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Multiple-Access Interference-Resistant Acquisition
for Band-Limited CDMA Systems with Random

Sequences
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Abstract—The problem of estimating the propagation delay of a
new user in a coded band-limited DS/CDMA system in the presence
of multiple access interference (MAI) is considered. MAI-resistant
acquisition schemes are developed for a general CDMA system
without the constraint that the spreading sequences of the users
repeat every symbol period. It is assumed that the spreading se-
quences and delays of the interfering users are known. However,
knowledge of their amplitudes, which would need estimation, is
not assumed, and their unreliable code-symbol estimates are not
used. Under this scenario, acquisition schemes are derived based
on the maximum-likelihood (ML) criterion. The performance of
an approximation to the ML scheme is analyzed using Gaussian
approximations and by assuming that the chip boundaries of the
new user are knowna priori. Simulations show that the analysis
is reasonably accurate for parameters in the realm of practical in-
terest.

Index Terms—Band-limited signals, code division multi-access,
interference rejection, maximum-likelihood estimation, propaga-
tion delay estimation.

I. INTRODUCTION

I N HIGH capacity CDMA systems, the acquisition process
is limited by the multiple-access interference (MAI) from

other users. Traditional approaches to acquisition in the pres-
ence of MAI have treated the MAI as additive random noise
without exploiting any of the structure in the interference.
Clearly, acquisition schemes can be improved considerably if
the MAI can be cancelled or suppressed. This has motivated
recent work on MAI resistant acquisition techniques. Examples
include subspace-based decomposition techniques [1], [2],
maximum-likelihood techniques involving sample statistics
[3], [4], and joint MMSE acquisition and detection [5], [6]. The
underlying assumption in all of this work is that the spreading
sequences of the users repeat every symbol period (short
sequences). But short sequences may be impractical for asyn-
chronous (wireless) CDMA systems. Short sequences allow
for the possibility that two (or more) users have signals that are
highly correlated over several bit intervals—this reduces the
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worst case performance and reuse efficiency in asynchronous
CDMA systems [7]–[9].

Practical wireless CDMA systems, such as those specified
in the IS-95 standard [10] and the CDMA 2000 proposal [11],
randomize the users’ signals on the reverse (asynchronous) link
by using spreading sequences whose periods are much greater
than the processing gain. Such systems are sometimes referred
to as R-CDMA (Random-CDMA) systems [7]. It is of interest
to develop acquisition schemes that can mitigate MAI in
R-CDMA systems. Previous work on MAI-resistant acquisition
for R-CDMA systems has been based on an interference can-
cellation approach [12]. The main drawback of this approach is
that interference cancellation requires precise knowledge of the
interferers’ spreading sequences, delays, amplitudes, and code
symbols. Consider the situation where a single1 new user is to
be acquired in the presence of interference from existing users
in the system who have already been acquired and are being
successfully demodulated. Here, it is reasonable to assume that
the interferers’ spreading sequences are known at the receiver,
and that accurate delay estimates are available. However, it may
not be reasonable to assume that accurate amplitude estimates
are available, particularly for wireless channels. Furthermore,
code symbol estimates at the outputs of the detector are
unreliable if low rate error control coding is used, unless we
assume an impractical scheme where the code symbols of all
the interferers are reconstructed from the decoded bits. Hence,
it is of interest to develop MAI-resistant acquisition schemes
for R-CDMA systems that assume knowledge only of the
interferers’ spreading sequences and delays.

In this paper, we develop and analyze such MAI-resistant
acquisition schemes. The approach closely resembles that used
in developing the decorrelating multiuser detector [13]—we
decorrelate the interference (linearly) before estimating the
intended user’s parameters. A similar approach, albeit for joint
delay estimation of all the users, was also investigated in [14].
The computational complexity of the acquisition scheme is of
the order of that required (per user) for a decorrelating detector
involving the same number of users. However, while decor-
relating detection may be impractical for R-CDMA systems,
since the decorrelating matrix needs to be updated from symbol
to symbol at the coded data rate, decorrelating acquisition of a
single user with a sufficiently long preamble does not have the
same timing constraints and should be practical.

1A situation may arise where more than one user enters the system at the same
time. In this case, we can assume that the users are acquired one at a time.
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II. SYSTEM MODEL

We consider a DS/CDMA model with users, where the
received complex baseband signal is given by

(1)

and where the following hold.

• is symbol of user , and is the symbol period.
• . Here is the

chip period, is the unit-energy chip waveform,
is the (complex) chip sequence, and is the
processing gain of the system.

• and are, respectively, the carrier phase offset,
delay and the received symbol energy of the user. Define

to be the corresponding received ampli-
tude.

• is a zero mean circularly complex Gaussian process
with two-sided power spectral density , i.e.,

.
Thus, we are considering an -symbol observation of the

received signal. In a synchronous situation, the symbols would
be indexed from to . However, since the
users are asynchronous, there is an additional symbol corre-
sponding to in the observation window. Also, we have
assumed a signal model where the users undergo flat fading,
and the symbol energy above includes the fading effect. The
fade levels of all the users are assumed to remain constant over
the observation window.2 The flat-fading assumption is in gen-
eral restrictive, but may be applicable in some indoor wireless
scenarios. For example, with a typical indoor delay spread of
100 ns, a 1.25 MHz CDMA signal would undergo flat fading.
Extension to the frequency-selective fading channels is under
consideration in a separate paper.

The new user entering the system is taken to be the one with
. In addition, we assume the following.

• The initial timing uncertainty is chips, i.e.,
. Then, we can write , with

and .
• The new user transmits a preamble with known symbols

over the observation interval. Since we consider long
spreading sequences, there is no loss of generality in
assuming that .

• We assume initially that we have coherent demodulation
and perfect carrier synchronization with respect to user 1,
so that . While current CDMA systems do not allow
for carrier phase estimation before delay acquisition on
the reverse link, future standards [11] may provide a pilot
channel to help in initial acquisition, and the coherent de-
modulation assumption will be valid in such a scenario.
We consider extensions to the noncoherent case in Sec-
tion IV.

2This assumption can actually be relaxed to have the fade levels of theinter-
fering users be different over different symbols.

Fig. 1. Illustration of model with effective users:M = 2. (a) Symbol
synchronous. (b) Chip synchronous. (c) Chip asynchronous.

• For , , and hence can be written as
, with and

. Since the sequences of the other users are known,
these delays affect only the interfering symbol patterns
and there is no loss of generality in assuming that

.
Under the above assumptions, the received signal of interest

reduces to

(2)

For further analysis, this model can be converted to one where
the signals corresponding to each symbol of each user occurring
in the observation interval are identified as different (effective)
users, as shown3 in Fig. 1. Since we allow the chip waveform to
have a width greater than , the number of effective users cor-
responding to each user would in general depend on the width
of the chip waveform. However, we assume that this width is
much smaller than the symbol interval, so that the number of
effective users can be considered to be just per user.
Finally, since user employs a preamble, we have a model in-
volving effective users. We define

and, for and

(3)

3Band-limited chip waveforms would of course extend beyond the chip
“boundaries” shown in Fig. 1.
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Consequently

(4)

The symbols of the interfering users are not of immediate in-
terest, and they can be grouped with the amplitudes and phases
as

(5)

Furthermore, we use the vector notation .
The first step toward deriving an acquisition algorithm is to con-
vert the continuous signal model at the receiver into an equiv-
alent discrete model. The generation of discrete system models
for asynchronous CDMA systems has been considered in detail
in [15]. It essentially involves the projection of onto a set
of basis functions , i.e.,

for

where is the observation interval , and could represent
a dimensional restriction in the system. Since this is a linear
operation, the resulting vector can be
represented as

(6)

where , and is a matrix
of only the interfering user vectors. The vector corresponding
to the new user is separated out and the dependence of

on is explicitly shown. Also, note that is always
positive, and is a complex circularly Gaussian (CCG) vector
with .

The basis functions we use in arriving at (6) correspond to
chip-matched filtering with respect to an arbitrary timing refer-
ence (see Fig. 2), i.e., , for
, and hence . The acquisition problem we consider

can then be phrased as follows:

Given , and the corresponding matrix, estimate

without assuming knowledge of

Note that and the matrix is of size
. For large and , processing would be com-

putationally intensive. To overcome this problem, and to create
another degree of freedom at the same time, we could choose to
cancel only users out of the interfering users. So, in
general, would be of size . We model in-
terference from the remaining users as white
Gaussian noise and include it intoto get . Since we have
an asynchronous setting, the sequence of each effective vector
would in general be a colored sequence, but we make this mod-
eling assumption for the purpose of simplification. Usingto
denote the Hermitian of a matrix, the covariance matrix of
is given by , where [15]

(7)

Fig. 2. Receiver front-end for coherent acquisition scheme with chip-matched
filtering. For the noncoherent case, the initial rotation by� would not be
present.

and , with being the autocorrela-
tion function of the chip waveform

More generally, could include out-of-cell interference as
well.

Finally, we define the interference spaceto be the column
space of and the noise space to be its orthogonal com-
ponent in . This is a slight abuse of terminology since
the “noise” space does contain a component of the new user’s
signal. The dimensions of and are

and

respectively, so and are restricted to ensure
.

Remark 1: If the interfering signals are linearly dependent,
the signal space dimension gets reduced. In general, we then
have and , but the
following analysis remains unchanged.

III. M AXIMUM -LIKELIHOOD SCHEME

Resolving into its components in and , ,
we can rewrite (6) as

(8)

for an appropriately chosen. We will show (see Theorem 1)
that is sufficient for ML estimation of based on .

Since we are implicitly assuming a 2-norm over the vector
space , we may write , where is
the least squares solution to . Our scheme relies on the
QR method to solve this least squares problem [16]. The first
step is a Gram–Schmidt orthogonalization, , with
orthogonal and upper triangular. Then, defining

, we have

(9)

The matrix is a projection matrix, which projectsinto the
noise space , and yields a vector independent of the powers
of the users being cancelled. To ensure that in (9) is
nonzero, we need to have linearly independent of the inter-
fering vectors. But, as stated in Remark 1, these interfering vec-
tors need not be linearly independent among themselves. We
have the following results.

Lemma 1: The matrix satisfies the following properties.

i) , .
ii) has eigenvalues (order ) and 1 (order ).
iii) trace .
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Theorem 1: The vector is a sufficient statistic for the es-
timation of the delay, and the ML solution satisfies

(10)

Proof: Since knowledge of is not assumed, the ML so-
lution for is obtained by maximizing the likelihood function
of over and in (6)

(11)

Let be the covariance matrix of the interfering
users, and assume, for now, that it is invertible. Then, for
fixed, the maximization over becomes

(12)

where . It follows that the maximizing in the
above equation is, and the corresponding metric
is

(13)

Finally, noting that

we have

(14)

where we have used Lemma 1. From the above equation, it is
clear that is sufficient for ML estimation of and
that (10) is true.

If the interfering signals are linearly dependent, the steps
given above for finding the ML solution may be modified by
reducing and in (6) to an appropriate and , such that

is invertible. If we carry the steps through, it
is easy to show that the solution for given in (14) remains
unchanged.

From (14), we have

(15)

(16)

(17)

where (16) uses the restriction . The above derivation
for assumes that , i.e., does not

belong entirely to the interference space. If is contained
in , contains no information about, but this happens with
probability zero if .

We still need to maximize the statistic in (17) overto get
an estimate of the delay. This maximization can be done analyt-
ically when the chip waveform is time-limited to . In this
case, since , we have

(18)

where , and is the vector corre-
sponding to the sequence ofth effective user. The same ap-
plies for with ranging over the uncer-
tainty interval . The optimization (17) can then be done
in a manner similar to that in the literature (see, e.g., [4] and
[3]). However, it is important to note that this analytical maxi-
mization strategy does not carry over to the realistic case where
we have band-limited chip waveforms. Furthermore, the solu-
tion for (7) with chip waveforms time-limited to results
in poor performance when applied to the case with band-limited
chip waveforms. Thus, analysis with such time-limited wave-
forms may be of little value in designing acquisition schemes for
practical systems [17]. In our study of the acquisition problem,
we use a sinc pulse truncated to 9 chips and perform a brute force
maximization over the one-dimensional parameter. This con-
sists of generating finely sampled versions of the users’ signals
and evaluating the statistic at successive delaysseparated by
the sample spacing. Numerical simulations show that the resolu-
tion can be kept reasonably low without significant degradation
in performance.

IV. EXTENSIONS OF THEML SCHEME

A. Noncoherent Acquisition

Since we have assumed a model with linear modulation, non-
coherent detection of the symbols of the users is not possible.
However, it is still possible to do the acquisition in a nonco-
herent manner. This is also necessitated in cases where the car-
rier phase cannot be acquired before the sequence delay. After
the spreading sequence is acquired and tracked, the carrier phase
can be tracked using a phase-locked loop. In this context, it must
be noted that while the IS-95 design [10] uses 64-ary orthog-
onal modulation and noncoherent detection on the reverse link,
future standards [11] may employ only thechannel for user
data, with a pilot channel provided on thechannel to help in
initial acquisition.

The ML acquisition scheme derived in the previous section
is easily modified for the noncoherent case. We assume that the
phase remains constant over the observation interval of duration

. This assumption is valid so long as ,
where is the frequency mismatch between the transmitter
and the receiver carriers. Following similar discretization steps
as in the coherent case, we have

(19)

where is the unknown phase andis defined analogous to
(5). To derive the ML delay estimator, we simply include
into the arguments over which the likelihood function ofis
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maximized. It is easily verified that form sufficient
statistics in this case as well. Consequently, we have

(20)

Using Lemma 1 again, the statistic to be maximized is

After maximizing over , the statistic reduces to

which is similar to the metric in (14). Consequently, the ML
delay estimator is given by

(21)

B. Acquisition with Multiple Windows

The acquisition strategy thus far involves processing a single
window of observations consisting of chips. The dimen-
sion of the “noise” space increases with, and hence the ac-
quisition scheme may be expected to perform better asin-
creases. However, the size of the matrices involved grows lin-
early with , making the processing computationally intensive
for large values of . Specifically, consider the case where the
observation is over chips. Instead of using the ML scheme
over the window length of for , a suboptimal but com-
putationally less intensive approach would be to repeat the pro-
cessing (9) for each block and to combine the results appropri-
ately. For the coherent case, this can be done as follows.

Given , we could again pose an ML
problem as in (10). Defining , we
need to maximize . But where is a
concatenation of the vectors, and . Hence,
the solution to (10) applies, with replaced by

(22)

When this suboptimal approach is used, note that the restric-
tion is , which is more stringent com-
pared to the condition for the optimal
approach. It is also of interest to note that for a system withshort
sequences, there is further reduction in the computational com-
plexity, since does not change with the window index. How-
ever, this may not be true in a general setting for short sequences
if the delays of the interfering users change during the obser-
vation period. Also, with short sequences, it may happen that

has only a small component in the noise spacefor a
particular realization of the delays of the interfering users. Using
long sequences overcomes this problem since the sequences
change over each window.

Finally, following (21), the above block processing approach
is easily modified for the noncoherent case. In this case, we have
the additional advantage that the unknown carrier phase can be
ensured to remain approximately constant over each window by
choosing sufficiently small.

C. Approximation to the ML Scheme

Consider again our basic statistic in (14). It contains the term
. An approximation to the ML solution may

be obtained by ignoring the variation of this term with, i.e.,
by assuming that the norm of the projection ofinto the noise
space is constant. Then the ML estimate gets modified as

(23)

We refer to this as the AML (approximate maximum-likelihood)
solution. Comparing to (9), we see that AML solution essen-
tially amounts to ignoring the coloring of the noise and applying
a filter matched to to .

V. ACQUISITION PERFORMANCE

The ML acquisition scheme derived involves collecting
chip-matched filter outputs from one or more windows and
processing them to get an estimate of the delay. The acquisition
time thus depends on the length and number of windows used
as well as the computational resources at the receiver, and is
hence difficult to characterize in general. The acquisition stage
is usually followed by a tracking device, and it seems reason-
able to consider instead performance in terms of probability of
acquisition, defined as

(24)

where it is assumed that the tracking device requires an initial
accuracy of . Correspondingly, the probability of acquisition
error is .

Ideally, we would like to get an analytical handle onfor the
ML scheme, but this seems to be a difficult problem. As a first
step in the simplification, we consider the AML scheme (23) in-
stead. We also assume that the chip boundaries of the new user
are knowna priori. This means that the fractional delay of the
new user is known, and hence the delay estimation problem
reduces to that of detecting just the integral delay, which can
take on values in . We further assume that the
chip-MF output samples are in fact aligned with respect to the
new user, so that .4 However, it must be noted that the
interfering users are allowed to be completely asynchronous, so
we arenot considering a chip-synchronous situation. The re-
sulting analysis could provide an insight into the effect of the
various parameters involved in the system and allow for a com-
parison to the conventional acquisition scheme. Also, it will be

4For signals (approximately) band-limited toW = 1=2T , such as the ones
we consider in this paper, assuming� = 0 would lead to no loss in generality.
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of interest to compare the results obtained to the performance in
the case where the chip boundaries are not known.

A. Analysis with Known Chip Boundaries

When the chip boundaries of the new user are known and
, the delay estimation problem reduces to a detection

problem. The AML solution for the detection problem is

(25)

where . We model as an i.i.d. random
vector of length , with each element equally likely to take
on the values on the unit circle. Clearly,

corresponds to binary sequences and corresponds
to quadri-phase sequences (employed in [11]). Using (9) and
(25), the AML statistic under the hypothesis is

(26)

We assume that is a fixed nonrandom parameter. For a given
noise level , this corresponds to assuming that we are oper-
ating at a fixed SNR . The matrix is a function of
the spreading sequences and delays of the users being cancelled,
and may be modeled as a random matrix. Further, we model

as a circularly complexGaussianrandom variable,5 where
the randomness comes from and . Hence, the distri-
bution of is completely defined by the first two moments.
We assume that , the th chip of , is independent
of unless and . This is certainly not true
across delays [e.g., ], but the statistics
obtained involve averaging over as well, and the above in-
dependence assumption is a good approximation. Under these
assumptions, it is shown in the Appendix that

if
if

if

if

for (27)

Here, the variance of the complex random variable ,
. We note that, for the particular

case of , we have real sequences and the the expressions
for and have replaced by . We also note from the
Appendix that the bound on is based on the more general
result

(28)

where .
Now, the AML statistic was derived by assuming that the de-

nominator of the ML statistic was independent of. Hence,

5For the detection problem, the standard Gaussian approximation is known
to be unreliable at low error probabilities [18]. But the error probability require-
ments are typically far less stringent on the acquisition stage and the Gaussian
approximation could prove useful.

assuming known chip boundaries and that the above Gaussian
approximations are reasonably accurate, the performance re-
sults for the ML scheme may be expected to come close to those
for the AML scheme when the bound (28) is small. This hap-
pens when , i.e., when we are operating far away
from the dimensional limit,6 i.e, when the number of users can-
celled is kept small in comparison to . Since reduction
in computational complexity may motivate the choice of a low
value for , this regime of operation is of practical interest.

Continuing with the analysis, we have that, with the
Gaussian approximation, are i.i.d. for ,
and independent of the other . Here,

denotes the CCG distribution with mean
and variance . Hence the probability

of acquisition, , is given by

(29)

Note that (27) gives only an upper bound onbased on our
approximate model, and the obtained using this bound could
overestimate the actual . Since the AML scheme is based on
assuming is a constant, a heuristic approximation can be
obtained by setting . We then have

(30)

and the gap between this approximation and the bound gets re-
duced when or, equivalently, when the effec-
tive SNR . This is again the regime of small ,
since the remaining interferers would also contribute to low-
ering the effective SNR.

For the noncoherent case, the AML statistic would be
that follows the standard Rayleigh and Ricean distributions:

if

if

(31)

where is the zeroth modified Bessel function of the first
kind. Noting that the cdf of the Rayleigh random variable above
is

the acquisition probability is given by

(32)

6The AML and ML detection schemes are obviously equivalent in the extreme
case ofd = 0, which corresponds to single user acquisition.
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Thus far, the AML statistic analyzed is for a single block of
chip-matched filter outputs. Analogous to the procedure (22),
we can improve reliability by using multiple blocks. The AML
estimator with multiple blocks is obtained by simply averaging
over blocks to get

(33)

The statistic is then given by for the coherent case,
and by for the noncoherent case. In the analysis, this
averaging merely reduces and by a factor of .

B. Numerical Results and Discussion

We now study the performance of the ML and AML schemes
through simulations. The schemes are compared to the conven-
tional scheme (corresponding to ), and the fidelity of the
approximate analysis is tested. Throughout the simulations we
fix the processing gain at and the delay uncertainty7 at

. The chip waveform is taken to be a sinc pulse truncated
to a length of 9 chips, and the chip sequences are assumed to be
complex, taking on equally likely quadri-phase values ( ).
The schemes allow for the choice of several design and specifi-
cation parameters:

• , the length of each block;
• , the number of users cancelled;
• , the number of blocks;
• , the number of users in the cell;
• and the SNR of the new user, where SNR .

We also have the restriction that . As
approaches , we will need larger , so will be limited

by the allowable complexity. In all cases, we will assume that the
users have equal received powers. If the powers are unequal, the
improvement in performance depends on which of the users are
cancelled. Evidently, for the same total power in the interferers,
the improvement will be greater if the high powers users can be
identified and cancelled. Instead of accurate power estimation,
a crude metric from the demodulators of the interfering users
might suffice to this end.

We begin with a case where chip boundaries are known and
we are operating close to the dimensional limit: (so
the dimensional limit is 15 interferers) and . The total
number of users in the system is taken to be , and the
statistics are averaged over windows [see (22) and (33)].
The variation of with SNR is shown in Fig. 3 for the ML
and AML schemes. The use of the AML scheme leads to a loss
of about 2.5 dB in the effective SNR at . In addition,
the AML scheme exhibits an error floor: does not go to zero
as SNR . But this floor can be lowered by averaging over
a larger number of windows. The bound obtained using (27) is
found to be quite loose, especially at higher values of the SNR,
while the approximation (30) is only marginally good since we
are close to the dimensional limit.

The same set of curves is shown in Fig. 4 for the case where
we have and instead. The number of users can-
celled is still kept at , and hence is small.

7Of course, in the case of long sequences it is not necessary thatL = N .

Fig. 3. Performance with variation in SNR,M = 1,b = 3,N = 31,L = 31,
K = 14.

Fig. 4. Performance with variation in SNR.M = 3, b = 1.

The Gaussian approximation turns out to be quite good in this
scenario, and the difference between the AML and ML schemes
drops to less than 0.5 dB for the same . Note also that
the overall performance in this case is significantly better than
the case where we had and . Hence, for the same
set of observations available, it is much better to process them
as one window than multiple windows. But this comes at the
expense of additional complexity. The bulk of the computation
is taken up by the QR factorization, which varies
as but is only linear in .

In Fig. 5, we study the variation of with SNR for dif-
ferent values of with fixed at 3, along with the corre-
sponding simulation results. The conventional parallel acquisi-
tion scheme corresponds to , in which case .
When , the curves exhibit an interference floor.
Note that, in spite of approximating the analysis by modeling
the remaining interferers as white Gaussian, the analytical re-
sults obtained match quite well with the simulations. It is also
of interest to note that, when the SNR is low, the decorrelating
scheme ( ) actually performs worse than the conventional
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Fig. 5. Performance with variation in SNR andK .

scheme. This can be understood intuitively as follows. Asin-
creases, the variance of the residual interference and noise goes
down. At the same time, the loss of the new user’s component in
the interference subspace increases. When the SNR is low, the
latter effect is more significant. More rigorously, note from (27)
and (30) that

at low SNR. It then follows from (29) that a function of
only , and is monotonically decreasing in . Fur-
thermore, when all the users have equal powers, (7) gives

which implies that

(34)

since for the sinc chip waveform. We can then easily
show that increases with (and hence, decreases
with increasing ) when the SNR is above a threshold, i.e.,

(35)

Clearly, when the SNR is below the threshold,increases with
increasing , meaning that the decorrelating scheme performs
worse than the conventional scheme ( ) in this case. Note
that this threshold behavior is independent of, i.e., it is inde-
pendent of any averaging done to improve the error probability.
Hence, it is important to take the threshold SNR into account
when designing the decorrelating scheme. We also note that
similar behavior has been observed for the detection problem in
[19], where the decorrelating detector is found to perform worse
than the matched filter detector below a threshold SNR which
depends on the loading factor .

Returning to Fig. 5, for the parameters chosen, the threshold
SNR computed using (35) is 4.8 dB. This number matches well

Fig. 6. Comparison with the case where chip boundaries are not known.

Fig. 7. Performance for the noncoherent case.M = 3; b = 1.

with the threshold seen in Fig. 5. The curves also show that sig-
nificant gains over the conventional scheme are possible at high
SNR’s and high . But these results assume equal powers for
the interferers—the threshold SNR would be smaller and the
gains could be significant even for small when the powers
are unequal. Also, the best possible scenario is when there is
perfect interference cancellation with the new user’s signal re-
maining unchanged (e.g., when the users are perfectly orthog-
onal). This is equivalent to a single-user system at the same SNR
and the corresponding curve is also shown as a limiting case.

Thus far, the numerical results assumed known chip bound-
aries. When the chip boundaries are unknown, we expect that the
results will not be significantly affected [15]. This is confirmed
by the results shown in Fig. 6, where the performance of the
ML and AML schemes are shown with and without known chip
boundaries. When the chip boundaries are unknown, the value
of in the definition (24) of is set to 0.5 to allow for a
fair comparison, and the resolution is set to . It was found
that a higher resolution does not significantly improve perfor-
mance. Note that the interfering users are allowed to be com-
pletely asynchronous in all the cases. The same set of curves
is shown in Fig. 7 for the noncoherent acquisition algorithm,
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which uses the maximization in (21), and the simulated perfor-
mance is compared to the analytical approximation of (32). Note
that the lack of phase information leads to a loss of about 1 dB
at .

The above results also indicate that the approximation re-
sulting from the assumption of known chip boundaries is rep-
resentative of performance in the actual band-limited system
without this assumption. In particular, the observations made
above regarding the effect of the parameters involved will hold
for the actual system as well.

VI. CONCLUSION

A maximum-likelihood delay estimation scheme applicable
to DS/CDMA systems with long sequences was proposed and
investigated. The scheme is closely related to the decorrelating
detector and relies on the projection of the received vector into a
changing but known “noise” space. This is similar to the projec-
tion used in the MUSIC algorithm [20] with the difference that
the noise space here contains a component of the signal of in-
terest. Along with several modifications of the ML estimator, a
suboptimum approximate maximum-likelihood technique was
presented and its performance analyzed under the assumption
that the chip boundaries of the new user are knowna priori. The
analysis was based on Gaussian approximations and was found
to give reliable results when the number of userscancelledis
small compared to the processing gain. The performance of an
actual band-limited system with unknown chip boundaries was
found to match quite well with the analysis. It was seen that
significant gains over the conventional scheme are possible at
the expense of additional knowledge and computational com-
plexity, so long as the operating SNR is above a precomputable
threshold.

It is to be noted that the schemes derived in this paper rely on
knowledge of the delays of the interfering users being cancelled.
Results in [21] suggest that the ML scheme is reasonably robust
to small errors in these delays, but this needs to be investigated
further.

Extensions of the scheme to more general situations need to
be investigated further. In particular, extension to frequency-se-
lective fading channels is possible if we make the additional
assumption that the channel estimates of the interfering users
are known. The spreading vectors corresponding to the different
taps of a single user can then be combined into a single vector
and the above ML schemes can be applied. Research on this
problem is currently underway.

APPENDIX

DERIVATION OF STATISTICS (27)

In this appendix, the results given in (27) are derived. We
begin with (26), i.e.,

For the sake of convenience, we useinstead of to de-
note the spreading vector of the new user corresponding to the

delay hypothesis . Also, let denote the vector corre-
sponding to the correct delay, i.e., . Then, we have

(36)

A. False Alarm Statistics

In this case, the delay hypothesis is not equal to .
We model the sequences as i.i.d. random, and modeland
as uncorrelated randomvectorsfor . Clearly, this model
does not hold when is less than the window length

, since this would lead to an overlap betweenand .
But we make this heuristic assumption to simplify the analysis.
It follows that

where (a) follows since the noise is zero mean and independent
of the signal, and (b) can be seen by simply conditioning on
first. Note that is assumed to be a fixed nonrandom parameter.
The second order statistics can be found as

where (a) follows from our heuristic assumption, and (b) is due
to Lemma 1. Note that the factor of two in would not be
present when we have real spreading sequences. Similarly, for

and
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B. Detection Statistics

In this case, the delay hypothesis is and the corre-
sponding AML metric is

Consequently

To compute the variance of , note that

As before, we have
; and

where (a) is due to the fact that .
It follows that:

Using the Cauchy–Schwarz inequality, we have

(37)

We note that a weaker version of the above bound was derived
independently and in a completely different context in [22]. Fi-
nally, for

since is zero mean and independent of.
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