions, the received signal of interest
can be expressed as

(8)

where , and . Note
that for convenience we have dropped the subscript “1” in .

Since user 1 employs a preamble, this model can be converted
to a problem involving a maximum of
effective users by separating the signals corresponding to each
symbol of each interfering user in the observation interval. De-
fine

for (9)

where is the interfering user index,
is the path index, and .

Consequently, (8) can be rewritten as

(10)
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where, , and for , and
,

and

(11)

The first step of the proposed channel estimation algorithm
involves generating discrete statistics from the observed contin-
uous signal. One way to produce these statistics is through chip
matched filtering.

Remark 1: Statistics generated by chip matched fil-
tering, where the received continuous-time signal is pro-
jected onto shifted versions of the chip pulse function

, are approximately sufficient
as long as the shifted chip waveforms are roughly orthogonal
and , i.e., sinc [6].

Chip matched filtering produces a vectorof dimension
with

for (12)

where3

is the inner product over the observation interval .
Since this is a linear operation, the resulting vector

can be written as a sum of the
contributions of each effective user as

(13)

where the th component of the vector is given by

and is a complex circularly Gaussian (CCG) vector with co-
variance matrix

with denoting the Hermitian operation.
Since the spreading sequences and channel parameters of the

interfering users are assumed to be known, the second summa-
tion for the effective users in (13) can be collapsed into a single
vector

Hence, the received vector can be represented compactly using
the matrix-vector equation

(14)

where is the matrix of
spreading sequences corresponding to the taps of user 1, and

3For largeM , the edge effects resulting from limiting the integral to[0; T ]
become negligible.

is the vector of corresponding tap
amplitudes. Furthermore, is the matrix of
spreading vectors (combined over the taps) of the interferers,
and is the vector of their code symbols.

Before proceeding further, we note that a channel estimation
algorithm based onwould have to process the matrix, which
can be up to a size of . We could trade off the
resulting complexity with performance by considering only
of the interferers, and including the remaining interferers
in the noise vector . The variance of the noise components can
then be modeled as (see also [6]):

where , with being the autocorre-
lation of the chip waveform, i.e.,

As mentioned before, could include out-of-cell interference
as well.

III. CHANNEL ESTIMATION ALGORITHMS

Assuming an tapped channel model with equally spaced
taps, the channel parameters to be estimated are the initial tap
delay and the gain vector . This problem is considered first.
As mentioned in Section I, we would also like to reduce com-
plexity by reducing the number of taps once thetap channel
is estimated. Schemes for achieving this reduction are also dis-
cussed in this section.

A. MMSE-ML Estimation

Consider the discrete system model given in (14). Since the
new user is still to be acquired, it may not be reasonable or
practical to impose a prior distribution on the parametersand

. Hence, we adopt the maximum-likelihood criterion for the
estimation problem. Also, since we are interested only inand

, the interferers’ symbolsare essentially (discrete) nuisance
parameters. If the distribution of these symbols was known, the
likelihood function for the estimation problem would be

(15)

Note that, since the noise is assumed to be circularly complex
Gaussian (CCG), the conditional probability density function
(pdf) is that of CCG vector with mean
and covariance matrix . For a coded CDMA system,

may in general be difficult to characterize. Moreover, even
if we assume that the symbols inare independent, identically
distributed (i.i.d.) taking on equally likely values, it may not
be possible to obtain a closed form expression for the likeli-
hood function in (15). Consequently, this approach does not ap-
pear promising. However, for most coding schemes in practice,
it is the case that the code symbol vectorsatisfies

, as long as information symbols are independent
and equally likely. This information about the statistics ofcan
be exploited using an MMSE approach, as described below.
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For fixed and , we produce an MMSE estimate for the
vector from the effective received vector for the interferers,
defined as

The MMSE solution corresponds to , where

This is a standard problem in estimation theory [2, ch. 12] and
has been applied to the CDMA detection problem in the past
[5]. The MMSE solution can be given in two alternative forms
[2]:

(16)

Using , the maximum-likelihood channel estimation
problem for user 1 can be posed as

(17)

Using the fact that is CCG, (17) can easily be written as

(18)

where , and can be obtained from
(16). Since the metric in (18) is a quadratic in, the estimate
of as a function of is given by

(19)

We then substitute (19) back into the likelihood function to ob-
tain an estimate for the delay of the first tap as

(20)

Note that although we are computing the ML estimate of an
tap channel, the maximization of the likelihood function in (17)
is only over a single variable . In addition, since is an in-
teger, we only need to search for the maximum atlocations,
and the matrix can be formed directly using shifts of the
spreading sequence corresponding to user 1. In effect, we have
a single variable hypothesis testing problem: thetap channel
response of user 1 can be estimated from (20) by maximizing
over the possible values of , and then computing the corre-
sponding estimate of using (19). It is worth noting that when

and , the MMSE-ML scheme proposed above
is the same as the matched filter based single tap acquisition
scheme used in IS-95 systems [16]. We refer to this special case
as “conventional” acquisition and compare it to the more gen-
eral case above in Section IV.

The crux of the computation to implement the above
MMSE-ML algorithm is taken up in forming the matrix

. The matrix inverse involved in the computation has size
, and hence its computation would require

operations. As we increase the preamble size to

improve performance, this computation may prove too cumber-
some. An alternate approach in this case would be to process
the longer preamble in short blocks and combine the results
[7]. Specifically, assume we have an observation of length
symbols

where , are of length . We could then pose
an ML problem in terms of the vectors , where

is the matrix for the th block of observations. The corre-
sponding solution can easily be shown to be

(21)

where

with being the spreading sequence matrix of user 1
over the th block. Note that the above block processing would
be simpler when short sequences are used, since the matrix
would be independent ofand would have to be computed only
once.

B. Reduction of Taps

In the second stage of the channel estimation algorithm, we
are interested in reducing the number of taps in the channel re-
sponse to while retaining most of the signal energy.
The main motivation behind this stage is to reduce the com-
plexity of the receiver. In a channel having a large delay spread,
it is possible that most of the signal energy is concentrated in a
few distinct pockets.4 Hence, although is quite large, only a
subset of the taps may receive significant energy. In such a situa-
tion, the complexity of the receiver can be reduced by employing
fewer taps for the channel response. Referring back to (5), we
can define the actual band-limited channel response function in
terms of the tap amplitudes and the delay as

sinc (22)

where is the th component of . Note that the definition
of includes the received signal amplitude along with the
channel gains , but we continue to refer to it as the channel
response for the sake of convenience. The estimated band-lim-
ited channel response can be defined analogously as

sinc

where is the th component of the estimate.
Now, we would like to approximate this estimated response

by an tap model, and we allow for arbitrary spacings between

4This could happen in cases where the signal is received from a small number
of strong reflectors.
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the taps to improve the approximation. Consequently, thetap
model can be written using (6) as

sinc

where are the amplitudes in the new model and are
the delays relative to . Essentially, are (continuous)
variables chosen in the range . However, to ensure that
the taps in the reduced tap channel see approximately indepen-
dent interference, we impose the restriction that no two taps are
less than a chip apart, i.e., that for .

Clearly, we need to define the sense in which approxi-
mates . If we consider them to be functions in
with the inner product

the correlation coefficient can be defined as

with the norm

(23)

Now, if the Rake receiver (maximum ratio combiner) corre-
sponding to the function is used, it is shown in the Appendix
that the output SIR is proportional to . This moti-
vates the use of the magnitude of the correlation coefficient be-
tween theestimatedchannel and as the performance
metric for the second stage, and we refer to it simply as thecor-
relation. Note that the correlation of discrete channel vectors
has been used as a performance metric elsewhere in the litera-
ture (e.g., [13]).

The problem then is to find that maximizes the absolute
value of the correlation, . In addition, we impose the
constraint that the norm of must be the same as that of

, so that the received signal energy does not change with
the choice of the channel model. Thus,

(24)

The constraint thus reduces the problem to one of maximizing
the absolute value of the inner product. Now, can be
written in terms of the tap parameters as

sinc sinc

sinc

(25)

where and the th component of
is given by sinc . Similarly,

(26)

where th component of is sinc . Hence,
defining , the parameters for the reduced tap
channel are given by

Using the Cauchy–Schwarz inequality, it is easy to show that
the solution is

(27)

where the vector norms are the usual Euclidean norms.
While this approach maximizes the correlation between the
tap model and estimated tap model, it is important to

note that this correlation is not the performance measure for the
algorithm over both stages. The overall metric is the correlation
magnitude of the reduced-tap channel with the ac-
tual (and, of course, unknown) channel, which would involve
the inner product

sinc

(28)

where sinc . The MMSE-ML algo-
rithm followed by the correlation-based tap reduction is thus not
optimal in the overall sense. In addition, note that the solution
(27) involves a joint maximization over delays (albeit over a
restricted search space). Hence, we propose other simpler (but
moread hoc) approaches below.

Alternative Approaches to Reducing the Number of
Taps: The first approach is to simply pick the most sig-
nificant taps of the taps in . We refer to this as the
“Max- ” approach in next section.

We can improve on the “Max- ” technique as follows. Con-
sider again the MMSE-ML solution for the tap channel in
(19) and (20). Although this solution was derived based on a
single delay parameter , it is easy to see that the solution can
also be applied to an arbitrarily spaced channel model, where the
matrix is a function of the delay vector. In order to find the
reduced tap channel, we could hence perform a brute force max-
imization of the metric in (20) over. However, instead of per-
forming the variable maximization over the entire window

, we restrict our search space to a neigh-
borhood around each of the most significant taps of the
taps in . The reason for this restriction of the search space
is based on the intuition that the taps which best approxi-
mate would be in the vicinity of the most significant taps
in .

We will see in the next section that thesead hocapproaches
to tap reduction result in some performance loss with respect to
the optimum correlation scheme.
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Fig. 1. Performance with variation in SNR,E =N , with a deterministic equal gain channel for the desired user and independent Rayleigh fading channels with
equal tap variances for the interferers, withL = 6; L = 3; M = 3; b = 1.

IV. NUMERICAL RESULTS

We now study the performance of our acquisition scheme
through simulations. Throughout the simulations, the spreading
factor is fixed at and the delay uncertainty at .
The chip waveform is taken to be a sinc pulse truncated to a
length of 9 chips (the truncation results in about 2% loss in en-
ergy of the pulse), and the chip sequences are assumed to take
on binary values (BPSK spreading). In addition, we set
the number of users in the system to and assume that
the average received powers from all the users are the same.
Finally, the joint maximization over continuous delays required
in the second stage of our proposed algorithm is approximated
by using discrete delays with a resolution of 5 samples per chip.

In order to illustrate the improvement in performance that
can be achieved by using an MAI resistant joint estimation
scheme, we compare our schemes to three special cases in
our general framework. We refer to these as the “ ,”
“tap-by-tap,” and “conventional” acquisition schemes. The
“ ” scheme treats all the interfering users as random
noise, but continues to estimate the channel coefficients jointly.
This essentially amounts to setting in the estimators (19)
and (20). Once the tapped channel estimate is obtained, the
optimal correlation maximizing second stage is implemented.

The “tap-by-tap” acquisition scheme uses an implicit MMSE
estimate of the symbols, but estimates the channel tap by tap

instead of jointly. This scheme maximizes the single tap ML
metric, which can be seen as a special case of (20) when we
assume a single tap in the channel, i.e., . The estimate of
a particular tap is given by

The channel is again estimated in two stages. In the first stage,
the single path ML metric is evaluated at thechip boundaries
in the uncertainty region and the maximum is picked. The search
space is then restricted to a region about this position,
the single tap metric is computed over the restricted space, and
the delays corresponding to the maximum values are picked.
The delay values are also restricted so that no two taps can be
less than a chip apart, and so that thetaps do not have a span
that is greater than .

Finally, the “conventional” scheme involves setting
as well as estimating the channel tap by tap as described above,
i.e., it involves neither MAI suppression nor joint acquisition of
the taps.

The performance of the proposed acquisition schemes is
illustrated by observing the magnitude of the correlation,

. In all cases, the channel is taken to have
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Fig. 2. Performance with variation in SNR,E =N , with independent Rayleigh fading channels with equal tap variances for all users, withL = 6; L =

3; M = 3; b = 1.

taps. For the interfering users, it is assumed that each tap
undergoes independent Rayleigh fading, i.e., the channel gain
coefficients for and are
i.i.d. zero mean CCG random variables with equal variances,

. We also assume that the coherence time
of the channel is longer than the preamble length; hence, the
coefficients are constant over the observation interval
and are generated independently across different simulation
trials.

For the desired user, we consider two scenarios for the ac-
tual channel. In the first case, all taps are deterministic
and equal to . Although such a channel is rarely encoun-
tered in practice, it is interesting to study the performance of
the proposed schemes in this special case. In the second case,
we assume the same channel model for the desired user as that
for the interfering users:i.i.d. Rayleigh fading with equal vari-
ances. Finally, we choose as the number of taps in the
reduced channel.

The performance with equal deterministic is shown in
Fig. 1. These performance curves are obtained when the pre-
amble of the new user is of length symbols and pro-
cessing is done once over the entire preamble. It is clear from
these curves that significant gains can be obtained if the scheme
exploits the structure of the interferers and estimates the channel
coefficients jointly. The “opt. correlation” scheme in the second

stage achieves the highest overall correlation and approaches
an asymptotic value of approximately 0.9, and both the second
stage schemes perform better than the “max” scheme justi-
fying the need for a more sophisticated second stage. Since the
“tap-by-tap” scheme suppresses MAI, it does not suffer from a
noise floor like the “ ” and “conventional” schemes. The
“tap-by-tap” scheme is therefore able to capture most of the en-
ergy as long as it has estimated the strongest tap correctly, and
this becomes more likely at high SNR’s. In fact, this scheme
could perform better than the “max ” scheme at high SNR’s,
since it allows for arbitrary spacing of the taps.

It is interesting to note that the schemes that do not suppress
MAI (namely, “ ” and “conventional”) perform better
than the remaining schemes at sufficiently low SNR’s. This be-
havior arises because of the unreliability of the implicit estimate,
, of the interfering symbols at low SNR’s. It is analogous to the

cross-over behavior at low SNR observed in [7] for single path
acquisition, and in [11] for the decorrelating detection problem.

Fig. 2 shows the same curves when are i.i.d. CCG
random variables. The proposed schemes perform better in this
environment as opposed to the previous one, since the tap gains
would in general be unequal for each realization, and using a
reduced channel with just three taps suffices to obtain a good
approximation. The deterministic equal gain channel can thus
be viewed as the worst-case situation for tap reduction, since
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Fig. 3. Performance with variation in SNR,E =N , with independent Rayleigh fading channels with equal tap variances for all users, withL = 6; L =

3; M = 3; b = 3. This plot shows the improvement in performance that results from the use of multiple blocks for the estimation.

a significant fraction of the energy may not be captured. In
addition, note that the performance gap between the different
second stage schemes reduces when the gains are random. If
the weaker taps for each realization are insignificant compared
to the strongest taps, then fine tuning the tap positions
becomes unnecessary. Hence, there may not be any need for
a sophisticated second stage at high SNR’s, as the “max”
scheme may attain the same correlation as the optimum second
stage.

Now, as discussed in Section III, the SNR required to achieve
the same performance can be reduced for any of the schemes by
processing multiple blocks using (21). This is shown in Fig. 3,
where we have used blocks instead of one, with
as before. Note that averaging over multiple blocks reduces the
noise floor for the schemes and, hence, the performance
of these schemes in Fig. 3 is significantly better than that in
Fig. 2.

Finally, we study the loss in performance resulting due to tap
reduction in Fig. 4. As before, we set with i.i.d. Rayleigh
fading on each tap for the desired user. As SNR increases, the
asymptotic value of the correlation is limited by, and a suffi-
ciently high value of should be chosen to obtain the desired
performance. In Fig. 4, for instance, depending on system re-
quirements, the minor improvement that taps provides
over may not justify the additional complexity.

V. CONCLUSION

In this paper, we considered reverse link channel estimation
algorithms for a single new user entering a wideband CDMA
system that uses random spreading sequences. A maximum like-
lihood solution was obtained for the channel parameters after
using implicit soft MMSE estimates for the symbols of the inter-
fering users. The initial problem formulation involved a channel
model with equally spaced taps. Schemes to reduce the number
of taps by allowing for arbitrary spacing between them were also
proposed. Numerical results presented indicate that MAI resis-
tant joint tap acquisition schemes provide significant gains over
schemes that do not exploit the structure of interfering users or
those that acquire paths individually. Most of the computation in
the scheme is taken up in forming the soft MMSE estimates and
the variable optimization over the delays in the second stage
of tap reduction. However, unlike multiuser detection schemes
that involve updating the detector when the spreading sequences
change, the initial channel estimation is not as severely time
constrained, and it should be possible to allow for some com-
plexity. Moreover, the proposed schemes allow for a tradeoff
between performance and complexity through the parameters

, the final number of taps, and , the number of interferers
suppressed. In particular, for and , the
MMSE-ML metric reduces to the single tap scheme based on a
matched-filter statistic that is used in IS-95 based systems [16].
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Fig. 4. Performance with variation in SNR,E =N , with independent Rayleigh fading channels with equal tap variances for all users, withL = 6; M = 3; b =
1, with varyingL .

A key assumption in arriving at the solution was that the
channel gains and spreading sequences of the other users were
known. If knowledge of the channel gains is not assumed, it
is possible to take a decorrelation approach to suppress inter-
ference [7], but such a scheme would have a limitation on the
number of interferers that can be suppressed, and the limitation
would become more stringent as the number of resolvable paths
increases. It is worth noting that the MMSE-ML scheme pro-
posed in this paper imposes no constraint on the number of in-
terferers in the system, but the robustness of the scheme to the
knowledge of these channel parameters needs to be investigated
further.

It is possible to incorporate anya priori information about
the distribution of the channel gains of the new user into the
MMSE-ML estimate, as done in [10]. However, the availability
of such information at the receiver is open to question, and
the resulting improvement needs to be investigated. Finally,
proposals for third generation systems (e.g., [15]) provide
the option of having users with different data rates. If the
multiple rates were accommodated by using multiple spreading
sequences with the same spreading factor, it is clear that the
MMSE-ML solution can be applied with no modification. If
the spreading factors vary across the users, it is still possible to
apply the solution by identifying the effective users appropri-
ately.

APPENDIX

We show that the output SNR of a Rake receiver that corre-
sponds to the tap model, , is approximately proportional
to the square of correlation coefficient betweenand the ac-
tual tap model, .

Suppose, the complex baseband signal is
transmitted through the tap channel, where is the trans-
mitted symbol, and is the symbol waveform. The received
complex baseband signal can be expressed as

(29)

where , is the observation interval and is
assumed to be a complex white random process with autocorre-
lation function . Suppose the receiver assumes a channel
model with taps and amplitudes . Then,
the statistic of the Rake receiver is given by

(30)
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where

(31)

and

sinc

sinc

sinc

sinc

where (32)

Under the assumption that the spreading sequences have good
autocorrelation properties,

if
if

(33)

Note that this assumption is used in establishing the (approxi-
mate) optimality of the Rake receiver [9, p. 800]. Hence, we can
rewrite (32) as

sinc (34)

The Rake receiver statistic then reduces to

sinc

(35)

where we have used (28). The SNR at the output of the rake
receiver is then given by

SNR (36)

where is the variance of and can be written, using (31) and
(26), as

sinc

Finally, noting that ,
we have

SNR

which is the required result.
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