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Decentralized Quickest Change Detection

Venugopal V. Veeravalli, Senior Member, IEEE

Abstract—A decentralized formulation of the quickest change detection
problem is studied, where the distributions of the observations at all of the
sensors in the system change at the time of disruption, and the sensors com-
municate with a common fusion center. A Bayesian setting is considered in
which a priori knowledge of the change time distribution is available. The
observations are assumed to be independent from sensor to sensor, con-
ditioned on the change hypothesis. An optimal solution to the problem is
derived under a quasi-classical information structure, where each sensor
retains only its messages from the past (restricted local memory), and re-
ceives feedback from the fusion center about the past messages of the other
sensors (full feedback). A technique for implementation of the optimal so-
lution is given, and the solution is extended to the situation wherea priori
change time distribution information is not available. The structure of the
optimal solution is then used to arrive at a simple suboptimal policy that
does not require any past message information. Numerical examples are
given, which illustrate that the optimal solution offers little improvement
over the suboptimal one, i.e., that feedback from the fusion center cannot
be exploited to improve performance.

Index Terms—Bayes problem, detection, distributed decision-making,
monitoring, multisensor systems, quickest change.

I. INTRODUCTION

The problem of detecting an abrupt change in a system based on
stochastic observations of the system arises in a variety of applications
including biomedical signal processing, quality control engineering,
finance, link failure detection in communication networks, and
channel monitoring for mobile wireless communication systems. The
centralizedversion of this problem—where all the information about
the change is available at a single location—is well-understood and
has been solved under a variety of criteria since the seminal work by
Page [1]. (See, e.g., [2]–[5]. For an overview of the work in this area,
see [6].) However, there are situations where the information available
for decision making isdecentralized.

As an example, consider the following change detection problem in
an intelligent wireless sensor network. Information about the change
is available through measurements taken at several wireless sensors in
the network, and a central entity (fusion center) must detect the change
as soon as possible based on these measurements. The sensors, being
lower power wireless devices, are constrained to send messages be-
longing to afinite alphabetto the fusion center. An optimal solution to
this quickest change detection problem is found by a joint (team) opti-
mization of all the sensor functions and the fusion center policy.

The design of quickest change detection procedures usually involves
optimizing the tradeoff between two kinds of performance measures,
one being a measure of detection delay and other being the a measure
of the frequency of false alarms. In the centralized case, there are two
standard mathematical formulations for the optimum tradeoff problem.
The first of these is a minimax formulation, due to Lorden [2], in which
the goal is to minimize the worst case delay subject to a lower bound
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Fig. 1. General setting for decentralized change detection.

on the mean time between false alarms. The second is a Bayesian for-
mulation, proposed by Shiryayev and Kolmogorov [7], [5] in which
the change point is assumed to have a geometric prior distribution, and
the goal is to minimize the expected delay subject to an upper bound on
false alarm probability. For decentralized change detection, we will see
that the Bayesian formulation is preferable since it allows for a dynamic
programming solution. Also, to our knowledge there does not seem to
be an easy way to find an optimal solution for the minimax formula-
tion.1 As in the centralized case, we can obtain a useful non-Bayesian
test by taking a limiting form of the Bayesian solution [9].

Various sensor configurations are possible for decentralized decision
making [10], [11]. We restrict our attention to the basic fusion config-
uration for decentralization, where a fusion center is responsible for
making a final decision about the change. Consider a system withN

sensors as shown in Fig. 1. At timek, an observationX`; k is made at
sensorS`. Further, based on the information available atS` at timek,
a messageU`; k, belonging to a finite alphabet of sizeD`, is formed
and sent to the fusion center. We assume that two-way communication
is possible between the sensors and the fusion center. In particular, at
time k, the fusion center could possibly broadcast to each sensor all
the sensor messages it received at timek � 1. Based on the sequence
of sensor messages, a decision about the change is made at the fusion
center. It is assumed that the sensors stop taking observations as soon
as the fusion center decides that the change has occurred.

Various information structures are possible for the decentralized con-
figuration of Fig. 1 depending on how the feedback and local informa-
tion is used at the sensors (see [12], [13]). We focus here on the special
case of a system with full feedback and local memory restricted to past
decisions, where the messageU`; k formed by sensorS` at timek is a
function of only its current observationX`; k and the past decisions of
all the sensors (including itself), i.e.,

U`; k =  `; k X`; k; U1; [1; k�1]; . . . ; UN; [1; k�1] : (1)

This information structure is said to bequasi-classical[14], [15] and
(as explained in [13]) appears to be the only information structure that
leads to a tractable detection problem.

1However, it is possible to find a minimax solution under restrictions on the
class of sensor functions. In [8], such a solution is found for the case where
the sensors simply integrate their observations and compare the result to a fixed
threshold (that is optimized).
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Throughout this correspondence, we assume that the observations at
each sensor are independent (conditioned on the change time), have a
common probability density function (pdf) before the disruption, and
a different common pdf from the time of disruption. Furthermore, we
assume that the observations are independent from sensor to sensor,
conditioned on the disruption time. While this independence assump-
tion is somewhat restrictive, we believe it provides a reasonable starting
point for the analysis of decentralized change detection problems.

After briefly describing the problem formulation in Section II, we
develop an optimal solution for the information structure considered
in this correspondence in Section III. We discuss techniques that facil-
itate implementation of this solution in Sections IV-A and IV-B. We
also discuss how we might relax the geometric prior assumption on the
change time in Section IV-C. In Section V, we develop a usefulsubop-
timal solution that does not require any past message information. In
Section VI, we give numerical results for several illustrative examples.
A surprising finding in these results is that the optimal solution offers
little improvement over the considerably simpler suboptimal solution.

II. PROBLEM FORMULATION

1) It is assumed that the change time� is geometrically distributed,
i.e.,

Pf� = 0g = � and P(f� = igjf� > 0g) = �(1� �)i�1:

The value of0 for � accounts for the possibility that the disrup-
tion took place before the observations were made.

2) Conditioned on�, the observation sequencesfX1; kg, fX2; kg,
. . ., fXN;kg are assumed to be mutually independent. Further-
more, it is assumed that the observations in a particular sequence,
sayfX`; kg, are independent conditioned on�, have a common
pdf f (`)0 before the disruption, and common pdff (`)1 from the
time of disruption.

3) The sensor messagesU`; k 2 f0; 1; . . . ; D` � 1g. Past sensor
message information at timek is denoted byIk�1 and is given
by

Ik�1 = U1; [1; k�1]; U2; [1; k�1]; . . . ; UN; [1; k�1] :

4) The quasi-classical information structure, specified in (1), is as-
sumed. Thus,

U`; k =  `; k(X`;k; Ik�1):

Note that `; k can be regarded as aquantizerof the observation
X`; k that depends onIk�1, i.e.,

U`; k =  `; k(X`;k; Ik�1) � �`; k(Ik�1) (X`; k): (2)

In our analysis, we will generally drop the “(Ik�1)” to keep the
notation from getting cumbersome, and it is implicitly assumed
that�`; k depends onIk�1.

5) The fusion center policy� consists of selecting a stopping time
� at which time it is decided that the disruption has occurred.

6) For notational convenience, bold-faced symbols are used to de-
note collections of variables and functions across sensors, e.g.,
UUUk = (U1; k; . . . ; UN; k), ���k = (�1; k; . . . ; �N;k), etc.

To each choice of fusion center policy and sensor quantizer functions,
there correspond two types of performance indexes. The first is the
probability of false alarm

PFA = Pf� < �g

and the second is the expected detection delay

EDD = E [(� � �)+]

wherex+ = maxf0; xg. The design problem at hand is one of opti-
mizing the tradeoff between these two performance indexes.

There are two ways to pose the optimum tradeoff problem [5].
1) Variational Formulation: Minimize EDD over all admissible

choices of fusion center policy� and sensor quantizersf���kg
1
k=1,

subject to PFA � �, where� is a control parameter.
2) Bayesian Formulation:Define the total Bayes cost (risk)

R(c) = PFA + cEDD = E f�<�g + c(� � �)+ (3)

where denotes the indicator function, and the constantc > 0 may be
interpreted as the cost of each unit of delay. The Bayesian optimization
problem can then be stated as

minimizeR(c) over all admissible choices of� andf���kg
1
k=1: (4)

The following alternative, and useful, expression for the Bayes risk
of (3) can be derived using arguments similar to those given in [5, pp.
151–152]

R(c) = Pf� > �g+ cE
��1

k=1

Pf� � kg : (5)

Also, as in the centralized version of the change detection problem,
the solution to the variational problem is easily obtained once the Bayes
solution is found. In particular, we have the following result whose
proof is nearly identical to the corresponding proof in the centralized
case [5].

Theorem 1: An optimal policy for the variational formulation is a
Bayes policy for an appropriately chosen value of the tradeoff param-
eterc.

Our solution to (4) is based on dynamic programming (DP) [16] ar-
guments. The logical steps involved are similar to those found in [12],
where a decentralized sequential detection problem is solved. This is
to be expected since the quickest change detection and sequential de-
tection problems are closely related [17].

The general solution given in the following section is somewhat
cumbersome; we refer the reader to a tutorial article on sequential de-
cision fusion problems [13], where the solution is presented for the
special case of two sensors sending one bit at each time step to the fu-
sion center (N = 2; D = 2).

III. B AYESIAN SOLUTION FOR THE QUASI-CLASSICAL

INFORMATION STRUCTURE

In order to address the solution to the Bayes problem of (4), we first
restrict the stopping time� to a finite horizon, say the interval[0; T ]
(we will remove this restriction in Section III-C). Since the Bayes risk
R(c) of (5) is additive over time, minimization over the finite horizon
can be done recursively using the following DP approach.

Since the decision about the change is made at the fusion center, the
(minimum) expected cost-to-go at timek is a function of the informa-
tion available for decision making at the fusion center at timek, i.e.,
Ik. We denote this cost-to-go by~JTk (Ik).

Based on (5) it is easy to show (see [16, p. 133] for a similar example)
that

~JTT (IT ) = P(f� > Tg j IT ) (6)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001 1659

and for0 � k � T

~JTk (Ik) = min P (f� > kg j Ik); cP(f� � kg j Ik)

+ min
���

E ~JTk+1(Ik+1) j Ik (7)

with the understanding thatI0 is the empty set. The first term in the
outer minimum is the cost of stopping at timek and deciding that a
change has taken place, and the second term is the cost continuing at
time k. Note that the minimum expected cost for the finite horizon
optimization problem is simply~JT0 .

A. The Structure of Optimal Sensor Quantizers

We will now establish that optimal sensor quantizers can be found
within a structured class of functions admitting a finite-dimensional
parameterization. This is the class of likelihood ratio quantizers defined
below.

Definition 1: Consider a sensor observationX with pdf f1 andf0,
underH1 andH0, respectively.

a) A function�, that mapsX to the finite alphabetf0; 1; . . . ; D�1g:
is called amonotone likelihood ratio quantizer(MLRQ) if there
exist thresholds�1; . . . ; �D�1 satisfying

0 � �1 � �2 � � � � � �D�1 � 1

such that

�(x) = d only if �d < L(x) � �d+1; d = 0; . . . ; D � 1;

where�0 = 0, �D = 1, andL(x) = f1(x)=f0(x) is the
likelihood ratiobetweenf1 andf0

b) A sensor quantizer� is called alikelihood ratio quantizer(LRQ)
if there exists a permutation mapping

�: f0; . . . ; Dg 7! f0; . . . ; Dg

such that the composite function� � � is an MLRQ.

Note that in the special case of binary sensor messages (D = 2), the
LRQs in the above definition reduce to the standard binary likelihood
ratio tests.

The LRQ structure of optimal sensor quantizers is established in the
following theorem whose proof is given in the Appendix.

Theorem 2: Optimal finite horizon sensor quantizers can be found
in the class of LRQs with thresholds that depend on the past decision
information.

In the special case ofD` = 2, optimal sensor quantizers are de-
scribed by

U?
`; k = �?`; k(X`; k) =

1; if L`(X`;k) > �
(`)
k (Ik�1)

0; otherwise

where�(`)k � �
(`)
1; k. In general, the LRQ at timek at sensorS` is

described in terms ofD`� 1 thresholds as in Definition 1. We will see
later in Section III-B1) that optimal sensors quantizers actually belong
to the smaller set of MLRQs.

B. Sufficient Statistic for Dynamic Programming

In the following, we explore the DP solution of (6) and (7) further and
show that they can be rewritten in terms of a one-dimensional sufficient
statisticpk defined by

pk = P(f� � kg j Ik): (8)

We begin by obtaining a recursive equation forpk

pk+1 =P(f� � k + 1g j Ik+1)

=P(f� � k + 1g j Ik; UUUk+1)

=
P(f� � k + 1g j Ik)f(UUUk+1 j Ik; � � k + 1)

f(UUUk+1 j Ik)
(9)

wheref above is used to denote the probability mass function (pmf) of
UUUk+1. Now, the terms in the numerator and denominator of (9) can be
expanded as

P(f��k+1g j Ik)

=P(f��kg j Ik)+P(f�=k+1g j Ik)

=pk+P(f�=k+1g j Ik; f�=� k+1g)P(f��k+1g j Ik)

=pk+�(1�pk) (10)

and

f (UUUk+1 j f��k+1g; Ik)=

N

`=1

P
f

f�`; k+1(X`; k+1)=U`; k+1g

(11)

and

f(UUUk+1 j Ik)=f(UUUk+1 j Ik; f� � k+1g)P(f� � k+1gjIk)

+f(UUUk+1 j Ik; f�>k+1g)P(f�>k+1gjIk): (12)

Let X` denote a generic observation atS`, and let �`(x`) 2
f0; 1; . . . ; D` � 1g. Now define the functionsg andh as follows:

g(ddd; ���; p) = [p+ (1� p)�]

N

`=1

P
f

f�`(X`) = d`g (13)

h(ddd; ���; p) = g(ddd; ���; p) + (1� p) (1� �)

�

N

`=1

P
f

f�`(X`) = d`g (14)

whereddd = (d1; . . . ; dN) with d` 2 f0; 1; . . . ; D` � 1g.
From (9)–(14), it is clear that the following equation holds:

pk+1 =
g(UUUk+1; ���k+1; pk)

h(UUUk+1; ���k+1; pk)
(15)

with p0 = P(� = 0) = �.
Note that (15) is not necessarily a recursive equation, since���k+1

depends onIk in general. However, we will establish in the following
theorem that optimal���k+1 depend onIk only throughpk. Thus, (15)
is indeed a recursion forpk if optimal sensor quantizers are used.

Theorem 3:

i) For eachk; 0 � k � T , the function~JTk (Ik) can be written as a
function of onlypk, sayJTk (pk).

ii) For eachk; 0 � k � T � 1, an optimal sensor quantizer at time
k + 1 depends onIk only throughpk.

Proof: The proof is identical to that of [12, proof of Proposi-
tion 3].

Based on this result, the finite-horizon DP equations can be rewritten
in terms ofpk as follows:

JTT (pT ) = 1� pT (16)

and fork = 0; . . . ; T � 1

JTk (pk) = min (1� pk); cpk +AT
k (pk) (17)
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where

A
T
k (p) = min

���
ddd

J
T
k+1

g(ddd; ���; p)

h(ddd; ���; p)
h(ddd; ���; p);

for all p 2 [0; 1]: (18)

Some useful properties of the functionsJTk andAT
k are given in the

following lemma which is easily proven by simple induction arguments
using (16)–(18).

Lemma 1: The functionsJTk (p) andAT
k (p) are nonnegative, con-

cave functions ofp, for p2 [0; 1]. Furthermore,AT
k (1)= JTk (1)= 0;

8 k.

1) Optimal Finite-Horizon Quantizers:We established earlier in
this section that optimal finite-horizon sensor quantizers are LRQs with
thresholds that depend on the past decision information. Theorem 3 fur-
ther implies that the thresholds of the optimal LRQs depend on theIk
only throughpk. Now, a simple permutation argument can be used to
argue that optimal sensor quantizers at timek + 1 can be found in the
smaller class of MLRQs with thresholds that depend onpk. Thus, if we
define the set�M to be the set of MLRQs, thenAT

k (p) of (18) can be
written as

A
T
k (p) = min

���2�
ddd

J
T
k+1

g(ddd; ���; p)

h(ddd; ���; p)
h(ddd; ���; p);

for all p 2 [0; 1]: (19)

Finally, since an MLRQ~�`; k+1 is completely characterized byD`�1
thresholds, the minimization to obtainAT

k (pk) in (19) reduces to a fi-
nite-dimensional optimization problem overN

l=1(D`�1) thresholds.

C. Infinite-Horizon Optimization

As derived in [12], it is easy to establish that

lim
T!1

J
T
k (p) = inf

T :T>k
J
T
k (p) = J

1

k (p) = J(p)

where the last equality follows from the fact that the geometric distri-
bution of� is memoryless.

Taking limits asT ! 1 in (17) and (18), we get that the infinite
horizon cost-to-go functionJ(p) satisfies the Bellman equation

J(p) = minf(1� p); c p+AJ (p)g (20)

where

AJ (p)= lim
T!1

A
T
k (p)

= min
���2�

ddd

J
g(ddd; ���; p)

h(ddd; ���; p)
h(ddd; ���; p); for all p2 [0; 1]:

(21)

Note that the minimum Bayes risk is simplyJ(�). In addition, ifJ(p)
is computed for allp, then the optimal policy of the fusion center can be
obtained easily from the right-hand side of (20). However, it is possible
to obtain the qualitative structure of the optimal fusion center policy
without actually computingJ(p).

1) The Structure of the Optimal Fusion Center Policy:We begin
with a lemma which follows straightforwardly by taking limits asT !
1 in Lemma 1.

Lemma 2: The functionsJ(p) andAJ (p) are nonnegative concave
functions ofp, for p 2 [0; 1]. Furthermore, they satisfy the endpoint
condition

AJ (1) = J(1) = 0:

Using (20) and Lemma 2, it is easy to show that an optimal fusion center
policy will have the threshold structure given in the following theorem.

Theorem 4: An optimal fusion center policy has stopping time�
that is given by

� = inffk: pk > ag (22)

wherea is the unique solution to

ca+ AJ (a) = 1� a

when the solution exists. If the curvescp+AJ (p) and(1� p) do not
intersect on[0; 1], a is taken to be0.

Remark 1: If a = 0 and� > 0, the decision of the fusion center is
that a disruption took place before the observations were taken.

While Theorem 4 completes the solution to the Bayesian optimiza-
tion problem of (4), the preceding analysis does not specify a clear
“recipe” for computing the thresholds for the optimal sensor quantizers
and the fusion center. In the following, we give a key result that facili-
tates the computation of these thresholds.

2) Uniqueness ofJ(p) and its Consequences:Let S � C[0; 1] be
the set of all concave functions on[0; 1] that are bounded (in sup norm)
by the function(1� p); p 2 [0; 1]. It is clear that the infinite-horizon
cost-to-go functionJ belongs to the setS . For anyG 2 S , we define

WG(���; p) :=
ddd

G
g(ddd; ���; p)

h(ddd; ���; p)
h(ddd; ���; p):

Clearly,AJ (p) of (21) can be written in terms ofWG as

AJ (p) = min
���2�

WJ (���; p):

Now, let the mappingT :S 7! S be defined by

T G(p) = min (1� p); cp+ min
���2�

WG(���; p) ; for G 2 S:

(23)

From (20), it is clear thatJ is a fixed point ofT . The following result
is that this fixed point isunique. The proof is nearly identical to that of
[12, Theorem 3], and is hence omitted.

Theorem 5: The infinite-horizon cost-to-go functionJ is the unique
fixed point ofT .

An important consequence of this result is thatJ(p) can be obtained
by successive approximation. Indeed, we can show using a simple in-
duction argument thatT n+1�(p) � T n�(p), for eachp 2 [0; 1],
where�(p) = 1 � p. This means thatT n� converges monotonically
to J asn!1. Theorem 5 also implies that astationaryset of sensor
quantizers is optimal (also see [12]).

IV. NUMERICAL COMPUTATION AND IMPLEMENTATION

In the following, we exploit the above two consequences of Theorem
5 to arrive at a recipe for numerical computation of the optimal solution.

A. Threshold Computation

Note that the stationary set of optimal quantizers are MLRQs. Let
the thresholds for the MLRQ at sensorS` be denoted by�(`)i , i =
1; 2; . . . ; D` � 1. Furthermore, we collect the threshold values at all
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the sensors in the vector���. Since the MLRQs are completely charac-
terized by the thresholds���, we may rewrite the functionsg andh of
(13) and (14) as

g(ddd; ���; p)=[p+(1�p)�]

N

`=1

P
f

�
(`)
d �1<L`(X`)��

(`)
d

(24)

h(ddd; ���; p)=g(ddd; ���; p)

+(1�p)(1��)

N

`=1

P
f

�
(`)
d �1<L`(X`)��

(`)
d

(25)

whereX` denotes a generic observation atS`, and�(`)0 = 0, �(`)D =
1, for all `.

Using the definitions ofg andh given in (24) and (25), we can rewrite
the mappingT of (23) as

T G(p) = min (1� p); cp+min
���

WG(���; p) (26)

where, forG 2 S ,

WG(���; p) =
ddd

G
g(ddd; ���; p)

h(ddd; ���; p)
h(ddd; ���; p): (27)

To obtainJ , we successively applyT to �(p) = 1 � p. This can
be done numerically withp appropriately quantized on[0; 1]. Since
convergence toJ is guaranteed by the results of Section III-C2), we
can stop the iteration as soon as the norm difference between successive
iterates falls below a desired threshold. The optimal sensor thresholds
(as functions ofp) are, of course, obtained from the last iteration as

���opt(p) = argmin
���

WJ (���; p) (28)

and the optimum fusion thresholda is obtained by solving (numeri-
cally)

(1� a) = ca+WJ (���opt(p); p): (29)

B. Implementation of the Optimal Solution

To implement the optimal solution, both the sensors and the fusion
center need to compute the sufficient statisticpk recursively. There is
obviously a one time-step delay between the recursions at the sensors
versus that at the fusion center. Using the new definitions ofg andh
given in (24) and (25), we can rewrite the recursion (15) as

pk+1 =
g(UUUk+1; ���opt(p); pk)

h(UUUk+1; ���opt(p); pk)
; with p0 = � (30)

where���opt(p) is as specified in (28). Implementation of this recursion
is facilitated by making the variable substitution

qk =
pk

�(1� pk)
: (31)

In particular, it is easy to show that

qk+1 =
qk + 1

1� �

N

`=1

L
U
` (U`; k+1; qk); with q0 =

�

�(1� �)

(32)

whereLU` is the likelihood ratio of the pmf induced on sensor decisions
through the sensor quantizer, i.e.,

L
U
` (i; q) =

P
f

�̂
(`)
i�1(q) < L`(X`) � �̂

(`)
i (q)

P
f

�̂
(`)
i�1(q) < L`(X`) � �̂

(`)
i (q)

(33)

where

�̂
(`)
i (q) = �

(`)
opt; i

�q

1 + �q
: (34)

Also, as before,X` denotes a generic observation atS`, and�̂(`)0 (q) =

0; �̂
(`)
D (q) = 1, for all `.

The sensor messages at timek are formed through MLRQs based on
qk�1, i.e.,

U`; k = d`; only if �̂(`)d (qk�1) < L`(X`;k) � �̂
(`)
d +1(qk�1):

Finally, the fusion center stopping time is given by

� = inf k: qk >
a

�(1� a)
:

C. Relaxing the Geometric Prior Assumption

The Bayesian analysis of the preceding sections depended heavily
on the assumption that the prior distribution of the change time was
geometric. For thecentralizedchange detection problem, it is known
that in the absence of prior information, a useful test may be obtained
from a limiting form of the Bayes solution, by letting� and� go to zero.
This limiting form was first suggested by Girshick and Rubin [9], and
is sometimes referred to as the GRS (Girshick, Rubin, and Shiryayev)
procedure.

For the decentralized change detection problem, there does not seem
to be an obvious way to find the optimal solution (for both the sensor
and fusion center decision rules) under Lorden’s minimax criterion. As
mentioned in Section I, a minimax solution was found in [8], only under
a restriction on the class on sensor functions. The Bayesian solution
we have found can, of course, be applied to the situation where prior
information is not available, in a similar fashion as in the centralized
case. In particular, if we take limits in (32) as�; � ! 0, in such a way
thatq0 ! 0, then we get the following recursion forqk:

qk+1 = [qk + 1]

N

`=1

L
U
` (U`; k+1; qk); with q0 = 0:

Also, the MLRQ thresholds at the sensors become independent ofqk.
In particular, from (34), we get

�̂
(`)
i (q) = �

(`)
opt; i(0); for all q:

Finally, the fusion center stopping rule is as in the centralized GRS
procedure, i.e.,

� = inf fk: qk > Ag

whereA is varied to the tradeoff EDD versus PFA.

V. CONSTANT-THRESHOLDSUBOPTIMAL POLICY

It is of interest to compare the performance of the optimal solution
with that of a suboptimal policy that ignores all the past message infor-
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mation and simply uses MLRQs with constant thresholds at the sensors,
i.e.,

U`; k = d` only if ~�(`)d < L`(X`; k) � ~�
(`)
d +1:

The question then arises as to how these constant thresholds~��� should be
chosen. With the sensor thresholds fixed at~���, the fusion center faces a
centralized change detection problem with independent and identically
distributed (i.i.d.) vector “observations”UUUk. The pmf induced onU`; k
by the constant-threshold quantizer atS` is given by

fUj; `(i) = P
f

~�
(`)
i�1 < L`(X`) � ~�

(`)
i ;

i = 0; . . . ; D` � 1; j = 0; 1: (35)

As we shall see in the numerical results given in the next section, for the
centralized change detection problem, the slope of the tradeoff curve
betweenlnPFA and EDD is roughly equal to the negative of the Kull-
back–Leibler (KL) “distance” between the distributions after and be-
fore the change. Hence, we should expect that the best tradeoff between
PFA and EDD is obtained whenD(fU1; `; f

U
0; `), the KL distance be-

tweenfU1; ` andfU0; `, is maximum. Thus, a reasonable choice for~�(`)

is the one that maximizesD(fU1; `; f
U
0; `).

The optimum fusion center solution (for fixed~���) is obtained by com-
puting the sufficient statistic~qk recursively as

~qk+1 =
~qk + 1

1� �

N

`=1

= ~LU
` (U`; k+1); with ~q0 =

�

�(1� �)

where

~LU
` (i) =

fU1;`(i)

fU0;`(i)
:

The fusion center stopping time is then given by

~� = inf k: ~qk >
a

�(1� a)
:

VI. NUMERICAL RESULTS

We illustrate the theoretical results of the previous sections through
two simple examples.

Example 1: Assume that the sensor observations are Poisson
random variables with different means before and after the disruption.
Let the observations at sensorS` have mean�0` before the disruption,
and mean�1` after the disruption. Without loss of generality assume
that�1` > �0`. Then the likelihood ratio atS` is given by

L`(x) =
�1`
�0`

x

exp f�(�1` � �0`)g :

Note that the likelihood ratio is monotonically increasing inx.

Example 2: Assume that the sensor observations are Gaussian
random variables with different means, but the same variance, before
and after the disruption. Again, let the observations at sensorS` have
mean�0` before the disruption, and mean�1` after the disruption,
with �1` > �0`. Then the likelihood ratio atS` is given by

L`(x) = exp
(�1` � �0`)x

�2`
�

�21` � �20`
2�2`

where�2` is the variance. Note thatL`(x) is monotonically increasing
in x in this example as well.

SinceL` is monotonically increasing, we can characterize the sensor
quantizers in terms of thresholds on the observations, rather than on
their likelihood ratios. To further simplify the examples, we assume that
the sensor messages are binary, i.e.,D` = 2 for all `. Then the sensor

quantizers reduce to binary likelihood ratio tests that are characterized
by a single threshold, i.e.,

U`; k =
1; if X`; k � �(`)(pk�1)

0; if X`; k < �(`)(pk�1).

Furthermore, the functionsg andh of (24) and (25) needed for the DP
solution simplify to

g(ddd; ���; p)=[p+(1�p)�]

N

`=1

P1 X`>�(`)
d

� P1 X` � �(`)
1�d

h(ddd; ���; p)=g(ddd; ���; p)+(1�p)(1��)

N

`=1

P0 X`>�(`)
d

� P0 X`��(`)
1�d

:

Also, the equation forLU
` (see (33)) which is required in the recursions

for qk becomes

LU
` (i; q) =

P1 X` > �̂(`)(q)
i

P1 X` � �̂(`)(q)
1�i

P0 X` > �̂(`)(q)
i

P0 X` � �̂(`)(q)
1�i

where�̂(`)(q) = �
(`)
opt(�q=(1 + �q)).

In optimizing the thresholds, we first consider the two sensor case
(N = 2). Optimal sensor threshold functions(�(1)opt; �

(2)
opt) are ob-

tained by minimizingWG(�(1); �(2); p) over (�(1); �(2)) 2 2 at
each stage of the successive approximation procedure.

As a further simplification, we consider the symmetric situation
where the sensors have identical statistics. Through numerical experi-
mentation for a few test cases, it was found that the optimum thresholds
were identical (functions ofp) at the two sensors2 for both examples.
We hence simplify the optimization by setting�(1) = �(2) = �
and optimizingWG over the single threshold�. Sample results for
the Poisson and Gaussian examples are shown in Figs. 2 and 3. The
optimum fusion center thresholda is easily found fromJ(p) as shown
in the figures.

It is interesting to note that the optimal sensor threshold functions
are nonmonotonic. We also note that�

(`)
opt(p) is discontinuous3 for

the Gaussian example. The general trend seems to be to progressively
favor the change hypothesis asp increases towarda; however, there are
abrupt “corrections” to this trend.

Note that Bayes cost corresponding to the optimal solution is given
by J(�). For the examples shown in Figs. 2 and 3,� = 0, and hence
J(0) is the minimum possible value of PFA + cEDD, for the given
value ofc. However, the individual performance metrics PFA and EDD
cannot be obtained fromJ(0). These quantities may be obtained, for
each value ofc, via Monte Carlo simulations. The pairs of(PFA; EDD)
values thus obtained form atradeoff curvefor the optimal policy.

We may compare different policies by plotting their tradeoff curves
on the same plot. The three policies of interest are i) the optimal cen-
tralized policy; ii) the optimal solution; and iii) the suboptimal solu-
tion of Section V. The tradeoff curves for all three policies are ob-
tained via Monte Carlo simulations for various values ofc. The tradeoff
curve for the optimal centralized policy is obtained by varying the
single-threshold parameter at the fusion center. The tradeoff curves

2It is known that in decentralized detection problems, assuming identical dis-
tributions at the sensors does not necessarily result in identical solutions for the
optimal sensor quantizers, except asymptotically asN !1[10].

3As noted in [12], this behavior might be surprising at first, but such behavior
is commonly observed in control systems where “bang–bang” control is op-
timal.
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Fig. 2. Optimum thresholds for two identical sensors sending binary
messages—Poisson example. Sensor observations are Poisson with mean10
before the disruption, and mean14 after the disruption. The parameter values
arec = 0:06, � = 0:05, and� = 0. Results were obtained using 200 iterations
of the successive approximation procedure with 5000 points on thep axis. The
optimal sensor threshold function is only shown forp � a, since it is not used
for p > a. The fusion center thresholda is marked on the plot showingJ(p).

Fig. 3. Optimum thresholds for two identical sensors sending binary
messages—Gaussian example. Sensor observations areN (0; 1) and
N (0:75; 1) before and after the disruption, respectively. The parameter values
arec = 0:1, � = 0:3, and� = 0. Results were obtained using 200 iterations
of the successive approximation procedure with 5000 points on thep axis. The
sensor threshold was quantized to 500 values in the range from[�1; 1:75].

for the Poisson and Gaussian examples with two identical sensors are
shown in Figs. 4 and 5, respectively. Also shown in Fig. 6 are tradeoff
curves corresponding to two sensors with different Poisson statistics.
Similar results are obtained for systems with five sensors.

It is interesting to see that for the centralized policy, the plot oflnPFA
and EDD is a straight line with slope that is approximately equal to

�

`

D f
(`)
1 ; f

(`)
0 :

For the suboptimal policy, the tradeoff curve betweenlnPFA and EDD
has slope that is roughly equal to

�

`

D f
U
1; `; f

U
0; `

Fig. 4. Tradeoff curves for two identical Poisson sensors. Sensor observations
are Poisson with mean10 before the disruption, and mean14 after the
disruption. The parameter values are� = 0:05 and� = 0. The KL distance
for the sensor observations is0:7106. The threshold that maximizes the KL
distance at the output of the sensor is~� = 13, and the corresponding maximum
KL distance is0:4473.

Fig. 5. Tradeoff curves for two identical Gaussian sensors. Sensor
observations areN (0; 1) andN (0:75; 1) before and after the disruption,
respectively. The parameter values are� = 0:05 and� = 0. The KL distance
for the sensor observations is0:28125. The threshold that maximizes the
KL distance at the output of the sensor is~� = 0:62, and the corresponding
maximum KL distance is0:1791.

wherefU
j; ` is as defined in (35) corresponding to the KL distance-max-

imizing threshold.
The surprising observation in the performance comparison plots is

that in all cases, the suboptimal policy and the optimal policy have
roughly the same performance. These results indicate that a simple,
constant threshold quantizer of the observations may work just as well
as the optimal policy. In other words, each sensor may ignore all the
past message information without loss of optimality.

VII. CONCLUSION

We studied a decentralized extension of the quickest change de-
tection problem and showed that the problem was tractable under a
quasi-classical information structure. In particular, we have given an
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Fig. 6. Tradeoff curves for two sensors with different Poisson statistics.
Observations at both sensors are Poisson with mean10 before the disruption.
The means after the disruption are12 and 14 for sensorsS and S ,
respectively. The parameter values are� = 0:05 and� = 0. The KL distance
of the observations are0:1879 and0:7106 at sensorsS andS , respectively.
The threshold that maximizes the KL distance at the output of the sensorS is
~� = 11, and the corresponding maximum KL distance is0:119. For sensor
S , the values are13 and0:4473, as in Fig. 4.

explicit computational technique for an optimal solution for this case.
We have also suggested a simplified implementation for this optimal
solution. It is of interest to develop a better understanding of the non-
monotonic, discontinuous behavior of the optimum sensor threshold
functions. It might be possible, for example, to find simple parametric
models for these functions that would facilitate implementation of the
optimal solution.

Surprisingly, however, the numerical results indicate that it may
not be necessary to go through the trouble of computing (and
implementing) the optimal solution. In particular, using a simple
constant threshold in place of the rather complicated optimal sensor
threshold function does not seem to result in any performance loss
in the examples we considered. We believe that the near optimality
of the constant threshold policy may stem from our assumption that
the sensor observations are independent, conditioned on the change
point, but we have not been able to establish a rigorous result in this
direction. It is also of interest to study systems in which the sensor
observations are dependent, conditioned on the change point, to see if
past message information is more useful in this scenario.

APPENDIX

Proof of Theorem 2:From (7), by replacingk + 1 by k in the
second minimum, it follows that optimal���

k
minimize

Rk = E ~JTk (Ik) j Ik�1

where the expectation is taken with respect to the joint distribution of
the random variablesX1; k; X2; k; . . . ; XN;k conditioned onIk�1.
We will establish all person-by-person optimal (p.b.p.o.) solutions���k,
and hence the globally optimal solution, have the LRQ structure. To this
end, we fix all the quantizers in the set���k except�`; k. To minimize
Rk with respect to�`; k we writeRk as

Rk =E ~JTk (U1; k; . . . ; UN; k; Ik�1) j Ik�1

=E E ~JTk (U1; k; . . . ; UN; k; Ik�1) j Ik�1; � j Ik�1

where the inner expectation is with respect to (w.r.t.) the joint dis-
tribution ofX1; k; . . . ; X`�1; k; X`+1; k; . . . ; XN;k, conditioned on

� and Ik�1, and the outer expectation is w.r.t. the joint distribution
of X`; k and�, conditioned onIk�1. The conditioning w.r.t.X`; k is
dropped in the inner expectation due to the independence of the sensor
observations given�. The result of the inner expectation is a function
of Ik�1, �, andU`; k, sayK (U`; k; Ik�1; �). Therefore,

Rk =E [K(U`; k; Ik�1; �) j Ik�1]

=E
1


=0

K(U`; k; Ik�1; 
) P(f� = 
g j Ik�1; X`; k) Ik�1 :

Now, for 
 � k, an application of Bayes rule gives

P(f� = 
g j Ik�1; X`; k) =
P(f� = 
g j Ik�1)f

(`)
1 (X`;k)

fI(X`;k j Ik�1)

wherefI(� j Ik�1) denotes conditional pdf ofX`; k givenIk�1. Simi-
larly, for 
 > k

P(f� = 
g j Ik�1; X`; k) =
P(f� = 
g j Ik�1) f

(`)
0 (X`;k)

fI(X`;k j Ik�1)
:

Hence,

Rk =E
1

fI(X`;k j Ik�1)
f
(`)
1 (X`;k)

k


=0

K(U`; k; Ik�1; 
)

� P(f� = 
g j Ik�1) + f
(`)
0 (X`;k)

�

1


=k+1

K(U`; k; Ik�1; 
) P(f� = 
g j Ik�1) Ik�1 :

Minimizing Rk with respect to�`; k is equivalent to minimizing the
quantity inside the above expectation almost everywhere. Thus, every
p.b.p.o. solution for the quantizer at sensorS` at timek satisfies

U
?
`; k =�

?
`; k(X`;k)

= arg min
d 2f0;...;D �1g

� H1(d`; Ik�1)f
(`)
1 (X`;k)+H0(d`; Ik�1)f

(`)
0 (X`;k)

where

H1(d`; Ik�1) =

k


=0

K(d`; Ik�1; 
)P(f� = 
g j Ik�1)

and

H0(d`; Ik�1) =

1


=k+1

K = (d`; Ik�1; 
)P(f� = 
g j Ik�1):

Thus,

�
?
`; k(X`; k)

=

argmin
d

H1(d`; Ik�1)L`(X`;k)

+H0(d`; Ik�1); if L`(X`;k) <1

argmin
d

H1(d`; Ik�1); if L`(X`;k) = 1.

(A1)

From (A1), it is not difficult to see that�?`; k is an LRQ with thresholds
that depend onIk�1, since it is written as a minimum of linear functions
of the likelihood ratio. This completes the proof.
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On the Optimality of Finite-Level Quantizations for
Distributed Signal Detection

Jun Hu and Rick S. Blum, Member, IEEE

Abstract—Distributed multiple sensor detection problems with quan-
tized observations are investigated for cases of nonbinary hypothesis and
possibly statistically dependent observations from sensor to sensor con-
ditioned on the hypothesis. The observations available at each sensor are
quantized to produce a multiple digit sensor decision which is sent to a fu-
sion center. At the fusion center, the sensor decisions are combined to form
a final decision using a predetermined fusion rule. First, it is demonstrated
that there is a maximum number of digits that should be used to communi-
cate the sensor decision from a given sensor to the fusion center. This max-
imum is based on the number of digits used to communicate the decisions
from all the other sensors to the fusion center. If more than this maximum
number of digits is used, the performance of the optimum scheme will not
be improved. In some special cases of great interest, the upper bound on the
number of digits that should be used can be made significantly smaller. Sec-
ondly, the optimum way to allocate a fixed overall number of digits across
sensors is investigated. Illustrative numerical results are also presented in
this correspondence.

Index Terms—Distributed signal detection, multiple digit decisions, non-
binary hypothesis, quantizations.

I. INTRODUCTION

Signal detection algorithms which process quantized observations
taken from multiple sensors continue to attract attention [1]–[5]. Such
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algorithms have been classified as distributed signal detection algo-
rithms. The majority of distributed signal detection research has fo-
cused on cases with statistically independent observations, binary hy-
pothesis testing problems, and binary sensor decisions [6], [7]. Re-
search on nonbinary hypothesis testing problems are relatively rare. An
early paper on this topic [8] provided equations describing the neces-
sary conditions for the optimum sensor processing. A more complete
discussion which includes a thorough treatment of the necessary con-
ditions for the case of independent observations is given in [9]. A nice
discussion of the complexity of cases with dependent observations is
also given in [9]. Neither [8] nor [9] give any numerical examples. A nu-
merical procedure for finding the optimum processing scheme was pro-
vided in [10] for cases with dependent observations and nonbinary hy-
pothesis and a few numerical examples are provided. However, studies
of the properties of optimum schemes have been lacking. In this cor-
respondence, we demonstrate that no more than a certain number of
digits should be used to communicate a sensor decision from a partic-
ular sensor to the fusion center. Using more than that number of digits at
a given sensor is unnecessary and will not lead to better performance.
The number of digits which should be used is related to the number
of digits used to communicate the other sensor decisions to the fusion
center.

The following is a simple example of distributed detection: two sen-
sors, binary hypothesis and additive Gaussian noise. Assume the ob-
servations at these two sensors are

HHH000: y1 = �1 + w1; y2 = �1 + w2

HHH111: y1 = 1+ w1; y2 = 1 + w2

wherew1 andw2 are zero-mean independent Gaussian random vari-
ables with variances3 and2, respectively. We also assume hypotheses
HHH000 andHHH111 have equal prior probabilities.

For a centralized detection system, the optimum decision rule, the
maximuma posteriori (MAP) rule, is relatively easy to find. On the
other hand, finding an optimum distributed detection system is much
more complicated. Generally, we need to try all possible fusion rules
and use numerical techniques to determine the corresponding optimum
decision rules.

In the following, we provide optimum decision rules without
discussing how they are found. This will be discussed later in the
correspondence. Here we denote a distributed scenario where the first
sensor makesn1 decisions and the second sensor makesn2 decisions
by (n1; n2). The resulting optimum decision regions andPe for the
centralized system and the distributed scenarios(1; 1); (1; 2); and
(1; 3) are illustrated in Fig. 1. Of course, the centralized system,
shown in Fig. 1(a), should achieve the lowest probability of error. For
distributed systems, at first the more bits used at the second sensor,
the lower the probability of error achieved, as shown by Fig. 1(b) and
(c). However, whenn2 > 2, extra decision bits at the second sensor
cannot decrease the probability of error further. This is illustrated
by Fig. 1(c) and (d) since, in either case,Pe = 0:1974 although the
system in Fig. 1(d) uses an extra bit.

The results for the distributed scenarios(0; 4); (1; 3); (2; 2); and
(3; 1) are provided in Fig. 2. From Fig. 2, we observe that the(2; 2)
scenario yields the lowest probability of error in these four systems. The
interesting fact here is that the signal-to-noise ratios (SNRs) at these
two sensors are different. Their observations are not equally reliable.

Both these observations occur under a general set of conditions to
be given in this correspondence. The material is organized as follows.
Section II presents the model for the observations and the distributed
decision making. In Section III, we show that there is a maximum
number of digits that should be used for the sensor decision at a given

0018–9448/01$10.00 © 2001 IEEE


