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Gaussian Interference Networks: Sum Capacity in
the Low-Interference Regime and New Outer Bounds

on the Capacity Region
V. Sreekanth Annapureddy, Student Member, IEEE, and Venugopal V. Veeravalli, Fellow, IEEE

Abstract—Establishing the capacity region of a Gaussian in-
terference network is an open problem in information theory.
Recent progress on this problem has led to the characterization of
the capacity region of a general two-user Gaussian interference
channel within one bit. In this paper, we develop new, improved
outer bounds on the capacity region. Using these bounds, we show
that treating interference as noise achieves the sum capacity of
the two-user Gaussian interference channel in a low-interference
regime, where the interference parameters are below certain
thresholds. We then generalize our techniques and results to
Gaussian interference networks with more than two users. In
particular, we demonstrate that the total interference threshold,
below which treating interference as noise achieves the sum
capacity, increases with the number of users.

Index Terms—Capacity, genie, interference channel, outer
bound, treating interference as noise.

I. INTRODUCTION

I N his celebrated paper [3], Shannon established the ca-
pacity of the additive white Gaussian noise (AWGN)

channel, where the performance is limited by thermal noise. In
multiuser wireless networks, the performance is also limited by
the interference from other users sharing the same spectrum.
Unlike thermal noise, interference has a definite structure since
it is generated by other users. Can this structure be exploited
to decrease the uncertainty and thus improve the performance
of the communication network? If so, what are the optimal
signaling strategies? In this paper, we establish the somewhat
counter-intuitive result that exploiting the structure of the in-
terference in Gaussian interference channels does not improve
the overall system throughput in a low-interference regime. In
other words, it is possible to treat interference as noise and still
achieve the maximum possible throughput, if the interference
levels are below certain thresholds. Interference management
is of vital importance in wireless communication systems, with
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Fig. 1. Two-user symmetric Gaussian interference channel.

several users contending for the same limited spectrum. As a
first step towards an information-theoretic study of interference
management, consider two users sharing a wireless channel as
shown in Fig. 1, where each user’s receiver is interested in only
the information transmitted by the corresponding transmitter.
Each user’s rate of communication is limited by the Gaussian
noise at the receiver and the interference caused by the other
user. Carleial [4] showed that interference does not reduce the
capacity of such a two-user Gaussian interference channel in
the very strong interference setting, where each receiver can
completely cancel the interference by exploiting its structure.
Subsequently, the capacity region was determined in the strong
interference setting [5], [6], where it was shown that each user
can decode the information transmitted to the other user. Estab-
lishing the capacity region in the other regimes remains an open
problem. The best known achievable region for the two-user
Gaussian interference channel is based on the Han–Kobayashi
(HK) scheme [5], [7]. Here, the users split message into private
and common messages, and each user jointly decodes its own
messages and the common message of the interfering user.
This is in general a sophisticated scheme, requiring multiuser
encoders and decoders and coordination between the users.
What we establish in this paper is that if the interference levels
are low enough, then the receivers can treat interference as
noise, and single-user encoders and decoders can be employed
without any loss in sum capacity.

In order to establish the sum capacity in the low-interference
regime, we need to prove a converse, i.e., derive an outer bound
on the sum capacity that matches with the sum rate achieved
by treating interference as noise. The concept of a genie giving
side information to the receivers was used in [8], [9] to derive
outer bounds on the capacity region. Since the receivers can
choose not to use the side information, the capacity region of
the genie-aided channel is an obvious outer bound to the ca-
pacity region of the interference channel. In [9], a specific genie
is used to establish the capacity region within one bit and to show
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that treating interference as noise is asymptotically optimal as
the signal-to-noise ratio (SNR) and interference-to-noise ratio
(INR) both go to infinity, with

. We show that the bounding technique developed in [9] is
applicable to a wider class of genie signals. We further show
that if the channel parameters satisfy a condition for low inter-
ference, the genie can be selected in a clever way so that the
resulting genie-aided outer bound matches the sum rate achiev-
able by treating interference as noise. With this wider class of
genie signals and using the entropy power inequality [10], we
also derive outer bounds on the entire capacity region that are
tighter than existing outer bounds. Similar results have also been
established independently by Shang et al. in [11] and Motahari
et al. in [12].

We then generalize the results to Gaussian interference
networks with more than two users. Using a genie similar to
that used for the two-user channel, we derive low-interference
regime conditions for the many-to-one interference channel,
where the interference is experienced by only one user and
one-to-many interference channel, where the interference is
generated by only one user. We also propose a new genie
construction, where each receiver is provided with multiple
genie signals, for any arbitrary Gaussian interference network.
This genie is a generalization of the genie used in [9] and the
purpose of this generalization is to develop results analogous to
[9] for arbitrary Gaussian interference networks. We show that
treating interference as noise with Gaussian inputs achieves the
sum capacity of the vector genie-aided channel. As done for the
two-user channel, this outer bound can be tightened to establish
the sum capacity in a low-interference regime. We tighten
the bound for a three-user symmetric Gaussian interference
channel, and demonstrate the existence of channels for which
treating interference as noise is optimal, but the total INR is
greater than the INR threshold of the two-user interference
channel.

A. Notation and Organization

We use the following notation. For deterministic objects, we
use lowercase letters for scalars and uppercase letters in black-
board font for matrices. For example, we use to denote a de-
terministic scalar and to denote a deterministic matrix. For
random objects, we use uppercase letters for scalars, and un-
derlined uppercase letters for vectors. Random objects with su-
perscripts denote sequences of the random objects in time. For
example, we use to denote a random scalar, to denote
a random vector, and and to denote the sequences of
length of the random scalars and vectors, respectively. We
use to denote the variance of a random variable ,
and to denote the minimum mean-square error in
estimating the random variable from the random variable ,
with similar notation for random vectors. We use to
denote the Gaussian distribution with mean and variance ,
and to denote the Gaussian vector distribution with
mean and covariance matrix . We use to denote the
differential entropy of a continuous random variable or vector
and to denote the mutual information.

The rest of the paper is organized as follows. In Section II,
we introduce the model for the Gaussian interference network

that we study. In Section III, we summarize mathematical re-
sults such as the entropy power inequality and prove some new
results that are required in establishing our new outer bounds. In
Section IV, we review the existing bounds on the capacity region
of the two-user Gaussian interference channel. In Section V,
we establish the sum capacity of two-user Gaussian interfer-
ence channel in a low interference regime. In Section VI, we
present new outer bounds on the capacity region of the two-user
channel. In Section VII, we present extensions of our results on
the sum capacity in the low-interference regime to Gaussian in-
terference networks with more than two users. In Section VIII,
we provide some concluding remarks.

II. INTERFERENCE NETWORK MODEL

Consider a Gaussian interference network with users, i.e.,
pairs of transmitters and receivers, where no user is inter-

ested in the information transmitted to the other users. Over one
symbol period, the channel is described by

(1)

where is the signal transmitted by transmitter is the
fixed channel gain from transmitter to receiver , and the
receiver noise terms are assumed to be zero mean,
unit variance, independent Gaussian random variables. Further-
more, the noise is assumed to be independent and identically
distributed (i.i.d.) in time. Transmitter has an average power
constraint . In vector notation, (1) is equivalent to

(2)

where is a deterministic -matrix with elements .
The interference network is said to be in standard form [13],

if

Any interference network (2) can be expressed in an equiva-
lent standard form for the purposes of an information-theoretic
analysis. For each user , let the message index be uniformly
distributed over , and let be a code con-
sisting of an encoding function
satisfying the power constraint

and a decoding function . The
corresponding probability of decoding error is de-
fined as . A rate tuple
is said to be achievable if there exists a sequence of codes

such that the error probabili-
ties , and all go to zero as goes to
infinity. Capacity region is the closure of all the achievable rate
tuples.

III. MATHEMATICAL PRELIMINARIES

In this section, we review the information inequalities that
are useful in establishing our new outer bounds. The first re-
sult is a generalization of the maximum entropy theorem. Con-
sider a sequence of random variables with average
power constraint . It is well known that
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, and equality is achieved if and only if
(iff) are i.i.d. [10, Theorem 8.6.5]. The fol-
lowing lemma is a generalization of this result.

Lemma 1: Let be a random vector, and let and be
noisy observations of .

where and are correlated, zero-mean, Gaussian random
vectors, and and are real-valued matrices. Consider the
random vector sequence with the covari-
ance constraint , where is the covariance
matrix of . Furthermore, let and be the corresponding
observations when the noise vector sequences and each
have components that are i.i.d. in time. Then, we have

where and are and when .
Proof: Let be a time sharing random variable

taking values from to with equal probability. Let
, and and be the cor-

responding and .

where the steps follow from the fact that conditioning
reduces entropy and step follows because Gaussian distribu-
tion maximizes the conditional distribution for a given covari-
ance constraint [14, Lemma 1].

Now letting , and further
assuming that is independent of and , we have

where the step follow from the fact that conditioning reduces
entropy.

The following is the celebrated entropy power inequality
(EPI) [10, Theorem 17.7.3] originally proposed by Shannon.

Lemma 2 (EPI): For any independent random sequences
and

Often, we are interested in the case where the sequence is
i.i.d. Gaussian, in which case we have the following corollary.

Corollary 1: Let be a random sequence and be an
independent random sequence with components that are i.i.d.

. Then

Equivalently

As a corollary of the EPI, we have the worst case noise result
that says that if the input distribution is i.i.d. Gaussian, then the
noise that minimizes the mutual information under an average
power constraint is also i.i.d. Gaussian. (See [10, the mutual in-
formation game problem: 9.21].) With a little abuse of notation,
the worst case noise results in the scalar and vector cases are as
follows.

Lemma 3 (Worst Case Noise: Scalar Case): Let be
a random sequence with average power constraint , i.e.,

, and let be an independent random
sequence with components that are i.i.d. . Then

where , and equality is achieved if ,
where denotes the random sequence with components that
are i.i.d. .

Proof: The result follows from the EPI (see proof of
Lemma 5 below); a different proof is given in [15]. Interest-
ingly, the result can be established as a direct consequence of
the Lemma 1, as seen below in the proof of the Lemma 4.

Lemma 4 (Worst Case Noise: Vector Case): Let be a
random vector sequence with an average covariance constraint,
i.e., , and let be an independent random
vector sequence, with components that are i.i.d. . Then

where , and equality is achieved if ,
where denotes the random sequence with components that
are i.i.d. .

Proof: Although the proof follows from results given in
[15], we provide a different simple proof based on Lemma 1.

where step follows from Lemma 1.

Remark 1: As we have noted in Lemma 3, the scalar case of
the worst case noise result is a corollary of the EPI. However, in
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the vector case, Lemma 4 does not follow from the EPI, unless
is a scaled version of .

We now provide an extension of the scalar version of the
worst case noise result, which is useful in deriving outer bounds
on the sum capacity of interference networks with more than
two users. This result might also be useful in other multiuser in-
formation theory problems.

Lemma 5: For , let be a random se-
quence with average power constraint , i.e.,

. Further, let be a sequence with components that are
i.i.d. . Assume that the sequences are indepen-
dent of each other and also independent of , and let

. Then

(3)

for all

and equality is achieved in (3) if for ,
where denotes the random sequence with components that
are i.i.d. .

Proof: We will prove the lemma for

The result with

follows because the additional positive entropy quantities are
easily seen to be maximized by .

Denote by and by . Using the EPI
(Lemma 2), we have

Let

The concavity of in follows from the convexity of the
log–sum–exp function [16]. Now, using

it can be easily checked that satisfy
for all . Thus, maximizes

the function , and hence

We now prove the following straightforward lemma, which
is nevertheless useful in handling the side information provided
by the genie in our genie-aided outer bounds.

Lemma 6: Let be a random vector sequence, and let
and be (possibly correlated) zero-mean Gaussian random
vector sequences, independent of and i.i.d. in time. Then

where is i.i.d. .
Proof: Let be the minimum mean-square error

(MMSE) estimate of given . Then we have

Now

where the step follows because the MMSE estimate is a
function of , and the step follows because the (observa-
tion) is independent of the MMSE error and .

Lemma 7: For any Gaussian random vectors and ,
the following three statements are equivalent:

1) ;
2) form a Markov chain;
3) , the MMSE estimate of given , is equal

to , the MMSE estimate of given .
Proof: The equivalence between the statements 1 and 2

follows from [17, Theorem 2.8]. We now prove the equivalence
between the statements 2 and 3. If form a Markov
chain, then

To prove the converse, suppose . Now let be
the error in estimation of given , which is independent
of and . Then
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Lemma 8: If and are Gaussian random variables such
that

where the zero mean Gaussian random variables and are
independent of , then

iff .
Proof: Observe that

From Lemma 7, it follows that iff
.

Lemma 9: For any Gaussian random variables and
iff and .

Proof: Since for , the
“only if” part of the Lemma is clear. It remains to prove the “if”
part of the lemma, and using Lemma 7, it is enough to show that

form a Markov chain if and
form Markov chains.

Let be the MMSE estimate of given and be the
error in estimate. For , since form a Markov
chain, it follows from Lemma 8 that . Hence,

is independent of both and . Since and are all
Gaussian, is also independent of . Therefore ,

and hence form a Markov chain.

IV. TWO-USER INTERFERENCE CHANNEL:
EXISTING BOUNDS

The information-theoretic study of interference channels has
mainly been limited to the two-user case, with the hope that the
insights obtained from studying the two-user case can be gen-
eralized to an interference network with more than two users.
With in (2), we get the two-user Gaussian interference
channel parameterized by

(4)

with average transmit power constraints and on users
1 and 2, respectively. The capacity region of this channel is
known only in the very strong interference [4] and strong in-
terference [5], [6] settings, where it can be established that both
the users can decode all the transmitted messages, and thus the
capacity region is the same as that of the compound multiple-ac-
cess channel. In the rest of this section, we summarize the ex-
isting bounds on the capacity region of the weak interference
channel, where and .

A. Inner Bounds

Simple schemes: In the interference free scenario, where
, single-user Gaussian codebooks at the transmit-

ters are obviously capacity-achieving. Thus, if the interference
is low, a reasonable strategy is to treat interference as noise at
the receivers, and employ single-user Gaussian codebooks at
the transmitters to achieve the following sum rate.

Proposition 1 (Treating Interference as Noise): The sum ca-
pacity of the two-user Gaussian interference channel (4)
is lower-bounded by

Clearly such a strategy will not work if the interference is
moderate, in which case, another simple alternative is to orthog-
onalize the users in time or frequency.

Sophisticated schemes: Interference, unlike noise, is gen-
erated by other users and hence has a definite structure.
Sophisticated schemes that exploit the interference structure
could potentially perform better than the simple schemes
described above. Han and Kobayashi introduced such a so-
phisticated scheme in [5], which results in the best known
achievable region for the two-user channel. And while Chong,
Motani, and Garg have recently simplified the HK region [7], it
still remains formidable to compute.

B. Outer Bounds

The best known outer bounds to the capacity region of the
two-user Gaussian interference channel are the one due to Sato,
Costa, and Kramer [18], [19], [8], which we refer to as the
broadcast channel outer bound; and the one due to Etkin, Tse,
and Wang [9], which we refer to as the ETW outer bound. In
the rest of this section, we review these outer bounds. We also
give a simple and more direct proof of the broadcast channel
outer bound, and illustrate that it is a tightened version of the
Z-channel sum rate outer bound [8], [20]. We make use of this
connection to tighten the ETW outer bound in Section VI.

A salient feature of these outer bounds is that they are based
on a genie providing side information to the receivers. Since the
receivers can choose not to use the side information, the capacity
region of the genie-aided channel is an obvious outer bound
on the capacity region of the interference channel. Throughout
this paper, we will assume that the side information is linear
in the inputs with additive Gaussian noise that is i.i.d. in time.
Thus, the side information will be Gaussian if all the inputs are
Gaussian.

Some notation is required before proceeding further. The
variable denotes the side information given to receiver

. The variable denotes the zero-mean Gaussian
random variable with variance . The variables
and denote the Gaussian outputs and side information at
receiver , respectively, that result when all the channel inputs
are Gaussian, i.e., when , for . The quantities

and denote i.i.d. sequences of the corresponding
Gaussian random variables.
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C. Bounding Techniques

Consider the following possible ways of bounding the rate
of user 1.

• No Side Information: If the receivers do not receive any
side information, then can be bounded using Fano’s
equality as follows:

(5)

• Interference Free: Providing receiver 1 with the knowledge
of the interfering signal can only increase the achiev-
able rate , hence

(6)

where the step follows because conditioned on
and is the Gaussian noise at the receiver, which is not a
function of the input distributions. The scaling in the step

is done for convenience.
• Genie-aided: Here a genie provides side information to

receiver 1. As we stated earlier, we assume that the side
information is linear in the inputs with additive Gaussian
noise that is i.i.d. in time. For the two-user case, we fur-
ther restrict our attention to genie signals such that, condi-
tioned on the input sequence , the sequence is i.i.d.
Gaussian (this holds, for example, if ,
where is i.i.d. Gaussian). Then we can write

(7)

where the step holds because of the assumption on the
genie signal, and the step follows from Lemma 1.

The term can bounded in similar ways.
• No Side Information:

(8)

• Interference Free:

(9)

• Genie-Aided:

(10)

D. Etkin, Tse, and Wang (ETW) Outer Bound [9]

If the genie signals are defined as

(11)

then the following relations hold true:

(12)

Since , we can use the worst case noise result
(Lemma 3) to obtain the following inequalities:

(13)

The relations (12) and (13), together with bounding tech-
niques described in the previous subsection, lead succinctly to
the outer bound on the capacity region given by Etkin, Tse, and
Wang [9]:

Lemma 10 (Etkin, Tse, and Wang [9]): The capacity region
of a two-user Gaussian interference channel with and

is contained in the region

(14)

(15)

(16)

(17)

(18)

(19)

(20)

where the genie signals are defined in (11).
Proof: The outer bounds immediately follow by choosing

the appropriate bounding technique from Section IV-C, and
using the relations (13) and (12), where necessary. For example,
to derive the bound (17), use (5) and (9) and use the worst case
noise result (13) to show that
is maximized by . To derive the bound (18), use (7) and
(10) and use (12) to show that the right hand side (RHS) of (7)
plus the RHS of (10) is maximized by and .
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Remark 2: The RHS terms in the outer bounds can easily be
shown to be equivalent to those in [9, Theorem 3 ] by making
the following substitutions:

and similar substitutions for the terms corresponding to user 2.

The form of the outer bound given in Lemma 10 is strikingly
similar to the simplified HK region [7], and in fact a special case
of the HK region is shown to be within one bit of the outer bound
[9], [21].

E. Outer Bounds To One-Sided Interference Channels

In deriving the bounds (16) and (17), one of the receivers is
made interference free. Thus, these outer bounds are derived
for the one-sided interference channel, where only one user ex-
periences the interference. Such a channel is also called the
Z-channel, and we therefore refer to the outer bounds (16) and
(17) as the Z-channel sum rate outer bounds.

In [19], Costa showed the equivalence between the Z-channel
and the degraded interference channel, and in [18], Sato showed
that the capacity region of the degraded interference channel is
contained in the capacity region of a broadcast channel. Using
these ideas, Kramer established an outer bound to the capacity
region of the Z-channel [8]. We refer to this outer bound as
the broadcast channel outer bound. We show that the broadcast
channel outer bound is a tightened version of Z-channel sum rate
outer bound, and thus provide a simple and direct proof of the
broadcast channel outer bound. In deriving the Z-channel sum
rate outer bound (17), we have used the worst case noise result
to relate the terms and .
Instead, the EPI can be used to obtain a tighter relation, which
results in the broadcast channel outer bound.

Lemma 11 (Broadcast Channel Outer Bound [8]: The ca-
pacity region of a two-user Gaussian interference channel with

and is contained in the region

(21)

By changing the order of the users, we also have

(22)

Proof: Using (5) and (9), we have

From the EPI (Corollary 1), it follows that

Therefore

Remark 3: The outer bound in Lemma 11 can be shown to
be identical to that presented in [8, Theorem 2].

F. Tightening the Outer Bounds

The outer bounds presented above can be tightened by using
the following observations.

• Generalized genie: In [9], the genie (11) is selected to sat-
isfy (12). However, the techniques developed in [9] can be
generalized to a larger class of genie signals, by using the
worst case noise result to relate the terms in (12) instead
of canceling the terms. In fact, one of the main results of
this paper, the sum capacity of the two-user Gaussian inter-
ference channel in the low-interference regime, is a direct
consequence of this observation.

• EPI-based bounds: We have shown that the broadcast
channel outer bound is a tightened version of sum rate
bounds of (16) and (17) by using the EPI instead of the
worst case noise result. We can similarly apply the EPI to
the other outer bounds in the Lemma 10.

We now proceed to use these observations to tighten the ex-
isting outer bounds.

V. TWO-USER INTERFERENCE CHANNEL: SUM CAPACITY IN

LOW-INTERFERENCE REGIME

Consider the limiting scenario where the interference param-
eters go to zero uniformly. In the limit, when there is
no interference, single-user Gaussian codes are optimal. Given
this fact, a natural question to ask is the following: In terms of the
optimality of single-user Gaussian codes, is the transition from
“no interference” to “interference” continuous? If any other
strategy performs better than treating interference as noise, then
this implies that the receivers are able to exploit the structure in
the interference. On the other hand, for low enough interference
levels, the receivers may not be able to exploit such structure.
Thus, it is reasonable to expect the transition to be continuous. In
this section, we establish this notion mathematically by showing
that treating interference as noise indeed achieves the sum ca-
pacity in a low (but nonzero) interference regime.
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A. Symmetric Interference Channel

The essential ideas and results on the sum capacity of the
two-user interference channel are captured in the symmetric in-
terference channel, for which and .
For this channel we shall establish the following result.

Theorem 1: For the symmetric interference channel, if the
interference parameter satisfies the condition

(23)

then treating interference as noise achieves the sum capacity,
which is given by

(24)

Since the achievability part of the theorem is obvious, we
only need to establish an upper bound on that matches
the expression given on the RHS of (24). We use the concept
of the genie-aided outer bound (see Section IV-C), but with a
class of genie signals that is more general than that used for the
ETW bound of Section IV-D. In particular, we wish to choose
the genie to produce the tightest possible upper bound. To this
end, we introduce the following two qualities of a good genie.

• Useful Genie: The ETW genie (11) is useful in deriving
an outer bound on the sum capacity of the interference
channel. The reason behind its usefulness is the property
(12) that facilitates the derivation of the sum capacity of
the genie-aided channel. Using (12), it can be shown that
Gaussian inputs, which are i.i.d. in time and satisfy the
power constraint with equality, are capacity achieving for
the genie-aided channel. Hence, the sum capacity of the
genie-aided channel equals

(25)

Interestingly, there exists a larger class of genie signals for
which the optimality of Gaussian inputs holds. We there-
fore define a genie to be useful if it results in a genie-aided
channel whose sum capacity (is achieved by Gaussian in-
puts and) is given by (25).
A second example of a useful genie signal is the interfer-
ence removal genie, i.e., the genie that provides side in-
formation to receiver 1 and side information

to receiver 2. Such a genie is clearly useful
because the resulting genie-aided channel is the parallel
Gaussian channel whose sum capacity is easily seen to be
given by (25). However, being too generous, such a genie
does not result in a tight upper bound.
This leads us to the notion of a smart genie.

• Smart Genie: A smart genie results in a tight upper bound
on the sum capacity. More precisely, if Gaussian inputs are
used, then the presence of the genie does not improve the
sum rate, i.e.,

An example of the smart genie is one that does not interact
with the receivers at all; however, it is obviously not useful.

If the genie is useful and smart, then the sum capacity is
upper-bounded by

, which is the sum rate achieved
by treating interference as noise. Thus, it is enough to show
the existence of a genie that is both useful and smart to prove
Theorem 1. So the essential question is: Is there a “divine”
genie that is both useful and smart?

The quest for the divine genie can be simplified by imposing
a structure on the side information it provides. Following (11),
we set

(26)

where and is a positive real number. How-
ever, unlike in (11), we allow to be correlated to (and
with ), with correlation coefficient .

Lemma 12 (Useful Genie): The sum capacity of the genie-
aided channel with side information given in (26) is achieved
by using Gaussian inputs and by treating interference as noise
at the receiver if the following condition holds:

(27)

Hence, the sum capacity of the symmetric interference channel
is bounded as

(28)

Proof: Add (7) and (10) to get the following outer bound
on :

Thus, it only remains to show that

is maximized by and . Now consider

where , independent of . Step follows
from Lemma 6 and step follows form condition (27) and
the worst case noise Lemma 3. Thus,
is maximized by and, similarly,
is maximized by .

Lemma 13 (Smart Genie): If Gaussian inputs are used, the in-
terference is treated as noise, and the following condition holds:

(29)
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Fig. 2. The figure is a Hilbert space representation of the channel input, channel
output, and genie signal. The angle � is such that ��� � equals the correlation
coefficient between the random variables� and �� �� . The genie is a)
useful if it lies inside the dashed curve, and b) smart if it lies on the solid line. If
the dashed curve and solid line intersect, treating interference as noise achieves
sum capacity.

then the genie does not increase the achievable sum rate, i.e.,

(30)

The converse is also true, i.e., (30) implies (29)
Proof: Since

(30) is equivalent to

where the step follows from Lemma 8 and the index
if and vice versa.

In Fig. 2, we plot the usefulness and smartness constraints
(27) and (29) in the Hilbert space of random variables. Fig. 2
only shows the plane containing the transmitted signal , the
received signal , and the genie signal

with origin shifted to . We can view the
usefulness and smartness constraints (27) and (29) on the genie
as regions in the space.

• Useful Genie: The genie is useful, if it lies inside the dashed
curve in Fig. 2. The boundary of the curve is obtained using
the usefulness condition (27).

• Smart Genie: The genie is smart, if it lies on the solid line
in Fig. 2. This is expected because

form a Markov chain iff
is a degraded version of .

There exists a genie that is both useful and smart if the useful-
ness region intersects with the smartness line in Fig. 2, i.e., if
there exist and satisfying the conditions of both Lemmas 12
and 13. Eliminating from (27) and (29) we get

which is possible iff

This completes the proof of Theorem 1.

Remark 4: Lemma 12 is valid even if the interference channel
is not in the low-interference regime. Therefore, minimizing the
expression (28) over all possible genie signals satisfying the use-
fulness constraint (27) results in a valid outer bound. The notion
of the smart genie, therefore, can be thought of as an intuitive
way of identifying the genie that minimizes (28). In [1], we use
the geometric interpretation of Fig. 2 to identify the useful genie
that minimizes (28) when the channel is not in the low interfer-
ence regime.

In Fig. 3, we plot the new outer bound along with the Z-
channel sum rate outer bound (17) and the ETW outer bound
(18). Observe that the new outer bound matches with the inner
bound obtained by treating interference as noise when the inter-
ference is below a threshold.

B. Discussion on Low-Interference Regime

As in [9], we use INR as a shorthand notation for interference
to noise ratio, i.e., . Since the expression

is an increasing function of and , the condition (23)
for low-interference regime is equivalent to a threshold criterion
on INR for any given . Fig. 4 shows the INR threshold, below
which treating interference as noise achieves the sum capacity,
as a function of SNR in decibel scale.

The condition (23) is only a sufficient condition for the
channel to be in the low-interference regime, where treating
interference as noise with Gaussian inputs to achieve the sum
capacity. There might exist channels with INR greater than
INR threshold shown in Fig. 4 but in low-interference regime.
A trivial necessary condition for the channel to be in low-inter-
ference regime is

(31)

If the channel parameters do not satisfy the above condition,
then time-division multiplexing achieves better sum rate than
treating interference as noise with Gaussian inputs, i.e.,

In the high-SNR asymptotic regime, expressions (23) and (31)
translate to the following: Treating interference as noise with
Gaussian inputs

• is optimal if INR (in decibel scale) is less than one third of
SNR,

• cannot be optimal if INR is greater than one half of SNR.
Refer to [9, Sec. III.G] for a discussion on the asymptotic opti-
mality of treating interference as noise in the high-SNR regime
when the INR value is between one third and one half of SNR.

C. Asymmetric Interference Channel

For the asymmetric interference channel, we consider the
asymmetric genie

(32)
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Fig. 3. Two-user symmetric Gaussian interference channel �� � ���: Sum capacity in the low interference regime.

Let be the correlation between and (and the corre-
lation between and ).

Theorem 33: Consider the asymmetric interference channel
with interference parameters and satisfying

(33)

Then treating interference as noise achieves sum capacity, which
is given by

Proof: The proof is similar to that for the symmetric inter-
ference channel. Using the same arguments as in Lemma 12, the
genie is useful if

Also, as in Lemma 13, the genie is smart iff

Thus, there exists a useful and smart genie if there exist
and such that

(34)

By setting and , (34) implies (33). It
is also true that (33) implies (34). This can be seen by setting
such that

i.e.,

Setting and , we have (34).

Remark 5: Theorem 2 is proved independently in [11]
and [12].

VI. TWO-USER INTERFERENCE CHANNEL: OUTER BOUNDS TO

THE CAPACITY REGION

In Section IV-F, we observed that the ETW outer bound in
the Lemma 10 can be tightened by considering a general class
of genie signals and using the EPI instead of the worst case noise
result. In this section, we use these observations to improve the
outer bounds.

Theorem 3 (EPI-Based ETW Outer Bound): The capacity re-
gion of a two-user Gaussian interference channel with
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Fig. 4. Two-user symmetric Gaussian interference channel: INR threshold, below which treating interference as noise achieves the sum capacity, as a function of
the SNR.

and is outer-bounded by the regions given below in
Lemmas 14 and 15, along with Lemma 11.

Lemma 14 (Tightened Version (18)): The capacity region of
a two-user Gaussian interference channel with and

is contained in the region

for all , the parameters of the genie defined in
(32), such that

Interchanging the user indices, we get another such bound.
Proof: Using (7) and (10), we have

(35)

Denote

(36)

to obtain

(37)

To apply EPI, should satisfy

Define the slack variables

Using EPI (Corollary 1), we have
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By eliminating and , we get

Remark 6: Lemma 14, being a tightened version of the ETW
sum rate outer bound (18), includes the new sum rate outer
bounds presented in Section V.

Lemma 15 (Tightened versions of (19) and (20)): The ca-
pacity region of a two-user Gaussian interference channel with

and is contained in the region

for all , the parameters of the genie defined in
(32), such that

Interchanging the user indices, we get another such bound.
Proof: Use (5), (6), and (10) to obtain

(38)

To apply EPI, should satisfy

Define the slack variables

Using EPI (Corollary 1) and the bounds on in (38), we
obtain

and

where the steps and follow from EPI (Corollary 1) and
the steps and use the bounds on in (38). Using the
above relations with the bound on in (38), we obtain

(39)

A. Numerical Results

In Figs. 5 and 6, we plot the new outer bound, i.e., EPI-based
ETW outer bound, along with the original ETW outer bound
and the broadcast channel outer bound. To compare the outer
bounds, we also plot a special case of the HK inner bound, that
does not include time sharing and is limited to only Gaussian
distributions for the private and common messages. Since
the EPI-based ETW outer bound contains the original ETW
outer bound and broadcast channel outer bound as special
cases, it is obviously tighter. Fig. 5 corresponds to

, which satisfy the condition
(33) for low interference, and hence the inner and outer bounds
meet at one point to give the sum capacity. Fig. 6 corresponds
to , which do not satisfy the
condition (33) for low interference, and hence inner and outer
bounds do not meet.

As discussed in Section IV-F, the outer bounds presented in
this paper are tightened versions of the ETW outer bounds, ob-
tained by considering a general class of genie signals and using
EPI instead of the worst case noise result. Similar approach has
been taken independently by two other groups—Shang, Kramer,
and Chen [11] and Motahari and Khandani [12]. The main dif-
ference in the approaches is that [11] and [12] use an extremal
inequality [22] instead of EPI. Although the extremal inequali-
ties proposed in [22] are more general than EPI, both are equiv-
alent for the purpose of this paper. Hence, we believe that both
the approaches should yield the same bounds. Shang et al. tight-
ened only the sum rate outer bound (18) and hence their outer
bound, equivalent to Lemma 14, is weaker compared to The-
orem 3 that includes Lemma 15 as well. Motahari et al. tight-
ened all the ETW outer bounds and hence their outer bound is
equivalent to Theorem 3. We may compare Fig. 6 with Fig. 10
in [12] and Fig. 5 with Fig. 4 in [11].
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Fig. 5. Two-user Gaussian interference channel �� � ��� � � ��� � � ����� � � ����� in low-interference regime: Bounds on the capacity region.

VII. GAUSSIAN INTERFERENCE NETWORK: SUM CAPACITY IN

LOW-INTERFERENCE REGIME

In Section V, we established the sum capacity of the two-user
Gaussian interference channel in a low-interference regime. The
intuition is that if the interference is low enough, the receiver
will not be able to exploit the structure in the interference, and
hence treating interference as noise achieves the sum capacity.
It is natural to verify whether the result can be extended to an
arbitrary interference network, and if it does, to see how the
interference threshold scales with the number of users. In this
section, we first consider two special cases of the general inter-
ference network: the many-to-one interference channel, where
only one user experiences interference, and the one-to-many in-
terference channel, where the interference is generated by only
one user. For these two special cases, we use a genie similar to
that used for the two-user interference channel, which we call
now a scalar genie, to propose conditions under which treating
interference as noise achieves the sum capacity.

Using the scalar genie, Shang et al. derived conditions for
the optimality of treating interference as noise for an arbitrary
Gaussian interference network [23]. For symmetric interference
channels, this results in an threshold, below which
treating interference as noise achieves sum capacity, that is, in-
dependent of the number of users. Here we use the notation

for a symmetric interference channel to denote the
total INR. We show that there exists an alternative construc-
tion of the genie, where each receiver is provided with multiple

genie signals, resulting in a threshold for the sym-
metric three-user interference channel, that is higher than the
INR threshold for the symmetric two-user interference channel.

A. Many-to-One and One-to-Many Interference Channels

The many-to-one and one-to-many interference channels are
studied in [24], [25], where the capacity region is characterized
to within a constant number of bits.

Many-to-one: In a many-to-one Gaussian interference chan-
nel only one user experiences the interference, i.e.,

where we assume that the user 1 is the unlucky user
without any loss of generality. Thus, the many-to-one
Gaussian interference channel is parameterized by

for (40)

One-to-many: In a one-to-many Gaussian interference chan-
nel only one user causes the interference, i.e.,
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Fig. 6. Two-user symmetric Gaussian interference channel �� � �� � � ����: Bounds on the capacity region.

where we assumed that user 1 is the interfering user. Thus, the
one-to-many Gaussian interference channel is parameterized by

for (41)

Theorem 4: For a many-to-one interference channel (40) sat-
isfying

(42)

treating interference as noise achieves the sum capacity, which
is given by

(43)
Proof: Allowing the interfering users to cooperate can only

increase the sum capacity. Let be the vector denoting the
collective received signal, and denote the corresponding
transmit and noise vectors, and to
arrive at

Let be the side information given to the
(collective) receivers of the interfering users. Here is zero
mean, unit variance, Gaussian random variable. Using Fano’s
inequality, we have

where the step follows from Lemma 1. Thus, the genie
is useful. If (42) is true, then the random variable can be
chosen such that

where the Gaussian random variable is independent of .
Therefore
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and hence making the
genie smart. Hence, the theorem follows.

Theorem 5: For a one-to-many interference channel (41) sat-
isfying

(44)

treating interference as noise achieves the sum capacity, which
is given by

(45)

Proof: We prove this theorem directly without the aid of a
genie.

To finish the proof, we further need to show that

is maximized by , for some such that
. If (44) holds, it is possible to chose

satisfying

For each

where , independent of and . Step
follows from Lemma 5. Here we assumed that ,

otherwise, it immediately follows from Lemma 1 that
is maximized by .

Remark 7: Theorems 4 and 5, which were presented by the
authors in [2], can be shown to be special cases of Theorem 4
in [23].

B. Vector Genie

We now propose a systematic construction of a useful genie
for an arbitrary interference network. We call this a vector genie
because it involves giving multiple side information signals to
each receiver. This vector genie can be thought of as a general-
ization of the ETW genie (11) developed for the two-user inter-
ference channel. We need to define an ordering function before
constructing the vector genie signal.

Definition 1 (Ordering Function): We call a function
an ordering function if it sat-

isfies the following properties:

(46)

where denotes the function operated times.

Definition 2: Suppose is a random variable that is
an affine combination of the variables . For any

denotes the random vari-
able obtained after removing the contributions of
from .

For any fixed ordering function , let

be the side information given to the receiver , defined as

for
(47)

For example, consider the three-user interference network. With
the ordering function

we see that the genie signals defined by (47) are as shown in
Table I. The following properties of the genie (47) are useful in
deriving the outer bounds.

Proposition 2: For each , the genie signal is inter-
ference free, i.e., .

Proof: From the construction of the genie (47), we have

which implies that
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TABLE I
THREE-USER SYMMETRIC INTERFERENCE CHANNEL: VECTOR GENIE IN SECTION VII-B

where steps and follow from the property (46) of the
ordering function .

Proposition 3: For each receiver is independent of
and , and can be expressed as

where

(48)

Proof: First we show that . From the
construction of the genie (47)

and for

Since is obtained by removing the contribution of
from , it is independent of . The genie signal is
independent of since none of is constructed from

and we assumed that the receiver noise terms are inde-
pendent of each other.

We now proceed to show that the vector genie (47) is useful
and derive an outer bound on the sum capacity.

Theorem 6: For any ordering function , the genie defined in
(47) is useful, i.e., the sum capacity of the interference network
(2) is upper-bounded by

where the genie signals are defined in (47).
Proof:

where step follows from the definition of (48), step
follows from Propositions 2 and 3, step follows be-

cause , step follows from
Proposition 2, and finally, step follows from Lemma 1. We
have shown that maximizes
and clearly the maximum is given by ,
and hence we have the result.

Similar to the two-user case, we proceed to tighten the outer
bound by correlating the noise terms in the genie signals to the
receiver noise. In particular, we explore if there exists a genie
that is not just useful, but also smart, to establish the sum ca-
pacity in the low-interference regime.

C. Three-User Symmetric Interference Channel

To simplify the presentation, we will restrict our attention to
the symmetric three-user channel, i.e., and

. To make the genie smart, we let the noise terms in
the genie signals be correlated to the noise at the receiver. The
genie signals are shown in Table II. Here are zero
mean, unit variance, Gaussian random variables, and are
real variables. Let denote the covariance matrix of the random
vector (which is independent of )

(49)

Thus, the genie is parameterized by .
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TABLE II
THREE-USER SYMMETRIC INTERFERENCE CHANNEL: VECTOR GENIE DEFINED IN SECTION VII-C

Lemma 16 (Useful Genie): The genie is useful i.e.,

when

(50)
Proof: Following the proof of Theorem 6, we only need to

show that

is maximized by . For

(51)

Using Lemmas 6 and 4, it follows that (51) is maximized by
if the condition (50) holds.

We next give the conditions for the genie to be smart in the
following lemma, which is an extension of Lemma 13.

Lemma 17 (Smart Genie): The genie is smart, i.e.,

(52)

iff the following conditions hold:

(53)

Proof: Since

(52) is equivalent to

(54)

From Lemma 9, it follows that (54) is true iff

(55)

Using Lemma 8, we have

and

Theorem 7: For the symmetric three-user Gaussian interfer-
ence channel, suppose there exist satisfying
(50) and (53), then treating interference as noise achieves the
sum capacity, which is given by

Unlike in the two-user case, we have not been able to pro-
vide an explicit equation for the threshold on (as a function
of ) below which treating interference as noise achieves the
sum capacity. Nevertheless, for every , admissible values of

can be found numerically by searching for the parameters
that satisfy the conditions in Theorem 7.

Using a scalar genie similar to that used for the two-user inter-
ference channel, Shang et al. obtained a threshold on
that is independent of the number of users [23, Theorem 4].
In Fig. 7, we plot a few admissible points that are computed
numerically along with the obtained using the scalar
genie. An increase of more than 1 dB in the threshold
is seen by using the vector genie instead of the scalar genie. Note
that threshold obtained using the vector genie for the
three-user interference channel is greater than the INR threshold
for the two-user interference channel (which is the same as the

threshold obtained using the scalar genie).
Although the thresholds we obtain in this paper are only lower

bounds to the optimal threshold, we believe that the trend shown
by the vector genie holds true, i.e., the optimal interference
threshold, below which treating interference as noise achieves
sum capacity, increases with the number of users. The optimal-
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Fig. 7. Three-user symmetric Gaussian interference channel: ��� threshold, below which treating interference as noise achieves the sum capacity, as a
function of SNR.

ity of treating interference as noise in the low-interference
regime implies that the receivers are not able to exploit the
structure in the interference. With more users in the network,
the ability of the receiver to exploit the structure in each of
the interfering user’s signal can only decrease because the
interfering users’ signals interfere with each other.

VIII. CONCLUSION

We provided new, improved, genie-aided outer bounds on the
capacity region of a two-user Gaussian interference channel.
Using these outer bounds, we showed that treating interference
as noise achieves the sum capacity in a low interference regime.
Similar results were established in parallel by Shang, Kramer,
and Chen [11], and Motahari and Khandani [12]. It is also to
be noted that what has been obtained in all three works is only a
lower bound on the interference threshold, below which treating
interference as noise with Gaussian inputs achieves sum ca-
pacity. The question still remains as to what the optimal inter-
ference threshold is.

A natural extension of the two-user results is the generaliza-
tion of the optimality of treating interference as noise in the
low-interference regime to Gaussian interference networks with
more than two users. We provided closed-form expressions that
characterize the low-interference regime for the many-to-one
and one-to-many interference channels. Furthermore, we gener-
alized the ETW genie [9] to an arbitrary Gaussian interference
network, i.e., proposed a systematic construction of a genie such
that treating interference as noise with Gaussian inputs achieve
the sum capacity of the genie-aided network. We called this

genie a vector genie, because it involves giving multiple side
information signals to each receiver.

By correlating the noise terms in the vector genie, we showed
that the outer bound can be further tightened to establish the sum
capacity in a low-interference regime. For reasons of computa-
tional complexity, we only considered a three-user symmetric
interference channel, for which we demonstrated that the total
interference threshold can be higher than that for the two-user
case. The interesting question that remains to be answered is:
how does the optimal interference threshold scale as a function
of the number of interferers in the network?
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