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Abstract: In this article we extend Shiryaev’s quickest change detection formulation by
also accounting for the cost of observations used before the change point. The observation
cost is captured through the average number of observations used in the detection process
before the change occurs. The objective is to select an on–off observation control policy that
decides whether or not to take a given observation, along with the stopping time at which
the change is declared, to minimize the average detection delay, subject to constraints on
both the probability of false alarm and the observation cost. By considering a Lagrangian
relaxation of the constraint problem and using dynamic programming arguments, we
obtain an a posteriori probability-based two-threshold algorithm that is a generalized
version of the classical Shiryaev algorithm. We provide an asymptotic analysis of the two-
threshold algorithm and show that the algorithm is asymptotically optimal—that is, the
performance of the two-threshold algorithm approaches that of the Shiryaev algorithm—
for a fixed observation cost, as the probability of false alarm goes to zero. We also show,
using simulations, that the two-threshold algorithm has good observation cost-delay trade-
off curves and provides significant reduction in observation cost compared to the naïve
approach of fractional sampling, where samples are skipped randomly. Our analysis reveals
that, for practical choices of constraints, the two thresholds can be set independent of each
other: one based on the constraint of false alarm and another based on the observation cost
constraint alone.
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Data-Efficient Quick Change Detection 41

1. INTRODUCTION

In the Bayesian quickest change detection problem proposed by Shiryaev (1963),
there is a sequence of random variables, �Xn�, whose distribution changes at a
random time � . It is assumed that before � , �Xn� are independent and identically
distributed (i.i.d.) with density f0, and after � they are i.i.d. with density f1. The
distribution of � is assumed to be known and modeled as a geometric random
variable with parameter �. The objective is to find a stopping time �, at which time
the change is declared, such that the average detection delay is minimized subject to
a constraint on the probability of false alarm.

In this article we extend Shiryaev’s formulation by explicitly accounting for the
cost of the observations used in the detection process. We capture the observation
penalty (cost) through the average number of observations used before the change
point � and allow for a dynamic control policy that determines whether or not a
given observation is taken. The objective is to choose the observation control policy
along with the stopping time �, so that the average detection delay is minimized
subject to constraints on the probability of false alarm and the observation cost. The
motivation for this model comes from the consideration of the following engineering
applications.

In many monitoring applications—for example, infrastructure monitoring,
environmental monitoring, or habitat monitoring, especially of endangered
species—surveillance is only possible through the use of inexpensive battery-
operated sensor nodes. This could be due to the high cost of employing a wired
sensor network or a human observer or the infeasibility of having a human
intervention. For example in habitat monitoring of certain sea birds as reported in
Mainwaring et al. (2002), the very reason the birds chose the habitat was because
of the absence of humans and predators around it. In these applications the sensors
are typically deployed for long durations, possibility over months, and due the
constraint on energy, the most effective way to save energy at the sensors is to switch
the sensor between on and off states. An energy-efficient quickest change detection
algorithm can be employed here that can operate over months and trigger other
more sophisticated and costly sensors, which are possibly power hungry or, more
generally, trigger a larger part of the sensor network (Rice et al., 2010). This change
could be a fault in the structures in infrastructure monitoring (Rice et al., 2010), the
arrival of the species to the habitat (Mainwaring et al., 2002), etc.

In industrial quality control, statistical control charts are designed that can
detect a sustained deviation of the industrial process from normal behavior
(Stoumbos et al., 2000). Often there is a cost associated with acquiring the statistics
for the control charts and it is of interest to consider designing economic-statistical
control chart schemes (Assaf, 1988, Assaf et al., 1993, Makis, 2008, Stoumbos and
Reynolds, 2005, Stoumbos et al., 2000, Tagaras, 1998, Yakir, 1996). One approach
to economic-statistical control chart design has been to use algorithms from the
change detection literature, such as Shewhart, exponential weighted moving average
(EWMA), and cumulative sum (CUSUM), as control charts, and optimize over
the choice of sample size, sampling interval, and control limits (Tagaras, 1998,
Stoumbos and Reynolds, 2005). Another approach has been to find optimal
sampling rates in the problem of detection of a change in the drift of a sequence
of Brownian motions with global false alarm constraint (Assaf et al., 1993, Yakir,
1996). Thus, these approaches are essentially non-Bayesian. In the Bayesian setting,
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42 Banerjee and Veeravalli

the problem of dynamic sampling for detecting a change in the drift of a standard
Brownian motion is considered for an exponentially distributed change point in
Assaf (1988). For practical applications, it is of interest to consider the economic
design of Bayesian control charts in discrete time. The design of a Bayesian
economic-statistical control chart is considered for a shift in the mean vector of
a multivariate Gaussian model in Makis (2008). But, the problem is modeled as
an optimal stopping problem where the long-term average cost is minimized and,
hence, there is no control on the number of observations used at each time step.
The process control problem is fundamentally a quickest change detection problem,
and it is therefore appropriate that economic-statistical schemes for process control
are developed in this framework.

In most of the above-mentioned or similar applications, changes are rare
and quick detection is often required. So, ideally we would like to take as few
observations as possible before change to reduce the observation cost, and skip as
few as possible after change to minimize delay, while maintaining an acceptable
probability of false alarm.

There have been other formulations of the Bayesian quickest change detection
problem that are relevant to sensor networks: see Banerjee et al. (2011), Mei
(2005), Tartakovsky and Veeravalli (2008), Veeravalli (2001), and Zacharias
and Sundaresan (2007). The change detection problem studied here was earlier
considered in a similar set up for sensor networks in Premkumar and Kumar (2008).
But due to the complexity of the problem, the structure of the optimal policy was
studied only numerically, and for the same reason, no analytical expressions were
developed for the performance.

The goal of this article is to develop a deeper understanding of the trade-off
between delay, false alarm probability, and the cost of observation or information
and to identify a control policy for data-efficient quickest change detection
that has some optimality property and is easy to design. We extend Shiryaev’s
formulation by also accounting for the cost of observations used before the
change point, and obtain an a posteriori probability-based two-threshold algorithm
that is asymptotically optimal. Specifically, we show that the probability of false
alarm and the average detection delay of the two-threshold algorithm approaches
that of the Shiryaev algorithm, for a fixed observation cost constraint, as the
probability of false alarm goes to zero. Even for moderate values of the false
alarm probability, we will show using simulations that the two-threshold algorithm
provides good performance. We also provide an asymptotic analysis of the two-
threshold algorithm; that is, we obtain expressions for the delay, probability of false
alarm, and the average number of observations used before and after change, using
which the thresholds can be set to meet the constraints on probability of false alarm
and observation cost.

The layout of the article is as follows: In the following section, we set up the
data-efficient quickest change detection problem with on–off observation control
and introduce the two-threshold algorithm. In Section 3, we provide an asymptotic
analysis of the two-threshold algorithm. In Section 4, we provide approximations
using which the analytical expressions in Section 3 can be computed and validate
the approximations by comparing them with the corresponding values obtained via
simulations. In Section 5, we prove the asymptotic optimality of the two-threshold
algorithm, provide its false alarm-delay-observation cost trade-off curves, and also
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Data-Efficient Quick Change Detection 43

compare its performance with the naïve approach of fractional sampling, where
observations are skipped randomly.

2. PROBLEM FORMULATION AND THE TWO-THRESHOLD
ALGORITHM

As in the model for the classical Bayesian quickest change detection problem
described in Section 1, we have a sequence of random variables �Xn�, which are
i.i.d. with density f0 before the random change point � and i.i.d. with density f1
after � . The change point � is modeled as geometric with parameter �; that is, for
0 < � < 1� 0 ≤ �0 < 1,

�k = P�� = k� = �0��k=0� + �1− �0	��1− �	k−1��k≥1��

where � is the indicator function, and �0 represents the probability of the change
having happened before the observations are taken. Typically �0 is set to 0.

In order to minimize the average number of observations used before � , at each
time instant a decision is made on whether to use the observation in the next time
step, based on all available information. Let Sk ∈ �0� 1�, with Sk = 1 if it had been
decided to take the observation at time k; that is, Xk is available for decision making,
and Sk = 0 otherwise. Thus, Sk is an on–off (binary) control input based on the
information available up to time k− 1; that is,

Sk = 
k−1�Ik−1	� k = 1� 2� � � �

with 
 denoting the control law and I defined as:

Ik =
[
S1� � � � � Sk� X

�S1	
1 � � � � � X

�Sk	
k

]
�

Here, X�Si	
i represents Xi if Si = 1; otherwise, Xi is absent from the information

vector Ik. The choice of S1 is based on the prior �0.
As in the classical change detection problem, the end goal is to choose a

stopping time on the observation sequence at which time the change is declared.
Denoting the stopping time by �, we can define the average detection delay
(ADD) as

ADD = E
[
��− �	+

]
�

Further, we can define the probability of false alarm (PFA) as

PFA = P�� < �	�

The new performance metric for our problem is the average number of observations
(ANO) used before � in detecting the change:

ANO = E

[
min����−1�∑

k=1

Sk

]
�
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44 Banerjee and Veeravalli

This metric captures the cost of observations used before the change point. The
cost of observations used after the change point is captured by the ADD. This way
of capturing the observation cost is practically relevant, as in many applications,
changes are rare and quick detection is often required.

Let � = ��� 
0� � � � � 
�−1� represent a policy for cost-efficient quickest change
detection. We wish to solve the following optimization problem:

minimize
�

ADD��	�

subject to PFA��	 ≤ � and ANO��	 ≤ �� (2.1)

where  and � are given constraints. Toward solving (2.1), we consider a Lagrangian
relaxation of this problem that can be approached using dynamic programming:

J ∗ = min
�

ADD��	+ �fPFA��	+ �eANO��	� (2.2)

where �f and �e are Lagrange multipliers, �f ≥ 0 and �e ≥ 0. It is easy to see that if
�f and �e can be found such that the solution to (2.2) achieves the PFA and ANO
constraints with equality, then the solution to (2.2) is also the solution to (2.1).

The problem in (2.2) can be converted to an appropriate Markov control
problem using steps similar to those followed in Premkumar and Kumar (2008).

Let �k denote the state of the system at time k. After the stopping time � it is
assumed that the system enters a terminal state � and stays there. For k < �, we
have �k = 0 for k < � and �k = 1 otherwise. Then we can write

ADD = E

[
�−1∑
k=0

���k=1�

]

and PFA = E�����=0��.
Furthermore, let Dk denote the stopping decision variable at time k; that is,

Dk = 0 if k < � and Dk = 1 otherwise. Then the optimization problem in (2.2) can
be written as a minimization of an additive cost over time:

J ∗ = min
�

E

[
�∑

k=0

gk��k�Dk� Sk	

]

with

gk��� d� s	 = ��� �=� �

[
���=1���d=0� + �f���=0���d=1� + �e���=0���s=1���d=0�

]
�

Using standard arguments (Bertsekas, 2007) it can be seen that this optimization
problem can be solved using infinite horizon dynamic programming with sufficient
statistic (belief state) given by:

pk = P��k = 1 � Ik� = P�� ≤ k � Ik��
Using Bayes’ rule, pk can be shown to satisfy the recursion

pk+1 =
{
��0	�pk	 if Sk+1 = 0

��1	�Xk+1� pk	 if Sk+1 = 1
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Data-Efficient Quick Change Detection 45

where

��0	�pk	 = pk + �1− pk	� (2.3)

and

��1	�Xk+1� pk	 =
��0	�pk	L�Xk+1	

��0	�pk	L�Xk+1	+ �1−��0	�pk	�
(2.4)

with L�Xk+1	 = f1�Xk+1	/f0�Xk+1	 being the likelihood ratio and p0 = �0. Note that
the structure of recursion for pk is independent of time k.

The optimal policy for the problem given in (2.2) can be obtained from the
solution to the Bellman equation:

J�pk	 = min
dk�sk+1

�f �1− pk	��dk=1� + ��dk=0� �pk + AJ�pk	� � (2.5)

where

AJ�pk	 = B0�pk	��sk+1=0� + ��e�1− pk	+ B1�pk	���sk+1=1��

with

B0�pk	 = J���0	�pk	�

and

B1�pk	 = E�J���1	�Xk+1� pk	���

It can be shown by an induction argument (see, e.g., Premkumar and Kumar, 2008)
that J , B0, and B1 are all nonnegative concave functions on the interval �0� 1�, and
that J�1	 = B0�1	 = B1�1	 = 0. Also, by Jensen’s inequality

B1�p	 ≤ J�E���1	�X� p	�� = B0�p	� p ∈ �0� 1��

Let

d�pk	 = B0�pk	− B1�pk	�

Then, from the above properties of J , B0, and B1, it is easy to show that the optimal
policy �∗ = ��∗� 
∗

0� 

∗
1� � � � � 


∗
�−1	 for the problem given in (2.2) has the following

structure:

S∗
k+1 = 
∗

k�pk	 =
{
0 if d�pk	 < �e�1− pk	

1 if d�pk	 ≥ �e�1− pk	
(2.6)

�∗ = inf �k ≥ 1 � pk > A∗� �

Remark 2.1. Since d�pk	 ≥ 0 ∀pk, the algorithm in (2.6) reduces to the classical
Shiryaev algorithm when �e = 0 (Shiryaev, 1963).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

6:
42

 2
4 

Fe
br

ua
ry

 2
01

2 



46 Banerjee and Veeravalli

Figure 1. Example where a two-threshold policy is optimal: f0 ∼ � �0� 1	, f1 ∼
� �0�75� 1	, � = 0�05, �f = 50, and �e = 0�5. Value iteration: number of iterations =
1� 500� number of points = 2� 000 (color figure available online).

The optimal stopping rule �∗ is similar to the one of the Shiryaev problem. But,
the observation control is not explicit and one has to evaluate the differential cost
function d�pk	 at pk at each time step to choose Sk+1.

In Figure 1(a) we plot the differential cost function d�p	 = B0�p	− B1�p	 and
�e�1− p	 as a function of p. We note that, although B0�p	 and B1�p	 are concave
in p, their difference d�p	 is not. Thus, the line �e�1− p	 can intersect d�p	 at more
than two points. However, in Figure 1(a) we see that there are exactly two points
of intersection, one at B = 0�306 an another at C = 0�96. In Figure 1(b) we plot the
functions p+ AJ�p	 and �f �1− p	 as a function of p. This figure shows that the
stopping threshold is A = 0�8815 < 0�96 = C. Thus, from Figures 1(a) and (b) we
see that the optimal policy has two thresholds. For most of the system parameters
we have tried, the cost functions behave in this way, and hence for these values the
following two-threshold policy is optimal.

Algorithm 2.1 (Two-Threshold Policy: ��A� B	). Start with p0 = 0 and use the
following control, with B < A, for k ≥ 0:

Sk+1 = 
k�pk	 =
{
0 if pk < B

1 if pk ≥ B
(2.7)

� = inf �k ≥ 1 � pk > A� �

The probability pk is updated using (2.3) and (2.4).

Remark 2.2. When B = 0, ��A� B	 in (2.7) reduces to the classical Shiryaev
algorithm (Shiryaev, 1963), and pk is updated using only the recursion (2.4).

Extensive numerical studies of the Bellman equation (2.5) also show that there
exist choices of �, f0, f1, �f , and �e for which (2.7) is not optimal. In Figure 2
we plot one such case. Note from Figure 2(a) that again there are two points of
intersection of the plotted curves, one at B = 0�9315 and another at C = 0�973. But
Figure 2(b) shows that A = 0�986 > 0�973 = C. Thus, in this case the optimal policy
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Data-Efficient Quick Change Detection 47

Figure 2. Example where a two-threshold policy is not optimal: f0 ∼ � �0� 1	,
f1 ∼ � �1� 1	, � = 0�7, �f = 100, and �e = 5. Value iteration: number of iterations =
1� 500� number of points = 2� 000 (color figure available online).

has three thresholds. But, note that the value of � = 0�7 is quite large and hence
impractical. Also, simulations with these choices of thresholds show that the ANO
is approximately zero. In all of the cases we have found for which the two-threshold
policy is not optimal, the value of � is large and ANO is almost zero.

From a practical point of view, even if a two-threshold policy or algorithm (2.7)
is not optimal, one would like to use the algorithm for the following reasons. First,
as the asymptotic analysis given in Section 3 will reveal, if the PFA constraint is
moderate to small and the ANO constraint is not very severe, then the thresholds
A and B in ��A� B	 can be set independently: the threshold A can be set only based
on the constraint , and the threshold B can be set based on the constraint � alone.
Second, apart from being simple, the two-threshold algorithm (2.7) is asymptotically
optimal as the PFA → 0. Finally, ��A� B	 has good trade-off curves; that is, the
ANO of ��A� B	 can be reduced by up to 70%, by keeping the ADD of the ��A� B	
within 10% of the ADD of the Shiryaev algorithm.

It is interesting to note that a two-threshold algorithm similar to that in (2.7)
was shown to be exactly optimal in Girshick and Rubin (1952) for a different but
related problem of quality control where inspection costs are considered or when
the tests are destructive.

3. ASYMPTOTIC ANALYSIS OF ��A�B�

In this section we derive asymptotic approximations for ADD, PFA, and ANO for
the two-threshold algorithm ��A� B	. To that end, we first convert the recursion for
pk (see (2.3) and (2.4)) to a form that is amenable to asymptotic analysis.

Define Zk = log pk
1−pk

for k ≥ 0. This new variable Zk has a one-to-one mapping
with pk. By defining

a = log
A

1− A
� b = log

B

1− B
�

we can write the recursions (2.3) and (2.4) in terms of Zk.
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48 Banerjee and Veeravalli

For k ≥ 1,

Zk+1 = Zk + logL�Xk+1	+ � log�1− �	� + log
(
1+ �e−Zk

)
� if Zk ∈ �b� a	 (3.1)

and

Zk+1 = Zk + � log�1− �	� + log
(
1+ �e−Zk

)
� if Zk 
 �b� a	 (3.2)

with

Z1 = log
(
eZ0 + �

)+ � log�1− �	� + log �L�X1	� ��Z0∈�b�a	��

Here we have used the fact that Sk+1 = 1 if pk ∈ �B� A	, and Sk+1 = 0 otherwise (see
(2.6)). The crossing of thresholds A and B by pk is equivalent to the crossing of
thresholds a and b by Zk. Thus, the stopping time for ��A� B	 (equivalently ��a� b	
with some abuse of notation) is

� = inf �k ≥ 1 � Zk > a� �

In this section we study the asymptotic behavior of ��a� b	 in terms of Zk under
various limits of a� b, and �. Specifically, we provide two asymptotic expressions for
ADD, one for fixed thresholds a� b, as � → 0, and another for fixed b and �, as
a → �. We also provide, for a fixed b, an asymptotic expression for PFA as a → �.
Finally, we also provide asymptotic estimates of the average number of observations
used before (ANO) and after the change point � . Note that the limit of a → �
corresponds to PFA → 0.

Figure 3 shows a typical evolution of ��a� b	; that is, of Zk using (3.1) and
(3.2), starting at time 0. Note that for Zk ∈ �b� a	, recursion (3.1) is employed, while
outside that interval, recursion (3.2), which only uses the prior �, is employed. As a
result, Zk increases monotonically outside �b� a	.

From Figure 3 again, each time Zk crosses b from below, it can either increase to
a (point �) or it can go below b and approach b monotonically from below, at which

Figure 3. Evolution of Zk for f0 ∼ � �0� 1	, f1 ∼ � �0�5� 1	, and � = 0�01, with thresholds
a = 3�89 and b = −1�38, corresponding to the pk thresholds A = 0�98 and B = 0�2,
respectively. Also Z0 = b (color figure available online).
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Data-Efficient Quick Change Detection 49

time it faces a similar set of alternatives. Thus, the passage to threshold a possibly
involves multiple cycles of the evolution of Zk below b. We will show in Section 3.3
that after the change point � , following a finite number of cycles below b, Zk grows up
to cross a, and the time spent on the cycles below b is insignificant compared to �− � ,
as a → �. In fact, we show that, asymptotically, the time to reach a is equal to the
time taken by the classical Shiryaev algorithm to reach a. (Note that for the classical
Shiryaev algorithm the evolution of Zk would be based on (3.1).)

When Zk crosses a from below, it does so with an overshoot. Overshoots play
a significant role in the performance of many sequential algorithms (see Siegmund,
1985, Tartakovsky and Veeravalli, 2005) and they are central to the performance of
��a� b	 as well. In Section 3.2, we show that PFA depends on the threshold a and
the overshoot �Z� − a	 as a → �, but is not a function of the threshold b.

The number of observations taken during the detection process is the total time
spent by Zk between b and a. As a → �, Zk crosses a only after change point � ,
with high probability. The total number of observations taken can thus be divided
in to two parts: the part taken before � (ANO), which is the fraction of time Zk is
above b (and hence depends only on b), and the part taken after � . In Section 3.4
we show that, asymptotically, the average number of observations taken after � is
approximately equal to the delay itself.

In Section 4 we provide approximations using which the asymptotic expressions
obtained in this section can be computed and provide numerical results to
demonstrate the accuracy of the approximations. In Section 5 we use the asymptotic
expressions for ADD and PFA to show asymptotic optimality of ��a� b	.

We begin our analysis by first obtaining the asymptotic overshoot distribution
for �Z� − a	 using nonlinear renewal theory (Siegmund, 1985, Woodroofe, 1982).
As mentioned above, this will be critical to the PFA analysis. For convenience of
reference, in Table 1 we provide a glossary of important terms used in this article.

In what follows, we use E� and P� to denote, respectively, the expectation and
probability measure when change happens at time �. We use E� and P� to denote,
respectively, the expectation and probability measure when the entire sequence �Xn�
is i.i.d. with density f0. Note that g�x	 = o�1	 as x → x0 is used to denote that
g�x	 → 0 in the specified limit.

3.1. Asymptotic Overshoot

In this section we characterize the overshoot distribution of Zk as it crosses a as
a → �. In analyzing the trajectory of Zk, it useful to allow for an arbitrary starting
point Z0 (shifting the time axis). We first combine the recursions in (3.1) and (3.2)
to get:

Zk+1 = Zk + ��Zk≥b� logL�Xk+1	+ � log�1− �	� + log
(
1+ e−Zk�

)
�

By defining Yk = logL�Xk	+ � log�1− �	� and expanding the above recursion, we
can write an expression for Zn:

Zn =
n∑

k=1

Yk + log
(
eZ0 + �

)+ n−1∑
k=1

log
(
1+ e−Zk�

)− n∑
k=1

��Zk<b� logL�Xk	

=
n∑

k=1

Yk + �n� (3.3)
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50 Banerjee and Veeravalli

Table 1. Glossary

Symbol Definition/Interpretation

ADD Average detection delay
PFA Probability of false alarm
ANO Average number of observations used before change
ANO1 Average number of observations used after change
�Xk� Observation sequence
pk a posteriori probability of change
Zk log pk

1−pk
=∑k

i=1 Yi + �k,
� First time for pk to cross A or first time for Zk to cross a = log A

1−A

��k� Slowly changing sequence
R�x	� r̄ Asymptotic distribution and mean of overshoot when

∑k
i=1 Yi crosses a

large threshold
t�x� y	 Time for Zk to reach y starting at x using (3.2)
��x� y	 Time for Zk to reach y starting at x using (3.1) also, time for Shiryaev

algorithm to reach y starting at x
�b� �0 ��b� a	 and ��−�� a	
� Starting at b, first time Zk is outside �b� a	
� Starting at b, first time Zk crosses a or crosses b from below
ADDs Starting at b, time for Zk to reach a under P1, when Zk is reset to b each time

it crosses b from below
��x	 Starting at x ≥ b, first time Zk is outside �b� a	
��x	 Starting at x ≥ b, first time Zk crosses a or crosses b from below
�̂ Starting at b, first time Zk < b with a = �
�̂�x	 Starting at x ≥ b, first time Zk < b with a = �
Tb Time spent by Zk below b, after � , when � ≥ �

�̃x Starting at x ≥ b, first time Zk > a, or crosses b from below, or is stopped by
occurrence of change

�x The fraction of time Zk is above b, when stopped by �̃x

�̃b (�̂b) Starting at b, time for Zk to reach a, when Zk is reflected at b (reset to b
when it crosses b from below)

Here �n is used to represent all terms other than the first in the equation above:

�n = log
(
eZ0 + �

)+ n−1∑
k=1

log
(
1+ e−Zk�

)− n∑
k=1

��Zk<b� logL�Xk	� (3.4)

As defined in Siegmund (1985), �n is a slowly changing sequence if

n−1 max���1�� � � � � ��n�� n→�→
i�p�

0� (3.5)

and for every � > 0, there exists n∗ and � > 0 such that for all n ≥ n∗

P
{
max
1≤k≤n�

��n+k − �n� > �
}
< �� (3.6)

If indeed ��n� is a slowly changing sequence, then the distribution of Z� − a, as a →
�, is equal to the asymptotic distribution of the overshoot when the random walk∑n

k=1 Yk crosses a large positive boundary. We have the following result.
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Data-Efficient Quick Change Detection 51

Theorem 3.1. Let R�x	 be the asymptotic distribution of the overshoot when the
random walk

∑n
k=1 Yk crosses a large positive boundary under P1. Then for fixed � and

b, under P1, we have the following:

1. ��n� is a slowly changing sequence.
2. R�x	 is the distribution of Z� − a as a → �; that is,

lim
a→�P �Z� − a ≤ x � � ≥ �� = R�x	� (3.7)

Proof. When b = −�, Zk evolves as in the classical Shiryaev algorithm statistic,
and it is easy to see that in this case:

�n =
[
log

(
eZ0 + �

)+ n−1∑
k=1

log
(
1+ e−Zk�

)]

= log

[
eZ0 +

n−1∑
k=0

��1− �	k
k∏

i=1

f0�Xi	

f1�Xi	

]
�

It was shown in Tartakovsky and Veeravalli (2005) that this ��n� sequence (for b =
−�), with Z0 = −�, is a slowly changing sequence. It is easy to show that ��n� is a
slowly changing sequence even if Z0 is a random variable. Also, if LZ is the last time
Zk crosses b from below, then note that, after LZ, the last term

∑n
k=1 ��Zk<b� logL�Xk	

in (3.4) vanishes, and �n in (3.4) behaves like the �n for b = −�. We prove the
theorem using these observations. The detailed proof is given in the Appendix to
this section. �

3.2. PFA Analysis

We first obtain an expression for PFA as a function of the overshoot when Zk

crosses a.

Lemma 3.1. For fixed � and b,

PFA = E�1− p�� = e−aE�e−�Z�−a	�� ≥ ���1+ o�1	� as a → ��

Proof. See the Appendix for the proof. �

From Lemma 3.1, it is evident that PFA depends on the overshoot when Zk

crosses a as a → �. Since the overshoot has an asymptotic distribution (Theorem
3.1) that depends only on densities f0, f1, and prior � and is independent of b, it is
natural to expect that as a → �, PFA is completely characterized by the asymptotic
distribution R�x	 and is not a function of the threshold b. This is indeed true and is
established in the following theorem.

Theorem 3.2. For a fixed b and �,

PFA���a� b	� =
(
e−a

∫ �

0
e−xdR�x	

)
�1+ o�1	� as a → �� (3.8)

Proof. The theorem follows from Theorem 3.1 and Lemma 3.1. �
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52 Banerjee and Veeravalli

3.3. Delay Analysis

The PFA for ��a� b	 have the following bound:

PFA = E�1− p�� ≤ 1− A = 1
1+ ea

≤ e−a� (3.9)

Using this upper bound we can show that the ADD of ��a� b	 is given by:

ADD = E
[
��− �	+

]
= E��− � � � ≥ ���1+ o�1	� as a → �� (3.10)

In the following we provide two different expressions for E��− � � � ≥ ��. The first
one is obtained by keeping b fixed and taking � → 0. This expression will be used
to get accurate delay estimates for ��a� b	 in Section 4.

Next, we will provide another asymptotic expression for E��− � � � ≥ �� for a
fixed b, � and as a → �. We show that in this limit, E��− � � � ≥ �� converges to the
Shiryaev delay. This fact will be used to prove the asymptotic optimality of ��a� b	
in Section 5.

It was discussed in reference to Figure 3 that each time Zk crosses b from below,
it faces two alternatives, to cross a without ever coming back to b or to go below b
and cross it again from below. It was mentioned that the passage to the threshold a
is through multiple such cycles. Motivated by this we define the following stopping
times � and �:

�
�= inf�k ≥ 1 � Zk 
 �b� a	� Z0 = b�� (3.11)

and

�
�= inf�k ≥ 1 � Zk > a or ∃ k s�t� Zk−1 < b and Zk ≥ b� Z0 = b�� (3.12)

Let t�x� y	 be the constant time taken by Zk to move from Z0 = x to y using the
recursion (3.2); that is,

t�x� y	
�= inf�k ≥ 0 � Zk > y� Z0 = x� x� y 
 �b� a	�� (3.13)

Then, we can write � as a function of � using (3.13):

� = ��+ t�Z�� b	���Z�<b� + ���Z�>a� = �+ t�Z�� b	��Z�<b��

The significance of these stopping times is as follows. If we start the process at
Z0 = b and reset Zk to b each time it crosses b from below, then the time taken by
Zk to move from b to a is the sum of a finite but random number of random
variables with distribution of �, say �1� �2� � � � � �N . For i = 1� � � � � N − 1, Z�i

< b,
and Z�N

> a. Thus, the time to reach a in this case is E1

[∑N
k=1 �k

]
. Let

ADDs �= E1

[
N∑
k=1

�k

]
�
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Data-Efficient Quick Change Detection 53

The behavior of the delay path depends on Z� , the value of Zk at the change
point � , and how Zk evolves after that point. We use �Zk ↗ b� to indicate that Zk

approaches b from below for some k > � ; that is, ∃k > �� s�t�� Zk−1 < b�Zk ≥ b, and
use �Zk ↗ a� to represent the event that Zk crossed a without ever coming back to
b; that is, Zk ≥ b�∀k > � . We define the following three disjoint events:

� = �Z� < b��

� = �Z� ≥ b� Zk ↗ b��

� = �Z� ≥ b� Zk ↗ a��

Thus, under event �, the process Zk starts below b at � and reaches a after multiple
upcrossings of the threshold b. Under event �, the process Zk starts above b at �
and crosses b before a. It then has multiple up-crossings of b, similar to the case of
event �. Under event �, the process Zk starts above b at � and reaches a without
ever coming below b.

Also define

��x	 = inf�k ≥ 1 � Zk 
 �b� a	� Z0 = x� b ≤ x < a�� (3.14)

and let ��x	 be defined with Z0 = x similar to (3.12). Thus, � and ��b	 have the
same distribution. Similarly, � and ��b	 are identically distributed.

The following theorem gives an asymptotic expression for the conditional delay.

Theorem 3.3. For a fixed value of the thresholds a� b, the conditional delay is given by

E��− � � � ≥ �� = �ADDs P�� ∪� � � ≥ �	+ E���Z�	 ��� � ≥ �� P�� � � ≥ �	

+ E�t�Z�� b	��� � ≥ ��P���� ≥ �	+ E���Z�	 ��� � ≥ ��

× P���� ≥ �	��1+ o�1	� as � → 0� (3.15)

Proof. The proof is provided in the Appendix. �

In Section 4 we will provide approximations for various terms in (3.15) to get
an accurate estimate of ADD. In Lemma 3.2 we provide expressions for ADDs.

Let � represent the Shiryaev recursion; that is, updating Zk using only (3.1).
Define

��x� y	 = inf �k ≥ 1 � ��Zk−1	 > y� Z0 = x� � (3.16)

Thus, ��x� y	 is the time for the Shiryaev algorithm to reach y starting at x. Also,
define the stopping times:

�b = ��b� a	� (3.17)

and

�0 = ��−�� a	� (3.18)

Note that �0 is the stopping time for the classical Shiryaev algorithm (Shiryaev,
1963) and �b is its modified form, which starts at b. We have the following
asymptotic expression.
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54 Banerjee and Veeravalli

Lemma 3.2. For a fixed b and �, ADDs, the average time for Zk to cross a starting
at b, under P1, with Zk reset to b each time it crosses b from below, is given by

ADDs = E1���+ E1�t�Z�� b	 � �Z� < b��P1�Z� < b	

P1�Z� > a	
(3.19)

and is asymptotically equal to the time taken by the Shiryaev algorithm to move from b
to a; that is,

ADDs = E1��b��1+ o�1	� as a → �� (3.20)

Proof. We have

ADDs = E1

[
N∑
k=1

�k

]
�i	= E1�N�E1���

�ii	= E1���

P1�Z� > a	

= E1���+ E1�t�Z�� b	 � �Z� < b��P1�Z� < b	

P1�Z� > a	
�

In the above equation, equality (i) follows from Wald’s lemma (Siegmund, 1985),
and equality (ii) follows because N ∼ Geom�P�Z� > a	�. To obtain (3.20), the main
idea of the proof is to find stopping times that upper and lower bound the Shiryaev
time on average and have delay equal to E1���

P1�Z�>a	
as a → �. The details are provided

in the Appendix. �

Note that Theorem 3.3 takes � → 0. We now provide another expression for
E��− � � � ≥ ��, for a fixed b and � as a → �, which will be used to prove the
asymptotic optimality of ��a� b	 in Section 5.

Theorem 3.4. For a fixed b and �, we have as a → �

E��− � � � ≥ �� ≤ ADDs �1+ o�1	� � (3.21)

and, hence, we have

E��− � � � ≥ �� =
[

a

D�f1� f0	+ � log�1− �	�
]
�1+ o�1	� as a → �� (3.22)

where D�f1� f0	 is the K-L divergence between f0 and f1.

Proof. To get (3.21), we show that ADDs is the dominant term in an upper bound
to E��− � � � ≥ �� as a → �. The steps followed are very similar to those used to
obtain (3.15). The proof is given in the Appendix.

To obtain (3.22), from Lemma 3.2 and (3.21) we have

E��− � � � ≥ �� ≤ E1��b��1+ o�1	� as a → ��
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Data-Efficient Quick Change Detection 55

To evaluate E1��b�, following steps similar to those in Section 3.1, it is easy to show
that evolution of Zk from b to a, with Z0 = b, is according to the random walk∑

k logL�Xk	+ � log�1− �	� and a slowly changing term. Thus, according to Lemma
9.1.3, p. 191 of Siegmund (1985),

E1��b� =
[

a

D�f1� f0	+ � log�1− �	�
] [

1+ o�1	
]

as a → ��

and

E��− � � � ≥ �� ≤
[

a

D�f1� f0	+ � log�1− �	�
] [

1+ o�1	
]

as a → ��

To complete the proof of Theorem 3.4, we now show that E��− � � � ≥ �� is
asymptotically lower bounded by E1��b�. From Theorem 1 in Tartakovsky and
Veeravalli (2005),

E��0 − � � �0 ≥ �� ≥ a

D�f1� f0	+ � log�1− �	� �1+ o�1	� as a → ��

Also, from Theorem 3.2,

P�� < �� = P��0 < ���1+ o�1	� as a → ��

Thus, we have

E��− � � � ≥ �� ≥ E��0 − � � �0 ≥ ���1+ o�1	� as a → ��

This is true because the Shiryaev algorithm is optimal for problem (2.1) with � = �.
This completes the proof. �

3.4. Computation of ANO

In this section we provide an asymptotic expression for ANO for a fixed b, as
a → �, and as � → 0, with a → � before � → 0. In Section 4.2 we show that
this expression provides a good estimate of ANO and can be used to choose the
threshold b for the test.

First note that

ANO = E

[
min����−1�∑

k=1

Sk

]

= E

[
�−1∑
k=1

Sk

∣∣∣∣ � ≥ �

]
P�� ≥ �	+ E

[
�∑

k=1

Sk

∣∣∣∣� < �

]
P�� < �	

= E

[
�−1∑
k=1

Sk

∣∣∣∣ � ≥ �

]
�1+ o�1	� as a → ��

The last equality follows because
∑�

k=1 Sk ≤ � on �� < ��, and P�� < �	 < e−a → 0
as a → �.
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56 Banerjee and Veeravalli

Following (3.11), we define

�̂ = inf�k ≥ 1 � Zk < b� Z0 = b� a = ��� (3.23)

The following theorem provides an asymptotic expression for ANO.

Theorem 3.5. For fixed b, we have as a → �, and as � → 0, with a → � before
� → 0,

ANO = E���̂�

P��� ≤ �̂+ t�Z�̂� b	�

1
1+ eb

�1+ o�1	��

where �̂ is as defined in (3.23).

Proof. Let t�b	 be the first time Zk crossed b from below; that is, t�b	 = t�z0� b	.
Using the fact that observations are used only after t�b	, we can write the following:

ANO = E

[
�−1∑
k=1

Sk

∣∣∣∣ � ≥ �

]

= E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� � ≥ �

]
P�� > t�b	 � � ≥ ��� (3.24)

We now compute each of the two terms in (3.24). For the first term in (3.24), we
have the following lemma.

Lemma 3.3. For a fixed b, as a → �, � → 0, with a → � before � → 0,

E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� � ≥ �

]
= E���̂�

P��� ≤ �̂+ t�Z�̂� b	�
�1+ o�1	��

Proof. Note that

lim
a→�E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� � ≥ �

]
= E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� a = �
]
�

To compute the right-hand side of the above equation, note that conditioned
on �� > t�b	�,

∑�−1
k=t�b	 Sk is approximately the number of observations used when

the process Zk starts at Z0 = b, goes through multiple cycles below b, with each
cycle length having distribution of �̂, and the sequence of cycles is interrupted by
occurrence of change. See the Appendix for the detailed proof. �

For the second term in (3.24), we show that P�� > t�b	 � � ≥ �	 is equal to 1
1+eb

in the limit and is independent of z0.

Lemma 3.4. As a → �� � → 0, with a → � before � → 0,

P�� > t�b	 � � ≥ �	 = 1
1+ eb

+ o�1	�
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Data-Efficient Quick Change Detection 57

Proof. The proof is provided in the Appendix. �

Lemmas 3.3 and 3.4 taken together complete the proof of Theorem 3.5. �

Define

ANO1 = E

[
�∑

k=�

Sk

∣∣∣∣ � ≥ �

]
�

Thus, ANO1 is the average number of observations used after the change point � .
In some applications it might be of interest to have an estimate of ANO1 as well.
The following theorem shows that ANO1 is approximately equal to the delay itself.

Theorem 3.6. For fixed b and �, we have

ANO1 = E1��b��1+ o�1	�� as a → ��

Proof. The number of observations used after � can be written as the difference
between the time for Zk to reach a and the time spend by it below b. For this we
define the variable

Tb

�= E

[
�∑

k=�

1�Zk<b�

∣∣∣∣ � ≥ �

]
�

Thus,

ANO1 = E ��− � � � ≥ ��− Tb + 1�

We know from Theorem 3.4 that E
[
�− � � � ≥ �

] ≈ E1��b�. As a → �, Tb converges,
and therefore ANO1 ≈ E1��b� for large a as well. The detailed proof is given in the
Appendix. �

4. APPROXIMATIONS AND NUMERICAL RESULTS

In Sections 3.2–3.4, we have obtained asymptotic expressions for ADD, PFA, and
ANO as a function of the system parameters: the thresholds a, b; the densities f0
and f1; and the prior �. We now provide approximations for some of the analytical
expressions obtained in these sections and also provide numerical results to validate
the analysis. The observations are assumed to be Gaussian with f0 ∼ � �0� 1	,
and f1 ∼ � ��� 1	, � > 0, for the simulations and analysis. In the simulations, the
PFA values are computed using the expression E�1− p��. This guarantees a faster
convergence for small values of PFA.

4.1. Numerical Results for PFA

By Theorem 3.2, we have the following approximation for PFA:

PFA ≈ e−a
∫ �

0
e−xdR�x	�
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58 Banerjee and Veeravalli

Table 2. PFA: for f0 ∼ � �0� 1	, f1 ∼ � ��� 1	

� � a b PFA simulations PFA analysis

0.4 0�01 3.0 0 3�78× 10−2 3�94× 10−2

0.4 0�01 6.0 2�0 1�955× 10−3 1�96× 10−3

0.75 0�01 9.0 −2�0 7�968× 10−5 7�964× 10−5

2.0 0�01 5.0 −4�0 2�15× 10−3 2�155× 10−3

0.75 0�005 7.6 3�0 3�231× 10−4 3�235× 10−4

0.75 0�1 4.0 −3�0 1�143× 10−2 1�157× 10−2

We note that
∫ �
0 e−xdR�x	 and r̄ can be computed numerically, at least for Gaussian

observations (Siegmund, 1985). In this section we provide numerical results to show
the accuracy of the above expression for PFA.

In Table 2 we compare the analytical approximation with the PFA obtained
using simulations of ��a� b	 for various choices of �, thresholds a� b, and post-
change mean �. From the table we see that the analytical approximation is quite
good.

In Table 3 we show that PFA is not a function of b for large values of a. We
fix a = 4�6 and increase b from −2�2 to 0.85. We notice that PFA is unchanged in
simulations when b is changed in this way. This is also captured by the analysis and
it is quite accurate.

4.2. Approximations and Numerical Results for ANO and ANO1

We recall the expressions for ANO from Theorem 3.5 and for ANO1 from
Theorem 3.6:

ANO ≈ E���̂�

P��� ≤ �̂+ t�Z�̂� b	�

1
1+ eb

ANO1 = E1��b��

We first simplify the expression for ANO. Note that

P��� ≤ �̂+ t�Z�̂� b	� = 1− P��� > �̂+ t�Z�̂� b	�

= 1− E���1− �	�̂+t�Z
�̂
�b	��

Table 3. PFA for � = 0�01, f0 ∼ � �0� 1	, f1 ∼ � �0�75� 1	

a b Simulations Analysis

4.6 −2�2 6�44× 10−3 6�48× 10−3

4.6 −1�5 6�44× 10−3 6�48× 10−3

4.6 −0�85 6�44× 10−3 6�48× 10−3

4.6 0 6�44× 10−3 6�48× 10−3

4.6 0�85 6�44× 10−3 6�48× 10−3
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Data-Efficient Quick Change Detection 59

Thus, using binomial approximation we get

P��� ≤ �̂+ t�Z�̂� b	� ≈ �
{
E���̂�+ E��t�Z�̂� b	�

}
�

Thus, we have

ANO ≈ �−1E���̂�

E���̂�+ E��t�Z�̂� b	�

1
1+ eb

� (4.1)

We now provide approximation to compute E���̂� and E��t�Z�̂� b	� in (4.1).
Invoking Wald’s lemma (Siegmund, 1985), we write E���̂� as

E���̂� =
E��Z�̂�− E����̂�

−D�f1� f0	+ � log�1− �	� �

We have developed the following approximation for E���̂�:

E���̂� ≈
r̄ + log�1+ �e−b	

D�f1� f0	− � log�1− �	� � (4.2)

Here, log�1+ �e−b	 is an approximation to E����̂� by ignoring all the random terms
after b is factored out of it. This extra b will cancel with the b in E��Z�̂� = b +
E��Z�̂ − b�. We approximate E��b − Z�̂� by r̄, the mean overshoot of the random
walk

∑k
i=1 Yk, with mean D�f1� f0	− � log�1− �	�, when it crosses a large boundary

(see (3.3)).
For the term E��t�Z�̂� b	�, we have the following lemma.

Lemma 4.1. For fixed values of x and y, we have

t�x� y	 =
[
log�1+ ey	− log�1+ ex	

� log�1− �	�
]
�1+ o�1		 as � → 0� (4.3)

Proof. The proof is provided in the Appendix. �

We use (4.3) to get the following approximation:

E��t�Z�̂� b	� ≈
∫ �

0

log�1+ eb	− log�1+ eb−x	

� log�1− �	� dR�x	� (4.4)

Thus, we approximate the distribution of �b − Z�̂	 by R�x	.
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60 Banerjee and Veeravalli

Based on the second-order approximation for E1��0� developed in Tartakovsky
and Veeravalli (2005), we have obtained the following approximation for E1��b�:

E1��b� =
a− E���b	�+ r̄

D�f1� f0	+ � log�1− �	� + o�1	 as a → �� (4.5)

where ��b	 is the a.s. limit of the slowly changing sequence �n with Z0 = b under f1
(see (3.4)) and

r̄ =
∫ �

0
x dR�x	� (4.6)

with R�x	 as in Theorem 3.1.
In Table 4 we demonstrate the accuracy of approximations for ANO and ANO1

for various values of �, thresholds a� b, and post-change mean �. The table shows
that the approximations are quite accurate for the parameters chosen.

4.3. Approximations and Numerical Results for ADD

Theorem 3.4 gave a first-order approximation for E��− � �� ≥ ��:

E��− � � � ≥ �� ≈
[

a

D�f1� f0	+ � log�1− �	�
]
�

Note that, from Tartakovsky and Veeravalli (2005), this is also the first-order
approximation for the ADD of the Shiryaev algorithm and gives a good estimate of
the delay when PFA is small. For the Shiryaev delay, a second-order approximation
was developed in Tartakovsky and Veeravalli (2005) (also see (4.5)):

E1��0� =
{

a− E���−�	�+ r̄

D�f1� f0	+ � log�1− �	�
}
+ o�1	 as a → ��

So, instead of using a
D�f1�f0	+� log�1−�	� , we propose to use the following:

E��− � � � ≥ �� ≈
{

a− E���−�	�+ r̄

D�f1� f0	+ � log�1− �	�
}
� (4.7)

For the Shiryaev algorithm, (4.7) provides a very good estimate of the delay
even for moderate values of PFA. In case of ��a� b	, the accuracy of (4.7) depends

Table 4. f0 ∼ � �0� 1	, f1 ∼ � ��� 1	

ANO ANO1

� � a b Simulations Analysis Simulations Analysis

0.4 0�01 8�5 −2�2 66�3 62.88 102�9 111�7
0.75 0�01 6�467 −2�2 34�92 34.24 27�86 29�46
2.0 0�01 7�5 −4�0 42�94 46.4 6�08 6�23
0.75 0�005 8�7 −3�0 77�18 75.09 38�73 40�38
0.75 0�1 8�5 0�0 2�64 3.2 21�17 22�18

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

6:
42

 2
4 

Fe
br

ua
ry

 2
01

2 



Data-Efficient Quick Change Detection 61

Table 5. f0 ∼ � �0� 1	, f1 ∼ � ��� 1	

ADD PFA

Simulations Analysis

� � a b E��− � � � ≥ �� (4.7) Simulations Analysis ANO%

0.4 0�01 8�5 −2�2 104�9 111�7 1�608× 10−4 1.608×10−4 66
0.75 0�01 6�467 −2�2 32�3 29�5 1�002× 10−3 1.004×10−3 35
2.0 0�01 7�5 −4�0 6�1 6�23 1�77× 10−4 1.768×10−4 43
0.75 0�005 8�7 −3�0 42�6 40�4 1�076× 10−4 1.076×10−4 77
0.75 0�1 8�5 0�0 23�9 22�18 1�286× 10−4 1.285×10−4 26

on the choice of b and hence on the constraint �, as having b > −� increases
the delay. Before we demonstrate this through numerical and simulation results we
introduce the following concept:

ANO% = ANO expressed as a percentage of E���� (4.8)

For example, if � = 0�05, and for some choice of system parameters ANO = 15,
then ANO% = 15 ∗ 0�05 = 75%. Thus, the concept of ANO% captures the reduction
in the average number of observations used before change by employing ��a� b	.

In Table 5 we provide various numerical examples where (4.7) is a good
approximation for E��− � � � ≥ ��. Since (4.7) is a good approximation for the
Shiryaev delay as well, it follows that, for these parameter values, the delay of
��a� b	 is approximately equal to the Shiryaev delay. It might be intuitive that if
we are aiming for large ANO% values of, say, 90%, then the delay will be close
to the Shiryaev delay. But values in Table 5 shows that it is possible to achieve
considerably smaller values of ANO% without significantly affecting the delay.

However, if the ANO% value is small, then this means that the value of b is
large and, further, that the delay is large. In this case, it might happen that (4.7)
is a good approximation only for values of PFA which are very small. This is
demonstrated in Table 6. It is clear from the table that, for the parameter values
considered, estimating the delay with less than 10% error is only possible at PFA
values of the order of PFA ≈ 10−22.

This motivates the need for a more accurate estimate of the delay. This is
provided below.

From Theorem 3.3, recall that we had the following three events:

� = �Z� < b��

Table 6. � = 0�05, f0 ∼ � �0� 1	, f1 ∼ � �0�75� 1	

a b Simulations E��− � �� ≥ �� Analysis (4.7) ANO% PFA

5.0 1.0 30 13 7.5 4�3× 10−3

9.0 1.0 42 25 7.5 7�9× 10−5

13.0 1.0 54 37 7.5 1�4× 10−6

18.0 1.0 69 52 7.5 9�7× 10−9

50.0 1.0 165 149 7.5 1�23× 10−22
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62 Banerjee and Veeravalli

� = �Z� ≥ b� Zk ↗ b��

� = �Z� ≥ b� Zk ↗ a��

As a first step toward the approximations, we ignore the event �: P��	 ≈ 0. That
is, we assume that if Z� > b, then Zk climbs to a. Define

Pb = P�Z� ≥ b � � ≥ �	�

Then (3.15),

E��− � � � ≥ �� ≈ PbE���Z�	 ��� � ≥ ��+ �1− Pb	�E�t�Z�� b	 ��� � ≥ ��+ADDs��

(4.9)

From Lemma 3.2, it is easy to show the following:

ADDs = E1�� � �Z� > a��+ �E1�� � �Z� < b��+ E1�t�Z�� b	 � �Z� < b��	

× P1�Z� < b	

1− P1�Z� < b	
�

We now use the following approximations:

E1�� � �Z� > a�� ≈ E���Z�	 ��� � ≥ �� ≈ a− E���−�	�+ r̄

D�f1� f0	+ � log�1− �	� �

E1�� � �Z� < b�� ≈ r̄ + log�1+ �e−b	

D�f1� f0	− � log�1− �	� �

E1�t�Z�� b	 � �Z� < b�� ≈ t�b − r̄� b	 ≈ log�1+ eb	− log�1+ eb−r̄ 	

� log�1− �	� �

To compute (4.9), we also need approximations for P1�Z� < b	, Pb, and
E�t�Z�� b	 ���. Those are provided below. Setting a = � we have, by Wald’s
likelihood identity, Siegmund (1985, Proposition 2.24, p. 13),

P1�Z� < b	 = E�

[
f1�X1	� � � � f1�X�	

f0�X1	� � � � f0�X�	

]
�

Under P�, � a.s. ends in b, and with high probability it takes very small values.
Hence, this expression can be computed using Monte Carlo simulations. Further,

Pb = P�� > t�−�� b	�P�Z� > b � � > t�−�� b	� � ≥ ��

≈ 1
1+ eb

E���̂�

E���̂�+ E��t�Z�̂� b	�
�

We already have the approximations for E���̂� and E��t�Z�̂� b	� from Section 4.2.
The approximation for E�t�Z�� b	 ��� can be obtained as follows (all expectations
conditioned on �� ≥ ��):

�1− Pb	E�t�Z�� b	 ���
= �1− Pb	E�t�Z�� b	 � �Z� < b��

= E�t�Z�� b	 � �Z� < b� ∩ �� > t�−�� b	��P��� > t�−�� b	� ∩ �Z� < b�	

+ E�t�Z�� b	 � �Z� < b� ∩ �� ≤ t�−�� b	��P��� ≤ t�−�� b	� ∩ �Z� < b�	�
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Data-Efficient Quick Change Detection 63

This can be computed using

P��� > t�−�� b	� ∩ �Z� < b�	 ≈ 1
1+ eb

E��t�Z�̂� b	�

E���̂�+ E��t�Z�̂� b	�
�

and

P��� ≤ t�−�� b	� ∩ �Z� < b�	 = P��� ≤ t�−�� b	�	 ≈ eb

1+ eb
�

To compute conditional expectation of t�Z�� b	, we need to subtract from t�x� b	 the
mean of � conditioned on �� ≤ t�x� b	�. Specifically,

E�t�Z�� b	 � �Z� < b� ∩ �� > t�−�� b	��

= t�b − r̄� b	− 1
P�� ≤ t�b − r̄� b		

t�b−r̄�b	∑
k=1

k�1− �	k−1�

and

E�t�Z�� b	 � �Z� < b� ∩ �� ≤ t�−�� b	��

= t�−�� b	− 1
P�� ≤ t�−�� b		

t�−��b	∑
k=1

k�1− �	k−1��

Thus, we have obtained approximations for all the terms for the new approximation
for E��− � � � ≥ �� in (4.9).

In Table 7, we now reproduce Table 6 with a new column containing delay
estimates computed using the new ADD (for E��− � � � ≥ ��) approximation (4.9).
The values shows that all estimates are nearly within 10% of the actual value.

In Table 8, we show the accuracy of the new ADD approximation (4.9), for
various values of the system parameters, by comparing it with simulations and also
with (4.7). We also set PFA around 1× 10−3. The table clearly demonstrates that
the new ADD approximation predicts the ADD with less than 10% error.

Table 7. � = 0�05, f0 ∼ � �0� 1	, f1 ∼ � �0�75� 1	

Simulations Analysis New analysis

a b E��− � �� ≥ �� (4.7) ADD from (4.9) ANO% PFA

5.0 1.0 30 13 34 7.5 4�3× 10−3

9.0 1.0 42 25 46 7.5 7�9× 10−5

13.0 1.0 54 37 58 7.5 1�4× 10−6

18.0 1.0 69 52 73 7.5 9�7× 10−9

50.0 1.0 165 149 169 7.5 1�23× 10−22
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64 Banerjee and Veeravalli

Table 8. f0 ∼ � �0� 1	, f1 ∼ � �0�75� 1	, PFA ≈ 10−3, ANO=10% of Shiryaev’s ANO

ADD

� a b Simulations Analysis new (4.9) Analysis (4.7) ANO%

0.01 6�4 2�7 250 260 14.42 0.33
0.005 6�45 0�6 181 190 22.09 1.5
0.001 6�47 −2�7 75 80 33.68 7.6
0.0005 6�47 −3�49 74 79 36.49 8.4
0.0001 6�47 −5�2 76 80 42.56 9.6

5. ASYMPTOTIC OPTIMALITY AND PERFORMANCE OF ��a� b�

5.1. Asymptotic Optimality of ��a� b�

In Theorem 3.4 we saw that for a fixed b and �,

E��− � �� ≥ �� =
[

a

D�f1� f0	+ � log�1− �	�
]
�1+ o�1	� as a → ��

We recall that from Tartakovsky and Veeravalli (2005), this is also the asymptotic
delay of the Shiryaev algorithm.

Moreover, from Theorem 3.2, the PFA for ��a� b	 is

PFA =
(
e−a

∫ �

0
e−xdR�x	

)
�1+ o�1	� as a → ��

Again from Tartakovsky and Veeravalli (2005), this is the PFA for the Shiryaev
algorithm. We thus have the following asymptotic optimality result for ��a� b	.

Theorem 5.1. With � = ��� S1� � � � � S�� define

��� �	 = �� � PFA��	 ≤ �ANO��	 ≤ ���

then for a fixed � and �,

ADD���a�� �	� b�� �	�� =
[

inf
�∈����	

ADD��	

]
�1+ o�1	� as  → 0� (5.1)

Here, for each � �, b�� �	 is the smallest b such that ANO���a�� �	� b�� �	�� ≤ � as
a → �.

Proof. Fix b such that ANO���a� b	� ≤ � as a → �. It may happen that the
constraint � is not met with equality. Then we choose the smallest b that satisfies the
constraint � as a → �. This choice of threshold b is unique for a given � because
ANO is not a function of threshold a as a → �.

As a → �, the PFA and ADD both approach the Shiryaev PFA (3.8) and
Shiryaev delay (3.22), respectively. Thus, as a → �, ��a� b	 is optimal over the class
of all control policies ��� �	 that satisfy the constraints  and �. �
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Data-Efficient Quick Change Detection 65

5.2. Trade-off Curves: Performance of ��a� b� for a Fixed and Moderate �

Theorem 5.1 shows that for small values of PFA, ��a� b	 is approximately optimal;
that is, it is not possible to outperform ��a� b	 by a significant margin. But for
moderate values of PFA, it is not clear whether there exist algorithms that can
significantly outperform ��a� b	. Our aim is to partially address this issue in this
section.

In Figure 4 we plot the ANO-ADD trade-off for the two-threshold algorithm.
Specifically, we compare the two-threshold algorithm with the classical Shiryaev
algorithm and study how much ANO can be reduced without significantly losing in
terms of ADD. For Figure 4 we pick four values of �� 0�05� 0�01� 0�005� 0�001. For a
fixed �, we fix b = −� and select threshold a such that the PFA���a� b	� = 10−4. We
then increase the threshold b to have ANO% values of 75, 50, 30, and 15. We note
that it was possible to reduce the ANO to 15% of E��� by increasing the threshold
b this way, without affecting the probability of false alarm. Figure 4 shows that
we can reduce ANO by up to 25% while obtaining approximately the same ADD
performance as that of the Shiryaev algorithm. Moreover, if we allow for a 10%
increase in ADD compared to that of the Shiryaev algorithm, then we can reduce
ANO by up to 70% (see plot for ANO% = 30%).

Such a behavior was also observed in Table 5, where we saw that the delay for
��a� b	 is approximately equal to the Shiryaev delay for moderate to large ANO%
values. Thus, for moderate PFA values, when the ANO% is moderate to large,
��a� b	 is approximately optimal.

5.3. Comparison with Fractional Sampling

In this section we compare the performance of ��a� b	 with the naïve approach
of fractional sampling, in which an ANO% of �% is achieved by employing the
Shiryaev algorithm and using a sample with probability �

100 . Also, in fractional

Figure 4. Trade-off curves comparing performance of two-threshold algorithm with the
Shiryaev algorithm for ANO% of 75, 50, 30, and 15. f0 ∼ � �0� 1	, f1 ∼ � �1� 1	, and PFA =
10−4 (color figure available online).
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66 Banerjee and Veeravalli

Figure 5. Trade-off curves comparing performance of the two-threshold algorithm with the
fractional sampling scheme for ANO% of 50. f0 ∼ � �0� 1	, f1 ∼ � �0�75� 1	, and PFA = 10−3

(color figure available online).

sampling, when a sample is skipped, the posterior probability pk is updated using
(2.3). Figure 5 compares the two schemes for ANO% of 50. We also plot the
performance of the Shiryaev algorithm for the same values of PFA and �. The figure
shows that ��a� b	 helps in reducing the observation cost by a significant margin
compared to the fractional sampling scheme.

From our approximations, we know that for large a

ADD���a� b	� ≈ a

D�f1� f0	+ � log�1− �	� �

When the K-L distance D�f1� f0	 dominates the sum D�f1� f0	+ � log�1− �	�, then
we would expect that any scheme that ignores the past observations for observation
control will perform poorly compared to the one that relies on the state of the
system to decide whether or not to take a sample in the next time slot. This is
verified by the figure: as � → 0, we see a significant difference in performances
of ��a� b	 and the fractional sampling scheme. The figure also shows that as �
becomes large, and begins to dominate the sum D�f1� f0	+ � log�1− �	�, the ADD
performance of the fractional sampling scheme approach that of the two-threshold
algorithm ��a� b	.

6. CONCLUSIONS

We posed a data-efficient version of the classical Bayesian quickest change detection
problem, where we control the number of observations taken before the change
occurs. We obtained a two-threshold Bayesian algorithm that is asymptotically
optimal, has good trade-off curves, and is easy to design. We derived analytical
approximations for the ADD, PFA, and ANO performance of the two-threshold
algorithm using which we can design the algorithm by choosing the thresholds. In
particular, we showed that, when the constraint on the PFA is moderate to small
and that on the ANO is not very small, the two thresholds can be set independent
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Data-Efficient Quick Change Detection 67

of each other. We also provided extensive numerical and simulation results that
validate our analysis. Our results indicate that our two-threshold algorithm can
significantly save on the number of observations taken before the change while
maintaining the delay relatively unchanged. A comparison with the naïve approach
of fractional sampling shows that the two-threshold algorithm is indeed very
efficient in using observations to detect the change. Our two-threshold algorithm has
many engineering applications in settings where an abrupt change has to be detected
in a process under observation but there is a cost associated with acquiring the data
needed to make accurate decisions.

An important problem for future research is to see whether two-threshold
policies are optimal in non-Bayesian (e.g., minimax) settings, where we do not
have a prior on � . In particular, it is of interest to understand how to update the
algorithm metric in a non-Bayesian setting when we skip an observation. From
an application point of view, one can design a two-threshold algorithm based
on the Shiryaev-Roberts or CUSUM approaches (Tartakovsky and Moustakides,
2010) and use the undershoot of the metric when it goes below the threshold
b to design the off times. Furthermore, if we are able to find useful lower
bounds on delay for given false alarm and ANO constraints, we may be able
to use these to prove asymptotic optimality of such heuristic algorithms, as is
done for the standard quickest change detection problem (Lai, 1998, Tartakovsky
and Veeravalli, 2005). Also, such lower bounds can possibly help in obtaining
insights for cases where the observations are not i.i.d. (Lai, 1998, Tartakovsky and
Veeravalli, 2005). Other interesting problems in this area include the design of data-
efficient optimal algorithms for robust change detection and nonparametric change
detection.

APPENDIX TO SECTION 3.1

Proof of Theorem 3.1. We first show that �n with b = −�, and Z0 a random
variable, is a slowly changing sequence. Let Z0 takes value z0, then

�n = log

[
ez0 +

n−1∑
k=0

��1− �	k
k∏

i=1

f0�Xi	

f1�Xi	

]
P1−a�s�→
n→� log

[
ez0 +

�∑
k=0

��1− �	k
k∏

i=1

f0�Xi	

f1�Xi	

]
�

Define

��Z0	
�= log

[
eZ0 +

�∑
k=0

��1− �	k
k∏

i=1

f0�Xi	

f1�Xi	

]
�

Note that ��Z0	 as a function of Z0 is well defined and finite under P1. This is
because by Jensen’s inequality, for Z0 = z0,

E���z0	� ≤ log

[
ez0 +

�∑
k=0

��1− �	kE1

(
k∏

i=1

f0�Xi	

f1�Xi	

)]

= log

[
ez0 +

�∑
k=0

��1− �	k

]
= log �ez0 + 1	 �
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68 Banerjee and Veeravalli

Thus

�n
P1−a�s�−→
b=−�

��Z0	 = log
(
eZ0 + �

)+ �∑
k=1

log
(
1+ e−Zk�

)
� (A.1)

This implies that
∑�

k=1 log
(
1+ e−Zk�

)
converges a.s. for i.i.d. �Xk� and b = −�. This

series will also converge with probability 1 if we condition on a set with positive
probability.

Let change happen at � = l. We set Z0 = Z� = Zl and assume that �Xk�, k ≥ 1,
have density f1, which would happen after � . We first show that starting with the
above Z0, the sequence �n generated in (3.4) is slowly changing.

To verify the first condition (3.5), from (3.4) note that

n−1 max���1�� � � � � ��n��

≤ n−1

[
� log (eZ0 + �

) � + n−1∑
k=1

log
(
1+ e−Zk�

)+ n∑
k=1

�� logL�Xk	�	 ��Zk<b�

]
�

Since Zk → � a.s., log
(
1+ e−Zk�

)→ 0, also, ��Zk<b� → 0 a.s. Thus, both the
sequences �log

(
1+ e−Zk�

)
� and �

(� logL�Xk	�
)
��Zk<b�� are Cesaro summable and

have Cesaro sum of zero. Thus, the term inside the square bracket above, when
divided by n, goes to zero a.s. and hence also in probability. Thus the first condition
is verified.

To verify the second condition (3.6), we first obtain a bound on ��n+k − �n�.

��n+k − �n� ≤
n+k−1∑
i=n

log
(
1+ e−Zi�

)+ n+k∑
i=n+1

�� logL�Xi	�	 ��Zk<b��

Thus,

max
1≤k≤n�

��n+k − �n� ≤
n+n�−1∑

i=n

log
(
1+ e−Zi�

)+ n+n�∑
i=n+1

�� logL�Xi	�	 ��Zk<b�

�= d1
n + d2

n�

Here, for convenience of computation, we use d1
n and d2

n to represent the first and
second partial sums, respectively. Now,

P
{
max
1≤k≤n�

��n+k − �n� > �
}
≤ P�d1

n + d2
n > �	�

and we bound the probability P�d1
n + d2

n > �	 as follows.
On the event E

�= �Zk ≥ b�∀k ≥ 0�, d2
n is identically zero; thus, for n large

enough,

P�d1
n + d2

n > � �E	 = P�d1
n > � �E	 < ��

This is because d1
n behaves like a partial sum of a series of type in (A.1). Since

the series in (A.1) converges if random variables are generated i.i.d. f1, it will also
converge if conditioned on the event E. Thus, the partial sum d1

n converges to 0
almost surely, and hence converges to 0 in probability; that is, P�d1

n > � �E	 → 0.
Select n = n∗

1 such that ∀n > n∗
1, P�d

1
n > � �E	 < �.
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Data-Efficient Quick Change Detection 69

Define

LZ = sup�k ≥ 1 � Zk−1 < b�Zk ≥ b��

with LZ = � if no such k exists. On the event E′, which is the compliment of E, LZ

is a.s. finite. Then, by noting that d2
n = 0 for LZ < n, we get for n large enough,

P�d1
n + d2

n > � �E′	
�= PE′�d1

n + d2
n > �	

≤ PE′�d1
n + d2

n > �� LZ ≥ n	+ PE′�d1
n + d2

n > �� LZ < n	

≤ PE′�LZ ≥ n	+ PE′�d1
n + d2

n > �� LZ < n	

= PE′�LZ ≥ n	+ PE′�d1
n > �� LZ < n	

≤ PE′�LZ ≥ n	+ PE′�d1
n > � �LZ < n	

< �/2+ �/2 = ��

Since LZ is almost surely finite, PE′�LZ ≥ n	 → 0 as n → �. Thus, we can select n =
n∗
2 such that ∀n > n∗

2, PE′�LZ ≥ n	 < �/2. For the second term, note that conditioned
on LZ < n, d1

n behaves like a partial sum of a series of type in (A.1), with Z0 replaced
by ZLZ

. Since the series in (A.1) converges if random variables are generated i.i.d.
f1 beyond LZ, it will also converge if conditioned on the event �LZ < n�. Thus, the
partial sum d1

n converges to 0 almost surely and hence converges to 0 in probability;
that is, PE′�d1

n > � �LZ < n	 → 0. Select, n = n∗
3 such that ∀n > n∗

3, P�d
1
n > � �LZ <

n	 < �/2. Then n∗ = max�n∗
1� n

∗
2� n

∗
3�, is the desired n∗ and pick any � > 0. Then for

n > n∗,

P�d1
n + d2

n > �	 = P�d1
n + d2

n > � �E	P�E	+ P�d1
n + d2

n > � �E′	P�E′	

< �P�E	+ �P�E′	 < ��

Since the sequence �n is slowly changing, according to Siegmund (1985), the
asymptotic distribution of the overshoot when Zk crosses a large boundary under f1
is R�x	. Thus, we have the following result:

lim
a→�P� �Z� − a ≤ x � � ≥ l� = R�x	�

where P� is the probability measure with change happening at l. Now,

P �Z� − a ≤ x � � ≥ �� =
�∑
l=1

Pl �Z� − a ≤ x � � ≥ l�P�� = l � � ≥ �	�

and

lim
a→�Pl �Z� − a ≤ x � � ≥ l�P�� = l � � ≥ �	 = R�x	P�� = l	 ≤ 1�

Hence, we have the desired result by dominated convergence theorem. �
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70 Banerjee and Veeravalli

APPENDIX TO SECTION 3.2

Proof of Lemma 3.1. Since p� > A imply Z� > a, we have

1
1+ e−Z�

≥ 1
1+ e−a

�

The required result is obtained by obtaining upper and lower bounds on PFA as
follows:

PFA = E�1− p�� = E
[

1
1+ eZ�

]
≤ E

[
e−Z�

]
�

Also,

PFA = E�1− p�� = E
[

1
1+ eZ�

]
= E

[
1
eZ�

1
1+ e−Z�

]
≥ E

[
1
eZ�

1
1+ e−a

]
= E

[
e−Z�

]
�1+ o�1	� as a → ��

Thus,

PFA = E�e−Z� ��1+ o�1	� = e−aE�e−�Z�−a	��1+ o�1	� as a → ��

Now note that

E�e−�Z�−a	� = E�e−�Z�−a	 � � ≥ ���1− P�� < �	�+ E�e−�Z�−a	�� < ��P�� < �	�

Since P�� < �	 = E�1− p�� ≤ 1− A ≤ e−a, we can write

PFA = e−aE�e−�Z�−a	 � � ≥ ���1+ o�1	� as a → ��

This proves the lemma. �

APPENDIX TO SECTION 3.3

Proof of Theorem 3.3. Each time Zk crosses b from below, it satisfies

b < Zk ≤ b + log
1

1− �
+ log�1+ e−b�	�

Define b1
�= b + log 1

1−�
+ log�1+ e−b�	. Then b1 → b as � → 0. Also, each time Zk

crosses b from below, the average time for Zk to reach a can be decreased by setting
Zk = b1 and increased by setting Zk = b. Let N (N1) be one plus the number of times
Zk goes below b before it crosses a, when it is reset to b (b1), each time it crosses b
from below.
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Data-Efficient Quick Change Detection 71

Now recall the three disjoints events:

� = �Z� < b��

� = �Z� ≥ b� Zk ↗ b��

� = �Z� ≥ b� Zk ↗ a��

We can write

E��− � �� ≥ �� = E��− ��� � � ≥ ��+ E��− ��� � � ≥ ��

+ E��− ��� � � ≥ ��� (A.2)

Now consider each of the three terms on the right-hand side of the above equation.
Under the event �, the process Zk starts below b and reaches a after multiple

up-crossings of the threshold b. Then,

E��− ��� � � ≥ �� ≤ E�t�Z�� b	 ��� � ≥ ��P�� � � ≥ �	

+ E1

[
N∑
k=1

�k�b	

]
P�� � � ≥ �	� (A.3)

This upper bound was obtained by resetting Zk to b each time it crosses b from
below. Similarly, we can get a lower bound by setting Zk = b1 each time Zk crosses
b from below. Thus,

E��− ��� � � ≥ �� ≥ E�t�Z�� b	��� � ≥ ��P�� � � ≥ �	

+ E1

[
N1∑
k=1

�k�b1	

]
P�� � � ≥ �	�

Now by Wald’s lemma (Siegmund, 1985),

E1

[
N1∑
k=1

�k�b1	

]
= E1�N1�E1���b1	�

−→
�→0 E1�N�E1���b	� = E1

[
N∑
k=1

�k�b	

]
= ADDs�

Thus,

E��− ��� � � ≥ �� = �E�t�Z�� b	 ��� � ≥ ��P�� � � ≥ �	

+ADDsP�� � � ≥ �	��1+ o�1	� as � → 0�

Under event �, the process Zk starts above b and crosses b before a. It then has
multiple up-crossings of b, similar to the case of event �. Arguing in a similar
manner, we get

E��− ��� � � ≥ �� = �E���Z�	 ��� � ≥ ��P�� � � ≥ �	

+ADDsP�� � � ≥ �	��1+ o�1	� as � → 0�
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72 Banerjee and Veeravalli

Similarly, considering event �, we get

E��− ��� � � ≥ �� = �E���Z�	 ��� � ≥ ��P�� � � ≥ �	��1+ o�1	� as � → 0�

Substituting in (A.2) we get the desired result (3.15). �

Proof of Lemma 3.2. Based on � , we define two new recursions, one in which the
evolution of Zk is truncated at b,

�̃ �Zk	 =
{
��Zk	 if ��Zk	 ≥ b

b if ��Zk	 < b�

and another in which the overshoot is ignored each time the Shiryaev recursion
crosses b from below,

�̂ �Zk	 =
{
b if Zk < b and ��Zk	 ≥ b

��Zk	 otherwise�

Based on these two recursions we define two new stopping times:

�̃b = inf�k ≥ 1 � �̃ �Zk−1	 > a� Z0 = b��

�̂b = inf�k ≥ 1 � �̂ �Zk−1	 > a� Z0 = b��

These two stopping times stochastically upper and lower bound the Shiryaev
stopping time �b defined in (3.17); that is,

E1��̃b� ≤ E1��b� ≤ E1��̂b�� (A.4)

Recall from (3.16) that

��x� y	 = inf�k ≥ 1 � ��Zk−1	 > y� Z0 = x��

Using Wald’s lemma (Siegmund, 1985), we can get the following expressions:

E1��̃b� =
E1���

P1�Z� > a	
� E1��̂b� =

E1���+ E1���Z�� b	� �Z� < b��

P1�Z� > a	
� (A.5)

Multiplying and dividing ADDs by E1��� we get

ADDs = E1���+ E1�t�Z�� b	� �Z� < b��

E1���

E1���

P1�Z� > a	

= E1��̃b�
E1���+ E1�t�Z�� b	� �Z� < b��

E1���

= E1��̃b��1+ o�1	� as a → ��

The last equality follows because E1��� → � as a → �, while E1�t�Z�� b	� �Z� <
b�� is not a function of a. Similarly, multiplying and dividing ADDs by E1���+
E1���Z�� b	� �Z� < b�� we get

ADDs = E1��̂b��1+ o�1	� as a → ��
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Data-Efficient Quick Change Detection 73

Using these two expressions for ADDs and the relationship that E1��̃b� ≤ E1��b� ≤
E1��̂b�, we have

ADDs = E1��b��1+ o�1	� as a → �� �

Proof of Theorem 3.4. Consider the upper bound (A.3):

E��− ��� � � ≥ �� ≤ E�t�Z�� b	 ��� � ≥ ��P�� � � ≥ �	+ADDsP�� � � ≥ �	�

Similarly, the upper bounds corresponding to the other two events � and � are

E��− ��� � � ≥ �� ≤ E���Z�	 ��� � ≥ ��P�� � � ≥ �	+ADDsP�� � � ≥ �	

and

E��− ��� � � ≥ �� = E���Z�	 ��� � ≥ ��P�� � � ≥ �	

≤ E1���b	 �Z��b	 > a�P�� � � ≥ �	

≤ ADDsP�� � � ≥ �	�

Substituting in (A.2) we get

E��− � � � ≥ �� = E��− ��� � � ≥ ��+ E��− ��� � � ≥ ��+ E��− ����� ≥ ���

≤ ADDs + E�t�Z�� b	 ��� � ≥ ��+ E���Z�	 ��� � ≥ ��� (A.6)

In Eq. (A.6), we observe that except for ADDs, other terms are not a function
of threshold a. Thus, we have

E��− � � � ≥ �� ≤ ADDs�1+ o�1	� as a → �� �

APPENDIX TO SECTION 3.4

Proof of Lemma 3.3. Each time Zk crosses b from below, it satisfies:

b < Zk ≤ b + log
1

1− �
+ log�1+ e−b�	�

Define b1
�= b + log 1

1−�
+ log�1+ e−b�	. Then b1 → b as � → 0. Also, each time Zk

crosses b from below, the average number of observations used before � can be
increased by setting Zk = b1 and decreased by setting Zk = b. This is because of the
geometric nature of change. Let Zk = x when it crosses b from below, and suppose
we reset Zk to b1. Then, the number of observations used before change, on average,
would be the number of observations used before Zk reaches x from b1 plus the
number of observations used there onwards as if the process started at x. Similar
reasoning can be given to explain why the average number of observations used
decreases, if we reset Zk to b, each time it crosses b from below.

Define the following stopping time:

�̃x = inf�k ≥ 1 � Zk−1 < b and Zk ≥ b or k ≥ �� Z0 = x ≥ b� a = ���
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74 Banerjee and Veeravalli

Thus, �̃x is the time for Zk to start at Z0 = x with a = � and stop the first time
either Zk approaches b from below or when change happens. Also, let �x ∈ �0� 1	 be
such that �̃x�x is the number of observations used before Zk was stopped by �̃x; that
is, a fraction of �̃x when Zk ≥ b. If ��̃b

k� and ��̃
b1
k � are sequences with distribution

of �̃b and �̃b1 , respectively, and if Lx is the number of times Zk crosses b from below
and is set to x at each such instant, then

E��L
b�E���̃

b�b� = E�

[
Lb∑
k=1

�̃b
k�

b
k

]
≤ E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� a = �
]

≤ E�

[
Lb1∑
k=1

�̃
b1
k �

b1
k

]
= E��L

b1 �E���̃
b1�b1 ��

Here the equalities follow from Wald’s lemma (Siegmund, 1985).
In the above, Lx is Geom�P��� ≤ �̃x�	, and, hence, E��Lb1 � = 1

P���≤�̃b1 �
. Also

note that

P��� ≤ �̃b1 �

P��� ≤ �̃b�
→ 1 as � → 0�

Further, for x = b1 or x = b, define �̂�x	 based on (3.23) as

�̂�x	 = inf�k ≥ 1 � Zk < b� Z0 = x ≥ b� a = ���

It is clear that �̂�b	 = �̂. Thus, we have, for both x = b1 and x = b,

E���̃
x�x� = E���̃

x�x�� ≤ �̃x�x�P��� ≤ �̃x�x�+ E���̃
x�x�� > �̃x�x�P��� > �̃x�x�

→ E���̂�x	� as � → 0�

Here, the result follows because as � → 0, �̃x�x converges a.s. to a finite limit,
and P��� ≤ �̃x�x� → 0. Also, for the same reason, P��� > �̃x�x� → 1 as � → 0.
Moreover, since b1 → b as � → 0, we have as � → 0

E���̂�b1	� → E���̂�b	� = E���̂��

Thus,

E

[
�−1∑

k=t�b	

Sk

∣∣∣∣ � > t�b	� a = �
]
= E���̂�

P��� ≤ �̃b�
�1+ o�1	� as � → 0�

�

Proof of Lemma 3.4. Since P�� ≥ �� → 1 as a → �,

P�� > t�b	 � � ≥ �� = P�� > t�b	�+ o�1	 as a → �
= 1

1+ z0
�1− �	t�b	 + o�1	 as a → ��

From (4.3) in Lemma 4.1, with y = b and x = z0, we have

t�z0� b	 =
(
log�1+ eb	− log�1+ ez0	

� log�1− �	�
)
�1+ o�1	� as � → 0�
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Data-Efficient Quick Change Detection 75

From this, it is easy to show that

�1− �	t�b	 →
(
1+ ez0

1+ eb

)
as � → 0�

By substituting this in the expression for P�� > t�b	�� ≥ �	 we get the desired result.
�

Proof of Theorem 3.6. Using Theorem 3.4 we write ANO1 as

ANO1 = E ��− � � � ≥ ��

(
1− Tb − 1

E ��− � � � ≥ ��

)
= E1��b�

(
1− Tb − 1

E ��− � � � ≥ ��

)
�1+ o�1	� as a → ��

We now obtain an upper bound on Tb−1
E��−� � �≥��

, which goes to zero as a → �.
Recall that � and � are the events under which excursions below b are possible.

The passage to a is through multiple cycles below b, and the time spent below b in
each cycle can be bounded by t�−�� b	. Define N� and N� as one plus the number
of cycles below b, under events � and � respectively. Then

Tb − 1 ≤ Tb ≤ P1��	t�−�� b	E�N��+ P1��	t�−�� b	E�N���

The averages E�N�� and E�N�� can be written as a series of probabilities, where each
term corresponds to the event that Zk goes below b, and not above a, each time it
crosses b from below. Each of these probabilities can be maximized by setting Zk to
b, each time it crosses b from below. Hence, E�N�� ≤ E�N� and E�N�� ≤ E�N�. This
gives a bound on Tb − 1

Tb − 1 ≤ t�−�� b	E�N��

By using (A.4) we get as a → �,

Tb − 1
E ��− � � � ≥ ��

≤ t�−�� b	E�N�
E1��b�

�1+ o�1	� ≤ t�−�� b	E�N�
E1��̃b�

�1+ o�1	��

From (A.5) we know that E1��̃b� = E1���E�N�. Thus, the upper bound on Tb−1
E��−� � �≥��

goes to 0 as a → �. This proves the theorem. �

APPENDIX TO SECTION 4.2

Proof of Lemma 4.1. First note that by definition (3.13), Zt�x�y	 > y ≥ Zt�x�y	−1. Also,
from (3.2)

Zt�x�y	 = Zt�x�y	−1 + log
1

1− �
+ log�1+ e−Zt�x�y	−1�	

≤ y + log
1

1− �
+ log�1+ e−y�	�

Thus,

y < Zt�x�y	 ≤ y + log
1

1− �
+ log�1+ e−y�	�
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and equivalently,

ey < eZt�x�y	 ≤ ey
1

1− �
�1+ e−y�	�

Further, the recursion (3.2) can be written in terms of eZk for k ≥ 0:

eZk+1 = �+ eZk

1− �
�

Using this we can write an expression for eZt�x�y	 :

eZt�x�y	 = ex

�1− �	t
+

t�x�y	∑
k=1

�

�1− �	k
= ex + 1

�1− �	t�x�y	
− �1− �	�

Using the bounds for Zt�x�y	 obtained above, we get

ey <
ex + 1

�1− �	t�x�y	
− �1− �	 ≤ ey

1
1− �

�1+ e−y�	�

This gives us bounds for t�x� y	:

log�1+ ey − �	− log�1+ ex	

� log�1− �	� ≤ t�x� y	 ≤
log

(
1+ ey �1+e−y�	

�1−�	
− �

)
− log�1+ ex	

� log�1− �	� �

(A.7)

By keeping x� y fixed and taking � → 0 we get (4.3). �
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