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Decentralized Detection With Censoring Sensors
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Abstract—In the censoring approach to decentralized detection,
sensors transmit real-valued functions of their observations when
“informative” and save energy by not transmitting otherwise. We
address several practical issues in the design of censoring sensor
networks including the joint dependence of sensor decision rules,
randomization of decision strategies, and partially known distri-
butions. In canonical decentralized detection problems involving
quantization of sensor observations, joint optimization of the
sensor quantizers is necessary. We show that under a send/no-send
constraint on each sensor and when the fusion center has its
own observations, the sensor decision rules can be determined
independently. In terms of design, and particularly for adaptive
systems, the independence of sensor decision rules implies that
minimal communication is required. We address the uncertainty
in the distribution of the observations typically encountered in
practice by determining the optimal sensor decision rules and
fusion rule for three formulations: a robust formulation, gener-
alized likelihood ratio tests, and a locally optimum formulation.
Examples are provided to illustrate the independence of sensor
decision rules, and to evaluate the partially known formulations.

Index Terms—Distributed detection, least favorable distribution,
locally optimum testing, Neyman-Pearson (N-P) testing, robust hy-
pothesis testing.

I. INTRODUCTION

I N sensor networks used for detection, geographically sepa-
rated sensor nodes communicate in order to combine their

observations and decide between target and null hypotheses. De-
centralized detection problems consider a common fusion center
for the sensor nodes where only partial observations are available
for global decision-making due to power and bandwidth limita-
tions. For a particular application of a sensor network to a real-
world detection problem, an appropriate choice of communica-
tion constraints leads to the decentralized detection problem of
interest. Its solution describes what partial information should be
transmitted by each sensor node and how the fusion center com-
bines the information to make a global decision.

In many detection applications, the target event happens
infrequently and the null hypothesis is observed for the ma-
jority of time. For sensor networks operating on limited energy
resources, an energy-efficient transmission technique would
send only when the observations indicate that the target event is
likely. In such applications, a communication constraint on the
rate of transmission is relevant. Such a “censoring” constraint
was introduced by Rago et al. [1].
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Under the censoring scheme, sensors either send or do not send
some real-valued function of their observations to a fusion node.
The censoring scheme differs from the canonical decentralized
detection problem [2], where sensors quantize their observations
to one of levels and transmit. The censoring formulation accu-
rately addresses the energy consumption in a scenario where one
hypothesis is more likely, so frequent communication is not nec-
essary. In transmission schemes where packets of data are trans-
mittedata time, itmaybepossibletoaccuratelyrepresent thelocal
decisions to the precision of the computations with one packet.
Quantization may be less relevant in light of the overhead of syn-
chronizingthesensor transmitterandthefusioncenter receiver,as
well as bandwidth needed to send side information (e.g., time,
location) that may be necessary to synchronize the sensor data.

The main result of [1] for the censoring formulation is
that under a fixed rate of communication, it is optimal [in the
Neyman-Pearson (N-P) and Bayesian sense] for the sensors to
compute and censor their likelihood ratios in a single interval.
In general, the censoring intervals must be determined by joint
optimization over all the sensors. In practice, it may be costly or
infeasible to perform such a joint optimization. When the fusion
centerhas itsownobservations,and therateof transmissionunder
one of the hypotheses is constrained, we show that the censoring
intervals can be determined (independently) by the transmit-
rate constraint at each sensor. Eliminating the joint optimization
of censoring regions has important consequences for adaptive
systems and when the distribution of the observations is partially
known.

It was shown in [1] and clarified in [3] that the censoring re-
sults also apply to Ali-Silvey (A-S) distance metrics [4]. In [5],
we identified particular A-S problems where the joint optimiza-
tion simplifies. A-S distance metrics appear to be a convenient
way to simplify the joint optimization problem. In particular,
the Kullback-Liebler (K-L) divergence [6, p. 309] and Chernoff
distance [7] are relevant for detection with a large number of ob-
servations. In [8], asymptotic results for censoring sensor nodes
are derived by examining the Chernoff error exponent. Linear
programming arguments show that it is optimal for sensor nodes
to choose between one of two policies.

In most applications and particularly in decentralized detec-
tion applications, the conditional distributions of the observa-
tions are neither fixed, nor completely known. For adaptive sys-
tems, where the null and target statistics are updated over time,
independence of censoring intervals implies that sensors need
not communicate to update their censoring intervals as long as
they inform the fusion center. While we do not consider adaptive
systems in detail here, such approaches have significant promise
in outperforming tests based on fixed distributions.

As an alternative to adaptive tests, it may be possible in some
settings to define a class of candidate distributions under each
hypothesis from which the true distribution is drawn. For ex-
ample, a database of target statistics may be available, and the
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Fig. 1. Setup of: (a) canonical; and (b) censoring decentralized detection
problems.

null statistics may be described accurately with standard models
(up to a parameter). We consider three formulations of such par-
tially known distribution problems in decentralized detection: a
robust formulation, generalized likelihood-ratio tests (GLRTs),
and a locally optimum formulation. For the robust formulation
and GLRTs, we make use of the independence of the censoring
intervals to determine the optimal censoring strategy.

In Section II, we describe the censoring formulation of the
decentralized detection problem in the Bayesian setting, give
the main result from [1], and introduce randomization. In
Section II-B, we show how to eliminate the joint optimization
over the sensors. Then, in Section III, we introduce composite
formulations of the censoring problem. Finally, in Section IV,
we discuss N–P problems.

II. CENSORING SENSORS

In the target detection problem, the objective is to determine
the true state of nature as being (null or target-absent hy-
pothesis) or (target-present hypothesis), given sensor obser-
vations and their conditional distributions. In the decentralized
setting, partial information from observations about the state
of nature is available for decision making. Consider the parallel
topology of the decentralized detection problem in which sen-
sors labeled , transmit local information to a fusion
center for global decision making.

In the canonical decentralized detection problem [Fig. 1(a)],
each sensor maps its real-valued observations to one of
levels. The fusion center receives the quantizer outputs

from the sensors and performs a likelihood ratio
test to obtain the global decision.

In the censoring scenario [Fig. 1(b)], the sensors either send
some real-valued function of their observations when
in some informative region or send nothing when in the un-
informative region , subject to a constraint on the send rate.
We define the sensor decision rule as

(1)

where is the real value attributed to the censoring region.
The fusion rule is a binary-valued function of

. The censoring rules and fusion rule are collectively
known as the decision strategy .

Censoring is an effective communication strategy particu-
larly when one of the hypotheses (say ) is significantly more
likely. It is appropriate, then, to consider a constraint on trans-
mission under only.

(2)

where denotes the conditional probability under
is the send region, and is the communication rate per
observation for the sensors combined. When prior probabili-
ties are available, transmission under
weighted by can be considered [1].

The following conditional-independence assumption is crit-
ical to the development of sensor decision rules based on likeli-
hood ratios. When the observations are dependent, decentralized
detection problems are less tractable and complexity of design
is an issue [9], [10].

Assumption 2.1 (Conditional Independence): The sensor
observations are statistically independent, conditioned on each
hypothesis.

We describe our notation for the hypothesis-testing problem.
Let be the distribution function of under

and the corresponding probability
density function (pdf). We denote the joint distribution
function over the observations as

. We denote the miss probability
as , and the false-alarm probability as , where (by an
abuse of notation) ,
and , is the expectation operator under .
We consider the error probability set-
ting in detail. We use the convenient notation and

, to represent the probability
of send and no-send under .

We show how the assumption of conditional independence
leads to censored likelihood-ratio tests. For simplicity, consider
combinations of send/no-send for each sensor when there are

sensors. Extension of the result to a larger number of
sensors is straightforward. The error probability can be written
as

(3)

Breaking up the integral into send and no send regions for each
sensor node, we obtain for the four terms

(4)
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where the dependency of on the censoring operation is ex-
pressed explicitly. Examining the bracketed term in each of the
four integrals of (4), we see that a likelihood rule in the send
region and a fixed ratio of probabilities in the no-send region
minimizes the error probability.

Without loss of generality, we choose at every
sensor node to be the likelihood ratio defined as

. In Section II-B, the choice of as the
likelihood ratio leads to a simple description of .

We consolidate the description of the optimal decision
strategy by defining the censored likelihood ratio at the sensor
nodes as

(5)

where

(6)

Given send regions and the choice , the
optimal fusion rule for the Bayesian problem under
the communication constraint (2) is

(7)

It is optimal for sensor nodes to send the likelihood ratio be-
tween the distributions and in the send region and for
the fusion center to evaluate the likelihood of no-send region
(from knowledge of and ).

In the Bayesian problem, randomization of the test (7) for the
event (as in a N-P problem [11]) can be
eliminated by introducing the following assumption.

Assumption 2.2 (No Point Mass): For each sensor , the like-
lihood has no point mass under either hypothesis

(8)

The censoring regions or alternatively the censoring functions
may need randomization due to the communication-rate

constraint.

A. Randomization

In centralized detection problems with constraints, it is well
known that randomization over decision rules can improve per-
formance over deterministic rules (e.g., N-P Lemma [11, pp.
23-25]). Under a censoring constraint, randomization over the
choice of censoring regions can improve performance not only
in the N-P sense, but also in the Bayesian sense.

We define the set of deterministic, independently randomized
and dependently randomized decision strategies for the cen-
soring problem [10, p. 301]. Let be the set of all deterministic
sensor rules for sensor , where a particular deterministic sensor
rule is the fixed choice of censoring function and censoring re-
gion for all time. Let be the set of all deterministic fusion
rules. Then, we can describe the set of all decision strategies as

. Let be the set of independently
randomized decision strategies in the sense that each sensor has

a finite set of candidate sensor rules and chooses to
use rule for a fraction of the time , where are sta-
tistically independent across . Let be the set of dependently
randomized decision strategies in the same sense as for , ex-
cept that may be dependent across sensors. It is easy to see
that , so performance can not degrade when going
from the optimal deterministic to the optimal independently ran-
domized to the optimal dependently randomized strategy. For
the randomized decision strategies, the false-alarm, detection,
and transmit probabilities are determined by the expected value
over the candidate rules.

Over the set of randomized decision strategies, the maximum
number of deterministic sensor rules or decision strategies over
which to randomize can be determined by simple linear pro-
gramming arguments, as shown in [12]. (Results given in [13,
pp. 65-67] can also be applied.)

Theorem 2.1: Given a communication-rate constraint to be
satisfied,

a) Over the set , the decision strategy minimizing ran-
domizes between at most two deterministic sensor deci-
sion rules , at each sensor where is
given by (5).

b) Over the set , the decision strategy which minimizes
randomizes between at most two deterministic decision
strategies , where are as given in (7)
and (5).

The optimality of randomizing between two candidate strategies
in the censoring problem is analogous to [10, Proposition 3.7]
for the canonical decentralized detection problem.

B. Determining the Censoring Regions

Conveniently, the choice of censoring regions simplifies con-
siderably for the communication rate constraint (2). The first
part of the simplification, which applies to deterministic cen-
soring regions, is due to Rago et al., and requires the assump-
tion of no point mass.

Under Assumption 2.2, and given a communication-rate con-
straint to be satisfied, at each sensor, consolidation of no-send
intervals into a single no-send interval does not increase the
error probability, Ali-Silvey distance, or miss probability (sub-
ject to a false-alarm rate constraint) [1]. The no-send interval
can then be described as

(9)

The approach for consolidating no-send regions into a single
interval is as follows. Consider a no-send region consisting of
two intervals. Under Assumption 2.2, it is always possible to
choose a single interval which lies within the outer endpoints
of the original two intervals while preserving

. In [1], it is shown that the error probability does
not decrease, and the Ali-Silvey distance does not increase for
such a consolidation.

Determining the optimal deterministic decision strategy is a
-dimensional optimization problem over two thresh-

olds at each sensor and the fusion-center threshold. In [1], it was
found that the lower threshold of the censoring region at each
sensor goes to zero for sufficiently small communication rates
(and false-alarm rates in the N-P problem). Here, we derive a
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stronger result, the second part of the simplification, which does
not involve asymptotics.

In many applications, it is appropriate to consider a fusion
center that has its own observations. One can imagine the situa-
tion where sensor nodes are organized into clusters (geograph-
ically, perhaps) with a fusion node located within each cluster.
For robustness and to share the generally costly role of fusion
[14], the role of fusion may be rotated among identical sensor
nodes.

Definition 2.1 (Zero Lower Thresholds): Define the set of de-
terministic decision strategies as those strategies with
fusion rule (7) and sensor decision rules (5) where the censoring
regions have zero lower thresholds

(10)

Consider a communication-rate constraint on each sensor

(11)

where is the send rate for sensor . Then we have the
following result.

Lemma 2.1: Suppose the fusion node has its own observa-
tions. Under Assumption 2.2, and given the communication-rate
constraint (11) to be satisfied, for any decision strategy

, there exists a decision strategy with lower
error probability (i.e., ).

Proof Outline: A fusion node which has its own observa-
tions can be considered as an uncensored sensor node, so that
the censoring formulation requires no modification. Based on
(4), we concluded that the censoring rule and fusion rule which
minimize are given by (5) and (7), respectively. Rago’s re-
sult further simplifies the choice of censoring regions (9). Now,
consider the change in as the censoring regions of type (9)
are modified to censoring regions of type (10) for a particular
sensor .

The fusion threshold is fixed for any choice
of censoring regions, and the upper threshold of the censoring
region is completely determined by and (11), so we
compute . Due to Assumption 2.2 and the fusion
center taking observations, the is defined for all

. We find that is strictly positive for all ,
so is monotone increasing in . Therefore, it is optimal
to choose . The details of the proof are given in the
Appendix.

Lemma 2.1 is particularly useful in terms of design. A com-
munication-rate constraint on each sensor is easily motivated
from the point of view of energy consumption. In a distributed
sensor network, each sensor will have its own battery or solar-
cell and may be forced to maintain its own resources. Under the
constraint (11), it is clear that can be chosen directly from .
This implies that the joint optimization of censoring regions is
eliminated when a communication-rate constraint at each sensor
is considered. Each sensor can then adjust its threshold inde-
pendently based on its resource constraint without affecting the
other sensors, as long as the fusion center is informed of the
change.

For the communication-rate constraint across all sensor nodes
(2), Lemma 2.1 can be used to derive the result.

Theorem 2.2: Suppose the fusion node has its own observa-
tions. Under Assumption 2.2, and given the communication-rate
constraint (2) to be satisfied, for any decision strategy

, there exists a decision strategy with lower
error probability (i.e., ).

Proof: The optimal decision strategy under (2) chooses
some value for . Since Lemma 2.1
holds for any choice of , it holds for the choice

.
For the problem of minimizing over the set or , we can

restrict attention to randomization over decision strategies from
. Under the communication-rate constraint (2), independent

randomization between a transmit rate of and at each
sensor is optimal, and dependent randomization between the set
of transmit rates is optimal. Under
the communication-rate constraint (11), randomization over
sensor rules or decision strategies is optimal.

C. Gaussian Example

In this example, we compare decision strategies with cen-
soring intervals that have nonzero lower thresholds against those
that have lower thresholds equal to zero. Both the cases of the
fusion center taking observations and not taking observations
are considered.

Consider the problem of detecting a mean-shift in Gaussian
noise with two sensors

(12)

where is the mean shift and is the variance of the
noise. Since the likelihood ratio is monotone in the observation,
censoring the observations in a single interval is equivalent
to censoring the likelihood ratio.

Fig. 2 shows the error probability as a function of for
identical communication constraints ,
and . The observations at the fusion center have the same
distribution as at the other sensor nodes. We determined the min-
imum number of trials to estimate (or ) by requiring that
the estimate be within a factor of the true value with proba-
bility at . Treating as a binomial random vari-
able to be estimates, and using the Gaussian approximation,
which is valid for a large number of trials, we find that at least

trials are needed, where is
the complementary cdf of a random variable. Five-hun-
dred-thousand Monte Carlo trials were simulated to ensure that

(or ) is within 10% of its true value with 95% proba-
bility at (or ). For (or

), the accuracy of the estimate degrades.
When is large, the performance of the censoring scheme

is relatively close to the performance of centralized detection,
where complete observations are available. Censoring is an ef-
fective approach for reducing communication when is very
likely. From Fig. 2(a), we observe that censoring intervals with
lower threshold equal to zero are optimal when , a
meaningful regime of operation. When the fusion center has
its own observations, Fig. 2(b) shows that intervals with lower
threshold equal to zero are optimal over the entire range of .
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Fig. 2. Error probability as a function of the prior for the problem of mean shift
in identically distributed (i.i.d.) Gaussian noise without (a) and with (b) fusion
center observations. Without fusion center observations, nonzero lower thresh-
olds at each sensor node achieve minimum error probability. With fusion center
observations, using nonzero thresholds at each sensor node does not decrease
the error probability over zero thresholds.

III. COMPOSITE PROBLEMS

We consider three formulations of composite testing prob-
lems in decentralized detection. In the robust formulation, the
class of distributions under each hypothesis has an associated
stochastic ordering. In the locally optimum formulation and for
generalized likelihood-ratio tests, the conditional distributions
are parametrized by a single parameter which belongs to some
range of values. The locally optimum formulation is particularly
suited to constant-false alarm rate (CFAR) adaptive approaches,
where the parameter of the null distribution is estimated on-line.

A. Robust Formulation

Huber considered composite problems by defining a sto-
chastic ordering of the distributions within each class [15]. He
found that in a minimax sense, it is optimal to design for a

certain pair of least-favorable distributions (LFDs). We seek
to address the uncertainty in the distributions at each sensor
by following Huber’s approach. In the censoring problem, the
uncertainty in the distributions leads to the consideration of a
worst-case communication-rate constraint.

Consider the robust hypothesis-testing problem [15]

where and are disjoint classes of distributions under
and , respectively. The distribution of each observation may
come from a different family (i.e., ).
Under hypothesis the joint distribution of the

observations then comes from the class of distributions
.

In order to formulate the robust decentralized detection
problem for censoring sensors, the communication constraint
needs to be considered over the uncertainty classes.

where and
is the communica-

tion-rate for decision strategy with censoring regions and
censoring function .

1) Background: To provide background for the solution to
the robust problem RB1, we describe the results of [15] and [16].
Huber considered three different minimax detection criteria for
the centralized problem and showed in each case that designing
for LFDs is optimal for conditionally independent identically
distributed observations. In [16], it was shown that designing
for LFDs is optimal in the minimax sense for the canonical de-
centralized detection problem (Fig. 1) with conditionally inde-
pendent but not necessarily identically distributed observations.
We follow the approach in [16].

We begin by defining the property of joint stochastic bound-
edness (JSB), a fundamental property of certain uncertainty
classes that enables the robust problem to be simplified.

Definition 3.1 (JSB [16]): A pair of classes is
said to be jointly stochastically bounded by if there
exists such that for any

and all

where is the likelihood ratio between and .
In terms of a binary hypothesis-testing problem, the JSB

property implies that the miss probability under and the
false-alarm probability under are smaller than the corre-
sponding probabilities under and when the test is

.
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The following lemma describes JSB for the set of observa-
tions in terms of JSB for each observation . For a proof of
the lemma, refer to [16].

Lemma 3.1 ([16]): For each , let the pair
be jointly stochastically bounded by .

Then the pair is jointly stochastically bounded by
.

In order to apply Lemma 3.1 to the decentralized problem,
the JSB property needs to be extended to censored tests. To this
end, consider the censoring function at each sensor

(13)

Since is the average of under in the interval
, we can see that . So, is non-

decreasing in and the event
is equivalent to for an appropriate choice of

. Therefore, the JSB property applies to the censoring test
as well.

(14)

(15)

2) Censoring Sensors: As in [15] and [16], our goal is to
show that the robust problem RB1 has the same solution as the
simpler problem

where and are the least-favorable dis-
tributions in the sense of Defn. 3.1. Problem SB1 is just the
Bayesian censoring problem for testing versus described
in Section II.

By applying Theorem 2.2, it is possible to establish the equiv-
alence of problems RB1 and SB1.

Theorem 3.1: Suppose the fusion node has its own observa-
tions. Under Assumption 2.2, the robust Bayesian problem of
minimizing the worst-case error-probability subject to a worst-
case transmission constraint (i.e., problem RB1) can be solved
by designing for the least-favorable distributions in the sense of
Defn. 3.1 (i.e., problem SB1).

Proof: Let be the optimal decision strategy for SB1,
then it must be a decision strategy with a fusion test based on

. Applying (14) and (15), we obtain

(16)

On the other hand, using simple arguments about supremum
over the uncertainty class and infimum over the decision strate-
gies, we can see that

(17)

Fig. 3. Robust test for mixture distributions shows clipping at a small level a
and large level b .

where in the last inequality the JSB property (14) can be
applied to the communication-rate constraint

, since the censoring intervals have a lower
threshold equal to zero. From (16), we can argue

(18)

By taking the infimum of the right-hand side of (17) we see that
is sandwiched between the same term on the

right-hand side of (18). So, is the saddle-point solution to
RB1.

3) Example: -Contamination Class: We apply the results of
the robust Bayesian problem to the problem of testing between
two mixture classes, as considered in [15]. Consider the mixture
distribution at sensor under hypothesis

(19)

where is the nominal distribution, is the contaminating
distribution from an arbitrary class of distributions , and
is the contaminating factor.

It was found in [15] that the optimal robust test for the
centralized problem clips the likelihood ratio

produced by the nominal distribu-
tions at a small value due to uncertainty in and a large
value due to uncertainty in . The clipping levels are related
to the contamination levels according to

(20)

(21)

Fig. 3 shows the likelihood ratio of the LFD as a func-
tion of the likelihood ratio of the nominal distribution .

Recognizing that censoring tests and robust tests are both
clipping tests, we make the important observation that in some
cases, there is no loss in performance due to censoring. For the
censoring problem, the censored robust test clips small values of
the likelihood ratio based on the communication-rate constraint
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(i.e., ). When the communica-
tion-rate constraint is related to the contamination in so that

, the censored robust test is identical to the robust test.

B. Generalized Likelihood-Ratio Tests

The GLRT is a suboptimal technique often employed when
the value of the parameter which characterizes the distribution
of the observations is unknown. Given the composite hypoth-
esis-testing problem

where , is some (disjoint) partitioning of the param-
eter space, the generalized likelihood ratio is

(22)

which is compared to some threshold.
For decentralized detection problems, it may be reasonable

to perform a GLRT at each individual sensor and some asso-
ciated fusion test. However, it is unclear how to determine the
censoring regions in such a proposed scheme since the choice
of censoring regions and likelihood depends on the true value
of under . Furthermore, at the fusion center, a
reliable estimate of the censored likelihood is necessary for the
test to perform well.

For some distribution classes, it is possible to find censoring
regions at the sensor nodes which are uniformly optimal over the
distribution parameter. In this respect, consider the following
definition [17, p. 78].

Definition 3.2 (Monotone Likelihood Ratio): The real-param-
eter family of densities is said to have monotone likeli-
hood ratio if there exists a real-valued function such that
for any

a) the distributions and are distinct;
b) the ratio is a nondecreasing function of

.
The one-parameter exponential family [17, p. 80] and certain
location-parameter families [17, p. 509] are important examples
that have monotone likelihood ratios.

Given that the observation at each sensor node has a
monotone likelihood ratio, and by applying Lemma 2.1, the
censoring regions can be expressed as

. The choice of to meet the communication-rate
constraint depends on the parameter value
of the distribution. When is fixed, estimated on-line, or
has a worst-case value in terms of communication, can be
determined at each sensor. At the fusion center, the censored
likelihood ratio would be determined by periodic updates
from the sensor nodes. Analysis of the proposed GLRT proce-
dure is best done through simulation and experimentation.

C. Locally Optimum Formulation

In many detection applications, the distribution under the null
hypothesis may be known (or can be estimated on-line)
whereas the distribution under the target hypothesis is not

completely known. When the distribution under each hypoth-
esis is parameterized by a common parameter, a test which is
optimal when the parameter value under is in the neighbor-
hood of the parameter value under is known as a locally
optimum test [17, p. 527].

Consider the following hypothesis-testing problem, where
parameterizes the distribution under each hypothesis

In the locally optimum setting, the Taylor’s expansion of the
detection probability around is maximized subject to a false-
alarm constraint.

where is the vector of observations, is the decision rule,
and is the smallest integer for which is nonzero and
bounded.

For the censoring scenario, consider a Bayesian formulation
of the locally optimum problem where censored observations
are available at a fusion center and the following local risk is to
be minimized

(23)

We denote the probability distribution of the observations pa-
rametrized by as and the corresponding pdf as . We as-
sume that is sufficiently smooth [11, p. 38] so that the
order of integration and differentiation can be interchanged in
the computation of .

By using an approach identical to the Bayesian censoring
problem, it is possible to obtain the optimal fusion rule as

otherwise
(24)

where the sensor decision rules are given by

(25)

where is the local
likelihood ratio, and

is the local likelihood in the no-send region.
An appropriate constraint on the communication rate can then

be written as

(26)

Just as in the Bayesian censoring problem of Section II, our
goal is to limit the search for the optimal censoring regions as
much as possible. For centralized problems, the LO formulation
can be directly related to the N-P problem by considering [11,
p. 38]
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For the LO censoring problem, such an approach is not possible
since the result that a single censoring interval is optimal applies
under the assumption that there is a pdf under each hypothesis.

Fortunately, we do have the result that censoring in a single
interval of the local likelihood ratio is optimal

(27)

As in Section II-A, define the set of deterministic , indepen-
dently and dependently randomized decision strategies for
the locally optimum censoring problem. We then have the fol-
lowing result. See the Appendix for a proof.

Theorem 3.2: Under Assumption 2.2 and given a communi-
cation-rate constraint to be satisfied, then for any censoring
strategy in , there exists another in with lower local risk,
where in the latter the fusion rule is given by (24), and the sensor
rules are given by (25) and (27).

As in the Bayesian censoring problem of Section II, a second
simplification in the censoring regions is possible for the LO
censoring problem. Define the set of deterministic decision
strategies with fusion rule (24) and sensor decision
rules (25) having censoring regions with lower thresholds
at

(28)

Lemma 3.2: Suppose the fusion node has its own observa-
tions. Under Assumption 2.2 and given a communication-rate
constraint to be satisfied, then for any censoring strategy

, there exists a decision strategy with lower local
risk (i.e., ).

Proof: The proof is very similar to the proof of Lemma 2.1
and Theorem 2.2.

IV. N-P PROBLEMS

In this section, we consider N-P problems in decentralized
detection where the rate of global false-alarms is constrained.
Whereas in the Bayesian problems which have been addressed,
the communication-rate constraint can be interpreted as a
“local” false-alarm constraint, in N-P problems to be ad-
dressed, the global false-alarm rate is also constrained. Such a
constraint increases the role of randomization in the detection
problem.

The N-P censoring problem of minimizing the miss proba-
bility subject to false-alarm and communication-rate constraints
is

and (29)

Consider the simplest nontrivial scenario of sensor
nodes, and apply the N-P Lemma [11, pp. 23-25] for a given
choice of censoring regions to each of the four cases of
transmit/no transmit separately.

When both sensor nodes transmit, we simply apply the N-P
Lemma for the region to find that a
likelihood ratio test (with randomization when the likelihood

equals the threshold) is optimal. When both sensor nodes do not
transmit, the miss and false-alarm probabilities are

(30)

where is the fusion center rule to be determined. Since
and are independent of the sensor observations due to cen-
soring, a given false-alarm rate can only be achieved by random-
izing .

Similarly, when only one of the two sensor node transmits,
let’s consider the argument for optimality [11, p. 24] in detail
for the region and . Let be
defined as in (5), and define

(31)

where is some randomization parameter independent of
.

A fusion rule that satisfies the conditions of (29) would
have miss and false-alarm probability

(32)

since does not depend on . Based on the definition of the
fusion rule (31), we have

(33)

Integrating over , we find that , so is
the optimal fusion rule for the N-P censoring problem (29). In
general, for the N-P problem, randomization at the fusion center
may be necessary to achieve a desired false-alarm rate.

When the fusion center has its own observations, randomiza-
tion at the fusion center is unnecessary since the likelihood ratio
at the fusion center has no point mass under either hypothesis.
It is straightforward to extend the Bayesian results (Lemma 2.1
and Theorem 2.2) to the N-P problem.

Lemma 4.1: Suppose the fusion node takes observations.
Under Assumption 2.2, and given communication-rate (11)
and false-alarm rate constraints to be satisfied, for any decision
strategy , there exists a decision strategy with
lower miss probability (i.e., ).
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Proof: In [1], it was shown that consolidation of no-send
intervals does not decrease for a given false-alarm rate. Let

be a decision strategy employing sensor rules (5) with
censoring intervals (9) and fusion rule (31). Let be a
decision strategy with fusion rule (31).

We further restrict attention to and which
meet the false-alarm rate and communication-rate with equality
(such strategies exist). For a fixed decision strategy, is
linear in since and are fixed. Then, we must have

; otherwise , which
contradicts Lemma 2.2.

We end this subsection by describing several implications of
Lemma 4.1. As in the Bayesian problem, the N-P result for a
communication-rate constraint across sensor nodes (2) is

Theorem 4.1: Suppose the fusion node takes observations.
Under Assumption 2.2, and given communication-rate (2) and
false-alarm rate constraints to be satisfied, for any decision
strategy , there exists a decision strategy with
lower miss probability (i.e., ). A proof of
the theorem follows from arguments identical to the proof of
Theorem 2.2.

Under the communication-rate constraint 2, for the N-P cen-
soring problem over the set or , it is sufficient to consider
randomization over decision strategies from . By a simple ex-
tension of Theorem 2.1 [12], randomization over at most three
decision strategies (three censoring regions at each sensor) is
optimal for dependently (independently) randomized decision
strategies.

Finally, for false-alarm rates close to one, switching the role
of and would lower the rate of communication for at
least the same level of performance.

A. Locally Optimum Censoring

In Section III-C, minimizing the local risk in the locally op-
timum formulation of the censoring problem was considered.
The local-risk formulation is somewhat artificial in that the rate
of change of miss probability is combined with the false-alarm
probability. Of greater interest is the N-P formulation where
given the communication-rate constraint, an -level LO decision
strategy is to be determined [i.e., s.t. , and (26)].

The -level LO formulation can be related to the local risk
formulation in the same way that the N-P formulation was
related to the Bayesian risk formulation. Applying the N-P
Lemma to the LO censoring problem, we obtain the fusion rule

(34)

where is a randomization parameter independent of
.

The relationship between the -level LO censoring problem
and the local-risk censoring problem parallels the relationship
between the Bayesian and N-P censoring problem.

Consider the individual sensor communication-rate con-
straint

(35)

then, we have the following result.

Fig. 4. ROC for the LO decentralized detection problem of mean-shift in i.i.d.
Gaussian noise.

Theorem 4.2: Suppose the fusion center takes observa-
tions. Under Assumption 2.2, and given communication-rate
(35) and false-alarm rate constraints to be satisfied, for any
decision strategy , there exists a decision strategy

with larger rate of change of detection probability
(i.e., ).

Results for the communication-rate constraint (26) and ran-
domized strategies follow similarly.

1) Example: To illustrate the LO censoring approach, we
consider an LO formulation of the mean-shift example from
Section II

where are identically distributed (i.i.d.) observations, is
the variance, and is the distribution parameter which
represents the signal strength. The local likelihood ratio for the
mean-shift problem is monotone in the sufficient statistic ,
so we censor . It can be shown that for distributions from the
one-parameter exponential family [17, p. 80], the LO and N-P
censoring schemes are identical except for the likelihood in the
no-send region.

We compare the LO censoring scheme with the binary LO de-
centralized detection scheme in which sensor observations are
quantized to one bit . Assuming that the censored trans-
mission requires 24 bits to transmit the likelihood ratio with
enough precision, a communication-rate constraint
for each sensor would transmit at the same average bit-rate as
the binary scheme. Although this comparison is fair in terms of
bandwidth, the energy consumption due to transmission would
depend on the transmission scenario. It is more likely that wire-
less sensor networks are designed to transmit packets of infor-
mation at a time rather than a single bit at a time.

Fig. 4 shows the optimal ROC for LO detection of a mean-
shift in i.i.d. Gaussian noise with sensors, and

. For the censoring scheme, the ROC was obtained by Monte
Carlo simulation using 500 000 trials, whereas for the binary
scheme, analytical expressions were derived. For simplicity, we
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consider censoring rules and show their performance
for false-alarm rates where it is optimal to have . We
do not consider the fusion center to take its own observations in
this example.

For the binary scheme, we limit our consideration to the AND
and OR fusion rules. The performance of the censoring scheme
is similar to that of the binary scheme at large and degrades as

decreases. In the censoring scheme, the communication-rate
constraint becomes more severe as decreases. For comparison
in a typical setting, the mean shifts required to achieve

, and in the censoring, the AND, and the OR
rules are , and , respectively.

B. Robust N-P Censoring

In the robust N-P formulation of the censoring problem we are
interested in maximizing the worst-case detection probability
subject to worst-case false-alarm and worst-case communica-
tion-rate constraints.

To describe our formulation of the robust N-P problem, we
need the following definition of vector ordering.

Definition 4.1 (Vector Ordering): If every component of the
vector difference is less than or equal to zero, then .

Consider the robust N-P problem

where is some decision strategy
with fusion rule , sensor functions and censoring regions

, and is the com-
munication rate which is to be below . The false-alarm and
communication rate are jointly constrained over the uncertainty
class .

Consider the simple N-P censoring problem

where is the pair of LFDs defined in Section III-A.
Using exactly the same arguments as in Theorem 3.1, we ob-

tain
Theorem 4.3: Suppose the fusion node takes observations.

Under Assumption 2.2, the robust N-P problem of minimizing
the worst-case miss probability subject to worst-case trans-
mission and worst-case false-alarm constraints (i.e., problem
RNP1) can be solved by designing for the least-favorable
distributions in the sense of Defn. 3.1 (i.e., problem SNP1).

V. CONCLUSION

Under a censoring scheme for transmission, we have shown
that the design of sensor networks for detection simplifies con-
siderably, even when the distribution of the observations is only
partially known. For a censoring rate at each sensor node and the
case where the fusion center has its own observations, we proved
that the censoring regions at each sensor node can be chosen in-
dependently, since the lower threshold goes to zero. For adap-
tive systems, where the null and target statistics are updated over

time, the independence of censoring regions simplifies redesign.
Updating across sensor nodes in unnecessary; only updates at
individual sensor nodes and the fusion center are required. Al-
ternatively, we considered formulations where the distribution
of the observations is only partially known. In the robust for-
mulation, we found that designing for a pair of least-favorable
distributions is optimal in the sense of worst-case detection per-
formance and communication rate. In -contamination classes,
it is significant to find that robustness and censoring are achieved
by the same clipping test. For problems where the target is char-
acterized by a shift in the distribution parameter, we determined
the locally optimum censoring strategy. We found that it in-
volves the fusion of censored local likelihoods using a sum rule.
The simplicity of the resulting tests for partially known formu-
lations makes them quite useful in practice. We demonstrated
the detection performance of the various censoring approaches
for the problem of detecting a mean shift in Gaussian noise.

APPENDIX

Proof Lemma 2.1: In finding , the deriva-
tive of the dependent variable with respect to must be
considered. Since can be written as an integral whose limits
are functions of and , we can apply the fundamental the-
orem of integral calculus. The derivative exists
since we assume that the pdfs of the observations (the integrand)
have no point mass. Taking the derivative of (11) with respect
to , we obtain

(36)

where , is the pdf of the likelihood ratio at the
-th sensor under .
Define the likelihood ratio at the fusion center of all sensors

but sensor as

(37)

where , and
is the indicator function. Due to the fact that is a likelihood
ratio, it has the following property (which comes from finding
the slope of with respect to ([18], pp. 13–14))

(38)

where is the cumulative distribution function (cdf) of
under . We will write the error probability in terms of the cdf
of instead of the pdf of , since is a censored likelihood
ratio with point mass under both hypotheses.

The error probability for the censoring scheme is then given
by , or
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Applying (38) and separating the integral over into send and
no-send regions, we obtain

where is the censored value defined in (6).
Under Assumption 2.2, and using the fact that the no-send

region for each sensor is a single interval of the likelihood ratio,
we can write

Taking the derivative of with respect to , we obtain

(39)

(40)

(41)

Given that the fusion center takes observations, the conditional
distribution of has no point mass under either hypothesis and
the last term (41) becomes zero.

Substituting for , we obtain the lower bound

(42)

Since the integrand of (42) is nonnegative in the region of inte-
gration, as required.

When the fusion center does not take observations, we do
not have the simple result about optimality of . However, we
can obtain some conditions about “local” optimality as the cen-
soring intervals are shifted slightly. Examining the term (41)
due to the censored value, we find that has a point mass
at . For , (41) can then be expanded as

(43)

Taking the derivative of (6), we obtain

(44)

Substituting for and simplifying (43), we obtain
for the term (41)

otherwise.

Consider starting with a strategy . Let
. For , it is clear that

is positive as is in-
creased, until since the term (41) is
zero. In this sense, is locally optimal but not globally optimal
(since is not positive for all , a strategy

cannot be compared with simply by considering
).

Proof of Theorem 3.2: We follow the same approach as in
[1] to show that censoring in a single region of the local likeli-
hood ratio minimizes the local risk. Consider the censoring re-
gion for a particular sensor . It is possible to show that the
consolidation of a censoring region (for sensor ) consisting of
two intervals into a single interval does not increase the risk.

For conditionally independent observations, the local risk can
be written as

(45)

where is the decision region for
defined by (24), and . Interchanging the order of
integration and differentiation, and applying the product rule to
the first integral term, we obtain

(46)

Define the random variables
, and the threshold , then the decision

region becomes .
Using Assumption 2.2, it is possible to separate the -dimen-

sional integral for the local risk into the product of an integral
over sensor and an integral over all other sensors

(47)
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Once in this form, many of the arguments given in [1] can be
used directly. As in [1], we choose to introduce the additional
constraint that the communication under

(48)

remain the same under the consolidation of the no-send interval.
The introduction of this constraint may eliminate feasible solu-
tions, but enables us to show that single intervals are optimal.

To complete the proof, one step requires that the integral over
in (47) is nonincreasing in . Since has no-point mass

under either hypothesis, we can obtain

(49)

The rate of change is increasing and negative, which implies that
the integral is nonincreasing.
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