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which holds for all sufficiently large n because of (13). Then, (14) 
follows from (12) and the above inequality. 0 

We conjecture that the bound (14) is in fact tight; however, the 
known approaches to the constructive part of the coding theorem 
are not sufficient to prove this conjecture even for the simplest 
channels (for which the reliability function is not yet known for all 
rates). For example, in the case of a binary-symmetric channel, the 
evaluation of the right-hand side of (14) is an interesting unsolved 
large-deviations/optimization problem. 

III. PROOF OF THE BOUND 
Theorem 1 admits a very simple proof that is quite different from 

the proofs of the special cases in [2] and [4]. 
-Proof: Without loss of generality, we list the elements of X as 

the postive integers 1,2, . . . . Let 21 , 22, . . . , denote the random 
variables rr(llY),r(21Y),..., placed in decreasing order, pointwise 
in the sample space’ (it is immaterial how ties are resolved). First 
note from (3) that 

E = 1 - E{Zi}. (15) 

For any o E [O,l], we can write 

P(,(XIY) > a) = E 
{ 

c rr(L]Y)l{n(LIY) > CX} (16) 
&X 1 

where the expectation is with respect to the unconditional distribution 
of Y. The argument of the expected value in (16) can be written as 

c ~(klY)l{~(klY) > a} = c zkl{zk > a}. (17) 
kEX &X 

Dropping all but the first term 

P(7r(XIY) > a) 2 E{&l{Z1 > CX}}. (18) 

In view of (15) and (18), all we need to do is to relate E{& } to 
E{Zl l{Zi > e}} using the fact that 0 5 21 5 1. Since 21 5 1 
note that, for any o E [0, l] we have 

2’ = a& + (1 - a)& i: Q  + (1 - a)Z11{21 > G} (19) 

which is tantamount to upperbounding 21 by cy + (1 - cr)Zi when 
o < 21 5 1, and by cy, otherwise. 

Thus on combining (18) and (19), we have 

E{ZI} I cv + (1 - cu)E{&l{Z~ > a>> 
5 a+(l- cy)P(7r(XIY) > a) (20) 

which, together with (15) implies the bound. cl 

‘That is, for each point w in the underlying sample space, Z,(w), 
Z,(w),..., denotes theordered sequence n(llY(w)),~(llY(w)),.... 
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Abstract-A sequential multihypothesis test known as the MSPRT is 
generalized to account for nonuniform decision costs. Bounds on error 
probabilities and asymptotic expressions for the stopping time and error 
probabilities are given. A  key result of this correspondence is a proof that 
the generalized MSPRT is asymptotically efficient. 

Index Terms- Sequential analysis, hypothesis testing, informational 
divergence. 

I. INTRODUCTION 
The sequential testing of more than two hypotheses has im- 

portant applications in direct-sequence signal acquisition [ 11, [2], 
multiple-resolution-element radar [3], and other areas. Published 
work on sequential multihypothesis testing has generally taken two 
approaches. One approach has aimed at determining a Bayes optimal 
test, where optimality has been defined in terms of the minimization 
of a linear combination of two quantities: the expected decision 
cost and the expected number of observations taken by the test. A 
recursive solution to the Bayesian optimization problem has in fact 
been obtained [4]-[6], but unfortunately, this solution is very complex 
and impractical except in a few special cases. 

A second approach has focused on extending and generalizing the 
sequential probability ratio test (SPRT), a binary test, to incorporate 
more than two hypotheses. A survey of many of these tests is found 
in [7]. Although these tests are of low complexity, they have been 
developed without much consideration to optimality. 

In [8], a test is given that incorporates both approaches. The test, 
called the Mary Sequential Probability .Ratio Test (MSPRT), is a 
generalization of the SPRT. The MSPRT has a simple structure that 
facilitates implementation, and it is also based on the solution to the 
Bayesian optimization problem. It is shown in [8] that the MSPRT 
approximates the Bayes optimal test, and an example demonstrates 
that, in at least some cases, the MSPRT is asymptotically optimal as 
the cost per observation decreases to zero. The MSPRT test structure 
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has also been shown to be asymptotically optimal as the distance 
between hypotheses becomes infinite [4]. 

In this correspondence, the MSPRT is first generalized to in- 
corporate nonuniform decision costs. The bounds and asymptotic 
expressions for the error probabilities and expected stopping times 
given in [8] are generalized correspondingly. It is then shown that 
the generalized MSPRT is in fact asymptotically ejjticient. 

II. A GENERALIZED MSPRT 

Let X1, X2, . . . be an infinite sequence of observations, inde- 
pendent and identically distributed with density f, and let HI be 
the hypothesis that f = f, for j = 0, 1,. . . , M - 1. Assume that 
the Kullback-Leibler distance between fk and f, is positive and 
finite for all j # I;. Based on the observations, a decision must be 
made as to which hypothesis is true. Let W(j, k) denote the cost 
of deciding HI, when HJ is true, and assume that W(j, k) > 0 for 
j # k and W(k, k) = 0. Let cyJ,k denote the probability of deciding 
Hk, conditioned on HJ being the true hypothesis. Let rk denote the 
expected cost (risk) associated with deciding Hk. Clearly, 

where 7rJ is the apriori probability of H, . The total expected decision 
cost R  is the sum TO + r1 + ... +rM-l. 

We consider a generalization of the M-ary Sequential Probability 
Ratio Test (MSPRT) [8] for this decision-making problem. Specif- 
ically, the stopping time NA and the final decision 6 are defined 
as 

NA =first n > 1 such that, for at least one k 

z=l J:l#k 

5 = H,, where m = arg rnp c rrJ W(j, k) ‘fi j”, (X,) 
j:j#k t=l 

where the parameters {Ak} are all taken to be positive. The MSPRT 
is simply this test restricted to uniform costs, i.e., W(j, k) = 1 for 
j # iF. In this correspondence, we abuse terminology slightly and use 
the term MSPRT to denote the more general test given above. 

The case when the parameters { & } are small is usually of primary 
interest because it corresponds to small risk values { rk }. If, for each k 

then it is easy to show that the inequality in the definition of NA is 
satisfied by at most one value of k. In this case, the MSPRT takes 
the simpler form 

NA =first n > 1 such that, for some k 

Whfifi(xt) > c  QV(j,k)fifj(X,) 
2=1 J:J#k 2=1 

6 = Hk 

We have generalized a number of results regarding the MSPRT in 
[8] that relate to bounds and characterizations of the asymptotic per- 
formance. The proofs of these results are straightforward extensions 
of the proofs in [S], and are omitted. 

Theorem 1: The stopping time NA is exponentially bounded (and, 
therefore, finite with probability one), conditioned on each of the 
hypotheses Hk, k  = O,...,M - 1 . 

Theorem 2: For each k, 7-k < nkAk. 
The following are asymptotic results under the condition 

m:xAe -+ 0. (Note that D(f,g) denotes the Kullback-Leibler 
distance between densities f and g.) 

Lemma 1: For each k, NA -+ cc a.%-fk as m?xAe + 0. 
Theorem 3: As m:x At + 0 

and 

% [NA] 1 , 
-log Ak Jy+,D(fk>f~) 

Theorem 4: Assume that the density f, * that minimizes D ( fk , f, ) 
is unique, and assume that the log-likelihood ratios are nonarithmetic. 
Then 

rk 
~ -+ Yk 
TkAk 

as m,“x Ae + 0, where yk = Ew [eeWk], and wk has distribution 

w 
J i pfk 

0 

pfk(wk 5 w) = 
\ / 

and 7,’ is the first n > 1 such that 

2 log flc > 0. 
A=1 f,*(Xz) 

It is easily shown that 0 < yk < 1 for each k. See [9] for a 
presentation of techniques for evaluating yk. 

III. ASYMPTOTIC EFFICIENCY 

We begin this section by discussing the Bayes optimal multihy- 
pothesis sequential test. Let the true hypothesis be denoted by a 
random variable H. Note that H  takes the value j with probability 
rrJ for j = 0,. . , M - 1. Consider a sequential test with stopping 
time N and final decision 5. The expected decision cost (total 
risk) of this test is E [W(S, H)]. The Bayesian optimization problem 
is to find a sequential test that minimizes the linear combination 
E [cN + W(S, H)] 

The parameter c may be interpreted as the cost per observation. 
For uniform decision costs, it is shown in [8] that the MSPRT 

approximates the much more complicated optimal test when c ap- 
proaches zero. There are indications that the MSPRT may be asymp- 
totically optimal as c -+ 0 (an example for which the MSPRT is 
indeed asymptotically optimal is given in [8]). Although we have not 
been able to establish such an asymptotic optimality result, we show 
in this correspondence that the MSPRT is asymptotically eficient. 
Toward this end, we first prove the following lemma: 

Lemma 2: Consider any M-at-y test procedure with finite (as.) 
stopping time N and error probabilities {ag,k}. Then the following 
inequality holds for each j # k: 
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M-l 

(3) 

Proof By the Wald Identity [lo], we have 

Now (see (3) at the top of this page) where the second line is due 
to Jensen’s inequality and 11.1 is the indicator function. 

The lemma follows from (2) and (3). 
Using this result, we can show that the MSPRT is asymptotically 

efficient: 
Theorem 5: Consider an MSPRT with parameters {Ale}, stopping 

time NA, and corresponding risk values { rk } . Consider any other test 
procedure with finite (a.s.) stopping time N and risk values T; 5 Tk 

for each k. Then, for each k 

. . Efl, iNI > 1 
mk~/$O Efk [NA] - ’ 

Proof: Let {a!]+} and {cY~,~} denote, respectively, the error 
probabilities of the MSPRT and the other test procedure. Since 

M-l 

c 
cYk,e = 1 

e=o 

it follows that 
M-l 

-c 
CY;,~ loga:,p 2 -log M. 

P=O 

Applying Lemma 2 and (4), it follows that, for each j # k 

(4) 

(5) 

Now, an application of Theorem 2 gives us the following bounds: 

and 

Thus for each j # k 

Pick any j # k. Then, from the previous inequality we obtain 

The first term on the right-hand side of (6) goes to 0 by Lemma 1 
and the second term goes to 1 by Theorem 3, both as m:x Ae + 0. 
The result follows. 

The result in Theorem 5 is given in terms of asymptotics as the 
MSPRT parameters go to zero. The asymptotic efficiency result for 
the case when the risk values go to zero is presented in the following 
corollary to Theorem 5. The only additional condition required for 
the corollary is that the densities {fk} have identical support; this 
condition is implied by the assumption made in Section II that the 
Kullback-Leibler distance between fk and fj is finite for all j # k. 

Corollary I: Consider an MSPRT with parameters {A,t}, stopping 
time NA, and corresponding risk values {rk}. Consider any other test 
procedure with finite (a.s.) stopping time N and risk values r; 5 rk 
for each k. Then 

%  WI > 1 liminf ~ 
maxprp-0 Efh [NA.] - ’ 

Pro03 To prove this result, we simply need to establish that 
mpxre + 0 implies that m:xAe t 0. 

Since the densities{ fk} have identical support, any set S consisting 
of observation sequences of finite length that satisfies Pf, (S) = 0 
for some k must satisfy the condition Pfl, (S) = 0 for all k. 

Now, suppose Ak > a > 0 and rk = 0. Let & denote the decision 
region for Hk, i.e., A, consists of all observation sequences of finite 
length (since ArA is finite with probability one) that result in a choice 
of Hk. Since rk = 0, we must have Pf, (A,) = 0 for all j # k, 
which implies that Pfl, (A,) = 0 as well. Thus Hk is never chosen. 
But if Hk is never chosen, then the total risk 

But by letting each of {Aj, j # k} go to zero we should be able to 
make R as small as we like by Theorem 2. This is a contradiction. 
Thus rk cannot equal.0 if Ak > a > 0. This means that if & 
does not converge to zero, rk does not converge to zero either. The 
corollary follows. 
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IV. DISCUSSION 
As already noted, the MSPRT is a generalization of the SPRT to 

more than two hypotheses. In the binary case, it is well known that 
the SPRT is not just asymptotically efficient, it is in fact optimal; i.e., 
given a set of risks (or error probabilities), the conditional expected 
stopping time under each hypothesis is minimized by the SPRT [1 11. 

In the case of more than two hypotheses, the Bayes optimal test 
is known, but its complex structure makes implementation very 
impractical. In contrast, the MSPRT is an intuitively appealing 
test which can be expressed in terms of simple combinations of 
likelihood ratios. Thus in conjunction with the result of Theorem 
5 and its corollary, we conclude that the MSPRT is a practical 
choice for multihypothesis testing and is especially recommended 
for applications in which risk requirements are stringent. 
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from One-Bit Quantized Detection 
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Abstract- It is common signal detection practice to base tests on 
quantized data and frequently, as in decentralized detection, this quan- 
tlzation is extreme: to a single bit. As to the accompanying degradation 
in performance, certain cases (such as that of an additive signal model 
and an efficacy measure) are well-understood. However, there has been 
little treatment of more genera1 cases. In this correspondence we explore 
the possible performance loss from two perspectives. We examine tbe 
Chernoff exponent and discover a nontrivial lower bound on the relative 
efficiency of an optimized one-bit quantized detector as compared to 
unquantized. We then examine the case of finite sample size and discover 
a family of nontrivial bounds. These are upper bounds on the probability 
of detection for an unquantized system given a specified quantized 
performance, given that both systems operate at the same false-alarm 
rate. 

Zndex Terms-Decentralized detection, quantized detection, sign detec. 
tor. Chernoff bounds. 

I. INTRODUCTION 
In many detection problems it is necessary to quantize data 

prior to decision-making, and naturally this quantization operation 
can degrade performance. In particular, for decentralized detection, 
where the decision-making operation is usually known as fusion, the 
quantization is often to two levels only. It is reasonable, therefore, 
to be concerned with the effect of such quantization, and to wish to 
make statements as to the maximal loss attributable thereto. That is 
the aim of this correspondence. 

To begin with, consider the classical problem of the detection of a 
known signal {s;} in independent and identically distributed (i.i.d.) 
additive noise {n;} 

Ho:x, = n2 
HI: 2; = n; + OS; i = 1,2,. . . , N  (1) 

(0 is a multiplicative constant), and the equally classical sign- 
correlator 

ys(x) = 5 si sgn(x,) 2 T. 
i=l HO 

(2) 

In this case, our fundamental question is as to the possible perfor- 
mance degradation from the use of the sign-correlator, as compared 
to the optimal (i.e., likelihood ratio) test statistic. 

A partial answer is available from asymptotics; that is, in the case 
that N --+ co and 0 decreases to zero as l/n. Here the measure 
of interest is e&ucy (see, for example, [1]) 
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