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Abstract—The classical problem of quickest change detection is
studied with an additional constraint on the cost of observations
used in the detection process. The change point ismodeled as an un-
known constant, and minimax formulations are proposed for the
problem. The objective in these formulations is to find a stopping
time and an ON–OFF observation control policy for the observa-
tion sequence, to minimize a version of the worst possible average
delay, subject to constraints on the false alarm rate and the frac-
tion of time observations are taken before change. An algorithm
called DE-CuSum is proposed and is shown to be asymptotically
optimal for the proposed formulations, as the false alarm rate goes
to zero. Numerical results are used to show that the DE-CuSum al-
gorithm has good tradeoff curves and performs significantly better
than the approach of fractional sampling, in which the observa-
tions are skipped using the outcome of a sequence of coin tosses,
independent of the observation process. This study is guided by
the insights gained from an earlier study of a Bayesian version of
this problem.

Index Terms—Asymptotic optimality, CuSum, minimax, obser-
vation control, quickest change detection.

I. INTRODUCTION

I N the problem of quickest change detection, a decision
maker observes a sequence of random variables . At

some point of time , called the change point, the distribution
of the random variables changes. The goal of the decision
maker is to find a stopping time on the , so as to
minimize the average value of the delay . The
delay is zero on the event , but this event is treated as
a false alarm and is not desirable. Thus, the average delay has
to be minimized subject to a constraint on the false alarm rate.
This problem finds application in statistical quality control in
industrial processes, surveillance using sensor networks and
cognitive radio networks; see [1]–[3].
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In the independent and identically distributed (i.i.d.) model
of the quickest change detection problem, the random variables

for are i.i.d. with probability density function
(p.d.f.) , and for are i.i.d. with p.d.f. . In the
Bayesian version of the quickest change detection problem, the
change point is modeled as a random variable .
In [4] and [5], the i.i.d. model is studied in a Bayesian setting

by assuming the change point to be a geometrically distributed
random variable. The objective is to minimize the average de-
tection delay with a constraint on the probability of false alarm.
It is shown that under very general conditions on and ,
the optimal stopping time is the one that stops the first time the
a posteriori probability crosses a pre-
designed threshold. The threshold is chosen to meet the false
alarm constraint with equality. In the following, we refer to this
algorithm as the Shiryaev algorithm.
In [6]–[11], no prior knowledge about the distribution on the

change point is assumed, and the change point is modeled as an
unknown constant. In this non-Bayesian setting, the quickest
change detection problem is studied in two different minimax
settings introduced in [6] and [7]. The objective in [6]–[11] is to
minimize some version of the worst case average delay, subject
to a constraint on the mean time to false alarm. The results
from these papers show that, variants of the Shiryaev–Roberts
algorithm [12], the latter being derived from the Shiryaev
algorithm by setting the geometric parameter to zero, and the
CuSum algorithm [13], are asymptotically optimal for both the
minimax formulations, as the mean time to false alarm goes to
infinity.
In many applications of quickest change detection, changes

are infrequent and there is a cost associated with acquiring
observations (data). As a result, it is of interest to study the
classical quickest change detection problem with an additional
constraint on the cost of observations used before the change
point, with the cost of taking observations after the change
point being penalized through the metric on delay. In the fol-
lowing, we refer to this problem as data-efficient quickest
change detection. In [14], we studied data-efficient quickest
change detection in a Bayesian setting by adding another con-
straint to the Bayesian formulation of [4]. The objective was
to find a stopping time and an ON–OFF observation control
policy on the observation sequence, to minimize the average
detection delay subject to constraints on the probability of false
alarm and the average number of observations used before the
change point. Thus, unlike the classical quickest change de-
tection problem, where the decision maker only chooses one
of the two controls, to stop and declare change or to con-
tinue taking observations, in the data-efficient quickest change
detection problem we considered in [14], the decision maker
must also decide—when the decision is to continue—whether
to take or skip the next observation.
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For the i.i.d. model, and for geometrically distributed , we
showed in [14] that a two-threshold algorithm is asymptotically
optimal, as the probability of false alarm goes to zero. This
two-threshold algorithm, that we call the DE-Shiryaev algo-
rithm in the following, is a generalized version of the Shiryaev
algorithm from [4]. In the DE-Shiryaev algorithm, the a poste-
riori probability that the change has already happened condi-
tioned on available information, is computed at each time step,
and the change is declared the first time this probability crosses
a threshold . When the a posteriori probability is below this
threshold , observations are taken only when this probability
is above another threshold . When an observation is
skipped, the a posteriori probability is updated using the prior
on the change point random variable. We also showed that,
for reasonable values of the false alarm constraint and the ob-
servation cost constraint, these two thresholds can be selected
independent of each other: the upper threshold can be se-
lected directly from the false alarm constraint and the lower
threshold can be selected directly from the observation cost
constraint. Finally, we showed that the DE-Shiryaev algorithm
achieves a significant gain in performance over the approach
of fractional sampling, where the Shiryaev algorithm is used
and an observation is skipped based on the outcome of a coin
toss.
In this paper, we study the data-efficient quickest change de-

tection problem in a non-Bayesian setting, by introducing an
additional constraint on the cost of observations used in the de-
tection process, in the minimax settings of [6] and [7]. We first
use the insights from the Bayesian analysis in [14] to propose a
metric for data efficiency in the absence of knowledge of the dis-
tribution on the change point. This metric is the fraction of time
samples taken before change. We then propose extensions of
the minimax formulations in [6] and [7] by introducing an addi-
tional constraint on data efficiency in these formulations. Thus,
the objective is to find a stopping time and an ON–OFF obser-
vation control policy to minimize a version of the worst case
average delay, subject to constraints on the mean time to false
alarm and the fraction of time observations are taken before
change. Then, motivated by the structure of the DE-Shiryaev al-
gorithm, we propose an extension of the CuSum algorithm from
[13]. We call this extension the DE-CuSum algorithm.We show
that the DE-CuSum algorithm inherits the good properties of
the DE-Shiryaev algorithm. That is, the DE-CuSum algorithm is
asymptotically optimal, is easy to design, and provides substan-
tial performance improvements over the approach of fractional
sampling, where the CuSum algorithm is used and observations
are skipped based on the outcome of a sequence of coin tosses,
independent of the observations process.
The problem of detecting an anomaly in the behavior of an

industrial process, under cost considerations, is also considered
in the literature of statistical process control. There, it is studied
under the heading of sampling rate control or sampling size con-
trol; see [15] and [16] for a detailed survey, and the references
in [14] for some recent results. However, none of these refer-
ences study the data-efficient quickest change detection problem
under the classical quickest change detection setting, as done by
us in [14] and in this paper. For a result similar to our work in

TABLE I
GLOSSARY

[14] in a Bayesian setting, see [17]. See [18] and [19] for other
interesting formulations of quickest change detection with ob-
servation control.
Since our work in this paper on data-efficient non-Bayesian

quickest change detection is motivated by our work on data-ef-
ficient Bayesian quickest change detection in [14], in Section II,
we provide a detailed overview of the results from [14]. We
also comment on the insights provided by the Bayesian anal-
ysis, which we use in the development of a theory for the non-
Bayesian setting. In Sections III–V, we give details of the min-
imax formulations, a description of the DE-CuSum algorithm
and the analysis of the DE-CuSum algorithm, respectively. In
Section VI, we provide some numerical results .
Table I provides a glossary of the terms used in the paper.
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II. DATA-EFFICIENT BAYESIAN QUICKEST CHANGE DETECTION

In this section, we review the Bayesian version of the data-ef-
ficient quickest change detection we studied in [14]. We con-
sider the i.i.d. model, i.e., is a sequence of random vari-
ables, for are i.i.d. with p.d.f. , and for

are i.i.d. with p.d.f. . We further assume that is geo-
metrically distributed with parameter :

For data-efficient quickest change detection, we consider the
following class of control policies. At each time , a de-
cision is made as to whether to take or skip the observation at
time . Let be the indicator random variable such that

if is used for decision making, and other-
wise. Thus, is a function of the information available at
time , i.e.,

where is the control law at time , and

represents the information at time . Here, represents
if , otherwise is absent from the information vector
. Also, is an empty set.
For time , based on the information vector , a de-

cision is made whether to stop and declare change or to con-
tinue taking observations. Let be a stopping time on the in-
formation sequence , that is, is a measurable func-
tion of . Here, represents the indicator of the event .
Thus, a policy for data-efficient quickest change detection is

.
Define the average detection delay

the probability of false alarm

and the metric for data-efficiency in the Bayesian setting we
considered in [14], the average number of observations used
before the change point,

The objective in [14] is to solve the following optimization
problem:
Problem 1:

(1)

where, and are given constraints.
When , Problem 1 reduces to the classical

Bayesian quickest change detection problem considered by
Shiryaev in [4].

Fig. 1. Typical evolution of the Shiryaev and the DE-Shiryaev algorithms
applied to the same set of samples. Parameters used: ,

, and , with thresholds and .

A. DE-Shiryaev Algorithm

Define

Then, the two-threshold algorithm from [14] is as follows.
Algorithm 1 (DE-Shiryaev: ): Start with and

use the following control, with , for :

if
if

(2)

The probability is updated using the following recursions:

if
if

with and
.

With , the DE-Shiryaev algorithm reduces to the
Shiryaev algorithm from [4].
The motivation for this algorithm comes from the fact that

is a sufficient statistics for a Lagrangian relaxation of Problem
1. This relaxed problem can be studied using dynamic program-
ming, and numerical studies of the resulting Bellman equation
show that the DE-Shiryaev algorithm is optimal for a wide
choice of system parameters. For an analytical justification, see
Section II-B.
When Algorithm 1 is employed, the probability typically

evolves as depicted in Fig. 1. As observed in Fig. 1, the evolu-
tion starts with an initial value of . This is because we
have implicitly assumed that the probability that the change has
already happened even before we start taking observations is
zero. Also note that when , increases monotonically.
This is because when an observation is skipped, is updated
using the prior on the change point, and as a result, the proba-
bility that the change has already happened increases monotoni-
cally. The change is declared at time , the first time crosses
the threshold .

B. Asymptotic Optimality and Tradeoff Curves

We note that
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Fig. 2. Comparative performance of schemes for ,
, and .

Thus, with ,

It is shown in [14] that the and of the DE-Shiryaev
algorithm approach that of the Shiryaev algorithm as .
Specifically, the following theorem is proved.
Theorem 2.1 (see [14]): If

and is nonarithmetic (see [20]), then for a fixed , the
threshold can be selected such that for every ,

and with fixed to this value and ,

(3)
and

(4)

Here, is the asymptotic overshoot distribution of the
random walk , when it crosses
a large positive boundary under . Since (3) and (4) are also
the performance of the Shiryaev algorithm as [5], the
DE-Shiryaev algorithm is asymptotically optimal.
Equation (4) shows that is not a function of the threshold
. In [14], it is shown that as and as , is

a function of alone. Thus, for reasonable values of the con-
straints and , the constraints can be met independent of each
other.
Although (3) is true for each fixed value of , as becomes

smaller, a smaller value of is needed before the asymptotics
“kick in.”
Fig. 2 compares the performance of the Shiryaev algorithm,

the DE-Shiryaev algorithm and the fractional sampling scheme,
for . In the fractional sampling scheme, the Shiryaev al-
gorithm is used and samples are skipped by tossing a biased coin
(with probability of success 50/99), without looking at the state
of the system. When a sample is skipped in the fractional sam-
pling scheme, the Shiryaev statistic is updated using the prior
on change point. The figure clearly shows a substantial gap in
performance between the DE-Shiryaev algorithm and the frac-
tional sampling scheme.

More accurate estimates of the delay and that of are
available in [14].

C. Insights From the Bayesian Setting

We make the following observations on the evolution of the
statistic in Fig. 1.
1) Let

Then, after , the number of samples skipped when
goes below is a function of the undershoot of and the
geometric parameter . If is defined as

if
if

Then, can be shown to be equal to

Thus, is the average likelihood ratio of all the obser-
vations taken till time , and since there is a one-to-one
mapping between and , we see that the number of
samples skipped is a function of the likelihood ratio of the
observations taken.

2) When crosses from below, it does so with an over-
shoot that is bounded by . This is because

For small values of , this overshoot is essentially zero, and
the evolution of is roughly statistically independent of
its past evolution. Thus, beyond , the evolution of
can be seen as a sequence of two-sided statistically inde-
pendent tests, each two-sided test being a test for sequen-
tial hypothesis testing between “ ” and
“ ” If the decision in the two-sided test
is , then samples are skipped depending on the likeli-
hood ratio of the observations, and the two-sided test is
repeated on the samples beyond the skipped samples. The
change is declared the first time the decision in a two-sided
test is .

3) Because of the above interpretation of the evolution of the
DE-Shiryaev algorithm as a sequence of roughly indepen-
dent two-sided tests, we see that the constraint on the ob-
servation cost is met by delaying the measurement process
on the basis of the prior statistical knowledge of the change
point, and then beyond , controlling the fraction of
time is above , i.e., controlling the fraction of time
samples are taken.

These insights will be crucial to the development of a theory
for data-efficient quickest change detection in the non-Bayesian
setting.

III. DATA-EFFICIENT MINIMAX FORMULATION

In the absence of a prior knowledge on the distribution of
the change point, as is standard in the classical quickest change
detection literature, we model the change point as an unknown
constant . As a result, the quantities in
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Problem 1 are not well defined. Thus, we study the data-effi-
cient quickest change detection problem in minimax settings.
In this paper, we consider two most popular minimax formula-
tions: one is due to Pollak [7] and another is due to Lorden [6].
We will use the insights from the Bayesian setting of

Section II to study data-efficient minimax quickest change
detection. Our development will essentially follow the layout
of the Bayesian setting. Specifically, we first propose two min-
imax formulations for data-efficient quickest change detection.
Motivated by the structure of the DE-Shiryaev algorithm, we
then propose an algorithm for data-efficient quickest change de-
tection in the minimax settings. This algorithm is a generalized
version of the CuSum algorithm [13]. We call this algorithm the
DE-CuSum algorithm. We show that the DE-CuSum algorithm
is asymptotically optimal under both minimax settings. We also
show that in the DE-CuSum algorithm, the constraints on false
alarm and observation cost can be met independent of each
other. Finally, we show that we can achieve a substantial gain
in performance by using the DE-CuSum algorithm as compared
to the approach of fractional sampling.
We first propose a metric for data-efficiency in a

non-Bayesian setting. In Section II-C, we saw that in the
DE-Shiryaev algorithm, observation cost constraint is met
using an initial wait, and by controlling the fraction of time
observations are taken, after the initial wait. In the absence of
prior statistical knowledge on the change point, such an initial
wait cannot be justified. This motivates us to seek control
policies that can meet a constraint on the fraction of time
observations are taken before change. With , , , and
as defined earlier in Section II, we propose the following duty
cycle based observation cost metric, Prechange Duty Cycle
( ):

(5)

Clearly, .
We now discuss why we use rather than in

defining . In all reasonable policies , will typically
be set to 1. As mentioned earlier, this is because an initial wait
cannot be justified without a prior statistical knowledge of the
change point. As a result, in (5), we cannot replace the
by , because the latter would give us a value of 1.
Even otherwise, without any prior knowledge on the change
point, it is reasonable to assume that the value of is large
corresponding to a rare change, and hence, the metric
defined in (5) is a reasonable metric for our problem.
If in a policy all the observations are used for decision

making, then the for that policy is 1. If every alternate
observation is used, then the .
For false alarm, we consider the metric used in [6] and [7],

the mean time to false alarm or its reciprocal, the false alarm
rate:

(6)

For delay, we consider two possibilities: the minimax setting
of Pollak [7] where the delay metric is the following supremum
over time of the conditional delay1

(7)

or the minimax setting of Lorden [6], where the delay metric
is the supremum over time of the essential supremum of the
conditional delay2

(8)

Note that unlike the delay metric in [6], in
(8) is a function of the observation control through

, which
may not contain the entire set of observations.
Since, belongs to the sigma algebra generated by
, we have

Our first minimax formulation is the following data-efficient
extension of Pollak [7].
Problem 2:

(9)

where are given constraints.
We are also interested in the data-efficient extension of the

minimax formulation of Lorden [6].
Problem 3:

(10)

where, are given constraints.
With , Problem 2 reduces to the minimax formulation

of Pollak in [7], and Problem 3 reduces to the minimax formu-
lation of Lorden in [6].
In [13], the following algorithm called the CuSum algorithm

is proposed:
Algorithm 2 (CuSum: ): Start with , and update

the statistic as

where and . Stop at

It is shown by Lai in [10] that the CuSum algorithm is asymptot-
ically optimal for both Problems 2 and 3, with , as
(see Section V-B for a precise statement).

1We are only interested in those policies for which the is well
defined.
2The delay metric considered in [6] and [8] is actually

. However, these two met-
rics are equivalent as the goes to infinity.
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In the following, we propose the DE-CuSum algorithm, an
extension of the CuSum algorithm for the data-efficient setting,
and show that it is asymptotically optimal, for each fixed , as

; see Section V-E.

IV. DE-CUSUM ALGORITHM

We now present the DE-CuSum algorithm.
Algorithm 3 (DE-CuSum: ): Start with

and fix , and . For , use the following
control:

if
if

The statistic is updated using the following recursions:

if
if

where and .
When , the DE-CuSum algorithm works as follows.

The statistic starts at 0 and evolves according to the CuSum
algorithm till it goes below 0. When goes below 0, it does
so with an undershoot. Beyond this, is incremented deter-
ministically (by using the recursion ), and
observations are skipped till crosses 0 from below. As a
consequence, the number of observations that are skipped is de-
termined by the undershoot (log-likelihood ratio of the obser-
vations) as well as the parameter . When crosses 0 from
below, it is reset to 0 (this is the mathematical version of the
statement that beyond the skipped samples, the DE-CuSum sta-
tistics is computed using fresh samples). Once , the
process renews itself and continues to evolve this way until

, at which time a change is declared.
If , is truncated to when goes below 0 from

above. In other words, the undershoot is reset to if its mag-
nitude is larger than . A finite value of guarantees that the
number of consecutive samples skipped is bounded by .
The parameter can be selected based on practical considera-
tions. This feature will also be crucial to the analysis of
the DE-CuSum algorithm in Section V-D.
If , the DE-CuSum statistic never becomes negative

and hence reduces to the CuSum statistic and evolves as:
, and for ,

Thus, is a substitute for the Bayesian prior that is used
in the DE-Shiryaev algorithm described in Section II-A. But
unlike which represents a prior statistical knowledge of the
change point, is a design parameter. An appropriate value of
is selected to meet the constraint on ; see Section V-A

for details.
The evolution of the DE-CuSum algorithm is plotted in Fig. 3.

In analogy with the evolution of the DE-Shiryaev algorithm,
the DE-CuSum algorithm can also be seen as a sequence of in-
dependent two-sided tests. In each two-sided test, a sequential
probability ratio test (SPRT) [21], with log boundaries and

Fig. 3. Typical evolution of the CuSum and the DE-CuSum algorithms applied
to the same set of samples. Parameters used: , ,

, , and . With , the undershoots are truncated
at .

0, is used to distinguish between the two hypotheses “
” and “ ” If the decision in the

SPRT is in favor of , then samples are skipped based on the
likelihood ratio of all the observations taken in the SPRT. A
change is declared the first time the decision in the sequence of
SPRTs is in favor of . If , no samples are skipped and
the DE-CuSum reduces to the CuSum algorithm, i.e., to a se-
quence of SPRTs (also see [20]).
Unless it is required to have a bound on the maximum number

of samples skipped, the DE-CuSum algorithm can be controlled
by just two parameters: and . We will show in the following
that these two parameters can be selected independent of each
other directly from the constraints. That is, the threshold can
be selected so that independent of the value of .
Also, it is possible to select a value of such that
independent of the choice of .
Remark 1: With the way the DE-CuSum algorithm is defined,

we will see in the following that it may not be possible to meet
constraints that are close to 1, with equality. We ignore

this issue in the rest of the paper, as in many practical settings,
the preferred value of would be closer to 0 than 1. But, we
remark that the DE-CuSum algorithm can be easily modified to
achieve values that are close to 1 by resetting to zero
if the undershoot is smaller than a predesigned threshold.
Remark 2: One can also modify the Shiryaev–Roberts al-

gorithm [12] and obtain a two-threshold version of it, with an
upper threshold used for stopping and a lower threshold used
for ON–OFF observation control. Also note that the SPRTs of
the two-sided tests considered above have a lower threshold of
0. One can also propose variants of the DE-CuSum algorithm
with a negative lower threshold for the SPRTs.
Remark 3: For the CuSum algorithm, the supremum in (7)

and (8) is achieved when the change is applied at time
[see also (23)]. This is useful from the point of view of simu-
lating the test. However, in the data-efficient setting, since the
information vector also contains information about missed sam-
ples, the worst case change point in (7) would depend on the
observation control and may not be . But note that in
the DE-CuSum algorithm, the test statistic evolves as a Markov
process. As a result, the worst case usually occurs in the initial
slots, before the process hits stationarity. This is useful from the
point of view of simulating the algorithm. In the analysis of the
DE-CuSum algorithm provided in Section V, we will see that
the of the DE-CuSum algorithm is equal to its delay
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Fig. 4. Evolution of for , , and ,
with , , and . The two-sided tests with distribution of
are shown in the figure. Also shown are the two components of : and
.

when change occurs at , plus a constant. Similarly, even
if computing the may be a bit difficult using simulations,
we will provide simple numerically computable upper bound on
the of the DE-CuSum algorithm that can be used to ensure
that the constraint is satisfied. We also provide an approx-
imation using which the can be set approximately.

V. ANALYSIS AND DESIGN OF THE DE-CUSUM ALGORITHM

The identification/interpretation of the DE-CuSum algorithm
as a sequence of two-sided tests will now be used in this section
to perform its asymptotic analysis. In the rest of the paper, we
use and to denote and , respectively.
Recall that the DE-CuSum algorithm can be seen as a se-

quence of two sided tests; each two-sided test contains an SPRT
and a possible sojourn below zero, the length of the latter being
dependent on the likelihood ratio of the observations. To cap-
ture these quantities mathematically, we now define some new
variables.
Define the stopping time for an SPRT

(11)

To capture the sojourn time below 0, define for

(12)

Note that . We also define the stopping time for the
two-sided test

(13)

Let and be the variables and , respectively, when
the threshold .
The variables , , and should be interpreted as fol-

lows. The DE-CuSum algorithm can be seen as a sequence of
two-sided tests, with the stopping time of each two-sided test
distributed accordingly to the law of . Each of the above two-
sided tests consists of an SPRT with stopping time distributed
accordingly to the law of , and a sojourn of length
corresponding to the time for which the statistic is below 0,
provided that at the stopping time for the SPRT, the accumulated
log likelihood is negative, i.e., the event happens.
See Fig. 4. In the figure, are random variables dis-

tributed accordingly to the law of , and are random
variables distributed accordingly to the law of .
The CuSum algorithm can also be seen as a sequence of

SPRTs, with the stopping time of each SPRT distributed ac-
cording to the law of (see [20]).
We now provide some results on the mean of and

that will be used in the analysis of the DE-CuSum algorithm in
Sections V-A, V-C, and V-D.
If , then from [22, Corollary 2.4],

(14)

and by Wald’s lemma

(15)

Also for

(16)

where the finiteness follows from (15).
In the following lemma, we show that the quantity

is finite for every and provide a fi-
nite upper bound to it that is not a function of the threshold .
This result will be used in the analysis in Section V-A.
Lemma 1: If , then for any ,

is well defined and finite:

Proof: The proof of the first inequality is provided in the
Appendix. The second inequality is true by (14) and because

.
In the following lemma, we provide upper and lower bounds

on that are not a function of the
threshold . The upper bound will be useful in the anal-
ysis in Section V-C, and the lower bound will be useful in the

analysis in Section V-A. Define

(17)

and

(18)

Lemma 2: If and , then

(19)

Moreover, , and if , then .
Proof: The proof is provided in the Appendix.

In the next lemma, we show that the mean of
is finite under and obtain a

finite upper bound to it that is not a function of . This result
will be used for the and analysis in Section V-D.
Let

(20)
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Lemma 3: If and , then

Proof: The proof is provided in the Appendix.

A. Meeting the Constraint

In this section, we show that the metric is well defined
for the DE-CuSum algorithm. In general, will de-
pend on both and (apart from the obvious dependence on
and ). But, we show that it is possible to choose a value of
that ensures that the constraint of can be met indepen-

dent of the choice of . The latter is be crucial to the asymptotic
optimality proof of the DE-CuSum algorithm provided later in
Section V-E.
Theorem 5.1: For fixed values of , , and , if

, then

(21)

Proof: Consider an alternating renewal process ,
i.e., a renewal process with renewal times

, with i.i.d. with distribution of condi-
tioned on , and i.i.d. with distribution of

conditioned on . Thus,

and

Both the means are finite by Lemmas 1 and 2.
At time assign a reward of if the renewal cycle

in progress has the law of , set otherwise. Then, by
renewal reward theorem,

On , the total number of observations taken till time
has the same distribution as the total reward for the al-

ternating renewal process defined above. Hence, the expected
value of the average reward for both the sequences must have
the same limit:

(22)

If , then and we get the
of the CuSum algorithm that is equal to 1.

As can be seen from (21), is a function of as well
as that of and . We now show that for any and ,
the DE-CuSum algorithm can be designed to meet any
constraint of . Moreover, for a given , a value of

can always be selected such that the constraint of is
met independent of the choice of . The latter is convenient
not only from a practical point of view, but will also help in
the asymptotic optimality proof of the DE-CuSum algorithm in
Section V-E.
Theorem 5.2: For the DE-CuSum algorithm, for any choice

of and , if , then we can always
choose a value of to meet any given constraint of .
Moreover, for any fixed value of , there exists a value of
say such that for every ,

In fact any that satisfies

can be used as .
Proof: Note that is not affected by the

choice of and . Moreover, from Lemma 2

Thus, from (17), for a given and ,

Therefore, we can always select a small enough so that the
is smaller than the given constraint of .

Next, our aim is to find a such that for every

Since, increases as increases and
decreases, we have from Lemmas 1

and 2,

Then, the theorem is proved if we select such that the right-
hand side of the above equation is less than or using (17), a
that satisfies

While the existence of proved by Theorem 5.2 above is
critical for asymptotic optimality of the DE-CuSum algorithm,
the estimate it provides when substituted for in (21) may be
a bit conservative. In Section V-F, we provide a good approx-
imation to that can be used to choose the value of in
practice. In Section VI, we provide numerical results showing
the accuracy of the approximation.
Remark 4: By Theorem 5.2, for any value of , we can select

a value of small enough, so that any constraint close
to zero can be met with equality. However, meeting the
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constraint with equality may not be possible if is close to 1.
This is because if , then

However, as mentioned earlier, for most practical applications,
will be close to zero than 1, and hence, this issuewill not be en-

countered. If close to 1 is indeed desired, then the DE-CuSum
algorithm can be easily modified to address this issue (by skip-
ping samples only when the undershoot is larger than a pre-
designed threshold).

B. Analysis of the CuSum Algorithm

In the sections to follow, we will express the performance of
the DE-CuSum algorithm in terms of the performance of the
CuSum algorithm. Therefore, in this section, we summarize the
performance of the CuSum algorithm.
It is easy to show (see [3]) that

(23)

From [6], if , then . More-
over, if are i.i.d. random variables each with dis-
tribution of , then by Wald’s lemma [20]

(24)

where is the number of two-sided tests (SPRTs)—each with
distribution of —executed before the change is declared.
It is also shown in [6] that is also suffi-

cient to guarantee and . Moreover,

(25)

The proof of the following theorem can be found in [6] and
[10].
Theorem 5.3: If , then with ,

and as ,

Thus, the CuSum algorithm is asymptotically optimal for
both Problems 3 and 2 because for any stopping time with

,

(26)

as .

C. for the DE-CuSum Algorithm

In this section, we characterize the false alarm rate of the
DE-CuSum algorithm. The following lemma shows that for a

fixed , , and , if the DE-CuSum algorithm and the CuSum
algorithm are applied to the same sequence of random vari-
ables, then sample-pathwise, the DE-CuSum statistic is al-
ways below the CuSum statistic . Thus, the DE-CuSum al-
gorithm crosses the threshold only after the CuSum algorithm
has crossed it.
Lemma 4: Under any and under ,

Thus

Proof: This follows directly from the definition of the
DE-CuSum algorithm. If a sequence of samples causes the
statistic of the DE-CuSum algorithm to go above , then since
all the samples are utilized in the CuSum algorithm, the same
sequence must also cause the CuSum statistic to go above .
It follows as a corollary of Lemma 4 that

The following theorem shows that these quantities are finite and
also provides an estimate for .
Theorem 5.4: For any fixed (including ) and ,

if

then with ,

Moreover, for any

(27)

and as ,

(28)

where is the variable with . The limit in (28) is
strictly less than 1 if .

Proof: For a fixed , let be the number of two-sided
tests of distribution executed before the change is declared in
the DE-CuSum algorithm. Then, if is a sequence
of random variables each with distribution of , then

Because of the renewal nature of the DE-CuSum algorithm,

where is the number of SPRTs used in the CuSum algorithm.
Thus, from (25),
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Further, from (13),

(29)

From (25) again

Moreover, from Lemma 2

Thus, and

It follows as a corollary of Lemma 4 and Theorem 5.3 that for
,

Since is , (27) follows from (29)
and (25):

(30)

Further, since , we have

Since and , we have by monotone convergence
theorem, as ,

The limit is clearly less than 1 if .
Remark 5: Thus, unlike the Bayesian setting where the

of the DE-Shiryaev algorithm converges to the of the
Shiryaev algorithm, here the of the DE-CuSum algorithm
is strictly less than the of the CuSum algorithm. More-
over, for large , the right-hand side of (28) is approximately
the achieved. Thus, (28) shows that, asymptotically as

, the ratio of the s is approximately equal to the
. This also shows that one can set the threshold in the

DE-CuSum algorithm to a value smaller than to meet
the constraint with equality. This latter fact will be used in
obtaining the numerical results in Section VI.

D. and of the DE-CuSum Algorithm

We now provide expressions for and of the
DE-CuSum algorithm The main content of Theorems 5.5 and

5.6 is that for each value of , the and of the
DE-CuSum algorithm is within a constant of the corresponding
performance of the CuSum algorithm. This constant is indepen-
dent of the choice of , and as a result, the delay performances
of the two algorithms is asymptotically the same. The results
depend on the following fundamental lemma. The lemma says
that when the change happens at , then the average delay
of the DE-CuSum algorithm starting with is upper
bounded by the average delay of the algorithm when ,
plus a constant.
Let

Here, is the DE-CuSum statistic and evolves according the
description of the algorithm in Section IV. Thus, is the
first time for the DE-CuSum algorithm to cross , when starting
at . Clearly, if .
Lemma 5: Let and . Then,

where is an upper bound to the variable [see (20)].
Moreover, if , then

Proof: The proof is provided in the Appendix.
We first provide the result for the s of the two

algorithms.
Theorem 5.5: Let

Then, for fixed values of and , and for each ,

where is a constant not a function of . Thus, as ,

Proof: If the change happens at , then

Let the change happen at time . Then, on ,
by Lemma 5, the average delay is bounded
from above by , and on , the average
delay is bounded from above by plus the maximum
possible average time spent by the DE-CuSum statistic below
0 under , which is . Thus, from Lemma 2, for ,

Thus, for all
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Since the right-hand side of the above equation is not a function
of , we have

Following Theorem 5.4 and its proof, it is easy to see that

From Lemma 3 and the fact that
, we have

Also from (23), we have . Thus,

This proves the theorem.
Note that the above theorem is valid even if is not finite.

In contrast, it is possible that if ;
e.g., when and are Gaussian densities. As a result, we
need a bound on the number of consecutive samples skipped
for finiteness of worst case delay according to the criterion of
Lorden.
We now express the of the DE-CuSum algorithm in

terms of the of the CuSum algorithm.
Theorem 5.6: Let

Then, for fixed values of and , and for each ,

where is a constant not a function of . Thus, as ,

Proof: From Lemma 5, it follows that for

Since the right-hand side is not a function of and it is greater
than , we have

Thus, from the proof of theorem above and (23)

and we have

This proves the theorem.
The following corollary follows easily from Theorems 5.3,

5.5, and 5.6.
Corollary 1: If and
, then for fixed values of and , including the case of

(no truncation), as ,

Moreover, if , then as ,

E. Asymptotic Optimality of the DE-CuSum Algorithm

We now use the results from the previous sections to show
that the DE-CuSum algorithm is asymptotically optimal.
The following theorem states that for a given constraint

of , the DE-CuSum algorithm is asymptotically optimal for
both Problems 2 and 3, as , for the following reasons:
1) the of the DE-CuSum algorithm can be designed to
meet the constraint independent of the choice of ,

2) the and of the DE-CuSum algorithm ap-
proaches the corresponding performances of the CuSum
algorithm,

3) the of the DE-CuSum algorithm is always better than
that of the CuSum algorithm, and

4) the CuSum algorithm is asymptotically optimal for both
Problems 2 and 3, with , as .

Theorem 5.7: Let and
. For a given , set ,

then for any choice of and ,

For a given , and for any given , it is possible to select
such that , and hence even with ,

Moreover, for each fixed , for any and with selected
to meet this constraint of , as (or because

),

Furthermore, if the chosen above is finite, then

Proof: The result on follows from Theorem 5.4. The
fact that one can select a to meet the constraint
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independent of the choice of follows from Theorem 5.2. Fi-
nally, the delay asymptotics follow from Theorems 5.5 and 5.6
and Corollary 1.
Since, by Theorem 5.3, is the best possible asymp-

totics performance for any given constraint of , the
above statement establishes the asymptotic optimality of the
DE-CuSum algorithm for both Problems 2 and 3.

F. Design of the DE-CuSum Algorithm

We now discuss how to set the parameters , , and so as
to meet a given constraint of and a constraint of .
Theorem 5.4 provides the guideline for choosing : for any
,

As discussed earlier, Theorem 5.2 provides a conservative
estimate of the . For practical purposes, we suggest using
the following approximation for (obtained in the limit as

):

(31)

For large values of , (31) will indeed provide a good estimate
of the . We note that can be computed numeri-

cally; see [22, Corollary 2.4]. The quantity can be
computed using Monte Carlo simulations.
If , then using (15) we can further simplify (31) to

(32)

Thus, to ensure , the approximation above suggests
selecting such that

In Section VI, we provide numerical results that shows that the
approximation (32) indeed provides a good estimate of the
when .

VI. TRADEOFF CURVES

The asymptotic optimality of the DE-CuSum algorithm for
all does not guarantee good performance for moderate values
of FAR. In Fig. 5, we plot the tradeoff curves for the CuSum
algorithm and the DE-CuSum algorithm, obtained using simu-
lations. We plot the performance of the DE-CuSum algorithm
for two different PDC constraints: and .
For simplicity, we restrict ourself to the performance for

in this section. Similar performance comparisons can
be obtained for both and with .
Each of the curves for the DE-CuSum algorithm in Fig. 5 is

obtained in the following way. Five different threshold values
for were arbitrarily selected. For each threshold value, a large
value of was chosen, and the DE-CuSum algorithm was sim-
ulated and the fraction of time the observations is taken be-
fore change was computed. Specifically, was increased in the
multiples of 100 and an estimate of the was obtained by

Fig. 5. Tradeoff curves for the DE-CuSum algorithm for ,
with and .

Monte Carlo simulations. The value of was so chosen that the
value obtained in simulations was slightly below the con-

straint or 0.25. For this value of and for the chosen
threshold, the was computed by selecting the change time
to be (generating random numbers from ).
The was then computed for the above choice of and
by varying the value of from and recording the max-
imum of the conditional delay. The maximum was achieved in
the first five slots.
As can be seen from the figure, a PDC of 0.5 (using only

50% of the samples in the long run) can be achieved using the
DE-CuSum algorithm with a small penalty on the delay. If we
wish to achieve a PDC of 0.25, then we have to incur a signif-
icant penalty (of approximately six slots in Fig. 5). But, note
that the difference of delay with the CuSum algorithm remains
fixed as . This is due to the result reported in Theorem
5.5 and this is precisely the reason the DE-CuSum algorithm is
asymptotic optimal. The tradeoff between and is a
function of the K-L divergence between the p.d.f.’s and :
the larger the K-L divergence the more is the fraction of samples
that can dropped for a given loss in delay performance.
In Fig. 6, we compare the performance of the DE-CuSum al-

gorithmwith the fraction sampling scheme, in which, to achieve
a PDC of , the CuSum algorithm is employed, and a sample
is chosen with probability for decision making. Note that this
scheme skips samples without exploiting any knowledge about
the state of the system. As seen in Fig. 6, the DE-CuSum algo-
rithm performs considerably better than the fractional sampling
scheme. Thus, the tradeoff curves show that the DE-CuSum al-
gorithm has good performance even for moderate FAR, when
the PDC constraint is moderate.
We now provide numerical results that show that (32) pro-

vides a good estimate for the . We use the following pa-
rameters: , and set .
In Table II(a), we fix the value of and vary and compare
the obtained using simulations and the one obtained using
(32), that is using the approximation . We
see that the approximation becomes more accurate as in-
creases. We also note that the obtained using simulations
does not converge to , even as becomes large, be-
cause of the effect of the presence of a ceiling function in the

expression; see (12) and (21).
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TABLE II
COMPARISON OF OBTAINED USING SIMULATIONS WITH THE APPROXIMATION (32)

FOR , AND . (A) FIXED . (B) FIXED

Fig. 6. Comparative performance of the DE-CuSum algorithm with the
CuSum algorithm and the fractional-sampling scheme: , with

and .

In Table II(b), we next fix a large value of , specifically
, for which the approximation is most accurate

in Table II(a), and check the accuracy of the approximation
by varying . We see in the table that the approxi-

mation is more accurate for small values of . This is due to the
fact that the effect of the ceiling function in the (12), (21)
is negligible when is small.

VII. CONCLUSIONS AND FUTURE WORK

We proposed two minimax formulations for data-efficient
non-Bayesian quickest change detection, which are extensions
of the standard minimax formulations in [6] and [7] to the
data-efficient setting. We proposed an algorithm called the
DE-CuSum algorithm, that is a modified version of the CuSum
algorithm from [13], and showed that it is asymptotically
optimal for both the minimax formulations we proposed, as the
false alarm rate goes to zero.
We discussed that, like the CuSum algorithm, the DE-CuSum

algorithm can also be seen as a sequence of SPRTs, with the
difference that each SPRT is now followed by a “sleep” time,
the duration of which is a function of the accumulated log
likelihood of the observations taken in the SPRT preceding it.
This similarity was exploited to analyze the performance of

the DE-CuSum algorithm using standard renewal theory tools,
and also to show its asymptotic optimality. We also showed
in our numerical results that the DE-CuSum algorithm has
good tradeoff curves and provides substantial benefits over the
approach of fractional sampling. The techniques developed
in this paper and the insights obtained can be used to study
data-efficient quickest change detection in sensor networks.
See [23]–[25] for some preliminary results.

APPENDIX

Proof of Lemma 1: If , then
. Thus, . Also,

Thus, is well defined and

This proves the lemma.
Proof of Lemma 2: Again note that

Thus, is well defined.

Since , we have

We will use this simple inequality to obtain the upper and lower
bounds.
We first obtain the upper bound. Clearly,
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An upper bound for the right-hand side of the above equation is
easily obtained. First note that from (16)

and

This completes the proof for the upper bound.
For the lower bound, we have

In the above equation we have used the fact that the uncondi-
tional probability is smaller than the condi-
tional one .

Proof of Lemma 3: First note that

Thus, is well defined. Also using the
inequality on from Lemma 2, we have

(33)

We now get an upper bound on the right-hand side of the
above equation. By Wald’s likelihood ratio identity [20] and
(16),

(34)

Using again the technique used in the proof of Lemma 1, we
have

(35)

Thus, from (33)–(35)

This proves the lemma.
Proof of Lemma 5: Let

Here, is the CuSum statistic and evolves according to the
description of the algorithm in Algorithm 2. Thus, is the
first time for the CuSum algorithm to cross , when starting at

. Clearly, if . It is easy to see by
sample pathwise arguments that

The proof depends on the above inequality.
Let be the event that the CuSum statistic, starting with

, touches zero before crossing the upper threshold .
Let . Then,

Note that

We call this common constant . Also note that on , the
average time taken to reach 0 is the same for both the CuSum
and the DE-CuSum algorithm. We call this common average
conditional delay by . Thus,

The equality in the above equation is true because, once the
DE-CuSum statistic reaches zero, it is reset to zero and the av-
erage delay that point onwards is .
Then, for any , we have

This is because for

It is easy to see that
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This is because on , the average delay of the DE-CuSum al-
gorithm is the average time to reach 0, which is , plus the
average time spent below 0 due to the undershoot, which is
bounded from above by , plus the average delay after the so-
journ below 0, which is . The latter is due to the renewal
nature of the DE-CuSum algorithm. Since

, the first part of lemma is proved if we set
.

For the second part, note that .
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