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Abstract—We study the degrees of freedom (DoF) of the �-user
interference channel with coordinated multipoint (CoMP) trans-
mission and reception. Each message is jointly transmitted by ��

successive transmitters, and is jointly received by �� successive
receivers. We refer to this channel as the CoMP channel with a
transmit cooperation order of �� and receive cooperation order
of �� . Since the channel has a total of � transmit antennas and
� receive antennas, the maximum possible DoF is equal to � . We
show that the CoMP channel has � DoF if and only if �� ��� �
� � �. The key idea is that the zero forcing of the interference
corresponding to the ��� message at the decoder of the ��� mes-
sage, where � �� �, can be viewed as a shared responsibility be-
tween the �� transmitters carrying the ��� message, and the ��

receivers decoding the ��� message. For the general case, we de-
rive an outer bound that states that the DoF is bounded above
by ��� ��� ��� � �����. For the special case with only CoMP
transmission, i.e, �� � �, we propose a scheme that can achieve
����������DoF for all� � �	, and conjecture that the result
holds true for all � . In the proposed coding scheme, the�� trans-
mitters carrying each message are used to cancel the interference
introduced by this message at the first �� � � receivers, thereby
allowing each of these receivers to enjoy 1 DoF, and asymptotic in-
terference alignment is used to align the interfering signals at each
other receiver to occupy half the signal space. The achievability
proofs are based on the notion of algebraic independence from al-
gebraic geometry.

Index Terms—Algebraic independence, coordinated multipoint
(CoMP), interference alignment, Jacobian criterion, partial coop-
eration.

I. INTRODUCTION

I NTERFERENCE is identified as a major bottleneck in re-
alizing a ubiquitous and high-speed wireless world. There

has been considerable interest in understanding the best ways
to manage interference in wireless networks. Recent progress
[1]–[6] on Gaussian interference channels has advanced our un-
derstanding of the fundamental limits of communication in the
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presence of interference. The Gaussian interference channel has
a finite (say ) number of transmitter–receiver pairs with each
transmitter having a message desired by the respective receiver.
Among other settings, the interference channel is a good model
for cellular wireless networks, both downlink and uplink. Even
if we can determine and implement the best possible achievable
schemes for the interference channel, the demand for wireless
connectivity is likely to exceed what the physical channel can
offer. For this and other reasons, there has been much interest
in understanding the fundamental limits of cooperative interfer-
ence networks. Typically, cooperation requires additional infra-
structure, but it could be cost effective depending on the overall
objective. The focus of this paper is to explore the benefits of
allowing cooperation among the transmitters and the receivers
to enable joint transmission and reception of the messages.

Consider a scenario where the transmitters are connected to
each other through a backhaul link. The transmitters could ex-
change the messages with each other through the backhaul so
that multiple transmitters jointly transmit information to the re-
ceivers. We capture the cost of cooperation through a number

, called the transmit cooperation order, which denotes the
number of transmitters having access to each message. We refer
to this channel as the interference channel with coordinated mul-
tipoint (CoMP) transmission. Note that this model fits well in
the context of a cellular downlink with a high-speed fiber-optic
or microwave backhaul connecting the base stations, and the
acronym CoMP is widely used by the fourth-generation cellular
standards [7].

Similarly, consider a scenario where the receivers are con-
nected through a backhaul and the decoder of a message has
the knowledge of the signals received at multiple receivers. The
number , referred to as the receive cooperation order, repre-
sents the number of receivers that jointly decode each message.
We refer to this channel as the interference channel with CoMP
reception. This model fits well in the context of the cellular
uplink. We could in general consider the interference channel
with both CoMP transmission and CoMP reception. For sim-
plicity, we use the term CoMP channel to denote the interfer-
ence channel with CoMP transmission and CoMP reception. In
[8], a potential application for studying such a channel is pre-
sented. Consider a three-hop wireless network scenario with the
interference channel at the center forming a bottleneck. Each
transmitter has access to multiple message sources, where the
decoder of each message has access to the signals received at
multiple receivers.

Our objective in this paper is to characterize the degrees
of freedom (DoF) of the CoMP channel as a function of ,

, and . The DoF, also known as the multiplexing gain
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and the prelog factor, can be interpreted as the total number of
interference-free channels that can be created using the original
channel. If a channel has DoF equal to , then the sum capacity
scales with signal-to-noise ratio (SNR) as . Fol-
lowing up on the breakthrough papers [1], [9], [10], in which
the DoF of the X-Channel and the -user interference channel
are characterized, recent efforts [11]–[14] have characterized
the DoF of many other wireless channels. The proof techniques
developed in the aforementioned papers are inadequate in
characterizing the DoF of the CoMP channel. In [15]–[17],
tools from algebraic geometry are used to determine the achiev-
able DoF using beamforming techniques in multiple-input
multiple-output (MIMO) interference channels (without coop-
eration). These concepts from algebraic geometry play a central
role in determining the DoF of the CoMP channel. Specifically,
we exploit the notion of algebraic independence of rational
functions, and the Jacobian criterion for verifying the algebraic
independence, to determine the achievable schemes.

A. Organization

The rest of this paper is organized as follows. In Section II, we
introduce the channel model. In Section III, we summarize the
related work. In Section IV, we provide a preview of the main
results of this paper. In Section V, we prove an outer bound on
the DoF of the CoMP channel. In Section VI, we summarize
the necessary concepts from algebraic geometry, and prove a
useful technical lemma. In Section VII, we derive conditions on
the transmit and receive cooperation orders such that the DoF
of the CoMP channel is equal to . In Sections VIII, and X,
we present achievable schemes for the interference channel with
CoMP transmission. In Section XI, we provide some concluding
remarks.

B. Notation

We use the following notation. For deterministic objects, we
use lowercase letters for scalars, lowercase letters in bold font
for vectors, and uppercase letters in bold font for matrices. For
example, we use to denote a deterministic scalar, to denote
a deterministic vector, and to denote a deterministic matrix.
For random objects, we use uppercase letters for scalars, and
underlined uppercase letters for vectors. Random objects with
superscripts denote sequences of the random objects in time.
For example, we use to denote a random scalar, to denote
a random vector, and and to denote the sequences of
length of the random scalars and vectors, respectively.

Given the matrix and the ordered sets , we use
to denote the submatrix of obtained by

retaining rows indexed by and columns indexed by . We
use to denote the set , where the number

will be obvious from the context. For any , we use
and to denote the sets

The indices are taken modulo such that .
Observe that for any two indices , and , is
true if and only if .

II. CHANNEL MODEL

Consider transmitting independent messages over the
SISO Gaussian interference channel with transmitters and

receivers

(1)

with an average transmit power constraint of at each trans-
mitter. In fact, we consider such parallel Gaussian interfer-
ence channels, providing the encoders and decoders an oppor-
tunity to jointly encode and jointly decode the messages over
the parallel channels. We can combine the parallel channels
and express them together as one MIMO Gaussian interference
channel

(2)

such that the channel transfer matrices are square and diagonal.
The channel transfer matrix is given by

. . .

where denotes the complex channel coefficient from
transmitter to receiver in the parallel channel. We assume
that all channel coefficients are known at all transmitters and re-
ceivers before communication starts. The reason for considering
parallel channels will be clear at a later stage.

A. CoMP Model

We consider transmitting independent messages over the
channel (2) with message intended for receiver . In the
CoMP setup, we assume that the transmitters cooperatively
transmit these messages to the receivers. For each , the
message is transmitted jointly by the transmitters from the
transmit set given by

(3)

The number , referred to as the transmit cooperation order,
controls the level of cooperation allowed. Observe that this
model allows for a natural transition from the interference
channel with no cooperation to the broadcast channel with
perfect cooperation; these two extreme cases can be recovered
by setting and , respectively.

We now allow for receive cooperation by letting multiple re-
ceivers jointly decode messages. For each , we define the
receive set as

(4)

The receivers in the receive set jointly decode the message
, i.e., the decoder of message has access to the signals

. The number is referred to as the receive
cooperation order. Observe that our model covers the interfer-
ence, broadcast, multiple-access, and point-to-point channels as
special cases.
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1) : No cooperation is allowed either at
the transmitters or at the receivers, and hence, we obtain
the -user interference channel.

2) : All the transmitters cooperate to
jointly transmit the messages, and hence, we obtain a

-user broadcast channel.
3) : All the receivers cooperate to

jointly decode the messages, and hence, we obtain a
-user multiple access channel.

4) : We have perfect cooperation at both
the transmitters and the receivers, and hence, we obtain a
point-to-point MIMO channel with transmit antennas
and receive antennas.

Thus, the CoMP channel is specified by the parameters , ,
, and , denoting the number of users, transmit coopera-

tion order, receive cooperation order, and the number of parallel
channels, respectively.

B. Achievable Scheme

For each , the message is transmitted jointly by
the transmitters in the transmit set and is jointly received by
the receivers in the receive set . A communication scheme
consists of encoders and decoders. Each transmitter is as-
sociated with an encoder and each receiver is associated with a
decoder. We consider the block coding schemes with denoting
the block length. For a fixed rate tuple
and a block length , the message is selected from the
set . For each , the encoder at
transmitter takes the available messages as in-
puts and outputs the signal

satisfying the power constraint

For each , the decoder of message takes the available
received signals as inputs and reconstructs the
message

Assuming that the messages are independent and uniformly dis-
tributed, any communication scheme is associated with a prob-
ability of error , defined as . A rate tuple

is said to be achievable if there exists a se-
quence of block codes such that as . The ca-
pacity region is defined as the closure of the set of achiev-
able rate tuples. The DoF region is defined as the set of tuples

satisfying

for each weight vector .

C. DoF

Let denote the normalized sum DoF of
the CoMP channel with a transmit cooperation order of and
a receive cooperation order of normalized by the number of
parallel channels . In general, this number can depend on the
specific realizations of channel coefficients

However, we ignore this dependence because, in all the known
cases, the DoF turns out to be the same for all generic channel
coefficients. We refer the reader to Section VI for a precise defi-
nition of the generic property. Let denote the
asymptotic normalized sum DoF, i.e.,

We say that the DoF is independent of the number of parallel
channels and is equal to some number if and only if

for all .

III. RELATED WORK

CoMP transmission (also known as network-MIMO, vir-
tual-MIMO, and multicell-MIMO) has been identified as one
of the study items for fourth-generation cellular systems such
as LTE-Advanced. There has been considerable interest in
devising practical cooperative schemes that improve on unco-
ordinated schemes, and in estimating the tradeoff between the
performance benefits and the additional overhead due to coop-
eration [7], [18], [19]. Also, we note that CoMP transmission
and reception is just one of the many possible ways for partial
transmitter and receiver cooperation in the interference channel.
In [20] and [21], it is assumed that the nodes can both transmit
and receive in full duplex. In [22] and [23], the presence of
noise-free finite-capacity links between the transmitter nodes
or the receiver nodes is assumed. In [24], the receivers are
allowed to exchange the decoded messages over a backhaul
link to enable interference cancellation.

Special cases of the CoMP channel have been studied in
the past under different names such as cognitive interference
channel [25]–[29], interference channel with local or partial
side information [30], [31], interference channel with clustered
decoding [8], or a combination of these terms [32]. However,
the DoF of the CoMP channel has not been determined except
in some special cases.

1) : With perfect cooperation at the trans-
mitters, we see that each parallel channel is equivalent
to the -user multiple-input single-output (MISO) broad-
cast channel with transmit antennas. Therefore, we ob-
tain that the DoF is independent of and is equal to
[33]–[35].

2) : With perfect cooperation at the re-
ceivers, we see that each parallel channel is equivalent to
the -user SIMO multiple access channel with receive
antennas. Therefore, we obtain that the DoF is independent
of and is equal to [36].



ANNAPUREDDY et al.: DEGREES OF FREEDOM OF INTERFERENCE CHANNELS WITH COMP TRANSMISSION AND RECEPTION 5743

3) : With perfect cooperation at the
transmitters and at the receivers, we see that each parallel
channel is equivalent to the point-to-point MIMO channel
with transmit antennas and receive antennas. There-
fore, we obtain that the DoF is independent of and is
equal to [37], [38].

4) or : For the case where
, and , each message is transmitted

jointly using transmit antennas; hence, a zero-forcing
(ZF) beam vector can be used to perfectly null out the in-
terference at receivers. By only scheduling
users, it is clear that a sum DoF of can be achieved
per each parallel channel. The converse follows easily from
Theorem 1 in [25]. It is easy to see that similar arguments
with receive beamforming hold true when and

. Therefore, we obtain that the DoF is inde-
pendent of and is equal to .

5) : With no cooperation at the transmitter
side or the receiver side, we see that each parallel channel
is equivalent to the -user Gaussian interference channel.
In [1], Cadambe and Jafar exploited the channel diversity
obtained by considering the parallel channels and proposed
a scheme that achieves DoF in an asymptotic fashion.
It was already known that the DoF is upper bounded by

[39]. The Cadambe–Jafar (CJ) achievable scheme is
a linear beamforming scheme that operates on -parallel
Gaussian interference channels simultaneously to create
interference-free channels per user such that as

, thus proving that

To summarize, we know the following results:

IV. OVERVIEW OF RESULTS

In this section, we provide a preview of the main results of
this paper. In Section VII, we derive necessary and sufficient
conditions on and such that .
We already know that full DoF can be achieved for the cases
where full transmitter cooperation or full receiver
cooperation is available. We generalize these re-
sults and prove that full DoF can be achieved if and only if

. The key idea is that the ZF of interfering sig-
nals at unintended receivers can be viewed as a shared responsi-
bility between transmitters and receivers instead of achieving it
only through the design of transmit beams for the case where

, or receive beams for the case where
. We provide a detailed discussion of this

issue in Section VII-C and provide a new view of interference
alignment as a combined transmit/receive ZF coding scheme.

Fig. 1. Summary of the achievable scheme.

In Sections VIII–X, we present achievable schemes for the
interference channel with only CoMP transmission .
The proposed scheme in Section IX achieves the optimal DoF
of the channel for the case where . In Section X,
we consider general values of , and provide a coding scheme
that achieves the DoF of the channel within 1 DoF for the case
where .

The achievable scheme is based on transmit and receive
beamforming. As summarized in Fig. 1, the beam design
process is broken into two steps. First, we transform each
parallel CoMP channel into a derived channel. Then, we design
an asymptotic interference alignment scheme over the derived
channel achieving the required DoF in an asymptotic fashion
with the number of parallel channels .

In Section VI, we summarize the concept of algebraic inde-
pendence of rational transformations, which is used to prove
the provided achievability results. For proving that DoF is
achievable when , we need to show that a set
of interference cancellations’ equations admits a solution with
respect to the transmit and receive beams for generic channel co-
efficients. Using Lemma 2 in Section VI, we show that this holds
if the corresponding polynomials are algebraically independent,
which we prove in Section VII. Furthermore, to use asymptotic
interference alignment in the achievable scheme summarized in
Fig. 1, we need to show that at each receiver, polynomial trans-
formations, defining a set of derived channel coefficients deter-
mined by the receiver index, are algebraically independent as
functions of the original channel coefficients.

V. OUTER BOUNDS

In this section, we derive an outer bound on the DoF as func-
tion of , , and . First, we present an outer bound on the
DoF region of the CoMP channel with arbitrary transmit and
receive sets, i.e., without explicitly using the structure of the
transmit sets (3) and the receive sets (4).

A. Outer Bound on DoF Region

Theorem 1: Any point in the normalized
(by the number of parallel channels) DoF region of the CoMP
channel with generic channel coefficients satisfies the inequali-
ties

(5)

Proof: Without any loss of generality, we can assume
. Otherwise, the smaller set can be blown up to add

more terms on the left-hand side of (5) without affecting the
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right-hand side (RHS), resulting in an inequality that is stricter
than what we need to prove. Now, the objective is to show that

(6)

Define the subsets

and as the set of free messages that do not appear in either
of the sets and . The proof idea is to start with the signals
received by the receivers , and show that the messages and

can be decoded using these received signals with as
side information. For any given subset , we use the nota-
tion to denote the vector made up of the signals transmitted
by the transmitters in the set , with a similar notation used for

and .
For each , using Fano’s inequality and the definition of

the receive set , we have that any reliable communication
scheme must satisfy

where , as . Therefore, we immediately have

(7)

i.e., the messages can be decoded by the receivers . Sim-
ilarly, the messages can be decoded using all the received
signals

However, we need to show that the messages can also be
decoded by the receivers with as side information. We do
so by arguing that the signal contribution in can be recon-
structed using and

Observe that, over each symbol, we have

where we used to denote the channel transfer
matrix from all the transmitters to the receivers, i.e.,

...
. . .

...

and to denote the channel transfer ma-
trix from transmitters to the receivers , and ,

, and to denote appropriate submatrices.
For generic channel coefficients, since we assumed that

, the matrix is invertible, and hence, we have

Thus, we get

Therefore, we have

Observe that all the terms, except for , are independent of
the power constraint . Furthermore, the sequence denotes
a vector of length . Therefore, there must exist a constant
that may depend on the channel coefficients, but is independent
of the power constraint and the block length such that

Therefore, any achievable rate tuple must
satisfy

which immediately implies that any achievable DoF vector (nor-
malized by the number of parallel channels ) must satisfy (6).

B. Outer Bound on Sum DoF

We use Theorem 1 to obtain an outer bound on
. Observe that an obvious outer bound

given by

can be obtained by setting . The following theorem
provides a nontrivial outer bound when .

Theorem 2: The (normalized sum) DoF of the CoMP channel
with generic channel coefficients satisfies

When is odd, the aforementioned outer bound
can be improved to obtain
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Proof: First, observe that the stated outer bounds are weak
compared to the obvious outer bound

if . Therefore, we assume that
in proving the theorem. The best outer bound on

that can be found using Theorem 1 is ob-
tained by solving the linear program

subject to the constraints (5), given by

for every such that . Since the transmit
sets (3) and receive sets (4) are symmetric across the transmitter
and receiver indices, by appropriately averaging the aforemen-
tioned upper bound by fixing , and rotating the sets and ,
we obtain the following upper bound on the normalized sum
DoF:

(8)

Therefore, the objective is to choose the sets and so that the
ratio on the RHS of the aforementioned inequality is minimized.
Since and , we have that

(9)

Similarly, we have that

(10)

where is defined as , and equality is achieved in
(9) and(10) for the cases where and ,
respectively, and hence, since we try to minimize the ratio on
the RHS of (8), we restrict our choices of and to these
forms. Clearly, must satisfy . It can be easily argued
that, without any loss of generality, we can also restrict so
that and . Also, since we are
minimizing the ratio on the RHS of (8), it is best to choose and

such that the sets and
do not intersect. In this case

and it follows that . For any such value
of , we can choose the sets and to be

so that the sets and do
not intersect. This results in the outer bound

To obtain the best possible outer bound, it is clear that we should
choose to be as large as possible while satisfying the condi-
tions and . When
is even, it is best to set

resulting in the required outer bound .
When is odd, it is best to set

resulting in the required outer bound
.

We now prove that the outer bound in Theorem 2 is achievable
in some special cases. The achievability proofs depend heavily
on techniques from algebraic geometry. We first review these
techniques and then proceed to prove the achievability results.

VI. MATHEMATICAL PRELIMINARIES

In this section, we present some results in algebraic geometry
that are essential in proving the achievability results. We start
by recalling some basic terminology in algebraic geometry. We
refer the reader to [40] for an excellent introduction.

A. Varieties and Ideals

Let and denote the set
of multivariate polynomials and rational functions, respec-
tively, in the variables . For any polynomials

, the affine variety generated
by is defined as the set of points at which the
polynomials vanish

Any subset is called an ideal if it satisfies
the following three properties:

1)
2) If , then .
3) If and , then .

For any set , the ideal generated by is defined as

For any ideal , the affine variety generated by is defined as
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The Zariski topology on the affine space is obtained by
taking the affine varieties as closed sets. For any set ,
the Zariski closure is defined as

A set is said to be constructible if it is a finite union of
locally closed sets of the form with closed and open.
If is constructible and , then must be dense
in , i.e., for some nontrivial variety .

B. Algebraic Independence and Jacobian Criterion

The rational functions
are called algebraically dependent (over ) if there ex-
ists a nonzero polynomial such that

. If there exists no such annihilating
polynomial , then are algebraically indepen-
dent.

Lemma 1 [41, Th. 3, p. 135]: The rational functions
are algebraically indepen-

dent if and only if the Jacobian matrix

(11)

has full row rank equal to .
The Jacobian matrix is a function of the variables

, and hence, the Jacobian matrix can have different
ranks at different points . The aforementioned lemma
refers to the structural rank of the Jacobian matrix which is
equal to if and only if there exists at least one realization

where the Jacobian matrix has full row rank.

C. Dominant Maps and Generic Properties

A polynomial map is said to be dominant if the
Zariski closure of the image is equal to . The image
of a polynomial map is constructible. Therefore, the image of
a dominant polynomial map is dense, i.e., the complement of

is contained in a nontrivial variety . The impli-
cation of this is that the system of polynomial equations

...

(12)

has a solution for generic , where the notion of a
generic property is defined as follows.

Definition 1: A property is said to be true for generic
if the property holds true for all except on a nontrivial
affine variety . Such a property is said be a generic
property.

For example, a generic square matrix has full rank because
is rank deficient only when it lies on the affine variety gen-

erated by the polynomial . If the variables are
generated randomly according to a continuous joint distribution,
then any generic property holds true with probability 1.

Observe that the Zariski closure of the image is equal
to if and only if the ideal generated by the image set is
equal to . Since is equal to the set of annihilating polyno-
mials

the map is dominant if and only if the polynomials
are algebraically independent. Thus, we obtain

the following lemma.

Lemma 2: The system of polynomial (12) admits a so-
lution for a generic if and only if the polynomials

are algebraically independent, i.e., if and only if
the Jacobian matrix (11) has full row rank.

D. Lemma on Full Rankness of Certain Random Matrix

Let be a set of original variables, and let be
a set of derived variables obtained through polynomial transfor-
mation for some rational map . Suppose we generate

instances of

(13)

and the corresponding instances of

and generate the matrix

...
...

. . .
...

for some exponent vectors and . We
are interested in determining the set of variables (13) such that
the matrix has full column rank. If there exists an annihilating
polynomial of the form

(14)

such that , then the matrix satisfies
, and hence, the matrix does not have full column

rank for any realizations of the variables (13). Interestingly, even
the converse holds true.

Lemma 3: The matrix has full column rank for generic
realizations of the variables (13) if and only if there does not
exist an annihilating polynomial of the form (14) satisfying

.
The proof is relegated to Appendix A. If the rational func-

tions are algebraically independent, then there
cannot exist an annihilating polynomial (of any form) satis-
fying . Thus, we immediately have the
following corollary.

Corollary 1: The matrix has full column rank for generic
realizations of the variables (13) if the rational functions
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are algebraically independent, i.e., if the Jaco-
bian matrix (11) has full row rank.

VII. FULL DOF WITH PARTIAL COOPERATION

Recall from Section III that the DoF of the CoMP channel is
equal to if perfect cooperation is allowed at either the trans-
mitter side or the receiver side, i.e.,

In this section, we obtain a necessary and sufficient condition
on and such that the DoF is equal to . First, we can
obtain some intuition on the condition from the outer bound in
Section V. Observe that Theorem 2 says that the DoF is strictly
less than whenever . We show that the DoF is
equal to the maximum value whenever .

Theorem 3: The DoF of the CoMP channel with generic
channel coefficients is independent of , and is equal to , if
and only if and satisfy ; i.e.,

The achievable scheme is based on the linear transmit and
receive beamforming strategy over each parallel channel. We
prove the theorem assuming , and the general case fol-
lows by treating each parallel channel separately. Let and
be the matrices representing the transmit and receive
beams, respectively. The column of (resp. ) represents
the beam along which the message is transmitted (resp. re-
ceived). To comply with the physical constraints imposed by the
transmit sets (3) and the receive sets (4), the matrices and
must satisfy

(15)

Let denote the channel transfer matrix. If and
satisfy , then we prove the existence of
and satisfying (15), and

(16)

for a generic matrix . Observe that the aforementioned choice
for beamforming matrices and achieves DoF since they
create interference-free AWGN channels, one per each mes-
sage, with each channel having a nonzero SNR. Since and
are square matrices, it is easy to see that (16) is equivalent to

(17)

Thus, it remains to show that the admits the matrix decom-
position in (17) for a generic . We now prove a more general
result.

A. Structural Matrix Decomposition (SMD)

Observe that the aforementioned matrix decomposition
problem (17) is similar to the LU decomposition in the sense

that we are interested in expressing a matrix as a
product of two matrices and with structural constraints
on and . In the case of LU decomposition, we require
that both and are lower triangular matrices, whereas in
(17) we require and to satisfy the structural conditions
(15). In this section, we consider the general problem of SMD
that generalizes both (15) and LU decomposition. We need the
following definition to formulate the SMD problem.

Definition 2 (S-Matrix): Given a matrix and a -matrix
of the same size, we say that is a structural matrix (or

S-matrix) of if for all such that .

Example 1: Suppose and be the transmit and receive
beamforming matrices satisfying the conditions (15) corre-
sponding to the setting and . Then,
the S-matrices of and are given by

(18)

where the ones in the th column of correspond to the
transmit set , and the ones in the column of corre-
spond to the receive set .

Definition 3 (SMD): Let be a square matrix, and be
-matrices of same size. We say that the matrix admits

an SMD with respect to and if can be factorized as

with and being S-matrices of and , respectively.
To prove that , we need to show that a

generic 3 3 matrix admits an SMD with respect to and
defined in (18). The LU decomposition can be seen as a spe-

cial case of the SMD with and given by

(19)

We know that a generic matrix admits an LU decomposi-
tion, i.e., a generic matrix admits an SMD if and are
given by (19). We shall show that the same holds true even if
(19) is replaced with (18). The following theorem provides a
sufficient condition on and such that a generic matrix ad-
mits an SMD.

Theorem 4: Suppose the -matrices and
satisfy the following conditions.

1) The diagonal entries of and are nonzero.
2) The matrix is a full matrix, i.e., all of its entries

are nonzero.
Then, a generic matrix admits an SMD
with respect to the S-matrices and .

Proof: Suppose a matrix admits an SMD ;
then, the decomposition is not unique since for any full rank
diagonal matrix , we have
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To avoid such degeneracy, we set for all . We
now interpret as a system of polynomial equations

(20)

where represents those elements of and that can take
arbitrary values, i.e., contains the variables

(21)

Let denote the number of variables so that . Our
objective is to show that the system of (20) has a solution

for a generic matrix . From Lemma 2 in Section VI, it
follows that (20) admits a solution for generic if and only if
the Jacobian matrix of the polynomial map

has full row rank at some point .
We now prove that has full row rank, equal to , by ex-

plicitly computing the Jacobian matrix at the point corre-
sponding to . Observe that the two conditions in
the theorem statement ensure that for every , either
or is a variable. Thus, , which is a necessary con-
dition for the Jacobian matrix to be a fat matrix, and to have full
row rank. Observe that has full row rank if any sub-
matrix has full rank. We consider the submatrix corresponding
to the variables defined such that is
equal to either or for each . Consider the partial
derivative

Suppose ; then, we see that

where is the Kronecker delta function, and in the last step
we used the fact that the derivative is taken at the point cor-
responding to . We obtain the same even if

. Therefore, we get

if
otherwise.

Thus, we see that the submatrix of corresponding to the vari-
ables is equal to the identity matrix. Hence, from Lemma
2 in Section VI, we conclude that a solution to (20) exists for a
generic .

B. Proof of Theorem 3

To complete the proof of Theorem 3, we need to show that
the conditions of Theorem 4 are satisfied when

. Recall from (15) that the S-matrices and of the
beamforming matrices and are given by

Clearly, the diagonal entries of and are equal to one satis-
fying the first condition of Theorem 4. Since ,
for any either

or

This verifies that the second condition of Theorem 4 is also sat-
isfied. Therefore, we see that the matrix admits SMD (17)
for a generic . This completes the proof of Theorem 3.

C. Relation to MIMO Interference Channel and Interference
Alignment

The condition is similar to the condition
obtained in [15] for the MIMO interference channel. The MIMO
interference channel with antennas per transmitter
and antennas per receiver is similar to the CoMP
channel, in the sense that each message is transmitted and re-
ceived using and antennas, respectively. The difference
is that the messages in the MIMO interference channel have
dedicated antennas, whereas the messages in the CoMP channel
share antennas to mimic the MIMO interference channel. In
[15], Yetis et al. studied the feasibility of transforming the
MIMO interference channel into interference-free channels
using transmit and receive beamforming strategies. They used
Bernstein’s theorem from algebraic geometry to prove that the
beams exist if and only if .

The common theme that leads to these results in both the
cases, i.e., MIMO interference channel and CoMP channel, is
interference alignment. It is easy to see interference alignment
in action in the special case and where
each decoder has access to two received signals. Out of these
two dimensions, one must be reserved for the desired signal,
meaning that the remaining interfering signals must align
and appear in the other direction. This process of packing the
interfering signals into a smaller number of dimensions is the
essence of interference alignment.

The role of interference alignment can be better understood
by considering the two extreme cases: and

. Recall that the objective is to construct
beamforming matrices satisfying the structural constraints and

When , then can be full matrix. Therefore, we can
choose the beamforming matrices as and
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corresponding to transmit ZF. Similarly, if , then we
can choose the beamforming matrices as and
corresponding to receive ZF. The concepts of transmit ZF and
receive ZF are well understood in the communication theory lit-
erature. The reason why or works is the fol-
lowing. In both the cases, there are additional antennas at
each transmitter or at each receiver to avoid interference. Essen-
tially, either the transmitters or the receivers take the burden to
avoid interference. The condition says that
this burden to avoid interference does not have to be taken solely
either by the transmitters or the receivers, but can be shared by
both. In other words, interference alignment can be thought of
as a generalized ZF strategy that allows the burden of interfer-
ence avoidance to be shared by the transmitters and receivers
by carefully designing the beams. The disadvantage of doing
so is that, while the design of transmit or receive ZF beams re-
quires only local channel knowledge, the design of interference
alignment beams requires global channel knowledge and even
the computational aspects become more complicated. Since the
existence proofs are nonconstructive, it is not clear if there is
any closed-form algorithm or even iterative algorithm to numer-
ically compute the interference alignment beams.

D. Closed-Form Algorithm

We showed that a linear beamforming strategy based on in-
terference alignment achieves DoF whenever and
satisfy . The proof of Theorem 3 is not
constructive. In this section, we consider the problem of numer-
ical computation of interference alignment beams, i.e., compu-
tation of matrices and that satisfy the structural constraints
imposed by transmit sets and receive sets, and diagonalize the
channel matrix

(22)

In the previous section, we have seen that the problem is easy
if either or , where the beamforming ma-
trices correspond to either transmit zero ZF or receive ZF. In
this section, we show that there exists a closed-form solution
when or . Without any loss of gener-
ality, we consider the case and , and show
that the closed-form solution described in Algorithm 1 satisfies
the structural constraints and (22). The rest of this section fo-
cuses on justifying the steps in Algorithm 1.

Algorithm 1 Closed-Form Solution and

1:For each , define the alignment matrix

2:Choose as an eigenvector of the matrix

3:For , compute

4:Compute the transmit beamforming matrix such that

.

5:Compute the receive beamfoming matrix .

The usual approach to solve for and is by first elimi-
nating by obtaining the necessary and sufficient conditions on

for an appropriate to exist, and then solving for . Let
denote the matrix . We now obtain the necessary and suffi-
cient conditions on the matrix so that its inverse
satisfies the structural constraints imposed by the receive sets.
For example, if , then the receive beamforming matrix
should have the following structure:

. . .
. . .

(23)

We now show that has the structure in (23), if and only
if the following alignment conditions are satisfied:

...

(24)

The aforementioned conditions are satisfied if and only if
is an eigenvector of the matrix , and

for , and hence, justifying the choice
of transmit beams in Algorithm 1. The nullity theorem [42],
[43] from linear algebra is useful in obtaining the necessary and
sufficient conditions on .

Lemma 4 (Nullity Theorem): Complementary submatrices of
a matrix and its inverse have the same nullity.

Two submatrices are complementary when the row numbers
not used in one are the column numbers used in the other. For
any subsets , applying the nullity theorem to and

, we have that

Observe that the structural constraints on the matrix can be
described as

(25)

By choosing and , we observe that struc-
tural constraints on are equivalent to the following constraints
on :

(26)

Note that the aforementioned conditions are nothing but the in-
terference alignment conditions. The matrix should
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be interpreted as the matrix containing the receive directions as
the columns

(27)
where denotes the beamforming vector corre-
sponding to the message , i.e., . Consider
the decoder of message which has access to the signals re-
ceived by the receivers . The submatrix

represents the matrix with the column denoting the directions
along which the signals appear at the decoder . Thus, we see
that the condition (26) is equivalent to saying that the interfering
signals should occupy only dimensions out of the avail-
able dimensions at decoder , leaving one dimension for the
signal. With this intuition, we could have arrived at the align-
ment conditions (26) directly without invoking the nullity the-
orem. However, the constraints (26) do not directly lead to a
closed-form solution.

We now demonstrate the usefulness of the nullity theorem by
deriving another set of equivalent conditions on that immedi-
ately lead to the closed-form solution described in Algorithm 1.
The crucial observation is the following. In the description (25),
we noticed that each column of has zeros. Alterna-
tively, we can use the fact that each row of has zeros
to arrive at an alternate description of the structural constraints
on

By choosing and
, we observe that the structural constraints on

are equivalent to the following constraints on :

For the special case of and , we have
that and .
Using the expression (27) for , we see that the aforementioned
conditions can be written as

For a generic , the submatrix is invertible, and
hence, the aforementioned conditions can equivalently be ex-
pressed as

where . Therefore,
the transmit beams must be designed to satisfy the condi-
tions in (24) by choosing as an eigenvector of the matrix

, and for .
We can then compute the receive beamforming vectors by
computing and setting . The choice
of transmit beams and the nullity theorem ensures that the

Fig. 2. Achievable sum rates in a three-antenna system with alignment
schemes.

resulting receive beamforming matrix has the required
structure (23).

E. Numerical Results

In this section, we consider the three-antenna system, i.e.,
. From Theorem 3, we have that maximum 3 DOF is

achievable if and only if . We numerically verify
the achievability part of the theorem by showing that 3 DoF is
achievable when . Without any loss of gener-
ality, we only consider the two settings and

because the other settings can be shown
to follow from these two settings. In Fig. 2, we plot the av-
erage achievable sum rate, where the averaging is performed
over the multiple realizations of the channel coefficients which
are generated independently according to complex normal dis-
tribution. When , the system is equivalent
to a broadcast channel, and so we use the ZF transmit beams
described in Section VII-C. When , we have
that , and so we use the alignment scheme described
in Algorithm 1 to compute the transmit and receive beams. In
step 2 of Algorithm 1, the computation of the transmit beam
involves computing an eigenvector of the 2 2 matrix. In Fig. 2,
we plot the two curves for the setting : one
corresponds to arbitrary eigenvector and the other corresponds
to best eigenvector over each channel realization.

The plots numerically verify that the achievable scheme de-
scribed in Algorithm 1 indeed achieves 3 DoF with

. Indeed, a linear growth of 10 bits/symbol in sum rate for
every 10 dB improvement in SNR corresponds to

It is also interesting to see that achieves
better sum rate when compared to . The
performance gap is roughly 3 dB at high SNRs when arbitrary
eigenvector is used, and is roughly 2 dB when best eigenvector
is used.
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VIII. DOF WITH COMP TRANSMISSION

In the previous sections, we derived an outer bound on the
DoF and showed that the DoF is equal to the maximum value

if and only if . In this section, we set
, and consider the problem of characterizing ,

the DoF of interference channel with CoMP transmission, as a
function of and . From the outer bound in Section V-B,
we obtain that is upper bounded as

which implies that for both
cases. For the achievability part, we prove the following two
theorems. In Section X-D, we prove Theorem 5, where we
show that for any and , there exists a coding scheme that
achieves a DoF of . A crucial part of the proof
involves checking that the polynomial transformation defining
the derived channel coefficients at each receiver as a function
of original channel coefficients is algebraically independent.
Using Lemma 2, we check the equivalent condition that a
certain Jacobian matrix has full row rank. We could verify in
MATLAB that the Jacobian matrix has full row rank for all the
values of and that we checked. Specifically, we checked
till , but we conjecture that the result holds true for
any and . In Section IX, we prove Theorem 6, where
we successfully complete the proof of algebraic independence
of the derived channel transformations at each receiver, for all
values of when .

Theorem 5: The DoF of interference channel with CoMP
transmission satisfies

for all .
Combining the aforementioned theorem with the outer

bound, we have determined the DoF exactly when
is odd, and within 1 DoF for the case where is even
(for all ). More precisely, we have the following
corollary.

Corollary 2: For all , if is odd, then

and otherwise

For the special case of , we propose an achievable
scheme that exactly meets the outer bound for all values of .

Theorem 6: The DoF of the interference channel with CoMP
transmission with satisfies

Theorem 6 is first published in [44] for the special case of
and and in [45] for the general case. The

proofs offered in both of the aforementioned papers are not com-
plete. The central issue is in proving that a certain random ma-
trix has full rank for generic channel coefficients. In this paper,
we overcome this issue by exploiting the notion of algebraic in-
dependence. Before proving the aforementioned theorems, we
first explain the connection to the DoF of the MISO interference
channel.

A. Relation to MISO Interference Channel

The MISO interference channel with antennas per
transmitter and the cellular uplink channel with number of
users per cell are similar to the interference channel with CoMP
transmission in the sense that, in all the three channels, each
message is transmitted using antennas and received using
only one antenna. The difference is that the messages share the
antennas in the CoMP channel, whereas the messages have ded-
icated antennas in the other two channels. Both the MISO inter-
ference channel and the cellular uplink channel have the same
DoF, equal to for all . In compar-
ison, we see that the interference channel with CoMP trans-
mission has a smaller DoF except in the special cases where

.

Claim 1: For all

Proof: Suppose is odd. Then, we see that

which is true since we assumed that . Suppose
is even; then

which is true since we assumed that .

We now proceed to prove Theorems 5 and 6.

IX. COMP TRANSMISSION: PROOF OF THEOREM 6

In this section, we show that the DoF of the interference
channel with CoMP transmission and a transmit cooperation
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order of and a receive cooperation order
is equal to

We recall from Section IV that the beam design process is
broken into two steps. First, we design ZF transmit beams to
obtain a derived channel where each transmitter carries only its
own message and has dedicated antennas. An asymptotic in-
terference alignment scheme would then achieve the DoF
if at each receiver, the derived channel coefficients are generic.
We prove this by showing that the corresponding rational trans-
formations from original to derived channel variables are alge-
braically independent.

A. Derived Channel

Recall from Section VIII-A that the cellular uplink channel
with transmitters per cell has DoF. There-
fore, we first transform the CoMP channel into a derived channel
that mimics the cellular uplink channel. For each , the transmit
set of user consists of transmitters. We use
the transmitters in to create virtual transmit nodes
with inputs . The channel inputs of the
CoMP channel are related to the channel inputs of the derived
channel through a linear transformation. The contribution of
the derived channel inputs in the real
transmit signals is defined by a

beamforming matrix; i.e.,

... ...

where represents the contribution from the derived channel in-
puts of other users. Thus, we see that the beamforming matrices

, which will be specified later, define the trans-
formation from the original channel to the derived channel. The
message of user is divided into parts

such that the part controls the derived channel input .
Thus, we can treat the virtual transmit nodes as noncoopera-
tive transmitters communicating to the same receiver and so this
system is similar to a cellular uplink system with transmit-
ters per cell

(28)

where represents the derived channel coefficient from
transmitter in cell to the receiver in cell . It is easy to see
that the derived channel coefficients are related to the original
channel coefficients as

for all , where denotes the channel transfer
matrix of the CoMP channel.

B. Generic Channel Coefficients

The derived channel (28) is similar to the cellular uplink
channel with cells and transmitters in each cell, which
has DoF with generic channel coefficients
[46]. A naive argument is to conclude from here that the derived
channel, and hence the CoMP channel with generic channel
coefficients, also has the same DoF. However, from Claim 1 in
Section VIII-A, we know that the DoF of the CoMP channel
is strictly smaller than , which means that the
aforementioned naive argument has to be incorrect.

The reason for the failure of the aforementioned naive argu-
ment is related to the subtle concept of generic channel coef-
ficients. Indeed, the derived channel has DoF
with generic channel coefficients, which means that there exists
a nonzero polynomial in the derived channel coefficients

such that the achievable scheme works for all such that
. In the case of the cellular uplink channel, this

statement makes sense since the coefficients are generated
by nature and hence can be assumed to be generic. However,
in the case of the CoMP channel, nature generates the original
channel coefficients , denoted by . The coefficients

are derived from using rational transformations. Suppose
we expand the polynomial in terms of the coefficients
to obtain the rational function . There are
two possibilities: the function is either identically equal to
zero or it is nonzero. If , then the achievable scheme
designed for the derived channel with generic may fail for all
realizations of , in which case the DoF result of the derived
channel with generic channel coefficients cannot be directly
applied to CoMP channel with generic channel coefficients. On
the other hand, if is a nonzero function, then we see that the
achievable scheme works for generic , in which case the DoF
result of the derived channel with generic channel coefficients
can be directly applied to CoMP channel with generic channel
coefficients.

In summary, we need to be careful in applying the DoF result
of the cellular uplink channel to the CoMP channel, and the
applicability of the result depends on how the derived channel
coefficients are related to the original channel coefficients.

C. ZF Step

We now specify our choice of the beamforming matrices
that define the relation of the derived channel

coefficients to the original channel coefficients. As we shall
notice later during the design of the asymptotic interference
alignment scheme, the beamforming matrices should be chosen
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Fig. 3. Derived channel in Section IX-C when � � � and � � �. The
thick green lines indicate the links carrying signal. The dashed and dotted red
lines indicate the links carrying interference. Dotted lines indicate that the cor-
responding coefficients are equal to 1.

to minimize the number of nontrivial derived channel coeffi-
cients, where we say that a derived channel coefficient is trivial
if it is equal to either zero or one. Therefore, the objective is to
set as many derived channel coefficients as possible to zeros or
ones. Consider the derived channel coefficients

...
...

. . .
...

By choosing , we can set all the previ-
ously derived channel coefficients to either zero or one. In par-
ticular, we see that for each

Otherwise.

Since we assumed that , the set contains
all the receiver indices except for and . Therefore, we
see that each transmitter in the derived channel causes
interference to only two receivers, i.e., receivers and .
Thus, the derived channel (28) can be simplified as

(29)
where the coefficients and are given by

(30)

Fig. 3 provides a description of the derived channel for the spe-
cial case of and .

D. Asymptotic Interference Alignment

In this section, we consider parallel derived channels and
propose a scheme achieving a DoF that is arbitrary close to

in the limit . We can combine the
parallel channels of (29) and express them together as

(31)
where , and are column vectors and is
the diagonal channel transfer matrix given by

. . .

The achievable scheme that we propose is based on the asymp-
totic alignment scheme introduced by Cadambe and Jafar in [1].

Definition 4 (CJ Subspace): The order- CJ subspace gener-
ated by the diagonal matrices

is defined as the linear subspace spanned by the vectors

The matrix containing these vectors as columns is said
to be the order- CJ matrix.

Let denote the order- CJ subspace (and the corresponding
matrix) generated by the nontrivial channel matrices carrying
interference

We use as the transmit beamforming matrix at every trans-
mitter. The nice property about the CJ subspace is that the in-
terference seen at any receiver is limited to the order-
CJ subspace, denoted by . At receiver , the desired signal
streams appear along the directions

The proposed scheme works if the receivers are able to extract
out the desired signal streams free of interference, which is true
if the matrix

(32)

has full column rank for every . For the matrix to
have full column rank, the number of rows, equal to the number
of parallel channels , must be greater than or equal to the
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number of columns. The number of columns in and ,
respectively, is given by

Hence, the number of columns in is equal to
. We set so that is a square

matrix for each . Note that the matrix depends on the
derived channel coefficients

We need to prove that the matrices have full rank
for generic (original) channel coefficients

The proof uses techniques from algebraic geometry summa-
rized in Section VI. Using Corollary 1, we see that the matrices

have full column rank if the rational transfor-
mation (30) from the original channel coefficients to the derived
channel coefficients is such that the rational functions denoted
by the variables

(33)

are algebraically independent. Before we prove the algebraic in-
dependence, we show that the proposed scheme achieves the
required DoF. Since the derived channel has a total of
number of transmitters, and the proposed interference alignment
scheme creates number of interference-free AWGN chan-
nels per each transmitter, we obtain the following lower bound
on the (normalized) DoF:

Therefore, we obtain that

E. Proof of Algebraic Independence

Since the achievable scheme is symmetric across the user in-
dices, it is sufficient to prove the claim for . The
variables (33) are rational functions of the variables

. Let denote the corresponding
Jacobian matrix. From Lemma 1, the variables (33) are alge-
braically independent if and only if the Jacobian matrix has
full row rank equal to . Let

(34)

denote the submatrix of with rows
corresponding to the variables and columns cor-
responding to the variables , where

We complete the claim by showing that square matrix (34) has
full rank. This is easy to verify using the symbolic toolbox
of MATLAB for any fixed . An analytical proof involves
computing the submatrix (34) at a specific point ,
and showing that it has full rank. Although this is true at any
randomly generated , certain choices can simplify the proof.
We choose to be the circulant matrix given by

For the special case of and , the matrix is
given by

The following claim, whose proof is relegated to Appendix B,
completes the proof of Theorem 6.

Claim 2: The determinant of the submatrix (34) evaluated at
the point is equal to .

F. Discussion

We end the section by explaining why the proposed scheme
does not extend for arbitrary . Observe that a
straightforward extension of the achievable scheme involves the
same choice of ZF transmit beams in Section IX-C. However,
since , each transmitter in the derived channel now
causes interference at receivers, i.e., the transmitter

causes interference at the receivers
. Since the asymptotic interference

alignment scheme requires that we use all the nontrivial channel
matrices in generating the CJ subspace, we can verify that the
achievable scheme works if the rational functions defined by the
variables
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are algebraically independent for each . The total number
of rational functions is given by

If the aforementioned number were to be greater than , then
we can end this discussion since rational functions in

variables cannot be algebraically independent. But that is not
the case. For example, when and , we have
22 rational functions in 25 variables. If these rational functions
were to be algebraically independent, then the proposed scheme
achieves a DoF of , but we know from the
discussion in Section VIII-A that the DoF is strictly less than

for all . Therefore, it must be
that these rational functions are algebraically dependent.

X. COMP TRANSMISSION: PROOF OF THEOREM 5

In this section, we show that the DoF of the interference
channel with CoMP transmission and with transmit cooperation
order of and a receive cooperation order of is lower
bounded by

We prove this by arguing that the DoF vector

is achievable; i.e., the first users benefit from cooperation
and achieve 1 DoF, whereas the remaining users
achieve DoF just like in the interference channel without
cooperation. Conceptually, the achievable scheme in this sec-
tion is identical to the achievable scheme in Section IX for the
special case when , i.e., the achievable scheme
is again based on converting the CoMP channel into a derived
channel and then employing the asymptotic interference align-
ment scheme on the derived channel, as summarized in Fig. 1.
However, unlike the coding scheme in Section IX, the achieved
DoF vector in this section is asymmetric, and hence, we have
to provide for this case detailed description of the design steps
summarized in Fig. 1.

A. Derived Channel

As in Section IX, we convert the CoMP channel into a de-
rived channel that mimics the cellular uplink channel. Since
our objective is to achieve a DoF vector that is asymmetric, the
derived channel is also chosen to be asymmetric. The derived
channel we consider in this section has two transmitters in each
of the first cells, and one transmitter in the remaining

cells

(35)

As in Section IX, we assume that the channel inputs of the
CoMP channel are related to the channel inputs of the derived
channel through a linear transformation. The contribution of
the derived channel input in the real transmit signals

is defined by a beamforming
vector, i.e.,

...

where represents the contribution from other derived channel
inputs. It is easy to see that the derived channel coefficients are
related to the original channel coefficients as

for all and appropriate . Since we are designing the
achievable scheme to achieve 1 DoF for the first users,
it must be that the first receivers in the derived channel
do not see any interference.

B. ZF Step

We now explain our choice of the beamforming vectors that
ensures that the first receivers do not see any interference.

1) ZF Beam Design: We first describe the general idea of
constructing a ZF beam. Consider the problem of designing a
ZF beam to be transmitted by transmit antennas indexed by
the set such that it does not cause interference at
receive antennas indexed by the set , i.e.,

Since is a matrix, the choice for is unique
up to a scaling factor. For any arbitrary row vector of length

, we can use the Laplace expansion to expand the determinant

where is the cofactor of , which depends only on the
channel coefficients in , and is independent of . By
setting the beamforming vector as , we
see that an arbitrary receiver sees the signal transmitted along
the beam with a strength equal to

Clearly, this satisfies the ZF condition for all
.

2) Design of Transmit Beam for : The signal

is transmitted by the transmitters from the transmit set

. The corresponding beam is designed to avoid
the interference at the first receivers .
Therefore, we see that the contribution of at receiver is
given by

(36)

where
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Fig. 4. Derived channel in Section VIII when� � � and� � �. The thick
green lines indicate the links carrying signal. The dashed red lines indicate the
links carrying interference.

3) Design of Transmit Beams and for :

The signals and are transmitted by the transmit-
ters from the transmit set . They must avoid inter-
ference at the receivers

Since we only need to avoid interference at receivers,
it is sufficient to transmit each signal from number of
transmitters. We use the first antennas of the transmit set

to transmit , and the last antennas of the transmit

set to transmit . Thus, we obtain

(37)

where

Thus, the derived channel (35) can be simplified as

(38)

where the derived channel coefficients are as described in (36)
and (37). Fig. 4 provides a description of the derived channel for
the special case of and . We note that the derived
channel in this section is a not a generalization, and does not
specialize to the derived channel in Section IX when

. In fact, the achievable scheme in this section achieves fewer
DoF compared to the optimal DoF achieved in Section IX.

C. Asymptotic Interference Alignment

In this section, we consider parallel derived channels, and
propose a scheme achieving a DoF arbitrary close to

in the limit . As in Section IX-D, we can combine
parallel derived channels (38) and express them together as

where , and are column vectors and is
the diagonal channel transfer matrix given by

. . .

As in Section IX-D, we use , defined as the order CJ sub-
space generated by the channel matrices carrying interference

(39)

as the transmit beamforming matrix at every transmitter of the
derived channel. The first receivers do not see any inter-
ference. Therefore, for each , the receiver can decode
all the desired streams free of interference if the matrix

has full column rank. Assuming that the number of rows in ,
equal to the number of parallel channels , is greater than or
equal to the number of columns, i.e., , the matrix

has full column rank for generic (original) channel coef-
ficients if the following claim is true. See Corollary 1
in Section VI for an explanation.

Claim 3: For each , the polynomials denoted by the
variables

(40)

are algebraically independent.
For each , the interference seen at receiver is limited

to the order CJ subspace, denoted by . Therefore,
the receiver can decode all the desired streams free of inter-
ference if the matrix

has full column rank. Assuming that the number of rows is
greater than or equal to the number of columns, i.e.,

, the matrix has full column rank for generic (orig-
inal) channel coefficients if the following claim is true.

Claim 4: For each , the polynomials denoted by the
variables

(41)
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are algebraically independent.
To satisfy the requirements on , we choose as

Observe that

where is the number of matrices (39) used to generate the CJ
subspace, and is given by

(42)

Therefore, the achievable DoF is given by

Therefore, we obtain that

D. Proof of Algebraic Independence

As in Section IX-E, we use the Jacobian criterion to prove
Claims 3 and 4. Recall that each derived channel coefficient is a
polynomial in variables . Let denote
the vector consisting of the polynomials specified by the derived
channel coefficients in the respective claims. The exact descrip-
tion of the polynomials can be obtained from (36) and (37) in
Section X-B. The number of polynomials in Claims 3 and 4 is
equal to and , respectively, where is given by
(42). From Lemma 1 in Section VI, we see that a collection of
polynomials is algebraically independent if and only if the cor-
responding Jacobian matrix has full row rank. It can be easily
verified that , and hence , for any and

, which is a necessary condition for the corresponding Jaco-
bian matrices to have full row rank. It is easy to verify that the
Jacobian matrices corresponding to the polynomials in Claims
3 and 4 have full row rank using symbolic toolbox of MATLAB
for any fixed and . In particular, we verified that the Jaco-
bian matrices have full row rank for all values of .

XI. CONCLUSION

We studied the problem of characterizing the DoF of the
-user CoMP channel with a transmit cooperation order

of and a receive cooperation order of . Theorem 3
says that the DoF equals its maximal value if and only if

. It was known from previous work that the
maximum DoF is achievable by perfect cooperation at either
the transmitters or the receivers, i.e., or .
Theorem 3 says that it is possible to achieve the maximum

DoF with only partial cooperation at both the transmitters
and receivers. Theorem 5 says that the DoF with only CoMP
transmission is roughly equal to . We could verify
using MATLAB that the theorem holds true for all values of

, but we conjecture that the theorem holds true
for all and .

The outer bound in Theorem 2 states that the DoF is bounded
above by . Since the interference channel with
no cooperation has DoF, this outer bound implies that CoMP
transmission and reception does not yield significant DoF im-
provements in the large user regime where is large compared
to and . It is not clear if this pessimistic insight is fun-
damental or is an artifact of the choice of transmit sets (3) and
receive sets (4). The outer bound in Theorem 2 fails if we allow
the transmit and receive sets to be arbitrary but satisfying the
cooperation order constraints, i.e., and .
For the special case of CoMP transmission, i.e., with ,
we can use Theorem 1 to show that the DoF is outer bounded
by no matter how the transmit sets are chosen. Theorem 6
says that this DoF is achieved using spiral transmit sets (3) when

. In general, this may not be true, and the problem of
determining the DoF with arbitrary transmit sets remain open.
In [47], the model of CoMP transmission with arbitrary transmit
sets is studied.

The achievability proofs in this paper are heavily dependent
on concepts from algebraic geometry, specifically on the notion
of algebraic independence of rational functions. Similar tools
have recently been used in [15]–[17] to determine the feasibility
of interference alignment in MIMO interference channels with
no cooperation. We believe that these tools further our under-
standing of the DoF of wireless channels, and have the potential
to settle many other feasibility questions.

APPENDIX A

PROOF OF LEMMA 3:

We have already proved that does not have full column
rank if there exists an annihilating polynomial of the form
(14). We now prove the converse, i.e., we assume that there does
not exist an annihilating polynomial of the form (14), and prove
that the matrix has full column rank for generic realizations
of the variables (13). Without any loss of generality, we assume
that . Otherwise, we can work with the submatrix
obtained after deleting the last rows.

Consider expanding the determinant in terms of the
variables (13). Since the variables are ra-
tional functions of respectively, the deter-
minant is also a rational function; i.e.,
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The determinant can either be identically equal to zero, or
a nonzero function. If the determinant is a nonzero func-
tion, then has full column rank for generic realizations
of the variables (13) because is rank deficient only when

or when
belongs to the affine variety generated by the
polynomial .

Therefore, it remains to prove that is not identically
equal to zero under the assumption that no annihilating polyno-
mial of the form (14) exists. We prove this claim by induc-
tion on . The claim is trivial to check for . We now prove
the induction step. We may assume that the determinant of the

submatrix , obtained after deleting the last row
and column, is a nonzero function in .
Therefore, there must exist specific realizations

(43)

such that has full rank. Consider the matrix obtained
from by setting for each . If is
identically equal to zero, then the matrix must be rank
deficient for all , i.e., there must exist such that

for each . Since the first rows
are linearly independent and do not depend on , the vector

is unique (up to a scaling factor) and is determined by
(43). Therefore, we have that for each .
By expanding the last row of , we obtain

This is a contradiction since we assumed that no annihilating
polynomial of the form (14) exists. Therefore, is not
identically equal to zero and hence has full rank for generic
realizations of the variables (13).

PROOF OF CLAIM 2:

In this section, we complete the proof of Theorem 6 by
showing that the determinant of the submatrix (34) evaluated at
the point is equal to . Recall that

where the transmit set is given by

Let denote the submatrix of the Jacobian matrix with
rows corresponding to the variables and columns corre-
sponding to the variables . Then, the submatrix (34) can be
expressed as

...
. . .

... (44)

Differentiating at ,
we get

(45)

The matrix is chosen to satisfy

where is the matrix with all the diagonal and the
superdiagonal entries being equal to 1. Note that . For
the special case of and , the matrix is given by

Therefore, (45) can be simplified as

Equivalently, for each , we have

Hence, the determinant of the submatrix (44) is equal to

We now show that . Recall from
Section IX-C that is related to as

Differentiating at , we get

Now, observe that
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Therefore, we get

...

To determine , we are only interested in
the partial derivatives with respect to the variables

. The contribution of in is
given by

. . .

which implies that

. . .

Hence, .
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