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Abstract—Using Gaussian inputs and treating interference as
noise at the receivers has recently been shown to be sum capacity
achieving for the two-user single-input single-output (SISO)
Gaussian interference channel in a low interference regime, where
the interference levels are below certain thresholds. In this paper,
such a low interference regime is characterized for multiple-input
multiple-output (MIMO) Gaussian interference channels. Condi-
tions are provided on the direct and cross channel gain matrices
under which using Gaussian inputs and treating interference as
noise at the receivers is sum capacity achieving. For the special
cases of the symmetric multiple-input single-output (MISO) and
single-input multiple-output (SIMO) Gaussian interference chan-
nels, more explicit expressions for the low interference regime are
derived. In particular, the threshold on the interference levels that
characterize low interference regime is related to the input SNR
and the angle between the direct and cross channel gain vectors.
It is shown that the low interference regime can be quite signifi-
cant for MIMO interference channels, with the low interference
threshold being at least as large as the sine of the angle between
the direct and cross channel gain vectors for the MISO and SIMO
cases.

Index Terms—Capacity, genie, interference channel, multiple-
input multiple-output (MIMO), outer bound, treating interference
as noise.

I. INTRODUCTION

B REAKING the interference barrier is an important step
in achieving higher throughput in wireless networks. To-

wards this end, there has been a renewed interest in informa-
tion-theoretic studies of interference networks in recent years.
A canonical problem for such an information-theoretic analysis
is the two-user single-input single-output (SISO) Gaussian in-
terference channel. This problem was first studied more than
thirty years ago, and the capacity region was determined in the
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strong (and very strong) interference regimes, where the inter-
ference-to-noise ratio (INR) is larger than the signal-to-noise
ratio (SNR) at each receiver [1]–[3].

Establishing the capacity region in the more commonly en-
countered weak interference regime, where the INR is smaller
than the SNR, is still mostly an open problem. Nevertheless,
the best known inner bound on the capacity region proposed by
Han and Kobayashi [2] was recently shown to be within one bit
of the capacity region [4]. In the Han-Kobayashi scheme, the
users split their messages into private and common messages,
and each user jointly decodes its own message and the common
message of the interfering user. This is in general a sophisticated
scheme, requiring multi-user encoders and decoders and coordi-
nation between the users. While such techniques are promising
and being implemented in advanced systems, the traditional way
to combat the interference is to treat interference as noise when
the interference is weak, and to orthogonalize the users in time
or frequency when the interference is moderate. Interestingly,
treating interference as noise with Gaussian inputs was shown to
be capacity achieving in a low (very weak) interference regime
[5]–[7], which is the counterpart of the very strong interference
regime [1]. Our goal in this paper is to characterize such a low
interference regime for multiple-input multiple-output (MIMO)
Gaussian interference channels.

The channel of interest is described in Fig. 1. There has
been some previous work on studying inner and outer bounds
on the capacity region of this channel [8]–[13]. In particular,
Teletar and Tse [10] showed that an appropriate extension
of the SISO Han-Kobayashi inner bound is within a finite
number (equal to the number of receive antennas) of bits of
the capacity region. In [13], Shang et al. studied the low inter-
ference regime of the parallel interference channel. The low
interference regime of the general MIMO interference channel
was analyzed by Shang et al. in [11], [12], where they showed
that using Gaussian inputs and treating interference as noise is
sum capacity achieving if the channel matrices satisfy a low
interference regime condition for all input covariance matrices
satisfying certain average transmit power constraints. For the
special case of multiple-input single-output (MISO) interfer-
ence channel, this result is not useful because the required low
interference regime condition can be satisfied only if the input
covariance matrices are unit-rank, but the result in [11] requires
the condition to be satisfied for all input covariance matrices
satisfying the transmit power constraints. Bernd et al. studied
the low interference regime of MISO interference channel
under the assumption that single-mode beamforming is applied
at the transmitters [14].

For the general MIMO interference channel, we show that
it is sufficient for the low interference regime condition to be
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Fig. 1. Two-user MIMO Gaussian interference channel.

satisfied only for the optimal input covariance matrices (those
that maximize the achievable sum rate assuming Gaussian in-
puts and treating interference as noise) if they are full rank. For
the MISO interference channel, this result cannot be exploited
to establish a low interference regime because the optimal input
covariance matrices are unit-rank, i.e., transmit beamforming
maximizes the achievable sum-rate for the MISO interference
channel [15]. We analyze the special case of symmetric MISO
interference channel explicitly and derive a simple expression
that characterizes the low interference regime. In particular, we
relate the threshold on the interference levels, that characterize
low interference regime, to the input SNR and the angle be-
tween the direct and cross channel gain vectors. We show that
the same low interference regime holds for the dual single-input
multiple-output (SIMO) interference channel also.

We establish that the low interference regime can be quite
significant for MIMO interference channels, with the low inter-
ference threshold being at least as large as the sine of the angle
between the direct and cross channel gain vectors for the MISO
and SIMO cases.

A. Notation and Organization

We use underlined letters to denote vectors, and superscripts
to denote sequences in time. For example, we use to denote
a scalar, to denote a vector, and and to denote se-
quences of length of scalars and vectors, respectively. We
use to denote the variance of a random variable ,
and denote the minimum mean square error in es-
timating the random variable from the random variable ,
with similar notation for random vectors. We use to
denote the Gaussian distribution with mean and variance ,
and to denote the Gaussian vector distribution with
mean and covariance matrix . We use to denote the
differential entropy of a continuous random variable or vector
and to denote the mutual information. For real symmetric
matrices and , we use to denote that is pos-
itive semidefinite.

The rest of the paper is organized as follows. In Section II,
we introduce the model for MIMO interference channel that
we study. In Section III, we present the results on the general
MIMO interference channel. In Sections IV and V, we charac-
terize the low interference regime for MISO and SIMO inter-
ference channels, respectively. In Section VI, we discuss some
properties of the low interference regime. In Section VII, we
provide some concluding remarks.

II. PROBLEM STATEMENT AND SUMMARY OF CONTRIBUTIONS

Consider the two-user MIMO Gaussian interference channel
(Fig. 1)

(1)

with inputs and the corresponding outputs . The
channel gain matrices are arbitrary but fixed and real.
The receiver noise terms and , are
assumed to be independent and identically distributed (i.i.d.) in
time. The average transmit power constraints on users 1 and 2
are and , respectively. Using to denote the channel
input of the user at time , the average transmit power con-
straints can be written as

where

(2)

We are interested in characterizing the low interference regime
where using Gaussian inputs and treating interference as noise
at the receivers achieves the sum capacity.

A. Achievable Sum-Rate

Let denote the sum-rate achieved by using
Gaussian inputs with input covariance matrix at transmitter

and treating interference as noise at the receivers

where the subscript on the inputs and outputs is used to in-
dicate that Gaussian inputs are used. The input covariance ma-
trices used should be obvious from the context throughout the
paper.

The following result holds since any achievable sum rate is a
lower bound on the sum capacity.

Lemma 1: The sum capacity of the MIMO interference
channel (1) is lower bounded by

(3)

where are optimal covariance matrices

(4)

In the rest of the paper, we investigate when the inequality in
Lemma 1 is achieved with equality, i.e., when treating interfer-
ence as noise achieves the sum capacity. The optimization over
the input covariance matrices is the new feature that makes the
problem more difficult than its SISO counterpart, since little is
known about the structure of the optimal covariance matrices

for general MIMO interference channels. For MISO
interference channels, it was shown in [15] that the optimal
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covariance matrices are unit rank; this fact is exploited in
Section IV to derive explicit conditions for the low interference
regime.

B. Genie-Aided Outer Bound

The outer bound is based on a genie giving side information
to the receivers. Let denote the side information given to the
receiver

(5)

Let denote the sum rate achievable by
treating interference as noise for the genie-aided interference
channel using Gaussian inputs with input covariance matrix
at transmitter

where is used to denote the genie parameters. Let
denote the sum capacity of the genie-aided interference channel.
The steps required in the outer bound are as follows:

(6)

Step (a) is obvious since providing the receivers with extra in-
formation can only improve the sum capacity. Step (e) follows
from Lemma 1. Steps (b), (c), and (d) are the nontrivial steps:

• Useful genie: The genie is chosen to satisfy step (b), i.e.,
treating interference as noise, and using Gaussian inputs,
achieve the sum capacity of the genie-aided interference
channel. We say that such a genie is useful.

• Step (c): The genie is chosen so that the optimal covari-
ance matrices maximizing the achievable sum-
rate of the original interference channel (4), also maxi-
mize the achievable sum-rate of the genie-aided interfer-
ence channel.

• Smart genie: The genie is chosen to satisfy step (d),
i.e., it does not give away any extra information when
the coding strategy is fixed to using Gaussian inputs
with covariance matrices and treating inter-
ference as noise. We say that a genie is smart with
respect to (w.r.t.) the covariance matrices if

. So, step (d) says
that the genie is chosen to be smart w.r.t. .

These steps were first introduced in [5]–[7] for the SISO inter-
ference channel, where a genie is constructed satisfying all the
steps in (6) when the channel parameters satisfy the following
condition for low interference regime:

In this paper, we intend to generalize this outer bound to MIMO
interference channels. The key step, new to the MIMO interfer-
ence channels, is the optimization step (c), which is implicitly
taken care of in the case of SISO interference channel. We now
summarize the known results on this problem [11], [12]:

• Covariance constraint: In [12], Shang et al. studied the
MIMO interference channel with the average transmit co-
variance constraint

(7)

instead of the average power constraint given in (2). With
the outer bound techniques used in [5]–[7], [11], [12]
and this paper, when the genie is useful, the sum-rate

is concave in , and satisfies
the following property:

(8)

With covariance constraint (7), this property (8) automati-
cally takes care of the optimization step (c), and thus the
problem simplifies to finding conditions under which a
genie exists that is useful and smart w.r.t (See
Theorem 6 in [12]).

• Power constraint: In [11], Shang et al. applied the above
insight from the covariance constraint problem to the
power constraint problem leading to the following ob-
servation (See Theorem 1 of [11]). If for every
satisfying the power constraint , there exists
a genie that is both useful and smart w.r.t. , then
using Gaussian inputs and treating interference as noise
achieves the sum capacity.

However, the proof outline in (6) only requires the existence of a
genie that is useful and smart w.r.t. . Asking for the ex-
istence of such a genie for every satisfying

can be too restrictive in general. For example, in the case of
MISO interference channel, a genie can be smart w.r.t.
only if they are unit rank. Hence, the condition in [11] cannot
be satisfied by a MISO interference channel no matter how the
channel parameters are chosen. In this paper, we strengthen The-
orem 1 of [11] in some special cases. In particular, we make the
following contributions:

• MIMO interference channel: In Section III, we show that
if the optimal covariance matrices are full rank,
it is just sufficient to check for the existence of a genie that
is useful and smart w.r.t. . To better understand
why this is so, consider the optimization problem

Suppose is not concave, and has a local maximum
point at . This implies . Now, if
there exists a concave function such that

, then we can show that
achieves global maximum for both and . First,
observe that , and

(9)
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which implies that . This, combined with
, implies that . Since is con-

cave, it follows that achieves global maximum of ,
and

By replacing and with and , respec-
tively, we use the same idea to show that the step (c) in
(6) is automatically satisfied if the steps (b) and (d) are sat-
isfied and are full rank. To understand why the
full rank condition is necessary, observe that the argument
in the above example fails if or , because then (9)
does not necessary imply that .

• Symmetric MISO interference channel: For the MISO
interference channel, the optimal covariance matrices

are unit rank. So, just the existence of a genie
that is useful and smart w.r.t. does not guarantee
the validity of the optimization step (c). In Section IV, we
consider the symmetric MISO interference channel and
show that if the channel parameters satisfy an additional
condition, beyond what is required for the existence of
useful and smart genie, then step (c) holds. We also derive
an explicit threshold condition for the low interference
regime.

• Symmetric SIMO interference channel: In the case of
the SIMO interference channel, we have only one transmit
antenna, and the optimization step (c) does not even come
into the play. Similar to the SISO counterpart, the problem
is to only find the conditions under which a genie exists that
is both useful and smart. In Section V, we simplify these
conditions in the symmetric case, and show that they result
in a threshold condition that is identical to that obtained in
the case of the dual MISO interference channel.

III. MIMO INTERFERENCE CHANNEL

Let denote the side information given to the receiver

(10)

where

Since the covariance matrix has to be positive semi-definite, the
genie parameters have to satisfy

(11)

Lemma 2 (Theorem 7.7.6 in [16]): If , then the fol-
lowing two statements are equivalent:

Recall that denotes the genie parameters collectively, and
denotes the sum rate achievable by

treating interference as noise for the genie-aided interference
channel using Gaussian inputs with input covariance matrix
at transmitter . We now extend Lemmas 12 and 13 in [7] (the
so called usefulness and smartness conditions) to the MIMO
interference channel. Lemmas 3 and 4 present conditions under
which steps (b) and (d) in (6) hold true, respectively.

Lemma 3 (Useful Genie): If the genie satisfies the fol-
lowing conditions:

(12)

then the sum capacity of the genie-aided channel is given by

and is concave in . Furthermore,
if the inequalities in (12) are met with equality, then

Proof: See Appendix B.

Remark 1: When the cross channel matrices are
not full-column rank, the conditions (12) can be relaxed as we
do later in Lemma 5 for the SIMO interference channel.

Lemma 4 (Smart Genie): For any input covariance matrices

if and only if (iff)

(13)

Proof: See Appendix C.

Theorem 1: The sum capacity of the MIMO interference
channel (1) is achieved by using Gaussian inputs and treating
interference as noise at the receivers, and is given by

if there exists a full rank local optimal solution to the
optimization problem

(14)

and there exist matrices satisfying
the usefulness and smartness conditions corresponding to

, i.e.,

(15)
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Proof: Since

from Lemma 2, condition (11) is satisfied. The outline of the
proof is given in (6). Here, we justify the steps (b), (c) and (d) in
(6). Steps (b) and (d) follow from Lemmas 3 and 4, respectively,
and it only remains to prove step (c). The Lagrangian associated
with (14) is [17]

Since is a local optimal solution to (14), there exist
dual variables and satisfying the KKT condi-
tions [17]

(16)

Now, let denote the extra sum rate achiev-
able because of the genie

Since the genie satisfies condition (13), from Lemma 4 we
have

Therefore, is also a solution to the optimization
problem

(17)

The Lagrangian associated with (17) is

There exists dual variables satisfying the KKT
conditions

Since is full rank, implies , and hence

(18)

Combining (16) and (18), we have

(19)

which are nothing but the KKT conditions associated with the
problem

(20)

From Lemma 3, is concave in and .
Since the objective function is concave, the KKT conditions are
not only necessary but also sufficient, and hence is a
globally optimal solution to the optimization problem (20). (See
Section 5.5.3 in [17] for an explanation). This verifies step (c)
of (6), and completes the proof of Theorem 1.

IV. MISO INTERFERENCE CHANNEL

Consider a symmetric two-user Gaussian MISO interference
channel

(21)

obtained by making the following substitutions in (1):

where and are unit norm vectors, denoting the directions
of direct link and cross link, respectively. Without any loss of
generality, we can assume two transmit antennas and

by projecting and along appropriate basis vectors. See
Appendix D for an explanation. The extreme case corre-
sponds to the SISO interference channel, which was considered
in [7]. The extreme case corresponds to the no inter-
ference scenario, with the capacity region given by

.

A. Achievable Sum-Rate

The sum-rate achieved by using Gaussian inputs with input
covariance matrix at transmitter and treating interference
as noise at the receivers is

This problem of finding the optimal transmit beams for the
MISO interference channel is studied in [15], [18] and [19]. In
[15], it is shown that the optimal covariance matrices and
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are unit-rank. Even though the channel is symmetric across
the users, since the sum-rate is not necessarily
concave in , the optimal covariance matrices and

need not be the same. In this Section, for the purpose
of achievable sum-rate, we restrict ourselves to covariance
matrices symmetric across the users, i.e.,

where is the unit norm transmit beamforming vector. With this
assumption, the achievable sum-rate is given by

where SINR denotes the signal to interference and noise ratio

The optimal maximizing SINR is given by the generalized
eigenvector of the matrix pair

corresponding to the largest generalized eigenvalue, given by

(22)

The corresponding SINR is given by

(23)

where step (a) follows from the matrix inversion lemma

(24)

Therefore, a sum-rate of

is achievable.
We now characterize the low interference regime for the

MISO interference channel, and provide explicit conditions
on and , when is equal to the sum capacity.
We cannot use Theorem 1 to do this, because the optimal
covariance matrices and are not full-rank, as required
in the hypothesis of Theroem 1.

B. Low Interference Regime

Theorem 2: The sum capacity of the MISO interference
channel (21) is achieved by using Gaussian inputs, transmit
beamforming along the vector given in (22), and treating
interference as noise at the receivers, and is given by

if the channel gain parameter satisfies

(25)

with being the positive solution to the implicit equation

(26)

(The notation is used to denote .)
Proof: First, observe that the capacity region of the sym-

metric MISO interference channel (21) does not depend on the
sign of the channel parameter . By replacing and with

and , respectively, we can convert the interference
channel with negative to the interference channel with pos-
itive . Therefore, with out any loss of generality, we assume
that .

The achievability part of Theorem 2 is established in
Section IV-A

We now prove the converse, i.e., that

The outline of the converse proof is given in (6). We justify the
steps (b), (c) and (d) of (6) here. Specializing the genie (5) to
the MISO interference channel, we get

(27)

We restrict the genie to be symmetric across the users, with the
genie parameters chosen to satisfy the usefulness
condition (12) of Lemma 3 and the smartness condition (13) of
Lemma 4. From (13), we get

and thus
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From (12), we get

We choose

so that (12) is satisfied with equality. Thus

(28)

In Appendix F, we show that implies that

(29)

Thus, a real exists, and the conditions of Lemmas 3 and
4 are met. The steps (b) and (c) of (6) follow from Lemmas 3
and 4, respectively. Thus, it only remains to verify that step (c)
of (6) holds true, i.e.,

Since the condition (12) of Lemma 3 is met with equality, we
have

Furthermore, is concave in .
Since the channel and the genie are symmetric across the users

is also symmetric across the users, i.e.,

Therefore, we have

where

Since the power constraints are also symmetric across users

and implies . Therefore, we have
shown that having symmetric across the users maximizes

. Hence, it is sufficient to prove that

(30)

Now

(31)

where step (a) follows from the fact that conditioning reduces
entropy, and the matrix and the constant are given by

(32)

The constant is chosen such that the step (a) is tight when
, which is true if is the MMSE estimate of

given when , i.e., if

(33)

In Appendix F, we show that implies

(34)

In Appendix G, we show that implies

(35)

From (31) and (35), we have

Moreover, since all the steps in (31) and (35) are tight when
, we have

This verifies the step (c) of (6) and completes the converse
proof.

In the following section we establish that results identical to
those in Thereom 2 also hold true for the dual SIMO interference
channel, although the proofs are quite different.

V. SIMO INTERFERENCE CHANNEL

Consider the symmetric SIMO interference channel

(36)
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obtained by making the following substitutions in (1)

where and are unit norm vectors, denoting the directions
of direct link and cross link, respectively. Similar to the MISO
Interference channel, without any loss of generality, we assume
two receive antennas and

by projecting and along appropriate basis vectors. See
Appendix D for an explanation.

A. Achievable Sum-Rate

Assume that each receiver does performs beamforming along
the vector given in (22). By treating interference as noise at
the receivers, the following signal to interference and noise ratio
(SINR) is achieved.

Therefore, a sum-rate of

is achievable.

B. Low Interference Regime

Theorem 3: The sum capacity of the SIMO interference
channel (36) is achieved by using Gaussian inputs, receive
beamforming along the vector given in (22), and treating
interference as noise at the receiver, and is given by

if , where is the positive solution to the
implicit equation

(37)

where the notation is used to denote .
Proof: First, observe that the capacity region of the sym-

metric SIMO interference channel (36) does not depend on the
sign of the channel parameter . By replacing and with

and , respectively, we can convert the interference

channel with negative to the interference channel with pos-
itive . Therefore, with out any loss of generality, we assume
that .

The achievability part of Theorem 3 is established in
Section V.A, i.e.,

We now prove the converse, i.e., that

The outline of the converse proof is given in (6). Specializing
the genie (5) to the SIMO interference channel, we get

(38)

We restrict the genie to be symmetric across the users, with the
genie parameters defined as be chosen to be

(39)

where and is unit norm vector. For the genie parameters
to be valid, they have to satisfy (11), and from Lemma 2, (11)
is true iff

(40)

As mentioned in Remark 1, Lemma 3 can be improved for the
SIMO interference channel since the cross channel matrices are
not full column rank.

Lemma 5 (Useful Genie for SIMO Channel): If the genie
satisfy

(41)

then the sum capacity of the genie-aided channel is given by

Proof: See Appendix H.

Substituting (39) in (41), we get

(42)

From Lemma 4, if the condition (13) is satisfied at
, i.e., if

equivalently, if

(43)
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Fig. 2. Threshold on � charecterizing the low interference regime of MISO and SIMO interference channels.

then

Therefore, if there exist and satisfying (40), (42) and (43),
then we have the required outer bound

The existence of and satisfying (40), (42) and (43) is
proved in Appendix I, using the threshold condition of the
theorem.

VI. LOW INTERFERENCE REGIME

In Sections IV and V, we proved that using Gaussian inputs
and treating interference as noise is sum capacity achieving for
the symmetric MISO and SIMO interference channels if

where is the positive solution to the equation

(44)

Observe that, with , the threshold is the solu-
tion to the equation

which is consistent with the threshold condition for the low
interference regime of the SISO interference channel [7]. The
threshold is plotted as a function of for different
values of in Fig. 2. It can be observed that the threshold curve
is always above the curve and approaches the
curve as becomes larger. These observations are summarized
in the following Lemma.

Lemma 6: The threshold as defined in (44) satisfies
the following properties.

1) Independent of the value of

2) For any fixed

Proof: Any cannot satisfy (44) since the RHS
of (44) cannot be negative. Therefore, we have the first property.
For any

which is less than zero for sufficiently large . Therefore, the
RHS of (44) is zero for any and hence cannot
be greater than for sufficiently large . This proves the
second property.

Theorems 2 and 3 along with the first property of the above
Lemma lead to the following corollary.

Corollary 1: The sum capacity of the symmetric
MISO/SIMO interference channel is achieved by using
Gaussian inputs, transmit/receive beamforming, and treating
interference as noise at the receivers, if .

VII. CONCLUSION

In this paper, we derived sufficient conditions under which
using Gaussian inputs and treating interference as noise at the
receivers achieves the sum capacity of the two-user MIMO in-
terference channel. The outer bound is based on a genie giving
side information to the receivers. The genie is carefuly chosen
to satisfy the following properties.
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• The genie should be useful, i.e., using Gaussian inputs
and treating interference as noise at the receivers should
achieve the sum capacity of the genie-aided channel.

• The genie should be smart at , which are the
optimal covariance matrices that maximize the achiev-
able sum-rate of the interference channel. That is, when
Gaussian inputs with covariance matrices are
used and interference is treated as noise at the receivers,
the presence of the genie should not improve the achiev-
able sum-rate.

• The optimal covariance matrices for the original
interference channel should also maximize the achievable
sum-rate of the genie-aided channel.

The last property is the new feature of the MIMO interference
channel relative to the SISO setting. One of the main contribu-
tions of this paper is to show that if are full rank and
if there exists a genie satisfying the first two properties, then the
last property is automatically satisfied. If are not full
rank, then the genie might have to satisfy some additional con-
straints for the last property to be true.

The MISO interference channel is an example where the
optimal covariance matrices are not full rank, since
transmit beamforming maximizes the achievable sum-rate. For
the special case of the symmetric MISO interference channel,
we derived the additional constraints and derived a threshold
condition for the low interference regime. We also showed that
the same threshold condition characterizes the low interference
regime for the dual SIMO interference channel. The threshold
condition is given by , where is larger
than . This means that the low interference regime can
be quite significant. For example, when , then using
Gaussian inputs and treating interference as noise at the re-
ceivers achieves the sum capacity if INR is 3 dB less
than SNR .

APPENDIX

A. Some Useful Results

We now present a few results that will be useful in this paper.

Lemma 7 (Lemma 1 in [7]): Let be a random vector, and
let and be noisy observations of

where and are correlated, zero-mean, Gaussian random
vectors, and and are real valued matrices. Consider the
random vector sequence with the covari-
ance constraint , where is the covariance
matrix of . Furthermore, let and be the corresponding
observations when the noise vector sequences and each
have components that are i.i.d. in time. Then, we have

where and are and when .

Lemma 8 (Lemma 4 in [7]): Let be a random vector se-
quence with an average covariance constraint, i.e.,

, and let be an independent random vector sequence,
with components that are i.i.d. . Then

where , and equality is achieved if ,
where denotes the random sequence with components that
are i.i.d. .

Lemma 9 (Lemma 6 in [7]): Let be a random vector
sequence, and let and be (possibly correlated) zero-
mean Gaussian random vector sequences, independent of
and i.i.d. in time. Then

where is i.i.d. .

Lemma 10: Let be a random vector with covariance matrix
and and be noisy observations of

where and are correlated, zero-mean, Gaussian random
vectors, and and are real-valued matrices. Then,

is concave in , where and are
and when .

Proof: Let be a time sharing random variable taking
value that takes values 1 and 2 with probabilities and ,
respectively. Let and be independent Gaussian
random vectors with covariance matrices and

, respectively and let and
denote the corresponding noisy observations. Now

where step (a) follows because conditioning reduces entropy
and step (b) follows because Gaussian distribution maximizes
the conditional differential entropy for a given covariance con-
straint [20, Lemma 1].

Lemma 11: Let an be two vectors such that
and let be an eigenvector of the matrix

then corresponds to the largest eigenvalue iff
.

Proof:
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Therefore, we have

i.e.,

Therefore, we have

and hence

Now, it can be seen that the larger eigenvalue satisfies

and hence, the corresponding eigenvector satisfies

Similarly, it can be seen that the smaller eigenvalue satisfies

and hence, the corresponding eigenvector satisfies

B. Proof of Lemma 3

Let and and be and when
, where

Starting with Fano’s inequality, we have

(45)

where step (a) follows from the fact that given is
Gaussian noise and is independent of and step (b) follows
from Lemma 7. Now consider

(46)

where and are Gaussian random vectors independent
of every other random vector with the following covariance
matrices:

Step (c) follows from Lemma 9, step (d) follows because
has same distribution as and step (e) follows from

Lemma 8. Similarly

(47)

The conditions in (12) are required for the covariance matrices
of and to be positive semi-definite. Substituting (46) and
(47) in (45), we get

Since all the inequalities in (45), (46) and (47) are met equality
when , we also have

(48)

Therefore, we proved that

and hence
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We now prove that is concave in
using the expression (48). From Lemma 10, it immediately
follows that and are concave in

. Also, observe that is
concave in since

where the first term does not depend on and Lemma 10
implies the concavity of the second term in . Similarly,

is also concave in .

C. Proof of Lemma 4

Since and are all Gaussian, from [7, Lemma 7],
iff the MMSE estimate of given

is equal to the MMSE estimate of given .
Using the property that the MMSE error is orthogonal to the
observations and , the above statement holds true iff
there exist a matrix such that

Since , the above equations
are true iff

iff

Solving for and substituting, we get

D. Sufficiency of Two Antennas for the Two-User MISO and
SIMO Interference Channels

We argue that, without any loss of generality, we can assume
two transmit antennas and

for the MISO interference channel (21). The argument for the
sufficiency of two receive antennas for the SIMO interference
channel follows in a similar fashion. Even though the argument
is presented for the symmetric channel considered in this paper,
the same applies for the asymmetric case as well.

Consider the vector which is perpendicular to and is
given by

If , use any vector perpendicular to as . Now let be
an unitary matrix as its first column as its second column,
and define as

or equivalently .
Therefore, the MISO interference channel (21) can be

re-written as

where

The interference channel outputs and do not depend on
channel inputs to and hence, they can be
dropped. Also, since is the unitary matrix, the average sum
power constraint remains the same.

E. Alternative Expressions for MISO Genie Parameters

Let denote the matrix . Therefore, from the
matrix inversion Lemma, we have

(49)

We will now provide alternative expressions for the parameters
involved in MISO interference channel. These relations will be
used in Appendices F and G.

Claim 1: The beamforming vector defined in (22) can be
expressed as

(50)

Proof: Using the notation in (22), we get

Therefore, we have
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Claim 2: The genie parameter defined in (28) can be ex-
pressed as

(51)

Proof:

which, using (49), can be further simplified as

Claim 3: The parameter defined in (33) can be expressed
as

(52)

Proof: First, observe that

Using the above equality in (33), we get

where the last step uses (51).

F. Proof of (29) and (34)

Lemma 12: For any and such that

where , as defined in (26), is the positive solution to the
equation

the following conditions are satisfied:

(53)

where and are as defined in (28) and (33), respectively.
Proof: First, observe that implies

(54)

which is equivalent to

where we used the expression for from Claim 2 in Appendix E.
Now it remains to prove that is also satisfied. From
Claim 3 in Appendix E, we have

and thus

where is used to denote the matrix . If satisfies
(54), then one of the following cases has to be true.
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Case 1: satisfies

Observe that

Using the expression

from Claim 2 in Appendix E, we have

where step (b) follows because . Therefore, we have

and thus

Case 2: satisfies

(55)

Note that

Hence, we have

where steps (a) and (b) follow from (55).

G. Proof of (35)

In this Appendix, we show that if

(56)

then , where and are
defined in (33) and (32), respectively. For all , we have

(57)

Step (b) follows because is the eigenvector of the matrix
corresponding to the maximum eigenvalue . In

proving that is an eigenvector of the matrix , we need the
following relation.

Claim 4:

(58)

Proof: Using the two different expressions for in Claim
3 in Appendix E, we get

Using (51), we get

We now prove that is an eigenvector of the matrix

where step (a) follows from Claim 4, and step (b) follows from
Claim 1 in Appendix E. From Lemma 11, it follows that cor-
responds to the largest eigenvalue of the matrix

. The conditions required in Lemma
11 are shown below
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Also

and

where steps (a) and (e) follow from the hypothesis (56), steps
(b) and (d) follow from (49), steps (c) and (f) follow because of
our assumption that .

H. Proof of Lemma 5

The proof is very similar to the proof of Lemma 3
in Appendix B. The only difference is steps (46) and
(47), where we showed that and

are maximized by and ,
respectively. Here we show that the condition (12) is not
necessary and a weaker condition

is sufficient for (46) and (47) to be true. We give the proof as-
suming to simplify the presentation, but can be ex-
tended to arbitrary using the arguments in Appendix D. Fol-
lowing (46), we have

where and . Now

where . Let

then

and since , we have

Similarly

where

Therefore

We have thus shown that is maximized
by and similarly we can show that
is maximized by .

I. Existence of SIMO Genie Parameters

Here we show that if where is the
positive solution of

then there exist and satisfying the conditions

(59)

First, we eliminate , and obtain conditions on and . Let
, then the second condition in (59) is equivalent to

The following claim can be easily verified.
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Claim 5: A non-negative solution to the inequality
with , exists iff .

Applying the above claim, a valid exists iff and satisfy

Now, using the last condition in (59) and eliminating , we get

With out any loss of generality, let such that
. Using the assumptions that and

, the above inequality is equivalent to

Observe that we can restrict ourselves to only positive values for
, because if a negative works then the corresponding positive
works as well. Thus, we reduced the problem to finding the

conditions on and , so that there exist and exist
satisfying

Now, observe that if , then the best is to set
and , giving rise to the condition

Otherwise, if , then the best is choose and
proportional to and , respectively, giving rise to
the condition

Thus, we proved that the genie parameters exist satis-
fying (59) iff and satisfy

It is easy to verify that the above is a threshold condition on :
.
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