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Abstract—The design of hard handoff algorithms based on op-
timizing the tradeoff between link quality and rate of handoffs is
considered. For handoff algorithms based on this criterion, adap-
tation is precisely defined in terms of remaining on a locus of de-
sirable operating points as system parameters (such as mobile ve-
locity) change. A rule based on a linear cost criterion is used to
select desirable operating points. For this rule, it is shown that the
optimal handoff algorithm, which is impractical, is easily adapted
by fixing a single tradeoff parameter at an appropriate value. The

Tradeoff Curve

Locus of desirable
, operating points

Rate of Link Degradation Events

same adaptation property is shown to hold for an easily imple- 5

mentable approximation to the optimal algorithm, the locally op-

timal (LO) handoff algorithm. This is in contrast to the poor adap- ! =

tation of hysteresis based approaches which require lookup tables

for adaptation. Practical estimators for all relevant system parame- Rate of Handoffs

ters based on a short window of pilot signal strength measurements

are also discussed. It is shown that the LO algorithm adapts well Fig. 1. Tradeoff curves oArp — Ax plane.

when these simple estimators are used. A hysteresis-threshold ap-

proximation to the adaptive LO algorithm is also developed. the expected rate of handoffs; and the link quality. The
Index Terms—Adaptive systems, cellular land mobile radio, han- measure of link quality is the expected rate of link degradation

dover. eventsArp on a mobile trajectory. A link degradation event

corresponds to the pilot power level falling below a threshold
I. INTRODUCTION A. Under the assumptions that 1) the peak power of the trans-

) o ) mitters is limited, 2) the link gains seen by the pilot and traffic
A HANDOFF in cellular communications is the procesghannels are the same, and 3) the interference level is known
whereby a mobile subscriber communicating with ongng does not change significantly with time, it is easy to see
base station is switched to another base station duringit a measure of traffic channel quality may be derived from
call. Handoff algorithm design is an important component fe rate of link degradation events. However, if the interference
the larger problem of radio resource management in mobji&e| varies with time, and can be tracked by other sensors, this

communication systems. In this paper we concentrate pflormation can be used to improve the handoff algorithm by
mobile-assisted hard handoffs in a channelized cellular systepgyying the threshola.

The term handoff is henceforth used to refer to hard handoff.  The gptimization to obtain the best tradeoff betwaep and

The decision to handoff from one cell to the other is baseq; can be solved using dynamic programming (DP) [3] to yield
on various criteria that take into account channel degradatign optimal handoff algorithm (see, e.g., [2]). A locally optimal
considerations, as well as Erlang capacity and blocking consifio) handoff algorithm was introduced in [2] as a practical ap-
erations. However, the initial (and most important) trigger fQ§roximation to the optimal algorithm. It was conjectured in [2]

a handoff is generally based on pilot signal strength measufgat the LO algorithm can easily be made to adapt to changes in
ments taken at the mobile [1]. We focus on this initial triggesystem parameters. This adaptation property is established pre-
event and assume that a handoff occurs if and only if suchc@ely in this paper.

trigger is present. Thus, in our terminology, a handoff event is gy 5 general handoff algorithm, létdenote the handoff al-

the occurrence of the initial trigger. gorithm parameters, and I&tdenote the vector of system pa-

As argued in [2], the handoff algorithm design problem maymeters. The vecta® may include mobile velocity and prop-
be posed as an optimization to obtain the best tradeoff betwegation characteristics, whitemay be the hysteresis level for

the case of a simple hysteresis handoff algorithm. Given a fixed
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may be generated by varying only one of the paramétarhile using a single field-trial or simulation for a typical set of system
fixing the rest. parameters values.

In order to select a suitabfefor the givenSy, arule isneeded  This paper is organized as follows. In Section Il a mathemat-
to select a desirable operating point on the tradeoff curve cagal structure for the handoff problem is developed. The adap-
responding taS; . This rule may be based on higher layer cortation property and the optimal handoff algorithm are described
siderations, and may be in the form of a constraint curve on theSection Ill. Adaptation of the LO algorithm is considered in
ArLp — An plane. The desirable operating point, saly, is then Section IV. In Section V, an adaptive hysteresis-threshold ap-
defined as the intersection of the tradeoff curve and the cquroximation of the LO algorithm is developed, and results on
straint curve. Alternatively, the desirable operating point mais performance are presented. Conclusions are given in Sec-
be defined as the point on the tradeoff curve where a given ctish VI. Finally, estimators of system parameters are presented
metric, which may be imposed by higher layer consideratiorig, the Appendix.
is minimized. Let the value of the handoff algorithm parameters
at the desirable operating point bg Il. PRELIMINARIES

Changes inS may cause the tradeoff curve to shift (see
Fig. 1). Let the new system parameters 8¢ and let the
desirable operating point on the new tradeoff curvee
The old choice of algorithm parametegs may result in an
operating pointO; # Os. Adaptationof a handoff algorithm
involves estimation 0., and findingé; = f(S.) to yield a
desirable operating point on the tradeoff curve correspondi
to Ss.

Itis important that the functioif as well as the estimators of
S be easy to implement. Although every functigrcan be ap-

proximated by a lookup table, construction of this lookup tab . . .
would require obtaining tradeoff curves for different values llot signal strengths at theth sampling instant (timet ) from

S through simulations or repeated field trials. For multidimen—s_1 and BS-2, respectively. Also, let the respective distances

. of the mobile from BS-1 and BS-2 hg, ; andd; 2. Now as-
sionalS, the lookup tables also need large memory for storagseu.rne the following propagation model for base stafion
We show that for the LO algorithm, the adaptation function can
be obtained in closed form, and does not require the construc-
tion of lookup tables.

If a rule for the selection of desirable operating points is not
given, arad hoccriterion such as trying to remain on the “knee”
of the tradeoff curve may be adopted. This ill-defined criterioff '€ o 7
has been used in previous papers on adaptive hard handoff a[ggind at thekth sampling instant. Short-term variations due

rithms. We develop a more systematic rule, based on a gendPa[nultipath are assumed to be either averaged out or com-
linear cost structure, and use it to define adaptation. batted through diversity. A log-normal first order autoregres-

Previous work on adaptive hard handoff algorithms [4]-] ive (AR-1) model is assumed for shadow fading [9). There-

has considered the tradeoff between number of handoffs aRtf under the assumption of equally spaced time samples and

handoff delay. Desirable operating points are defined using {rnstan, {Zy,:} is a zero mean AR-1 Gaussian process with

“knee” criterion in these papers. Also considered in [5] and [é]utocorrelat|on function,
is the estimation of the changing system parameters. Estimation
of shadow fading variance?® as well as adaptation of hysteresis
level and averaging interval length to changes iare consid- . . . -
ered in [5]. Estit%a’?ors of velocig/ are consi?:iered in [6] wher%ee Fig. 2 for a typical propagation characteristic. Furthermore,

averaging interval length is adapted as a function of the veloci )?" i} can be written recursively as

Assume that only two base stations (BS’s), say BS-1 and
BS-2, are involved in the handoff, i.e., consider only that por-
tion of the trajectory on which the signals received from these
two base stations are the strongest. The extension to the case
where more than two base stations are involved is not difficult
[28 . The analysis is restricted to short time horizons over which
itfnay be assumed that the mobile is moving on a straight line
with fixed velocity v. Over the time horizon of interest, 1&f
samples of received pilot power be taken at equally spaced time
fgtervalsts seconds apart. LeX;, ; and X;, o be the received

Xyi =Py i+ Z,; dBm 1)
Fk,i = M; — 10777‘, log dkﬂ; (2)

hereP;. ; isthe local mean pilot power, aif), ; is the shadow

2 |m
ElZk,i Zism,i] = ota)™.

estimate. A
Our approach differs from previous work in the following 0,0 =% 770,
ways. First, we give a precise rule for defining the locus of de- Zi1,i =i 2y, + 01 — a?Wi,; 3)

sirable operating points based on a general linear cost structure.
Second, we substitute handoff delay with a performance metvitiere
that is directly related to link quality. Third, the estimates of the {I¥; ;} are independent and identically distributed (i.i.d.)

system parameters that we use are based solely on pilot signal N(0, 1) random variables,

strength measurements. No other information, such as Dopplet; is the shadow fading correlation distance,
measurements for estimating velocity, or distance informationcs? is the shadow fading variance, and

asin [7], is used in our approach. Finally, and most importantly, a; is the correlation coefficient ofZs ; }, i.e.,

we derive adaptive handoff algorithms for which the adaptation
rule ¢ = f(S) is explicit and does not require the construction B
of lookup tables. Furthermore, this function can be obtained by a; = exp(—vts/d;). (4)
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— Mw’edpim;mgm_‘& ‘ i.e., a handoff occurs whenever the other base station’s power
wf 1l st ---  Localmean P, ' eszf | exceeds the current base station’s power by a léveThe
Y handoff algorithm parametef = A completely defines the
o\ Il handoff policy® = ¢y, (&) for the hysteresis algorithm.
8.0 Y LA We measure the performance of a handoff algorithm in terms
g WL 1% of the expected rate of handoff8y) and the expected rate of
1= i l,‘ El J. gl ‘ 1 link degradation eventS\; p), the rates being defined per unit
i VAN time by
10F 1 | ’ { q W ety - R
L - I s~
. i | 1 O
. Ap(®) =B | 5= > 0ixe b, <5,
) 0 40 6o 0 00 1200 1400 1800 1800 2000 * k=1
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N
1
M(P)=E|— Iy, = 9
Fig.2. Typical profile of received pilot power from two base stations as mobile H( ) Nt, Z (We=1} ( )
moves along the line joining the base stations. The solid line is the local mean k=1
received power component which decreases monotonically as the mobile m

away from the base station. The dotted line includes shadow fading. Parammere"{-} is the indicator function and the expectation Is car-

are as given in Table I. ried out over all realizations of the state sequefice- - -, Sy,
given the handoff algorithn®. The average is taken oveé¥
samples, wher&/'¢, is the duration of the call. The parameter
ﬁi_is the minimum pilot signal strength required for satisfactory
(%;r_nmunication with BS; and the pilot strength falling below
A; results in a link degradation event. The performance metrics
ALp and g are clearly a function of the handoff polidy, and
E[Xarn il Xa 1 Xai] = E[Xngr i) X ] hence we write _them explicitly a?sm?(@) an(_j)\H(q)). Further,

— — for a given family of handoff algorithms with handoff param-

= Pryri +ai(Xu,i = Pr,i) eters¢, with slight abuse of notation, we can write the perfor-

Var[Xpy1,i| Xe, 1+ Xp,i] = Var[Xpqq, i X, 4] mance metrics adrp (€) andAx(€).

=(1—-a?)o?. (5)

%

Under this model, the distribution ok, ; conditioned on
X i, is independent of earlier received power samples (a st
dard result for AR-1 Gaussian processes), and is described ¢
pletely by its conditional mean and variance

I1l. A DAPTATION AND THE OPTIMAL HANDOFF ALGORITHM
In the current model, there is no correlation between the shado

fading from the two base stations, although the analysis of thi\;\[rO determine a desirable operating point on the tradeoff curve

paper extends easily to the case where the fading is Correla%ggespondlng to a given handoﬁ algorithm and givénwe .
[8] use a linear cost criterion. That is, we assume that the goal is

Let B, denote the index of the operative base station at saF‘ﬁ minimize a linear combination of the performance metrics

pling instant (i.e., B;, = 4, when the mobile is communicating)‘LD(S) andAu(¢)
with base statior), and letB;, denote the other base station. We J(E) = Ap(&) + 7 u(8), foragiveny >0  (10)
assume that a handoff decision is made during each sampling in-
terval. The decision variablg; takes on two values. I, = 1,  over the set of feasiblg Note that any general linear cost func-
a handoff is made, resulting i1 = By; if Uy = 0, N0 tion can be written in the form given in (10) for the purposes of
handoff is made, an@;.; = By.. Define the state vectdi; as  minimization. Nonlinear cost criteria are discussed at the end of
this section.
S = (X, 1, Xi,2, Br). (6)  We assume that the tradeoff curve is convex. This is a reason-
) ) ) o . able assumption because convex tradeoff curves are obtained
LetIIk denpte all the information available for decision making,, e optimal, LO, hysteresis and hysteresis-threshold algo-
attimek, i.e., rithms in [2], and also for the algorithms considered in [4]-[6].
The convexity assumption can be extended to a general handoff
I = (Sk, Sk-1, -+ 51)- @ algorithm (with more than one parameter) if randomization is

The decisionl/;, at timek can be based on all signal strengtk?"owed and the tradeoff curve is defined to be the lower en-

measurements up to time i.e., U, = ¢w(Ix), wheregy, is the velope of all feasible operating points. If the tradeoff curve is

decision function at timé. The sequence of decision functionsd'ﬁerem""lble everywhere, the cost function (10) is minimized

& = {¢w()}, constitutes the handoff policy. by setting
An example of a handoff algorithm is the simple hysteresis AN p
algorithm [1]. The handoff policy of the hysteresis algorithm, g T 0. (11)

is described by the following equation:
Remark 1: If (11) has no solution, the cost (10) is minimized

U, =1 at one of the end points of the tradeoff curve. If the assumption
X B, 2 Xip. th (8) about the g_radit_an_t o_f the tradeo_ff curve being continuous is re-
U,=0 laxed, (10) is minimized at a point on the tradeoff curve where
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—— tradeoff curve

— lies between the value of the left derivative and the value of N _ A
the right derivative at that point. B R S T, comsamelng 1

Using (10), the desirable operating point may be defined in ol BRIy 4 R
terms of the gradient as given below.

Definition 1: A desirable operating point on a tradeoff curve
is the point at which the ratio of the incremental change in
ALp and the incremental change Ay, i.e., the gradient of the
tradeoff curve, equals~.

This definition of desirable operating point is much more pre-
cise than the “knee” criterion used in previous work on adaptive
hard handoff algorithms [4]—[6], and we use it to define adapta-
tion as follows.

Definition 2: A handoff scheme is said to be adaptive if it
meets the following criteria. Fig. 3. Tradeoff curves for optimal algorithm with tangent lines at operating
. . oints with fixed slope. The tradeoff curves move up when velocity increases
1) Itallows for the estimation of all relevant system param%écause the mobile covers a greater distance in the same time interval (causing
ters which can change during a call, using an approprigte Ax to increase). Prediction of signal strength at the next time instant also
estimatorS. becomes difficult at higher speeds, resulting in highgs .

2) The handoff algorithm parameters that are required to op-
erate on a desirable operating point on the tradeoff curve\We now comment on the case where a nonlinear cost struc-

can be written as an explicit function 6f ture is imposed by higher layers. The current approach can be
We now consider adaptation of the optimal handoff alg@pplied to the nonlinear case by using standard minimization
rithm. The optimal handoff algorithm attains the best tradedfbols to find a desirable operating point for one set of system pa-
between the performance metrics by minimizikg given a rameter values, and then linearizing the given cost around that
constraint on\;p. It has been proved [2] that this optimumpoint to obtainy for an approximate linear cost structure as in
tradeoff problem can be posed in a Bayesian framework, wifh0). The usefulness of such an approximation will of course
the optimum decision policy being given by depend on the nature of the nonlinearity of the cost.

®*(c) = arg II(lIi)Il()\LD(‘I)) + cAn(®)) (12)

°
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IV. ADAPTATION OF THELO ALGORITHM

where the minimization is over all possible The tradeoff pa- 1. | 5 handoff algorithm was suggested in [2] as a prac-
ran_]etelrﬁ IS ghifh?ndt_)m;f] algqrrlr':hm parameterfolr thg clﬂss Orf] tical approximation to the optimal algorithm (Section IIl), and
O?t'mi anl ofra gorit fmsr.] g p;farameztm?]n a sfo I'eL ((j)ug Uitalso has: as a handoff algorithm parameter. The LO algorithm
? as the rte Ea)uve cost ofa hando VeE)SSSt atg a md tegral g"essentially equivalent to the dynamic programming solution,
lon event. Dynamic programming (DP) can be used to so With the time horizon limited to the immediate future sampling

(12). recur_sively as ShOV_V” in [2] a_nd [1.0]' The locus of _Opl'nstant,(k + 1). The set of decision functions for the LO algo-
erating points of the optimal algorithm [i.e., the set of POINtSihm is governed by

ALp(®*(e)), Au(®*(c))] obtained by varying: is the tradeoff

curve of the optimal algorithm. Tradeoff curves for for different Up=0
mobile velocities are shown in Fig. 3. P{X, 1 5, <Agp, |Ik} +c¢ 2 P{Xi1 B, <Ap|Ii}.
We next show that for the optimal algorithm, the desirable Ug=1

operating point on the tradeoff curve for any system parameter_ . ) ) (13)
value can be attained simply by setting= ~. From [2], we USINg (5), the above probabilities can be written in terms of the

know that the tradeoff curve for the optimal algorithm is conve? function, and the LO algorithm takes the form [2]
Thus, the point on the tradeoff curve where the gradientjiss
P N o E[Xk-l—l,ﬁk [1x] — Aﬁk

the same as the point on the tradeoff curve whgfig+ v g is Q

minimized. By definition of the optimal algorithm, the above og.\/1— a%

minimum is attained by solving the Bayes problem (12) for U — 0 "

¢ = . Thus, fixing the algorithm parameter = ~ guaran- ’“>_ E[Xk+1 B, |Ix] — AB,

tees operation on the locus of desirable operating points for all < @ 3 (14)
system parameter values. This result is verified for changing Up=1 TBi 1= ap,

in Fig. 3. To evaluate the above decision rute, a; and E[Xj41,:|1x]

The optimal algorithm also has the obvious advantage of figsed to be estimated for both base statians=( 1, 2) using
sulting in minimum cost among all handoff algorithms. Howastimatorss;, 4, and X}4; ;, respectively. The decision rule
ever, the optimal algorithm is impractical because it requirgging these estimators is
prior knowledge of the entire trajectory and system parameters

[2]_. Also, whil_e the adapta_tion of the optimal algorithm_ can be Xk+1,§k - Agp, Uk; 0 Xk+1,Bk — Ap,
written explicitly as a function of system parameter estimates Q D 122 +e 2 Q a2
for the purposes of adaptation (see Definition 2), this function \ “Bx\/ -~ “B, Up=1 OBy (/1 —ap,

is complicated and not easily evaluated. (15)
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36 kmph -}2 lo:n h I ——  tradeoff curve TABLE |
o8 P How P — %~ constantc line PARAMETERS USED FOR ALL THE SIMULATIONS. THE RESULTING FADE

guer L S T R tangent 7 MARGIN IS 30

|speed c=0.08 k=004 | - D= 2000 meters, distance from BS-1 to BS-2
2 36 [0.0909 [0.0180 i
To. 72 [0.1081 000113 |- #i= 105 dBm, station strength

108 00715 10,0075 m=3, path loss exponent

Negative of Slope 0;=5dBm, shadow fading std. dev.

: v=10,20 & 30 m/s, mobile velocity
5o, d= 30 meters, correlation distance
v
= A;=0dBm, threshold of link degradation
"é ts=0.5s, Sample Time
'é M=20, Window length for estimation
3
z

Recall that for the LO algorithm, the only handoff parameter
is the tradeoff parameter
The following procedure is used to selegtfor the giveny
of the linear cost function (10). Through field trials or simula-
tion for a typical combination of system parameté&rsve can
Examples of estimators based only on received pilot measug@tain a tradeoff curve, and select a valueptorresponding
ments are discussed in the Appendix. For the simulations in thisthe desired gradienty. Forc = ¢, we can claim from the
paper, estimators} and4; are used to estimate the constanidaptation property that the operating point will be at a point
but unknown parameters ando;. EstimatorX},, is used to with gradient close te-y even whenS changes. Thus, the use
estimatel[X;. 41, ;|1x]. Among the estimators discussed in thef this procedure, along with estimataks}_ ;, &’ ando”, re-
Appendix, the ones selected for simulation are not the most pegits in a simple and practical adaptive locally optimal handoff
cise ones, but rather the ones which are simple to implemental§orithm.
is shown that the adaptation property of the LO algorithm holds To stress the important role of estimators in the adaptation of
even with these relatively weak estimators. the LO algorithm, we consider its performance with the estima-
The LO algorithm has the following advantages over othesrs fixed at one value even as actual system parameters change.
algorithms. First, as shown in [2], the LO algorithm’s perforin particular, even as changesi is kept fixed to the value cor-
mance is close to that of the optimal algorithm. Second, it fgsponding t@ = 36 km/h. However, estimatoés’ andXs are
clear from (15) that the structure of the LO algorithm dependsiowed to vary depending on the pilot measurements. Tradeoff
directly on the system parameter estimates. Thus, in contrasgigves for different velocities are shown in Fig. 5. Fixingelds
the optimal and hysteresis-based algorithms, the LO algoriti§perating points with widely varying gradients, demonstrating
can easily be adapted as the system parameters change. Finall,system parameter estimation is crucial to the adaptation of
since the LO algorithm is derived as an approximation to the ofre LO algorithm.
timal algorithm, we expect it to inherit the adaptation property The only disadvantage of the LO algorithm relative to the hys-
of the optimal algorithm, i.e., the slope at the operating poiféresis based algorithm is the need to evaluatéXtfienction at
should remain fixed oncehas been fixed. each sample instant; this can be avoided by using the approxi-
Although the LO algorithm is expected to adapt to all systemation technique given in the following section.
parameters, we use simulations to verify adaptation only to
changes irv. Note thaty can change significantly over a few
meters, whereas parameterandd can generally be assumed
to be constant over a large region of the cell. Changes in  An ad hochandoff algorithm that is currently in use is the
influence the system parameter = exp(vt,/d) of the LO  simple hysteresis algorithm (8). For this algorithm, however,
algorithm. Estimatinga eliminates the need to separatelfhere are no clear rules for selecting a suitable value ahd its
estimated. performance was shown to be much inferior to the LO algorithm
Fig. 4 shows the results of simulation for parameters valugg2].
shown in Table I. It can be seen that fixingndeed gives oper-  performance of the hysteresis algorithm can be improved by
ating points with nearly the same gradrefur differentv. Using  incorporating a threshold on signal strength. The hysteresis-
Definition 1, it follows that operation at or near the desirablghreshold algorithm was introduced in [11], and it can be gen-

operating point can be maintained simply by fixiag= ¢, ap-  eralized by including a threshold on the signal from the base
propriately. In other words, the adaptation function (Definitiogtation 5,

2, part 2) for the LO algorithm is simply a constafi{S) = c.

Fig. 4. Performance of the adaptive LO algorithm.

V. HYSTERESISTHRESHOLD APPROXIMATION

1 (Xk-|-1,ﬁ,v > t1) & (Xpy1, B, < t2)

U, = o _ o 16
2Slight changes in gradient for fixedare caused by imperfect estimators and k & (‘Xk+1, By > *Xk-I—l, B T h) (16)
also because the LO algorithm is an approximation to the optimal. 0 otherwise
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Fig. 5. Performance of a nonadaptive LO algorithm, with correlation
coefficienta fixed to the value corresponding to speed 36 km/h. Fig. 6. Performance of hysteresis-threshold algorithm with hysteresis level
fixed to 3 dB.

For the hysteresis-threshold algorithm also, there is no ObViOé{§rresponds to the area on mﬂ . Xk-i—l » plane where
way of selecting suitable values of quantitiest; , and¢,. Ob- . = 1. Consider the case of ha{ndoff frdm BS-2 to BS-1.
taining the best tradeoff curve (see Section I) for this algorithn,; ;jm — o' be the same for both base stations
is difficult because it is not clear which combination of the thre&he derivation can be carried out without this assumption also).

parameters will result in the best tradeoff curve. Therefore, #Ren, the boundary of the handoff region for the LO algorithm
in [2], we consider tradeoff curves obtained by fixihgand (15) is given by

varyingt; (to = t; is used). This hysteresis-threshold algorithm

effectively has only one handoff algorithm parametet: ¢4, Xk-l—l,l - A . Xk+1,2 - A

. : i — | te=Q| ————]. a7
and it results in a tradeoff curve, rather than a region (see Sec- o o
tion I).

) o _ The handoff region and its boundary are shown in Fig. 7. Con-
The rule for adapting (Definition 2, part 2) as a function of sjger approximating this boundary (17) by three straight lines

system parameters does not follow naturally from the structue 4, and¢, as shown in Fig. 7. Line& and?, correspond to

of the handoff algorithm (16). We now show that such a rul@e threshold parameters andt, in the definition of the hys-

is important for the hysteresis-threshold algorithm. Tradeqff esjs-threshold algorithm (16), while the liigcorresponds

curves for a hysteresis-threshold algorithm, whérés not 5 the hysteresis parameter

altered as a function of, are shown in Fig. 6. It can be seen g find the equation of;, setX 41 » to —oc in (17). Solving

that there is a considerable change in the slope at the opera{;[g}gXH1 | gives the asymptote ’

points as velocity changes ardis kept fixed. Fig. 6 also ' N P

reveals that a lookup table may be used to sé€lest a function Xy =08 -0'Q7 () (18)

of v in order to stay on an operating point with the desiregbrresponding to the conditionf{kH,l > t; in (16). Com-

gradient. (As mentioned in Section I, constructing such lookyjaring (16) and (18), we get

tables requires extensive field trials or simulations.)

: : t=A-dQ o). 19

To develop simpler rules for adaptation &f ¢;, and ! 7@ e) (19)
to to changes in system parameters we derive the h@mllarly

teresis-threshold algorithm as an approximation to the LO tr= At o' Q N(c). (20)

algorithm. This approximation can also be considered as a

way of implementing the LO algorithm without evaluating’a To find the equation of;, use the intercepts of (17) with the
function at each sample instant. |inest+171 - A anka+1,2 - A, SettingXHl, L =Ain
ThAe decision function of the LO algorithm depends only-on(17) giVESXk+1,2 = A+ 0'Q(1/2 + ¢). Similarly, setting
ands (17). To achieve the desired approximatith, ¢1, t2) = Xk+1,2 — A givestJrL 1 =A+40'Q7(1/2 —¢). Thus, the
g(c, S) is derived to make the decision function of the hysntercepts are at the points
teresis-threshold algorithm (16) close to the decision functi
of the LO algorithmg(15). Si(nce) rules for adapting the LO a(Izg’ A+0'Q7H(1/24¢) and (A=-0'Q7(1/240),A).
gorithm as a function of are known, the hysteresis-thresholdoining these points gives the following equation fgr
a_1|gorithm d(_erived in this way is_, expected to inherit the adapta- Xk+1, - Xk+1,2 — QH1/2 + 0.
tion properties of the LO algorithm.
To derive the approximation, consider the handoff region
the LO algorithm. The handoff region at sampling instant h=—-dQ  1/2+¢). (21)

&omparing to (16) gives
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_w ' ' ' ' ’ ' VI. CONCLUSION
| Asymptotic approx. & 1w . . o .
' e We have given a precise definition for the adaptation of
. handoff algorithms to changing system parameters. We have
shown that under our definition of adaptation, the LO algorithm
adapts to changing system parameters simply by fixing tradeoff
. parameter: appropriately. The adaptation rule is explicit and
does not require lookup tables. We have also constructed
estimators of system parameters based solely on received pilot
signal strength samples. Also, information about the mean
signal strength and the statistics of shadow fading need not be
provided by the base station; rather, they are estimated using
the pilot signal strength samples themselves.
We have also presented an easily implementable hysteresis-
threshold approximation to the analytically derived LO algo-
My e a2 o0z 4 s 0 12 rithm, and shown that it retains the adaptive nature of the LO
Pillot estimate from BS 1 . . .
) algorithm. Clear rules for selecting the hysteresis and threshold
levels as a function of the system parameter estimates have been
Fig. 7. Decision regions of the LO algorithm and its hysteresis-threshoﬂﬂevemped There is no need to construct lookup tables for ad-
approximation. S ) . . .
justing these levels in order to achieve adaptation.
While we have considered only the case of fixed interference
- levels, both the LO and the hysteresis-threshold approximation

enpb
a =540

o1 a8 . 0 geo1aR
Handaft from B 4o 1)

Shodad atea is handol region

Pilot estimate from BS 2
s
T
fad

f T hadeoffoune | | algorithms can adapt to changes in the interference levels on
"""" tangent the traffic channels by changiny. Information about the inter-
20 -:gﬁﬂd 007‘;’; ol ference levels may be available at the base station, or may be
n ! . .
Zo. 72 looszs jooror || Measured at the mobile. _
108__ 10,0460 10,0097 Finally, it is of great interest to extend the results of this paper

to the problem of soft handoff. Research is currently underway
to address this extension [12].

Negative of Slope

APPENDIX

As seen in Section lll, estimation of changing system param-
eters is crucial to the adaptation of handoff algorithms. Different
estimation strategies of varying complexity are discussed here,
and a strategy may be selected based on implementation com-
plexity constraints.

The system model under consideration is described by
the system parameterw, d;, o;, ju;, ni: @ = 1,2} (see
Fig. 8. Performance of the hysteresis-threshold approximation to the 1®ection Il). For the LO algorithm [see (15)], the set of relevant
algorithm. system parameters § = {a;, 0;, P;: i = 1,2}, where

a; = exp(vt,/d;) includes information about andd;, and
Thus, the LO algorithm is approximated by a hys#’ includes information about[Xy1,:|Zx] (5). We consider
teresis-threshold algorithm through the functigndescribed estimators for these system parameters based only on the
by (19)—(21). received pilot strength samples.

As system parametera and o change, the hysteresis-
threshold algorithm parameters can be adapted by usifg Estimation of Correlation Coefficient

o/ = 6+/(1—(a”)?) in (19)~(21). Performance of this adap- consider estimation of the correlation coefficientthat is

tive approximation is shown in Fig. 8. It can be seen that thyfined in (4). The only observations are the sequences of re-

adaptation property of the LO algorithm is preserved, i.e., t@jved signal strength&X, ;}, and no knowledge of the local

slope at an operating point remains nearly fixed onifixed.  mean pilot power®;, ; is assumed. For notational ease, we omit
Itwas seen in Section IV that for the purposes of adaptatigfie hase station indexin the remainder of this section. Con-

c for the LO algorithm is fixed at.,. Therefore, the invers@ sider a window of\/ consecutive sampléspver whichP;, can

functions in (19)—(21) need not be computed at each sample jjgr assumed to be constant. This assumption is valid for small

stant. In order to adap . 2, andh, only o’ needs to be be j7 sych that the local mean pilot strength does not vary much

evaluated at each sample instant using the estimafomnd  oyer the time intervaMt, (distancelMvt,). Then{ X} will be
&7. Thus, the computationally intensive part of the LO algo-

rithm (eYa'Uation of & function) is avoided while retaining its  sgo; notational ease, we assume that the first sample is atitimel, al-
adaptation property. though in general the samples may begin at any time.

Number of link degradati

P s criut
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Speed 36 kmph

a (ngnzero mean) AR-1 process with correlation coefficient o
Let X be the sample mean over th¢ samples, and lef? be
the sample variance. Then the sample correlatioaf theseM

Speed 72 kmph

observations serves as a simple estimatotfare., 3
C 0.04
~S
e == (22) 0.02
a
where ° ;
1 M-1
estimator ¢
C=grm1 2 WD —X) .
j=1 0.04 ~— 36kmph
006| —. To8kapph
and o 5 0.03 - - oactual
+ 1 - Boos
X=o; Z Xp. (23)
j=1 0.01 0.02
Below, we discuss an estimator of shadow fading variaiice ol of - .

Using &7 instead of the sample variance in (22) gives the esti-
matora’ = C/(67)2.
A maximum likelihood (M L) estimatoé™L for ¢ can also be Fig. 9. The probability distribution functions of different estimators:aind
. . o for various speeds.
found. To derive the ML estimator, assume that the local mean
pilot power is constant (equal #8) and known over the window.

Define When{X,} are independent, the above estimator is unbiased.

However, in our case, due to correlation between samples,
Y; = (X; — P)/o. (24) s a biased estimator of.
In [5], an estimator for was constructed using the quantity
Then{Y,} is a zero mean, unit variance AR-1 process. In [8] ik defined below

is shown tha&™™ for such a process is the root of the cubic | M-l
M—1 M—1 R= Z (Xi — Xig1)*. (27)
2 2 2 2 M-1 i
(1+4a) ZYJYH—I —a Yl"‘2ZYj + Yy =t
j=1 j=2 We evaluatéS[( X; — X;;1)?] to computeB[R]. Under the as-
ta(M —1)(1—a®) =0. (25) sumption that the change in mean signal lev&],— P is

. _ negligible, it is easy to show that
In the practice, however, the local mean povfeas well as the

shadow fading variance® may not be known, and we may use E[(X; — Xi11)%] = 20°(1 — a).
Y; = (X; — X)/&” in place of (24). In [13], where estimationThis implies from (27) that

of AR-1 process parameters is considered in the context of dairy 9

science, a joint ML estimator far anda is also shown to re- E[R] =207(1 ~ a). (28)
sult in a cubic fora. For a detailed discussion on the solutioThus,R/(2(1 — a)) is an unbiased estimator of. This unbi-
of this cubic, and the selection of its appropriate root, see [1&85ed estimator can be implemented only whé&known. If we

Appendix A]. use the estimatat = C/5? given in (22) we get
Fig. 9 shows the probability density function (pdf) of estima- o R

torsa>, aM, anda’ for different mobile speeds (differen). (67)" = 7o\

To reduce computation (especially in the casé™¥), the esti- 2 <1 W)

mator is computed only once evely samples. As expected, the ) _
estimators have a lower variance for small velocities because T above equation, when solved fof, gives

local mean pilot strength varies less over smaller distances. The 6’ =\/C+R/2 (29)
ML estimator outperforms boti® anda’. However, evaluating . hthe | Id ) he ioi L tanda. |
aM™ involves solving a cubic, and is therefore computation i/t the letter J denoting the joint estimation efanda. In

tensive. We use the estimatit for the LO algorithm, because Fig. 9 (bottom right), we show the performance of the estimator

,\J . .
it is simpler to evaluate, and provides acceptable performarite It can he seen that for the given range of mobile speeds,
(Section V). this estimator provides estimatescofvithin 1 dB of the actual

value.

B. Estimation of Shadow Fading Variance . .
C. Estimation of Signal Strength

]The LO algorithm (15) requires the estimation of
Xeet1, il 1x] based on the information/;. In case the
ocal mean powerg’;. are known, perfect estimation is pos-

M sible using (5). However, in a real system, bdth anda are
55 = 1 Z (X; — X)2. (26) unknown. As above, assume that the mean pilot signal strength

does not change much over the observation window. Then, it

As in the previous subsection, consider a blockbtamples
of pilot signal strength measurements. The sample variance
this block of observations is an estimate of the shadow fadiﬁg
variances* !
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