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Abstract—In this paper, we study the problem of tracking an ob-
ject moving randomly through a network of wireless sensors. Our
objective is to devise strategies for scheduling the sensors to opti-
mize the tradeoff between tracking performance and energy con-
sumption. We cast the scheduling problem as a partially observable
Markov decision process (POMDP), where the control actions cor-
respond to the set of sensors to activate at each time step. Using
a bottom-up approach, we consider different sensing, motion and
cost models with increasing levels of difficulty. At the first level,
the sensing regions of the different sensors do not overlap and the
target is only observed within the sensing range of an active sensor.
Then, we consider sensors with overlapping sensing range such
that the tracking error, and hence the actions of the different sen-
sors, are tightly coupled. Finally, we consider scenarios wherein the
target locations and sensors’ observations assume values on contin-
uous spaces. Exact solutions are generally intractable even for the
simplest models due to the dimensionality of the information and
action spaces. Hence, we devise approximate solution techniques,
and in some cases derive lower bounds on the optimal tradeoff
curves. The generated scheduling policies, albeit suboptimal, often
provide close-to-optimal energy-tracking tradeoffs.

Index Terms—Dynamic programming, Markov models,
POMDP, sensor networks, target tracking.

I. INTRODUCTION

I N large networks of inexpensive sensors with small bat-
teries, the sensor nodes are required to operate on limited

energy budgets. Sensor management can prolong the lifetime of
a sensor network and conserve scarce energy resources. How-
ever, inefficient management could result in severe performance
degradation. In this paper, we consider a network of sensors
tracking a single object. The sensors can be turned on or off at
consecutive time steps and the goal is to select the subset of sen-
sors to activate at each time step. This problem is challenging
due to the inherent tradeoff between the value of information in
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the measurements and the energy cost, combined with the com-
binatorial complexity of the decision space.

In previous work [1], two of the authors considered approx-
imate strategies for sensor sleeping, where the sensors are put
to sleep to save energy and decisions are made concerning their
sleep duration (in time slots). Once in a sleep mode, a sensor
would only wake up after its own sleep timer expires. Here,
we consider a scheduling variant of the problem which can
be thought of as a sleeping problem with an external wake-up
mechanism, i.e., sensors can be woken up by external means
(e.g., a low-power wake-up radio). At time , the permis-
sible control actions for an -sensor scheduling problem are

-dimensional binary vectors, i.e., vectors in (corre-
sponding to the set of sensor nodes to activate at each time
step), in contrast to vectors in for the sleeping problem
(corresponding to the sleep durations of awake sensors), where

is the set of non-negative integers and the number of
awake sensors at time . The simpler structure of the control
space for the scheduling problem does not address the com-
binatorial nature of the control space, yet it enables efficient
approximate solution methodologies for the more realistic
models that we study in this paper.

A significant body of related research work considers sensor
management for tasking sensors in dynamically evolving envi-
ronments. Castanon [2] has developed an approximate dynamic
programming approach for dynamic scheduling of multi-mode
sensor resources for the classification of a large number of un-
known objects. The goal is to achieve an accurate classification
of each object at the end of a fixed finite horizon by assigning
different sensor modes to different objects subject to periodic
or total resource usage constraints. Mode allocation strategies
are computed based on Lagrangian relaxation for an approxi-
mate optimization problem wherein sample-path resource con-
straints are replaced by expected value constraints. In the con-
text of sensor scheduling for target tracking, information-based
approaches [3]–[6] have been developed for optimizing tracking
performance subject to an explicit constraint on communication
costs in a decentralized setting. Williams et al. [3] also adopt
a Lagrangian relaxation approach to solve a constrained dy-
namic program over a rolling horizon. There, the combinatorial
complexity of the decision space is avoided by first selecting
one leader node, followed by greedy sensor subset selection.
Other related work on sensor scheduling include leader-based
distributed tracking schemes [7]–[10], where at any time instant
there is only one active sensor, namely, the leader sensor which
changes dynamically as a function of the object state, while the
rest of the network is idle. In [11] a scheduler chooses the least
number of sensors necessary to reduce the covariance matrix
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of the estimate error to a desired value. Other non-myopic poli-
cies including covariance-based and unscented transform-based
schedulers were developed in [12] for scheduling the best sensor
at each time step.

While previous work focused on developing distributed im-
plementations of efficient sensor scheduling strategies, our goal
here is to study the fundamental theory of sensor scheduling
for tracking and surveillance applications. Specifically, to ex-
plicitly study the fundamental tradeoff between tracking per-
formance and energy expenditure, we define a unified objec-
tive function combining tracking and energy costs trading-off
the complexity of per-stage costs for tractability. We adopt a
bottom-up approach where we consider a range of sensing, mo-
tion and cost models with increasing levels of difficulty and de-
vise suboptimal scheduling policies to balance the tradeoff be-
tween energy expenditure and tracking performance. In some
cases we are also able to derive lower bounds on the optimal
energy-tracking tradeoff.

Due to noise and model uncertainties, natural limitations
of the measurement devices, or incomplete data about the
surroundings, we need to design scheduling policies when the
system’s state is only partially observable to the controller.
Partially observable Markov decision processes (POMDPs)
provide a natural framework for addressing sequential decision
problems where the goal is to find a policy (strategy) for
selecting actions based on the information available to the con-
troller, while addressing both short-term and long-term benefits
and costs. Solving POMDPs optimally is generally intractable.
For example, the value function for a POMDP with a finite state
space depends on information states consisting of conditional
probability vectors of dimension equal to the number of states.
This has led to a number of POMDP approximations and we
refer the reader to Monahan [13] and Hauskrecht [14] for excel-
lent surveys on these methods. Usually, no single approximation
can be prescribed for all POMDPs, rather approximations can
be judiciously used to exploit specific problem structures.
In this paper, we use a subset of these approximate solution
techniques, including reduced-uncertainty and point-based
approximations [15]–[18]. The former approach assumes that
more information would be available to the controller at future
time steps, and the latter solves a reduced optimization problem
based on a relatively small subset of sampled beliefs about
the object’s state. We devise different approaches to deal with
the aforementioned computational complexity of the decision
space. In one approach, instead of solving one large combina-
torial problem, we solve a set of simpler subproblems based on
the intuition gained from a simplistic sensing model. In another
approach, we iteratively sample control actions from a reduced
control space based on the sparsity of a reachable belief set
combined with point-based value updates.

To summarize, previous work on sensor scheduling for
tracking has either focused on scheduling a small number of
sensors, or addressed the combinatorial complexity for larger
networks using leader-based distributed algorithms and greedy
sensor selection or non-myopic policies based on few-steps
look ahead. The main contributions of our work are:

• Developing approximate sensor scheduling policies:
In this paper, we develop scheduling policies based on

an observable-after-control assumption and
point-based approximations for various sensing, transition
and cost models with increasing level of difficulty. In
particular,
1) We show that under a reduced-future-uncertainty

assumption, the value function for a first level
model (Section II-A) is significantly simplified as
the problem decomposes into simpler subproblems
(one per-sensor) leading to substantial complexity
reduction. The resulting sensor scheduling policy is
shown to be near optimal.

2) We develop new sensor scheduling policies combining
and reinforcement learning for more advanced

models considered in Sections II-B and II-C wherein
tracking errors—and hence actions of different sen-
sors—are tightly coupled. We propose per-sensor sur-
rogate value functions for artificially decoupled per-
sensor subproblems and use reinforcement learning to
learn the corresponding individual tracking costs.

3) We develop point-based sensor scheduling policies
which are generally shown to outperform their
counterparts at the expense of an increase in com-
putational complexity. We integrate our point-based
schedulers with machinery to address the dimension-
ality of the control and observation spaces via action
sampling and observation aggregation, respectively.

• Lower bounds on optimal performance: In some cases,
we derive lower bounds on the optimal energy-tracking
tradeoffs. Particularly, the surrogate value function
is itself a lower bound on the optimal value function for our
first level model in Section II-A. We also derive a lower
bound on optimal performance for a continuous Gaussian
observation model with Hamming distance tracking cost.

The remainder of this paper is organized as follows. In
Section II, we describe the tracking problem and define the
sensing, transition and cost models, as well as the optimization
problem, for each of the considered models. In Section III we
describe approximate strategies to generate suboptimal sched-
uling policies. In Section IV, we present some experimental
results, and finally, in Section V, we provide some concluding
remarks.

II. SCHEDULING PROBLEM

In the following we consider different models with increasing
level of difficulty. Depending on the structure of the model, we
devise approximate methods to address the associated difficul-
ties and generate efficient scheduling policies. For notation, vec-
tors are denoted by bold lower-case letters. Superscript T de-
notes transposition and the indicator function is written as .

A. Simple Sensing, Observation and Cost Models

In this model, the network is divided into distinct cells, one
for each sensor. In other words, each cell corresponds to the
sensing range of one particular sensor, and the sensors’ ranges
do not overlap. A Markov chain with an prob-
ability transition matrix describes the motion of the target
through the field of interest. The extra state is for an absorbing
termination state of the Markov chain which is reached when the
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object leaves the network. We let denote the true target loca-
tion at time . It is further assumed that all information about
the object trajectory is stored at some central unit and is used
to determine the scheduling actions for the different sensors.
It is worthwhile mentioning that alternatively one could also
consider a case where the object might return to the network,
causing the problem to never terminate. This would then neces-
sitate a discounted cost (or average cost) formulation where cost
incurred in the present has more weight than cost incurred at fu-
ture stages.

We let denote the action for sensor at time ;
if sensor is activated at time and 0 if the decision is to
turn it off. The action vector at time , denoted , is a binary
vector of size , one decision per sensor. In this simplistic
model, we assume that the target is perfectly observable within
the cell of an awake sensor or if it reaches the terminal state ,
otherwise it is unobservable. Thus, the observation at time
is defined according to

if and
if and
if

(1)

where stands for erasure. The observation model in (1) induces
a well-defined probabilistic observation model
such that the current observation depends on that actual target
location and the scheduling action for the sensors.

At each time step, the incurred cost is the sum of the energy
and the tracking costs. An energy cost of per unit time
is incurred for every active sensor and a tracking cost of 1 for
each time unit that the object is not observed. Once state is
reached the problem terminates and no further cost is incurred.
In other words, is an absorbing cost-free state; all states are
transient so that is the only recurrence class of the Markov
chain. Hence,

(2)

The parameter is thus used to tradeoff energy consumption and
tracking errors.

A drawback of our definition for the tracking cost in this
simplified first level model is that cost may be incurred even
if the object location is known through a process of elimina-
tion. Our definition of tracking cost is used to easily separate
the problem into a set of simpler subproblems. However, note
that not much is lost through this simplification since we require
only one additional sensor awake per unit time to maintain zero
tracking errors. Furthermore, in the models we introduce next
in Sections II-B and II-C, this assumption is relaxed as we use
a Hamming distance cost function where an error is incurred
only if the estimated location is different from the actual target
location.

B. Overlapping Sensors With Discrete Observations Models

In this model, we continue to use a discrete model for the
target transition but we redefine a new sensing model and cost

structure to account for the fact that sensors could have overlap-
ping visibility regions. Within that model we further consider
simple and probabilistic sensing.

1) Overlapping Sensors With Simple Sensing: In this case,
the target is perfectly observed within the visibility region of any
active sensor. Denote by the set of locations in the visibility
region of sensor and by the set of sensors that observe
location . The observation at time is given by

if and
if and
if .

(3)

Therefore, a tracking error is incurred if none of the sensors
observing the current target location is active. Redefining the
cost structure for this model:

(4)

2) Overlapping Sensors With Probabilistic Sensing: By
probabilistic sensing, we account for observation uncertainty
even if the target is within the visibility region of one or more
active sensors. We assume

(5)
where

That is, the observation is uniformly distributed over the re-
maining locations (other than the true target location) that
belong to the visibility regions of the set of awake sensors moni-
toring the true location . The number of these locations is
and is function of the control and the object state . If the
true target location does not belong to the visibility region of an
awake sensor, we naturally exclude the visibility region of that
sensor since no measurement is received from such a sensor.
When is a singleton , we set . A tracking error is
incurred if the target is not directly observed and the uncertainty
in the target location cannot be resolved.

C. Continuous Observation, Continuous State and Arbitrary
Cost Models

In this class of models, we allow for an arbitrary distribution
of the observations given the current object location. Tracking
cost is modeled through an arbitrary distance measure between
the actual and the estimated object location. If we denote the
set of possible object locations , we have . Note
that, in contrast to the simplistic model in Section II-A, is
different from since object locations are arbitrary and we no
longer assume one location corresponds to the sensing range of
one particular sensor. The th state again corresponds to
a termination state. Furthermore, the target can be moving on a
continuous state space in which case is .
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If the state space is discrete, then conditioned on the object
state at time , has a probability mass function that is
given by the th row of the transition matrix . If the state
space is continuous, is a kernel such that is the prob-
ability that the next object location is in the set given
the current object location is . For simplicity of exposition,
we focus on discrete state spaces. Also, we omit indexing time
whenever the time evolution is well-understood to avoid cum-
bersome notation. We consider the following observation model
for illustration; however, our approach is fairly general:

(6)

where is an continuous observation vector with the
th entry, , representing the observation of sensor , ,

, is the position of the th sensor, is the target state,
is some positive constant, stands for erasure, and is the
Dirac Delta function. In (6), the observation of an active sensor
is Gaussian with a mean received signal strength inversely pro-
portional to the square of the distance between the sensor and
the actual target location. The observation of an inactive sensor
is just an erasure.

The estimated target location (given the entire history) is de-
noted by . We define the tracking error through an arbitrary
bounded distance function between the actual and the
estimated object locations, which can be the Hamming distance

or the Euclidean distance for discrete and
continuous state spaces, respectively. The control at each time
step is the pair . Since does not affect the state evo-
lution, the optimal value for is the value that minimizes the
tracking cost over a single time step given history up to time ,
i.e.,

(7)

where denotes the information state, i.e., the total information
available to the central controller at time , which is given by

In the case of Hamming cost, it follows that is simply the MAP
decision, i.e., , where is the posterior
probability distribution of the target state.

D. Optimal Scheduling Policy

The design of an optimal scheduling policy depends on the
history up to time , i.e., the information state . However,
the posterior probability distribution, , of the
target’s state given is a sufficient statistic for this class of
partially observable processes. The distribution , also known
as belief, summarizes all the information needed for optimal
control. The sufficient statistic itself forms a Markov process

whose evolution can be obtained through Bayes’ rule updates.1

For example, the belief update equation for the simplistic model
in Section II-A can be written as

if
if
if

(8)

where is a row vector with a 1 at the th entry and 0 elsewhere.
For an index set , the entries of a vector are
obtained from the vector as follows:

if
if

Hence, the vector is the probability vector formed by
setting the th entry of the vector to 0, ,
then normalizing the vector into a probability distribution. The
set signifies the set of deactivated sensors. In
other words, the updated belief for the model in Section II-A,
is a point mass distribution concentrated at if the object exits
the network, and concentrated at if the object is observed.
When the object is unobservable, we eliminate the probability
mass at all sensors that are awake, since the object cannot be
at these locations, and normalize. The multi-valued function in
(8), and equivalent Bayes’ updates for the other models, define
a transformation

(9)

mapping the current belief , the current control vector , and
the future observation , to a future belief.

The policy is defined as a mapping from infor-
mation states to control actions . The goal is to design a
policy that minimizes the expected sum of costs , where

(10)

is well-defined since is upper bounded by (regard-
less of the model) and the expected time till the object exits the
network is finite. Note that the termination is inevitable, thus
the objective is to reach the termination state with minimal ex-
pected cost. Hence, the scheduling policy is the solution of the
minimization problem

(11)

This POMDP problem falls within the class of infinite
horizon stochastic shortest path problems. Noting that the ter-
mination state is observable, cost-free and absorbing, and that
every policy is proper,2 a stationary policy , i.e., one which

1Equivalently, for a continuous state space, a sufficient statistic would be
� �� � � ���� � ��� �. The updated belief � can be computed using
standard Bayesian non-linear filtering as the posterior measure resulting from
prior measure �� and observation � .

2A proper policy is a policy that leads to the termination state with probability
one regardless of the initial state. In our problem, the scheduling policy does
not affect the target motion and all policies are proper in the sense that there is
a positive probability that the target will reach the termination state after a finite
number of stages.
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does not depend on , is optimal in the class of all history-de-
pendent policies and is a sufficient statistic for control [19],
i.e., , is defined through a time-invariant mapping
from the belief space to the action space. can be written in
terms of the sufficient statistic and the optimal policy can be
obtained from the solution of the Bellman equation:

(12)
such that , where is the value function for the
POMDP and is defined in (9). Note that we removed the time
dependence due to the aforementioned time invariance property.
For continuous observations, summation over is replaced by
an integration.

III. APPROXIMATE SOLUTIONS AND LOWER BOUNDS

There are a number of algorithms for solving POMDPs ex-
actly [20]–[22]. These algorithms rely on the powerful result
of Sondik that the optimal value function for any POMDP can
be approximated arbitrarily closely using a set of hyper-planes
( -vectors) defined over the belief simplex [20]. This fact is the
basis for exact value iteration based algorithms, such as the Wit-
ness algorithm [23] for computing the value function. The result
is a value function parameterized by a number of hyperplanes
(or vectors) whereby the belief space is partitioned into a finite
number of regions. Each vector minimizes the value function
over a certain region of the belief space and has a control action
associated with it, which is the optimal control for the beliefs in
its region.

To clarify, in value iteration we generally start with some ini-
tial estimate for and repeatedly apply the transformation de-
fined by the right-hand side of Bellman equation (12) until the

sequence of cost functions converges. Let denote
the set of vectors parameterizing the value function after
iterations, where is the total number of hyperplanes, and

, which is a hyperplane in the belief space, represents
the value of executing the -step policy associated with the th
vector starting from a state . Hence, the value of executing the
th hyperplane policy starting from a belief state is simply the

dot product of and :

Therefore, the value of the optimal -step policy starting at is
simply the minimum dot product over all hyperplanes, i.e.,

Hence, is piecewise linear and concave. Some of the
vectors (also known as policy trees) may be dominated by others
in the sense that they are not optimal at any region in the belief
simplex. Thus, many exact algorithms devise pruning mecha-
nisms whereby a parsimonious representation with a minimal
set of non-dominated hyperplanes is maintained [13].

Even though the aforementioned linearity/concavity property
makes the policy search a great deal simpler, the exact computa-
tion is generally intractable except for relatively small problems.
The two major difficulties for exact computation arise from the
exponential growth of the vectors with the planning horizon and
with the number of observations, and the inefficiencies related
to identification of such vectors and subsequently pruning them.
Namely, the number of hyperplanes grows double exponentially
such that after steps the number of hyperplanes is ,
where and denote the cardinality of the control and ob-
servation spaces, respectively. Equivalently, the number of hy-
perplanes per iteration grows as

This has led to a number of approximations and suboptimal so-
lutions techniques that trade off solution quality for speed.

Remark III.1: The intractability of the optimal solution for
our problem is primarily due to the following reasons:

i) The cost function is minimized over the simplex of prob-
ability distributions, i.e., the -dimensional be-
lief simplex for -state discrete state-space models, and
the space of probability density functions for continuous
state-space models.

ii) The exponential explosion of the action space with the
number of sensors ( actions).

iii) The exponential growth of the -vectors with the planning
horizon and with the number of observations, especially
for continuous observation models.

A. Approximate Solutions

In this section, we outline our approximate solution method-
ologies for the different models introduced in Section II. First,
we consider approximations where it is assumed that more infor-
mation becomes available to the controller at future time steps.
Policies based on the assumption that uncertainty in the current
belief state will be gone after the next action were first intro-
duced within the artificial intelligence community and known
as policies [16], [23]. We show that under an observ-
able-after-control assumption, our sensor scheduling problem
decomposes into simpler subproblems, one subproblem per
sensor, for the simplistic model of Section II-A. These subprob-
lems can then be solved exactly using policy iteration [19]. Fur-
thermore, in this case, the solution gives us a lower bound
on the optimal tracking-energy tradeoff. Unfortunately, this nat-
ural decomposition does not extend to the other class of models
due to the inherent coupling of their tracking errors. However,
based on the intuition gained from the simplistic model, we ar-
tificially decouple the scheduling problem for the more compli-
cated models, and individually learn the tracking costs corre-
sponding to each subproblem under the aforementioned
assumption. This approach combines with reinforcement
learning [24].

Second, we develop sensor scheduling strategies based on
point-based approximations. Despite the fact that the generated

based policies perform reasonably well, generally the
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resulting policies would not take actions to gain information
(an effect of the observable-after-control assumption), leading
to situations wherein the belief state does not get updated
appropriately. Furthermore, while decoupling the scheduling
problem provides close-to optimal performance for uncoupled
or lightly-coupled sensing and tracking models (see Section IV),
it might come at the expense of reduction in solution quality
for more realistic or heavily-coupled models. To that end, we
develop point-based approximate scheduling policies. While
our previous approach reduced complexity via decoupling and
learning, the key idea here is to optimize the value function
only for a small set of reachable beliefs and not over the
entire belief simplex. Point-based methods have shown great
potential for solving large scale POMDPs mostly for robotic
applications [14], [15], [17], [25]. Pineau et al. [15] proposed
point-based value iteration (PBVI) which performs point-based
backups only at a discrete set of reachable belief points, that can
be actually encountered by interacting with the environment.
Developing a class of point-based algorithms, which mostly
differ in the way the subset of belief points is chosen and the
execution order of the backup operations over the selected be-
lief points, has been the focus of recent algorithm-development
research targeting large scale POMDPs. Perseus [17] is one
such randomized point-based algorithm that maintains a fixed
set of belief points. There, backup speedups can be obtained
by exploiting the key observation that a single backup may
improve the value of many belief points simultaneously. These
algorithms were designed to deal with large state spaces, yet,
two extra difficulties in the scheduling problem arise from the
size of the action space (which is for all models) and the
observation space (for the models in Sections II-C). Regarding
the dimensionality of the action space, we devise a strategy
to sample actions based on the support of the beliefs and the
sparse structure of the transition models. Intuitively speaking,
an object can only move from one side of the network to the
other side within time constraints rendering exponentially many
scheduling actions irrational at certain times. Hence, instead
of performing full updates including actions, we perform
the minimization over a reduced control space for every

(see Section III-C-1). When dealing with continuous or
large observations, we combine that with a methodology that
aggregates observations and uses aggregate observations for
value iteration updates (Section III-C-2). At the core of the al-
gorithm, we use Perseus [17], a variant of PBVI [15], whereby
value iteration updates are not carried out for every sampled
belief. Instead, the values for many belief points are improved
simultaneously in one update. Fig. 1 depicts the structure of our
point-based approximation, combining control space reduction
and observation aggregation with point-based updates.

B. Based Scheduling Policies

Next, we consider our first class of policies based on the
reduced future uncertainty assumption. First, we con-

sider the simplistic model in Section II-A, then we use the intu-
ition we developed from this model to devise similar policies for
the other models. Since the POMDP is a stochastic shortest path

Fig. 1. Structure of the point-based scheduling approximation.

problem with an absorbing cost-free termination state, and the
expected termination time is finite, the cost-to-go function for a
given belief can be written as the minimum of the dot product
of the belief vector and a set of hyperplanes ( vectors)

(13)

where is the set of hyperplanes constituting the value func-
tion and the future target state. In essence, the complexity
of the Bellman equation (13) stems from the evolution of the
belief in (8). We can see why (13) is hard to analyze if we
further divide the second term in the summation into two terms
depending on whether there is observability or there is an era-
sure,

(14)

To further clarify, we observe that

(15)

and the minimization problem is coupled across the sensors as
the second term in (15), which is due to nonobservability, de-
pends on the action vector . The action of one sensor affects
the belief evolution, therefore coupling the problem across sen-
sors. Now, if we make the assumption that perfect observations
would be available to the controller after taking a scheduling
action, we obtain an approximate surrogate function, which can
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be used to generate a suboptimal scheduling policy. Namely, we
substitute in (13). We get

(16)

(17)

The terms in the summation in (17) only depend on the con-
trol action for each sensor. Furthermore, the belief evolution is
independent of the scheduling action, wherefore the approxi-
mate recursion in (17) decomposes into separable terms, one
per sensor. Hence, the value function and the scheduling policy
for sensor , under the observable-after-control assumption, can
be obtained from the solution of per-sensor Bellman equation:

(18)

The POMDP problem is now decomposed into separate
simpler subproblems such that the total cost function is the sum
of the per-sensor cost functions while the overall scheduling
policy consists of the per-sensor policies applied in parallel.
Each subproblem can be easily solved using standard policy it-
eration [19] with a simple minimization over a binary control
action. Fundamentally, for the simplistic model, we are able to
decompose the problem into simpler subproblems due to the
separability of the tracking cost into per-sensor costs. Note that
the problem is still coupled due to the belief evolution in (8) yet
that coupling is resolved under the observable-after-control as-
sumption.

While separability holds for the simplistic model, this is not
the case for the other models. Hence, we devise a strategy where
we artificially decouple the problem into simpler subprob-
lems. To this end, we perform Monte Carlo simulations to de-
termine appropriate values for the per-sensor tracking cost cor-
responding to each subproblem. For example, consider the con-
tinuous observation model of Section II-C. For simplicity of ex-
position, assume a discrete state space model with possible
object locations. In this case, we define a surrogate value func-
tion for the th subproblem as follows:

(19)

where captures the contribution of the th sensor to the
total tracking error when the target’s previous state is and is
obtained via Monte Carlo simulations. Namely, the expected
tracking cost can be evaluated by repeatedly simulating our
system from time to time while changing the state of
the th sensor. Similarly, (19) can be generalized for continuous
state spaces.

Even though the assumption leads to a separable
problem and provides a lower bound on the optimal en-
ergy-tracking tradeoff for the simplistic model as we elaborate
in Section III-D, the resulting scheduling policies are myopic,
unlike the sleeping policies in [1]. This follows from the fact
that under an observable-after-control assumption, the future
cost term is independent of the control vector . Therefore,
we consider more efficient, albeit more difficult, point-based
approximations in the next section.

C. Point-Based Approximate Policies

In the previous section, we described based policies,
whereby issues i) and iii) in Remark III.1 are resolved since we
only needed to solve the underlying Markov Decision Process to
describe the full approximate surrogate value function. Decou-
pling the problem into one-per-sensor subproblems (naturally or
artificially) further enabled us to address issue ii). Yet, we just
argued in Sections III-A and III-B that the resulting scheduling
policies are myopic and generally do not take control actions to
gain information.

To that end, we develop point-based approximate scheduling
policies. Instead of reducing complexity via artificial decou-
pling and learning, the key idea here is to optimize the value
function only for specific reachable sampled beliefs and not over
the entire belief simplex (addressing issue i) in Remark III.1).
Such techniques have shown great potential for solving large
scale POMDPs while significantly reducing complexity. Due
to the large size of the control space, we also devise strategies
to sample actions exploiting the sparsity of the beliefs and the
problem structure (to address issue ii)). Moreover, observation
aggregation is used for continuous observation models. Further-
more, since Perseus updates are not carried out for every sam-
pled belief and multiple belief points are improved simultane-
ously, the number of vectors grows modestly with the number
of iterations. This addresses issue iii) in Remark III.1.

For completeness, we first briefly outline the steps of Perseus
and refer the reader to [17] and [18] for further details. Later,
we discuss specific variations to the algorithm to address the
dimensionality of the action and the observation spaces.

One iteration of Perseus
1) Sample a set of belief points . These beliefs are obtained

by simulating the target motion through the field taking
random actions and generating observation according to
the observation models in (1), (3), (5), and (6).

2) Sample a belief point at random and compute the
backup using (20a) and (20b),

(20a)
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Fig. 2. One iteration of Perseus illustrating the progress of the algorithm. The � axis represents the belief space with circles representing the sampled belief set
� � �� � � � � � � �. The � axis is the value function at consecutive iterations, i.e., � and � . Solid lines represent the hyperplanes in the �th iteration and
dashed lines represent the newly added hyperplanes during the �� � ��th iteration. (a) The initial value function � ; (b) � is randomly selected and a new �

vector is added to � . This update step only happens to improve � . Dark circles represent belief points which did not yet improve; (c) � is sampled and a
new hyperplane is added which improves the value for � through � ; (d) only � did not improve, thus � is sampled and a new hyperplane is added to � ;
(e) all belief points improved, � is computed, the iteration ends.

where

(20b)

3) If then add new to
otherwise keep old hyperplane.

4) If , i.e., the empty
set, iteration is complete otherwise repeat from Step 1.

Fig. 2 illustrates the progress of one iteration of Perseus. The
axis represents the belief space with circles representing the

sampled belief set . The axis is the value
function at consecutive iterations, i.e., (solid lines) and

(dashed lines). The figure displays the vectors and
different steps illustrating the progress of the algorithm. The al-
gorithm selects a belief point at random and updates the value
function for that belief. Then a new update is carried out for a
belief point randomly selected from the set of remaining beliefs,
i.e., beliefs which did not improve in the previous step. The algo-
rithm repeats till all belief points are updated. Solid lines repre-
sent the hyperplanes in the th iteration and dashed lines repre-
sent the newly added hyperplanes during the th iteration.
In a way, the Perseus updates in POMDPs are the counterpart of
asynchronous dynamic programming for MDPs [19] since the
order of backup of the belief points is arbitrary and does not re-
quire full sweeps over the entire sampled belief set.

1) Sampling Actions Based on the Support of the Belief: Note
that the update (20) involves a minimization over all control ac-
tions in . Even though one iteration of the algorithm is linear

in the cardinality of the control space, itself is exponen-
tial in the number of sensors, thus rendering the minimization
infeasible for a relatively large sensor network.

The idea here is to exploit the structure of the scheduling/
tracking problem. Since the target transition model is naturally
sparse, we predict relatively small uncertainty regions for the
target state at future time steps. More specifically, for every be-
lief point in , we use prior information about the target tran-
sition model to project the future state of the target. This is par-
ticularly useful when the current belief vector is sparse leading
to more restricted uncertainty regions. Subsequently, we restrict
our attention to a significant subset of sensors, that is, the sensors
of relevance to the particulars of the uncertainty region. Hence,
we only consider scheduling actions involving scheduling dif-
ferent combinations of a reduced number of sensors which con-
siderably reduces the control space for every belief in . If the
number of significant sensors is still large, we randomly sample
actions from the reduced control space. Note that the same in-
tuition extends to more complex motion models wherein infor-
mation about target speed, maneuver, and acceleration can be
factored in to define the future uncertainty regions. Hence, in-
stead of performing full updates including actions, we per-
form the minimization over a reduced control space for every

. Specifically, we redefine the point update equation as

(21)

where designates the reduced control space for the belief
vector . Note that future iterations of the algorithm involving a
particular belief point, ensure sufficient sampling of the relevant
control actions in the reduced control space. This approach is
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well suited to Perseus wherein the value for every belief point is
guaranteed to improve over consecutive stages of the algorithm.
It is worth mentioning that the observation and the cost models
need to be computed on the fly for each sampled control action
during the algorithm implementation.

2) Observation Aggregation: The point update (20) involves
back-projecting all hyperplanes in the current iteration one step
from the future and returning the vector that minimizes the value
of the belief. Since this involves computing a cross sum by enu-
merating all possible combinations of alpha vectors for the dif-
ferent observations, a number of vectors which is exponential in
the number of the observations is generated at each stage. The
recursion has to be redefined to address continuous observation
models. Looking carefully at (20), it is not hard to see that if
different observations map to the same minimizing hyperplane,
then they can be aggregated [26]. Hence, if we can partition the
observation space into regions that map to the same hyperplane
(possibly non contiguous), the continuous model is reduced to a
corresponding discrete model. Integration is replaced by a sum-
mation over these partitions and the weighing probabilities are
obtained by integrating the conditional density over these parti-
tions. This is clarified in the following:

(22)

To find the regions of aggregate observations, we need to
solve for the boundaries, i.e., for each pair of vectors
we need to solve for :

(23)

where Hence,
we need to solve:

(24)

After solving for the boundaries, we can readily define the
regions:

(25)

Now, the update step is simply

(26)

where . Finding a closed
form analytical solution for (24) is not feasible. Instead, we use
Monte Carlo simulations to solve for the boundaries and get es-
timates of the weighing probabilities by sampling observations

from for different combinations of actions and target
states.

D. Lower Bounds

We are able to derive lower bounds on the energy-tracking
tradeoff for the simple as well as the continuous Gaussian obser-
vation models. For the simple model, the value function
is itself a lower bound on the expected total cost since more in-
formation is available to the controller at future time steps given
the reduced uncertainty assumption. To further clarify, observe
that if we interchange the order of minimization and summation
in the last term of (14), we obtain a lower bound on the optimal
cost to go function. Hence, a lower bound can be obtained from
the solution of the following equation:

(27)

Interchanging the order of the summation and minimization cor-
responds to a fully observable state after the next scheduling
action, i.e., that the future belief is . Hence, the value
function is a lower bound on the cost function of the original
problem.

Unfortunately, this is only true for the simplistic model
and does not extend to the coupled models since the fac-
tored tracking cost in (19) need not be a lower bound on the
true tracking cost. To obtain a lower bound on the optimal
energy-tracking tradeoff for such models, we combine the ob-
servable-after-control assumption with a decomposable lower
bound on the tracking cost which we derive next. Consider
the continuous observation model with discrete state space.
Given the current belief and a control vector the expected
tracking cost can be written as

(28)
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Defining

which is a conditional error probability for a multiple hypothesis
testing problem with hypotheses, each corresponding to a
different mean vector contaminated with white Gaussian noise.
Conditioned on the observation model is

(29)
where is the th entry of an vector denoting the re-
ceived signal strength at the sensors, is the mean received
signal strength when the target is at state ( th hypothesis), and

is a zero mean white Gaussian Noise, i.e., .
According to (29), sensor gets a Gaussian observation, which
depends on the future target location, if activated at the next time
step, and an erasure, otherwise. Since the current belief is , the
prior for the th hypothesis is . The error event
can be written as the union of pairwise error regions as

(30)

where

is the region of observations for which the th hypothesis is
more likely than the th hypothesis and where

denotes the likelihood ratio for and . Using standard anal-
ysis for likelihood ratio tests [27], [28], it is not difficult to show
that

(31)

where, , , and is
the normal distribution -function. The quantity plays the
role of distance between the two hypothesis and hence depends
on the difference of their corresponding mean vectors and the
noise variance . Note that, for different values of and ,
are not generally disjoint but allow us to lower bound the error
probability in terms of pairwise error probabilities, namely, a
lower bound can be written as

(32)

And we can readily lower bound the expected tracking error:

(33)

Next we separate out the effect of each sensor on the tracking
error:

for every (34)

where is the vector of all ones designating that all sensors will
be active at the next time slot. The inequality in (34) follows
from the fact that if we separate out the effect of the th sensor,
we get a better tracking performance when all the remaining
sensors are awake. Since this holds for every , a lower bound
on the expected tracking error can be written as a convex com-
bination of all sensors’ contributions:

(35)

where .
Let denote a vector of length with all entries equal to

one except for the th entry being zero. Then replacing from
(33),

(36)

To simplify notation, we define the following two quantities:
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Intuitively, represents the contribution of sensor to
the total expected tracking cost when the underlying state is ,
the belief is , and when all sensors are awake. On the other
hand, is the th sensor contribution when it is inactive
and all the other sensors are awake.

Now if we assume that the target will be perfectly observable
after taking the scheduling action, a lower bound on the total
cost can be readily obtained from the solution of the following
Bellman equation:

(37)

where

(38)

Note that if we can solve the equation above for for
all , then it is straightforward to find the solution
for all other values of . We therefore focus on specifying the
value function at those points. Since this is the case, we further
simplify our notation and use and as shorthand
for and , respectively. We can see that a lower
bound on the value function of sensor can be obtained as a
solution to the following minimization problem over :

(39)

Equation (39) together with (37) define a lower bound on the
total expected cost. To further tighten the bound, we can now
optimize over a matrix for every value of , where is an

matrix with the entry equal to , i.e.,
. Hence

subject to (40)

where is a column vector of all ones of length . The inner
recursion can be solved to obtain a closed form solution for

as

(41)

Since the problem is only constrained across the different sen-
sors, we obtain a lower bound from the solution of the following
optimization problem:

subject to (42)

We observe that for every we are maximizing a concave
piecewise linear function in . We pose an equivalent
convex optimization problem by realizing that the minimum
of a set of concave functions is also concave. Since affine
functions are concave, we can apply the technique here. Since
the problem is unconstrained across the dimension we focus
on solving the max-min problem for a fixed . The final solu-
tion can then be obtained by summing the objective function
for subproblems. For each , add a variable

to the optimization problem. Also for every , append
two constraints to the optimization problem. The constraints
state the minimization over implicitly, by requiring that

and .
The modified problem is therefore:

(43)

which can be readily solved using standard convex optimization
techniques [29]. Note that the Gaussian assumption was merely
to find the expected tracking error in closed form. Our general
approach could very well extend to non-Gaussian cases if we are
given some lower bound on the expected tracking cost. The main
ingredient of our approach, which leads to separability based on
an all-awake assumption, remains valid.

IV. RESULTS AND SIMULATIONS

In this section, we show experimental results illustrating the
performance of the proposed scheduling policies for the dif-
ferent models considered in this paper. In each simulation run,
the object was initially placed at the center of the network and
the simulation run concluded when the object reached the ab-
sorbing state . We perform Monte Carlo runs to compute the
average tracking and energy costs for different values of the
energy parameter . For the planning phase in case of point-
based policies, beliefs are sampled by simulating multiple object
trajectories through the sensor network. Each trajectory starts
from a random state sampled from the initial belief, picking
actions at random, until the target leaves the network. In our
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TABLE I
OBJECT MOVEMENT FOR A NETWORK OF 41 SENSORS WITH

SIMPLE COST AND SENSING MODELS

Fig. 3. Energy-tracking tradeoff for a one-dimensional network of 41 sensors
with the simplistic sensing and cost model in Section II-A.

simulations backups are performed until the difference between
successive value function estimates is below a small threshold.
Other alternatives for convergence criteria could also be used
such as tracking the number of policy changes between consec-
utive backups.

First, we consider the simple model in Section II-A with a
linear network of 41 sensors. The object can move anywhere
from three steps to the left to three steps to the right in each time
step. The distribution for these movements is given in Table I.
The change in position indicates movement by a corresponding
number of steps to the right or to the left. Fig. 3 shows the
tradeoff curve between the number of active sensors per unit
time and the tracking error per unit time using the point-based
and the policies. The figure also shows a lower bound on
the optimal performance (see Section III-D). It is clear that both
policies lead to tradeoffs that closely approach the lower bound.
The policy gets even closer to the lower bound at small
tracking errors since the observable-after-control assumption is
more meaningful in this regime. In Fig. 4, we show convergence
results for the point-based algorithm with reduced control space
minimization. The top left subplot displays the convergence of
the sum cost of all the belief points in ; the top right shows the
expected cost averaged over many trajectories; the bottom left
subplot shows the number of hyperplanes constituting the value
function as a function of time; the bottom right subplot shows
the number of policy changes versus time, i.e., the number of
belief points for which the optimal action changed over two con-
secutive iterations of the algorithm.

Fig. 6 displays the average cost and the tradeoff curves for the
network in Fig. 5 with a probabilistic observation model. The
cost per unit time is the average ratio of the total energy plus
tracking cost and the time the object spends in the network be-
fore reaching the termination state. The network is composed of
12 sensors and 20 object locations with the shown connectivity

Fig. 4. Convergence results for the point-based algorithm for a one-dimen-
sional network of 41 sensors with the simplistic sensing and cost model in
Section II-A.

Fig. 5. A sensor network with overlapping sensing ranges (12 sensors and 20
object locations). An edge connects a sensor to a given location if this location
falls within the sensing range of that sensor.

Fig. 6. Overlap model.

TABLE II
OBJECT MOVEMENT FOR THE OVERLAP NETWORK AND CONTINUOUS

such that the observation range for the different sensors overlap.
The object moves according to a random walk anywhere from
three steps to the left to three steps to the right in each time
step. The distribution of these movements is given in Table II.
For the locations close to the boundaries, i.e., when less than
three steps are available on the right or left, the remaining proba-
bility is absorbed in the transition to the termination state. Since
the tracking error for this model is inherently coupled across
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TABLE III
SENSOR LOCATIONS FOR NETWORK B

Fig. 7. Continuous observation model: total cost versus energy cost per sensor.

Fig. 8. Continuous observation model: energy-tracking tradeoff.

sensors, the global point-based policy clearly outperforms the
learning-based policy.

Next, we consider a network of 10 sensors where object lo-
cations are located on integers from 1 to 21. The observation
for each awake sensor is continuous and Gaussian as in (6) with

. The locations of the sensors are given in Table III
and the object moves according to the random walk defined in
Table II. For every object state and every scheduling action in the
reduced control space, we sample 50 observations to construct
estimates of the weight probabilities and compute the aggregate
observation boundaries. Up to 32 actions are sampled from the
reduced control space. In this setup, the belief set consists of
500 sampled belief vectors and we assume a Hamming error
cost. Figs. 7 and 8 show the performance of the different poli-
cies for the continuous observation model. It is shown that the
point-based scheduling policy outperforms the policy.
We further show a lower bound on the optimal performance

Fig. 9. 2-D network with 20 sensors (stars) and 25 possible object locations
(squares).

Fig. 10. Energy-tracking tradeoff of the � and point-based scheduling
policies for a 2-D network with continuous observations and Hamming cost.

tradeoff. The lower bound is loose especially in the high tracking
error regime since the derived bound on per-sensor tracking er-
rors assumes all other sensors are awake. However, we can ex-
actly compute the saturation point for the optimal scheduling
policy since every policy has to eventually meet the all-asleep
performance curve, shown in Fig. 7, when the energy cost per
sensor is high. At that point, all sensors are inactive and hence
the target estimate can only be based on prior information. Our
results are not restricted to 1-D networks but easily apply to 2-D
networks. Namely, Fig. 10 shows the energy-tracking tradeoff of
the and point-based policies in addition to a lower bound
on optimal performance for the 2-D network of Fig. 9 with con-
tinuous observations and Hamming cost. The entries of the ob-
ject transition matrix are generated randomly with the restriction
that at any state the object can only move to its neighboring loca-
tions or remain at its current state. This simulation shows similar
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trends to the previously observed results. The point-based poli-
cies outperform the approach at the expense of an in-
crease in the offline computational complexity of the planning
phase. Furthermore, the lower bound is reasonably tight in the
low tracking error regime.

V. CONCLUSIONS

In this paper we studied the problem of tracking an object
moving randomly through a dense network of wireless sensors.
We devised approximate strategies for scheduling the sensors to
optimize the tradeoff between tracking performance and energy
consumption for a wide range of models. First, we proposed
policies that rely on an observable-after-control assumption
( policies). Key to this solution is the decoupling of the
optimization problem into per-sensor subproblems combined
with simulation-based learning of individual tracking costs for
each subproblem. Second, we developed point-based sensor
scheduling strategies, which optimize the value function over
a small set of reachable beliefs within the belief simplex.
Based on the belief support and the sparsity of the transition
models, we developed a methodology to sample actions from
reduced control spaces. This was combined with observation
aggregation to address the complexity of the observation space
for continuous observations models. In some cases we derived
lower bounds on the optimal tradeoff curves. While being
suboptimal, the generated scheduling policies often provide
close-to-optimal energy-tracking tradeoffs. Developing dis-
tributed scheduling strategies when no central controller is
available is an area for future research. Another interesting
challenge is when the statistics for object movement are un-
known or partially known.
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