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Abstract—The design of hard handoff algorithms based on op-
timizing the tradeoff between link quality and rate of handoffs is
considered. For handoff algorithms based on this criterion, adap-
tation is precisely defined in terms of remaining on a locus of de-
sirable operating points as system parameters (such as mobile ve-
locity) change. A rule based on a linear cost criterion is used to
select desirable operating points. For this rule, it is shown that the
optimal handoff algorithm, which is impractical, is easily adapted
by fixing a single tradeoff parameter at an appropriate value. The
same adaptation property is shown to hold for an easily imple-
mentable approximation to the optimal algorithm, the locally op-
timal (LO) handoff algorithm. This is in contrast to the poor adap-
tation of hysteresis based approaches which require lookup tables
for adaptation. Practical estimators for all relevant system parame-
ters based on a short window of pilot signal strength measurements
are also discussed. It is shown that the LO algorithm adapts well
when these simple estimators are used. A hysteresis-threshold ap-
proximation to the adaptive LO algorithm is also developed.

Index Terms—Adaptive systems, cellular land mobile radio, han-
dover.

I. INTRODUCTION

A HANDOFF in cellular communications is the process
whereby a mobile subscriber communicating with one

base station is switched to another base station during a
call. Handoff algorithm design is an important component of
the larger problem of radio resource management in mobile
communication systems. In this paper we concentrate on
mobile-assisted hard handoffs in a channelized cellular system.
The term handoff is henceforth used to refer to hard handoff.

The decision to handoff from one cell to the other is based
on various criteria that take into account channel degradation
considerations, as well as Erlang capacity and blocking consid-
erations. However, the initial (and most important) trigger for
a handoff is generally based on pilot signal strength measure-
ments1 taken at the mobile [1]. We focus on this initial trigger
event and assume that a handoff occurs if and only if such a
trigger is present. Thus, in our terminology, a handoff event is
the occurrence of the initial trigger.

As argued in [2], the handoff algorithm design problem may
be posed as an optimization to obtain the best tradeoff between
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1Often, pilot signal strength measurements are the only measurements avail-
able for the candidate handoff base stations, because no traffic channel link ex-
ists between these base stations and the mobile.

Fig. 1. Tradeoff curves on� � � plane.

the expected rate of handoffs and the link quality. The
measure of link quality is the expected rate of link degradation
events on a mobile trajectory. A link degradation event
corresponds to the pilot power level falling below a threshold

. Under the assumptions that 1) the peak power of the trans-
mitters is limited, 2) the link gains seen by the pilot and traffic
channels are the same, and 3) the interference level is known
and does not change significantly with time, it is easy to see
that a measure of traffic channel quality may be derived from
the rate of link degradation events. However, if the interference
level varies with time, and can be tracked by other sensors, this
information can be used to improve the handoff algorithm by
varying the threshold .

The optimization to obtain the best tradeoff between and
can be solved using dynamic programming (DP) [3] to yield

an optimal handoff algorithm (see, e.g., [2]). A locally optimal
(LO) handoff algorithm was introduced in [2] as a practical ap-
proximation to the optimal algorithm. It was conjectured in [2]
that the LO algorithm can easily be made to adapt to changes in
system parameters. This adaptation property is established pre-
cisely in this paper.

For a general handoff algorithm, letdenote the handoff al-
gorithm parameters, and let denote the vector of system pa-
rameters. The vector may include mobile velocity and prop-
agation characteristics, whilemay be the hysteresis level for
the case of a simple hysteresis handoff algorithm. Given a fixed
choice of system parameters, say, varying over all choices
of handoff algorithm parameters results in a set of feasible op-
erating points on the plane (Fig. 1).
If the handoff parameteris unidimensional, this set of feasible
operating points is defined to be the tradeoff curve for the system
parameters and the given handoff algorithm.

In case is multidimensional, the set of feasible operating
points is a region on the plane. The lower envelope
of this region defines the best tradeoff curve for the given
and the given handoff algorithm. Alternatively, a tradeoff curve
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may be generated by varying only one of the parameters, while
fixing the rest.

In order to select a suitablefor the given , a rule is needed
to select a desirable operating point on the tradeoff curve cor-
responding to . This rule may be based on higher layer con-
siderations, and may be in the form of a constraint curve on the

plane. The desirable operating point, say,, is then
defined as the intersection of the tradeoff curve and the con-
straint curve. Alternatively, the desirable operating point may
be defined as the point on the tradeoff curve where a given cost
metric, which may be imposed by higher layer considerations,
is minimized. Let the value of the handoff algorithm parameters
at the desirable operating point be.

Changes in may cause the tradeoff curve to shift (see
Fig. 1). Let the new system parameters be, and let the
desirable operating point on the new tradeoff curve be.
The old choice of algorithm parameters may result in an
operating point . Adaptationof a handoff algorithm
involves estimation of , and finding to yield a
desirable operating point on the tradeoff curve corresponding
to .

It is important that the function as well as the estimators of
be easy to implement. Although every functioncan be ap-

proximated by a lookup table, construction of this lookup table
would require obtaining tradeoff curves for different values of

through simulations or repeated field trials. For multidimen-
sional , the lookup tables also need large memory for storage.
We show that for the LO algorithm, the adaptation function can
be obtained in closed form, and does not require the construc-
tion of lookup tables.

If a rule for the selection of desirable operating points is not
given, anad hoccriterion such as trying to remain on the “knee”
of the tradeoff curve may be adopted. This ill-defined criterion
has been used in previous papers on adaptive hard handoff algo-
rithms. We develop a more systematic rule, based on a general
linear cost structure, and use it to define adaptation.

Previous work on adaptive hard handoff algorithms [4]–[6]
has considered the tradeoff between number of handoffs and
handoff delay. Desirable operating points are defined using the
“knee” criterion in these papers. Also considered in [5] and [6]
is the estimation of the changing system parameters. Estimation
of shadow fading variance as well as adaptation of hysteresis
level and averaging interval length to changes inare consid-
ered in [5]. Estimators of velocity are considered in [6], where
averaging interval length is adapted as a function of the velocity
estimate.

Our approach differs from previous work in the following
ways. First, we give a precise rule for defining the locus of de-
sirable operating points based on a general linear cost structure.
Second, we substitute handoff delay with a performance metric
that is directly related to link quality. Third, the estimates of the
system parameters that we use are based solely on pilot signal
strength measurements. No other information, such as Doppler
measurements for estimating velocity, or distance information
as in [7], is used in our approach. Finally, and most importantly,
we derive adaptive handoff algorithms for which the adaptation
rule is explicit and does not require the construction
of lookup tables. Furthermore, this function can be obtained by

using a single field-trial or simulation for a typical set of system
parameters values.

This paper is organized as follows. In Section II a mathemat-
ical structure for the handoff problem is developed. The adap-
tation property and the optimal handoff algorithm are described
in Section III. Adaptation of the LO algorithm is considered in
Section IV. In Section V, an adaptive hysteresis-threshold ap-
proximation of the LO algorithm is developed, and results on
its performance are presented. Conclusions are given in Sec-
tion VI. Finally, estimators of system parameters are presented
in the Appendix.

II. PRELIMINARIES

Assume that only two base stations (BS’s), say BS-1 and
BS-2, are involved in the handoff, i.e., consider only that por-
tion of the trajectory on which the signals received from these
two base stations are the strongest. The extension to the case
where more than two base stations are involved is not difficult
[8]. The analysis is restricted to short time horizons over which
it may be assumed that the mobile is moving on a straight line
with fixed velocity . Over the time horizon of interest, let
samples of received pilot power be taken at equally spaced time
intervals seconds apart. Let and be the received
pilot signal strengths at theth sampling instant (time ) from
BS-1 and BS-2, respectively. Also, let the respective distances
of the mobile from BS-1 and BS-2 be and . Now as-
sume the following propagation model for base station

dBm (1)

(2)

where is the local mean pilot power, and is the shadow
fading at the th sampling instant. Short-term variations due
to multipath are assumed to be either averaged out or com-
batted through diversity. A log-normal first order autoregres-
sive (AR-1) model is assumed for shadow fading [9]. There-
fore, under the assumption of equally spaced time samples and
constant , is a zero mean AR-1 Gaussian process with
autocorrelation function,

See Fig. 2 for a typical propagation characteristic. Furthermore,
can be written recursively as

(3)

where
are independent and identically distributed (i.i.d.)

random variables,
is the shadow fading correlation distance,
is the shadow fading variance, and
is the correlation coefficient of , i.e.,

(4)
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Fig. 2. Typical profile of received pilot power from two base stations as mobile
moves along the line joining the base stations. The solid line is the local mean
received power component which decreases monotonically as the mobile moves
away from the base station. The dotted line includes shadow fading. Parameters
are as given in Table I.

Under this model, the distribution of conditioned on
, is independent of earlier received power samples (a stan-

dard result for AR-1 Gaussian processes), and is described com-
pletely by its conditional mean and variance

(5)

In the current model, there is no correlation between the shadow
fading from the two base stations, although the analysis of this
paper extends easily to the case where the fading is correlated
[8].

Let denote the index of the operative base station at sam-
pling instant (i.e., , when the mobile is communicating
with base station), and let denote the other base station. We
assume that a handoff decision is made during each sampling in-
terval. The decision variable takes on two values. If ,
a handoff is made, resulting in ; if , no
handoff is made, and . Define the state vector as

(6)

Let denote all the information available for decision making
at time , i.e.,

(7)

The decision at time can be based on all signal strength
measurements up to time, i.e., , where is the
decision function at time. The sequence of decision functions,

, constitutes the handoff policy.
An example of a handoff algorithm is the simple hysteresis

algorithm [1]. The handoff policy of the hysteresis algorithm,
is described by the following equation:

(8)

i.e., a handoff occurs whenever the other base station’s power
exceeds the current base station’s power by a level. The
handoff algorithm parameter completely defines the
handoff policy for the hysteresis algorithm.

We measure the performance of a handoff algorithm in terms
of the expected rate of handoffs and the expected rate of
link degradation events , the rates being defined per unit
time by

(9)

where is the indicator function and the expectation is car-
ried out over all realizations of the state sequence ,
given the handoff algorithm . The average is taken over
samples, where is the duration of the call. The parameter

is the minimum pilot signal strength required for satisfactory
communication with BS-, and the pilot strength falling below

results in a link degradation event. The performance metrics
and are clearly a function of the handoff policy, and

hence we write them explicitly as and . Further,
for a given family of handoff algorithms with handoff param-
eters , with slight abuse of notation, we can write the perfor-
mance metrics as and .

III. A DAPTATION AND THE OPTIMAL HANDOFF ALGORITHM

To determine a desirable operating point on the tradeoff curve
corresponding to a given handoff algorithm and given, we
use a linear cost criterion. That is, we assume that the goal is
to minimize a linear combination of the performance metrics

and

for a given (10)

over the set of feasible. Note that any general linear cost func-
tion can be written in the form given in (10) for the purposes of
minimization. Nonlinear cost criteria are discussed at the end of
this section.

We assume that the tradeoff curve is convex. This is a reason-
able assumption because convex tradeoff curves are obtained
for the optimal, LO, hysteresis and hysteresis-threshold algo-
rithms in [2], and also for the algorithms considered in [4]–[6].
The convexity assumption can be extended to a general handoff
algorithm (with more than one parameter) if randomization is
allowed and the tradeoff curve is defined to be the lower en-
velope of all feasible operating points. If the tradeoff curve is
differentiable everywhere, the cost function (10) is minimized
by setting

(11)

Remark 1: If (11) has no solution, the cost (10) is minimized
at one of the end points of the tradeoff curve. If the assumption
about the gradient of the tradeoff curve being continuous is re-
laxed, (10) is minimized at a point on the tradeoff curve where
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lies between the value of the left derivative and the value of
the right derivative at that point.

Using (10), the desirable operating point may be defined in
terms of the gradient as given below.

Definition 1: A desirable operating point on a tradeoff curve
is the point at which the ratio of the incremental change in

and the incremental change in , i.e., the gradient of the
tradeoff curve, equals .

This definition of desirable operating point is much more pre-
cise than the “knee” criterion used in previous work on adaptive
hard handoff algorithms [4]–[6], and we use it to define adapta-
tion as follows.

Definition 2: A handoff scheme is said to be adaptive if it
meets the following criteria.

1) It allows for the estimation of all relevant system parame-
ters which can change during a call, using an appropriate
estimator .

2) The handoff algorithm parameters that are required to op-
erate on a desirable operating point on the tradeoff curve
can be written as an explicit function of.

We now consider adaptation of the optimal handoff algo-
rithm. The optimal handoff algorithm attains the best tradeoff
between the performance metrics by minimizing given a
constraint on . It has been proved [2] that this optimum
tradeoff problem can be posed in a Bayesian framework, with
the optimum decision policy being given by

(12)

where the minimization is over all possible. The tradeoff pa-
rameter is the handoff algorithm parameterfor the class of
optimal handoff algorithms. The parametercan also be thought
of as the relative cost of a handoff versus that of a link degrada-
tion event. Dynamic programming (DP) can be used to solve
(12) recursively as shown in [2] and [10]. The locus of op-
erating points of the optimal algorithm [i.e., the set of points

] obtained by varying is the tradeoff
curve of the optimal algorithm. Tradeoff curves for for different
mobile velocities are shown in Fig. 3.

We next show that for the optimal algorithm, the desirable
operating point on the tradeoff curve for any system parameter
value can be attained simply by setting . From [2], we
know that the tradeoff curve for the optimal algorithm is convex.
Thus, the point on the tradeoff curve where the gradient isis
the same as the point on the tradeoff curve where is
minimized. By definition of the optimal algorithm, the above
minimum is attained by solving the Bayes problem (12) for

. Thus, fixing the algorithm parameter guaran-
tees operation on the locus of desirable operating points for all
system parameter values. This result is verified for changing
in Fig. 3.

The optimal algorithm also has the obvious advantage of re-
sulting in minimum cost among all handoff algorithms. How-
ever, the optimal algorithm is impractical because it requires
prior knowledge of the entire trajectory and system parameters
[2]. Also, while the adaptation of the optimal algorithm can be
written explicitly as a function of system parameter estimates
for the purposes of adaptation (see Definition 2), this function
is complicated and not easily evaluated.

Fig. 3. Tradeoff curves for optimal algorithm with tangent lines at operating
points with fixed slope. The tradeoff curves move up when velocity increases
because the mobile covers a greater distance in the same time interval (causing
the� to increase). Prediction of signal strength at the next time instant also
becomes difficult at higher speeds, resulting in higher� .

We now comment on the case where a nonlinear cost struc-
ture is imposed by higher layers. The current approach can be
applied to the nonlinear case by using standard minimization
tools to find a desirable operating point for one set of system pa-
rameter values, and then linearizing the given cost around that
point to obtain for an approximate linear cost structure as in
(10). The usefulness of such an approximation will of course
depend on the nature of the nonlinearity of the cost.

IV. A DAPTATION OF THE LO ALGORITHM

The LO handoff algorithm was suggested in [2] as a prac-
tical approximation to the optimal algorithm (Section III), and
it also has as a handoff algorithm parameter. The LO algorithm
is essentially equivalent to the dynamic programming solution,
with the time horizon limited to the immediate future sampling
instant, . The set of decision functions for the LO algo-
rithm is governed by,

(13)
Using (5), the above probabilities can be written in terms of the

function, and the LO algorithm takes the form [2]

(14)

To evaluate the above decision rule,, and
need to be estimated for both base stations ( ) using
estimators , and , respectively. The decision rule
using these estimators is

(15)



2460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 11, NOVEMBER 2000

Fig. 4. Performance of the adaptive LO algorithm.

Examples of estimators based only on received pilot measure-
ments are discussed in the Appendix. For the simulations in this
paper, estimators and are used to estimate the constant
but unknown parameters and . Estimator is used to
estimate . Among the estimators discussed in the
Appendix, the ones selected for simulation are not the most pre-
cise ones, but rather the ones which are simple to implement. It
is shown that the adaptation property of the LO algorithm holds
even with these relatively weak estimators.

The LO algorithm has the following advantages over other
algorithms. First, as shown in [2], the LO algorithm’s perfor-
mance is close to that of the optimal algorithm. Second, it is
clear from (15) that the structure of the LO algorithm depends
directly on the system parameter estimates. Thus, in contrast to
the optimal and hysteresis-based algorithms, the LO algorithm
can easily be adapted as the system parameters change. Finally,
since the LO algorithm is derived as an approximation to the op-
timal algorithm, we expect it to inherit the adaptation property
of the optimal algorithm, i.e., the slope at the operating point
should remain fixed oncehas been fixed.

Although the LO algorithm is expected to adapt to all system
parameters, we use simulations to verify adaptation only to
changes in . Note that can change significantly over a few
meters, whereas parametersand can generally be assumed
to be constant over a large region of the cell. Changes in
influence the system parameter of the LO
algorithm. Estimating eliminates the need to separately
estimate .

Fig. 4 shows the results of simulation for parameters values
shown in Table I. It can be seen that fixingindeed gives oper-
ating points with nearly the same gradient2 for different . Using
Definition 1, it follows that operation at or near the desirable
operating point can be maintained simply by fixing ap-
propriately. In other words, the adaptation function (Definition
2, part 2) for the LO algorithm is simply a constant, .

2Slight changes in gradient for fixedc are caused by imperfect estimators and
also because the LO algorithm is an approximation to the optimal.

TABLE I
PARAMETERS USED FOR ALL THESIMULATIONS. THE RESULTING FADE

MARGIN IS 3�

Recall that for the LO algorithm, the only handoff parameter
is the tradeoff parameter.

The following procedure is used to selectfor the given
of the linear cost function (10). Through field trials or simula-
tion for a typical combination of system parameters, we can
obtain a tradeoff curve, and select a value ofcorresponding
to the desired gradient . For , we can claim from the
adaptation property that the operating point will be at a point
with gradient close to even when changes. Thus, the use
of this procedure, along with estimators , and , re-
sults in a simple and practical adaptive locally optimal handoff
algorithm.

To stress the important role of estimators in the adaptation of
the LO algorithm, we consider its performance with the estima-
tors fixed at one value even as actual system parameters change.
In particular, even as changes, is kept fixed to the value cor-
responding to km/h. However, estimators and are
allowed to vary depending on the pilot measurements. Tradeoff
curves for different velocities are shown in Fig. 5. Fixingyields
operating points with widely varying gradients, demonstrating
that system parameter estimation is crucial to the adaptation of
the LO algorithm.

The only disadvantage of the LO algorithm relative to the hys-
teresis based algorithm is the need to evaluate thefunction at
each sample instant; this can be avoided by using the approxi-
mation technique given in the following section.

V. HYSTERESIS-THRESHOLDAPPROXIMATION

An ad hochandoff algorithm that is currently in use is the
simple hysteresis algorithm (8). For this algorithm, however,
there are no clear rules for selecting a suitable value of, and its
performance was shown to be much inferior to the LO algorithm
in [2].

Performance of the hysteresis algorithm can be improved by
incorporating a threshold on signal strength. The hysteresis-
threshold algorithm was introduced in [11], and it can be gen-
eralized by including a threshold on the signal from the base
station

otherwise.

(16)
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Fig. 5. Performance of a nonadaptive LO algorithm, with correlation
coefficienta fixed to the value corresponding to speed 36 km/h.

For the hysteresis-threshold algorithm also, there is no obvious
way of selecting suitable values of quantities and . Ob-
taining the best tradeoff curve (see Section I) for this algorithm
is difficult because it is not clear which combination of the three
parameters will result in the best tradeoff curve. Therefore, as
in [2], we consider tradeoff curves obtained by fixing, and
varying ( is used). This hysteresis-threshold algorithm
effectively has only one handoff algorithm parameter, ,
and it results in a tradeoff curve, rather than a region (see Sec-
tion I).

The rule for adapting (Definition 2, part 2) as a function of
system parameters does not follow naturally from the structure
of the handoff algorithm (16). We now show that such a rule
is important for the hysteresis-threshold algorithm. Tradeoff
curves for a hysteresis-threshold algorithm, whereis not
altered as a function of , are shown in Fig. 6. It can be seen
that there is a considerable change in the slope at the operating
points as velocity changes andis kept fixed. Fig. 6 also
reveals that a lookup table may be used to selectas a function
of in order to stay on an operating point with the desired
gradient. (As mentioned in Section I, constructing such lookup
tables requires extensive field trials or simulations.)

To develop simpler rules for adaptation of and
to changes in system parameters we derive the hys-

teresis-threshold algorithm as an approximation to the LO
algorithm. This approximation can also be considered as a
way of implementing the LO algorithm without evaluating a
function at each sample instant.

The decision function of the LO algorithm depends only on
and (17). To achieve the desired approximation,

is derived to make the decision function of the hys-
teresis-threshold algorithm (16) close to the decision function
of the LO algorithm (15). Since rules for adapting the LO al-
gorithm as a function of are known, the hysteresis-threshold
algorithm derived in this way is expected to inherit the adapta-
tion properties of the LO algorithm.

To derive the approximation, consider the handoff region of
the LO algorithm. The handoff region at sampling instant

Fig. 6. Performance of hysteresis-threshold algorithm with hysteresis level
fixed to 3 dB.

corresponds to the area on the plane where
. Consider the case of handoff from BS-2 to BS-1.

Let be the same for both base stations
(the derivation can be carried out without this assumption also).
Then, the boundary of the handoff region for the LO algorithm
(15) is given by

(17)

The handoff region and its boundary are shown in Fig. 7. Con-
sider approximating this boundary (17) by three straight lines

and as shown in Fig. 7. Lines and correspond to
the threshold parameters and in the definition of the hys-
teresis-threshold algorithm (16), while the linecorresponds
to the hysteresis parameter.

To find the equation of , set to in (17). Solving
for gives the asymptote

(18)

corresponding to the condition, in (16). Com-
paring (16) and (18), we get

(19)

Similarly

(20)

To find the equation of , use the intercepts of (17) with the
lines and . Setting in
(17) gives . Similarly, setting

gives . Thus, the
intercepts are at the points

and

Joining these points gives the following equation for:

Comparing to (16) gives

(21)
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Fig. 7. Decision regions of the LO algorithm and its hysteresis-threshold
approximation.

Fig. 8. Performance of the hysteresis-threshold approximation to the LO
algorithm.

Thus, the LO algorithm is approximated by a hys-
teresis-threshold algorithm through the function, described
by (19)–(21).

As system parameters and change, the hysteresis-
threshold algorithm parameters can be adapted by using

in (19)–(21). Performance of this adap-
tive approximation is shown in Fig. 8. It can be seen that the
adaptation property of the LO algorithm is preserved, i.e., the
slope at an operating point remains nearly fixed onceis fixed.

It was seen in Section IV that for the purposes of adaptation,
for the LO algorithm is fixed at . Therefore, the inverse

functions in (19)–(21) need not be computed at each sample in-
stant. In order to adapt and , only needs to be be
evaluated at each sample instant using the estimatorsand

. Thus, the computationally intensive part of the LO algo-
rithm (evaluation of a function) is avoided while retaining its
adaptation property.

VI. CONCLUSION

We have given a precise definition for the adaptation of
handoff algorithms to changing system parameters. We have
shown that under our definition of adaptation, the LO algorithm
adapts to changing system parameters simply by fixing tradeoff
parameter appropriately. The adaptation rule is explicit and
does not require lookup tables. We have also constructed
estimators of system parameters based solely on received pilot
signal strength samples. Also, information about the mean
signal strength and the statistics of shadow fading need not be
provided by the base station; rather, they are estimated using
the pilot signal strength samples themselves.

We have also presented an easily implementable hysteresis-
threshold approximation to the analytically derived LO algo-
rithm, and shown that it retains the adaptive nature of the LO
algorithm. Clear rules for selecting the hysteresis and threshold
levels as a function of the system parameter estimates have been
developed. There is no need to construct lookup tables for ad-
justing these levels in order to achieve adaptation.

While we have considered only the case of fixed interference
levels, both the LO and the hysteresis-threshold approximation
algorithms can adapt to changes in the interference levels on
the traffic channels by changing. Information about the inter-
ference levels may be available at the base station, or may be
measured at the mobile.

Finally, it is of great interest to extend the results of this paper
to the problem of soft handoff. Research is currently underway
to address this extension [12].

APPENDIX

As seen in Section III, estimation of changing system param-
eters is crucial to the adaptation of handoff algorithms. Different
estimation strategies of varying complexity are discussed here,
and a strategy may be selected based on implementation com-
plexity constraints.

The system model under consideration is described by
the system parameters (see
Section II). For the LO algorithm [see (15)], the set of relevant
system parameters is , where

includes information about and , and
includes information about (5). We consider

estimators for these system parameters based only on the
received pilot strength samples.

A. Estimation of Correlation Coefficient

Consider estimation of the correlation coefficientthat is
defined in (4). The only observations are the sequences of re-
ceived signal strengths , and no knowledge of the local
mean pilot powers is assumed. For notational ease, we omit
the base station indexin the remainder of this section. Con-
sider a window of consecutive samples,3 over which can
be assumed to be constant. This assumption is valid for small

, such that the local mean pilot strength does not vary much
over the time interval (distance ). Then will be

3For notational ease, we assume that the first sample is at timek = 1, al-
though in general the samples may begin at any time.
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a (nonzero mean) AR-1 process with correlation coefficient.
Let be the sample mean over the samples, and let be
the sample variance. Then the sample correlationof these
observations serves as a simple estimator for, i.e.,

(22)

where

and

(23)

Below, we discuss an estimator of shadow fading variance.
Using instead of the sample variance in (22) gives the esti-
mator .

A maximum likelihood (ML) estimator for can also be
found. To derive the ML estimator, assume that the local mean
pilot power is constant (equal to) and known over the window.
Define

(24)

Then is a zero mean, unit variance AR-1 process. In [8] it
is shown that for such a process is the root of the cubic

(25)

In the practice, however, the local mean poweras well as the
shadow fading variance may not be known, and we may use

in place of (24). In [13], where estimation
of AR-1 process parameters is considered in the context of dairy
science, a joint ML estimator for and is also shown to re-
sult in a cubic for . For a detailed discussion on the solution
of this cubic, and the selection of its appropriate root, see [13,
Appendix A].

Fig. 9 shows the probability density function (pdf) of estima-
tors , , and for different mobile speeds (different).
To reduce computation (especially in the case of ), the esti-
mator is computed only once every samples. As expected, the
estimators have a lower variance for small velocities because the
local mean pilot strength varies less over smaller distances. The
ML estimator outperforms both and . However, evaluating

involves solving a cubic, and is therefore computation in-
tensive. We use the estimator for the LO algorithm, because
it is simpler to evaluate, and provides acceptable performance
(Section IV).

B. Estimation of Shadow Fading Variance

As in the previous subsection, consider a block ofsamples
of pilot signal strength measurements. The sample variance of
this block of observations is an estimate of the shadow fading
variance

(26)

Fig. 9. The probability distribution functions of different estimators ofa and
� for various speeds.

When are independent, the above estimator is unbiased.
However, in our case, due to correlation between samples,
is a biased estimator of.

In [5], an estimator for was constructed using the quantity
defined below

(27)

We evaluate to compute . Under the as-
sumption that the change in mean signal level, is
negligible, it is easy to show that

This implies from (27) that

(28)

Thus, is an unbiased estimator of . This unbi-
ased estimator can be implemented only whenis known. If we
use the estimator given in (22) we get

The above equation, when solved for, gives

(29)

with the letter J denoting the joint estimation ofand . In
Fig. 9 (bottom right), we show the performance of the estimator

. It can be seen that for the given range of mobile speeds,
this estimator provides estimates ofwithin 1 dB of the actual
value.

C. Estimation of Signal Strength

The LO algorithm (15) requires the estimation of
based on the information . In case the

local mean powers are known, perfect estimation is pos-
sible using (5). However, in a real system, both and are
unknown. As above, assume that the mean pilot signal strength
does not change much over the observation window. Then, it
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Fig. 10. The MSE of various estimators^X .

is possible to approximate by , and by . The
resulting estimator for is

(30)

The simple estimator was used for the numerical
results in [2]. This estimator is easier to implement than the one
in (30) because it does not require the computation of the mean
pilot signal strength.

Fig. 10 shows the MSE of both estimators and
as the mobile speed changes. The MSE is defined as

Normalization is done by dividing the MSE by [this
is the conditional variance of in (5)]. It is seen that the es-
timator performance deteriorates as the mobile speed increases.
This is because changes significantly from sample to sample
when mobile speed is higher, leading to a violation of the as-
sumption of constant over a block of samples. It can also
be seen that the estimator has an MSE that is about 30%
greater than that of . Depending on implementation com-
plexity constraints, either of the estimators or can
be used in a real system.
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