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Decentralized Quickest Change Detection {X1.} {Xni}

Venugopal V. VeeravalliSenior Member, IEEE

Abstract—A decentralized formulation of the quickest change detection
problem is studied, where the distributions of the observations at all of the
sensors in the system change at the time of disruption, and the sensors com-
municate with a common fusion center. A Bayesian setting is considered in
which a priori knowledge of the change time distribution is available. The
observations are assumed to be independent from sensor to sensor, con-
ditioned on the change hypothesis. An optimal solution to the problem is
derived under a quasi-classical information structure, where each sensor
retains only its messages from the past (restricted local memory), and re-
ceives feedback from the fusion center about the past messages of the other
sensors (full feedback). A technique for implementation of the optimal so-
lution is given, and the solution is extended to the situation whera priori
change time distribution information is not available. The structure of the
optimal solution is then used to arrive at a simple suboptimal policy that
does not require any past message information. Numerical examples are
given, which illustrate that the optimal solution offers little improvement

over the suboptimal one, i.e., that feedback from the fusion center cannot __ . . .
be exploited to improve performance. Fig. 1. General setting for decentralized change detection.
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monitoring, multisensor systems, quickest change. on the mean time between false alarms. The second is a Bayesian for-

mulation, proposed by Shiryayev and Kolmogorov [7], [5] in which
the change point is assumed to have a geometric prior distribution, and
the goal is to minimize the expected delay subject to an upper bound on

The problem of detecting an abrupt change in a system basedfaise alarm probability. For decentralized change detection, we will see
stochastic observations of the system arises in a variety of applicatidi@t the Bayesian formulation is preferable since it allows for a dynamic
including biomedical signal processing, quality control engineeringrogramming solution. Also, to our knowledge there does not seem to
finance, link failure detection in communication networks, anbie an easy way to find an optimal solution for the minimax formula-
channel monitoring for mobile wireless communication systems. Tiign.! As in the centralized case, we can obtain a useful non-Bayesian
centralizedversion of this problem—where all the information aboutest by taking a limiting form of the Bayesian solution [9].
the change is available at a single location—is well-understood andvarious sensor configurations are possible for decentralized decision
has been solved under a variety of criteria since the seminal work faking [10], [11]. We restrict our attention to the basic fusion config-
Page [1]. (See, e.g., [2]-[5]. For an overview of the work in this aretfation for decentralization, where a fusion center is responsible for
see [6].) However, there are situations where the information availafieking a final decision about the change. Consider a systemiWith
for decision making islecentralized sensors as shown in Fig. 1. At tinke an observatioX,, ;. is made at

As an example, consider the following change detection problemsgnsorS,. Further, based on the information availablesatt time#,
an intelligent wireless sensor network. Information about the changemessagé’,, ., belonging to a finite alphabet of size,, is formed
is available through measurements taken at several wireless sensoggithsent to the fusion center. We assume that two-way communication
the network, and a central entitiugion centermust detect the change is possible between the sensors and the fusion center. In particular, at
as soon as possible based on these measurements. The sensors, tiiB@§, the fusion center could possibly broadcast to each sensor all
lower power wireless devices, are constrained to send messagestiiesensor messages it received at time 1. Based on the sequence
longing to &finite alphabeto the fusion center. An optimal solution to of sensor messages, a decision about the change is made at the fusion
this quickest change detection problem is found by a ja@drf) opti-  center. It is assumed that the sensors stop taking observations as soon
mization of all the sensor functions and the fusion center policy. ~ as the fusion center decides that the change has occurred.

The design of quickest change detection procedures usually involve¥arious information structures are possible for the decentralized con-
optimizing the tradeoff between two kinds of performance measurdiguration of Fig. 1 depending on how the feedback and local informa-
one being a measure of detection delay and other being the a measiareis used at the sensors (see [12], [13]). We focus here on the special
of the frequency of false alarms. In the centralized case, there are ®@se of a system with full feedback and local memory restricted to past
standard mathematical formulations for the optimum tradeoff proble@gcisions, where the messdge . formed by sensof, at timek is a
The first of these is a minimax formulation, due to Lorden [2], in whiclunction of only its current observatioki¢, . and the past decisions of
the goal is to minimize the worst case delay subject to a lower boufli the sensors (including itself), i.e.,

|. INTRODUCTION
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Throughout this correspondence, we assume that the observatioranaltthe second is the expected detection delay
each sensor are independent (conditioned on the change time), have a
common probability density function (pdf) before the disruption, and Epp = E[( — )]
a different common pdf from the time of disruption. Furthermore, we
assume that the observations are independent from sensor to seRg@$res™ = max{0, x}. The design problem at hand is one of opti-
conditioned on the disruption time. While this independence assuniizing the tradeoff between these two performance indexes.
tion is somewhat restrictive, we believe it provides a reasonable startingrhere are two ways to pose the optimum tradeoff problem [5].
point for the analysis of decentralized change detection problems. 1) Variational Formulation: Minimize Epp over all admissible
After briefly describing the problem formulation in Section II, wechoices of fusion center policy and sensor quantizers, }52;,
develop an optimal solution for the information structure considere@ibject to Ry < «, wherea is a control parameter.
in this correspondence in Section lll. We discuss techniques that facil-2) Bayesian Formulation:Define the total Bayes cost (risk)
itate implementation of this solution in Sections IV-A and IV-B. We
also discuss how we might relax the geometric prior assumption on the R(c) = Ppa + cEpp = E [l{r<r} + o(T — r)+] (3)
change time in Section IV-C. In Section V, we develop a ussiiblop-

timal solution that does not require any past message information.yherel denotes the indicator function, and the constant0 may be

Section VI, we give numerical results for several illustrative examplegerpreted as the cost of each unit of delay. The Bayesian optimization
A surprising finding in these results is that the optimal solution offers;oplem can then be stated as

little improvement over the considerably simpler suboptimal solution.

minimize R(c) over all admissible choices afand{¢, };=,. (4)
Il. PROBLEM FORMULATION

1) Itis assumed that the change tiffiés geometrically distributed, The following alternative, and useful, expression for the Bayes risk

ie., of (3) can be derived using arguments similar to those given in [5, pp.
v 151-152]
PL=0}=v» and R{C=:i}{T'>0})=p(l—-p) " .
The value o0 for I" accounts for the possibility that the disrup- Rle)=PiI' >7}+cE Z Pl < ]"}} ) ®)
tion took place before the observations were made. k=1
2) Conditioned orT, the observation sequenceX, i}, {Xa &}, Also, as in the centralized version of the change detection problem,

.., {Xn,} are assumed to be mutually independent. Furthehe solution to the variational problem is easily obtained once the Bayes
more, itis assumed that the observations in a particular sequersistution is found. In particular, we have the following result whose
say{X¢, }, are independent conditioned Bnhave a common proof is nearly identical to the corresponding proof in the centralized
pdf £{” before the disruption, and common pgff’ from the case [5].

time of disruption. . . - I
P Theorem 1: An optimal policy for the variational formulation is a

3) The sensor messages 1 € {0, 1, ..., D¢ — 1}. Past sensor gayes policy for an appropriately chosen value of the tradeoff param-
message information at tinieis denoted by, and is given giar,..
by

Our solution to (4) is based on dynamic programming (DP) [16] ar-
Lioo = {Us, 0, 6-11 Uz i 0-1)s -0 UN (1,021 ) - guments. The logical steps involved are similar to those found in [12],
where a decentralized sequential detection problem is solved. This is
4) The quasi-classical information structure, specified in (1), is a be expected since the quickest change detection and sequential de-
sumed. Thus, tection problems are closely related [17].
The general solution given in the following section is somewhat
Uek = ve, (X, k; Tie1). cumbersome; we refer the reader to a tutorial article on sequential de-
cision fusion problems [13], where the solution is presented for the
Note thati',, . can be regarded asqaantizerof the observation special case of two sensors sending one bit at each time step to the fu-
X¢,r that depends ofy.—1, i.e., sion center§¥ = 2, D = 2).
Utk = e x(Xews Te1) = 00k (Te—1) (Xe k). (2) I1l. BAYESIAN SOLUTION FOR THE QUASI-CLASSICAL

In our analysis, we will generally drop théf,—,)” to keep the INFORMATION STRUCTURE

notation from getting cumbersome, and it is implicitly assumed In order to address the solution to the Bayes problem of (4), we first
that¢,, . depends ody._; . restrict the stopping time to a finite horizon, say the intervid, T
5) The fusion center policy consists of selecting a stopping time(We will remove this restriction in Section I11-C). Since the Bayes risk
7 at which time it is decided that the disruption has occurred. £(¢) of (5) is additive over time, minimization over the finite horizon
83—“ be done recursively using the following DP approach.
. . . Since the decision about the change is made at the fusion center, the
note collections of variables and functions across sensors, e(ﬁw‘lnimum) expected cost-to-qo at timds a function of the informa-
U= Uik ....Un.5), 6 = (61,50 -... On.1), €IC. , m) expected costlo-go \ :
k ’ ’ k o tion available for decision maklpg at the fusion center at timee.,
To each choice of fusion center policy and sensor quantizer functiods, We denote this cost-to-go b&{([k).
there correspond two types of performance indexes. The first is theBased on (5) itis easy to show (see [16, p. 133] for a similar example)
probability offalse alarm that

6) For notational convenience, bold-faced symbols are used to

Pra = P{r < T} Ji(Ir) =P{T > T}|Ir) (6)
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andfor0 < &k < T We begin by obtaining a recursive equation for
Ji (I) = min {P({F >k} Ip), cPHT < k} | In) Pet1 =PHT < k4 1} | Igq)
=P{T <k+1}| I, Uss1)
. 7T
—I—;IiriE[JHl(Ikﬂ)Uk]} (7) _PUD < E+ 1} T f(Uspn | Iis T < E+1) ©)
FWetr | 1)

with the understanding thdt is the empty set. The first term in the
outer minimum is the cost of stopping at timeand deciding that a wheref above is used to denote the probability mass function (pmf) of
change has taken place, and the second term is the cost continuing at:. Now, the terms in the numerator and denominator of (9) can be
time %. Note that the minimum expected cost for the finite horizoexpanded as
optimization problem is simply .

PUT<k+1}[1k)
A. The Structure of Optimal Sensor Quantizers =P{T'<k}|I)+P{T=k+1} | It)

We will now establish that optimal sensor quantizers can be found =y, + P({T=k+1} | I; {T=> k+1})PHUT>k+1}|I})
within a structured class of functions admitting a finite-dimensional — it p(l=pp) (10)
parameterization. This is the class of likelihood ratio quantizers defined

below. an N

Definition 1: Consider a sensor observatidhwith pdf f1 andfo, f (U1 [{T <k+1}; )= H Pro {oe k1 (Xe k1) =Vt k1)
underH; and Ho, respectively. e=1 "t

a) Afunctiong, thatmaps¥ to the finite alphabefo, 1, ..., D-1}. (11)
is called amonotone likelihood ratio quantizéMLRQ) if there and
exist thresholds\;, ..., Ap_; satisfying FOks1 | 1) =F(Upgr | Ie; {T < k+11HPHT < k+1}Ik)
0< A <A <--<Ap_i < oo +f(Usgr | In; {T>k+11HPHT>k+1}1). (12)
such that Let X, denote a generic observation &t, and let ¢¢(x¢) €
) {0, 1, ..., D, — 1}. Now define the functiong andh as follows:
o(x) =d onlyif \y < L(z) < Ag41, d=0,...,D -1,
J\F
wheredo = 0, Ap = oo, andL(z) = fi(x)/fo(x) is the g(d: ¢:p) =[p+ (L =p)pl [T Py {oe(Xe)=de}  (13)
likelihood ratio betweenf; and fo —1 I
b) A sensor quantizes is called dikelihood ratio quantize(LRQ) nd; &; p) =g(d; &; p) + (1 —p) (1= p)
if there exists a permutation mapping ‘ N
. , 0 ) — |
S (0..... D) (0..... D} g P {oe(Xe) = de} (14)
such that the composite functidho ¢ is an MLRQ. whered = (di. ..., dy) withde € {0, 1, ..., D¢ — 1}.

Note that in the special case of binary sensor messdges @), the  From (9)—(14), it is clear that the following equation holds:

LRQs in the above definition reduce to the standard binary likelihood )

ratio tests. _ 9(Uks1; Sy Dr)

Pht1 = (15)
WU gt ¢k+1? Pk)

The LRQ structure of optimal sensor quantizers is established in the
following theorem whose proof is given in the Appendix. with po = P(T' = 0) = v.

Theorem 2: Optimal finite horizon sensor quantizers can be founaﬂ Note that (15) is not necessarily a recursive equation, sincg

in the class of LRQs with thresholds that depend on the past decis %oends odl,. in general. However, we will establish in the following
information. eorem that optimap, , , depend onl;. only throughp. Thus, (15)

is indeed a recursion for; if optimal sensor quantizers are used.
In the special case adb, = 2, optimal sensor quantizers are de-

scribed by Theorem 3 s )
, i) Foreachk, 0 < k < T, the functionJ} (I.) can be written as a
U ot o (Xer) 1, if Lo(Xe,e) > A7 (L) function of onlypx, sayJi (px).
ok = Qo Ae k) = . ; i i
b b 0, otherwise ii) Foreachk, 0 < k <T — 1, an optimal sensor quantizer at time

0 0 k + 1 depends od} only throughpy,.
where\” = /\(1 »- In general, the LRQ at timé at sensorS; is

descrlbed in terms ab, — 1 thresholds as in Definition 1. We will see . on ;roof. The proof is identical to that of [12, proof of PrOEOS"
later in Section IlI-B1) that optimal sensors quantizers actually belong
to the smaller set of MLRQs. Based on this result, the finite-horizon DP equations can be rewritten
in terms ofp;. as follows:
B. Sufficient Statistic for Dynamic Programming
In the following, we explore the DP solution of (6) and (7) further and Tr (pr)=1-pr (16)
show that they can be rewritten in terms of a one-dimensional sufficient

statisticp,. defined by andfork =0,...,T -1

pr = P < kY| I1). (8) Ji (pr) = min {( 1= pr)s cpr + Af(pk)} a7
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where Using (20) and Lemma 2, itis easy to show that an optimal fusion center
o(d: & p) policy will have the threshold structure given in the following theorem.

AL =mjn 3 I (—) hd; ¢: p).

h(d; ¢; p) Theorem 4: An optimal fusion center policy has stopping time

forallp € [0, 1]. (1) thatisgivenby

Some useful properties of the functioh$ and. 4} are given in the T = inf{k:pr > a} (22)
following lemma which is easily proven by simple induction arguments
using (16)—(18). whereq is the unique solution to

Lemma 1: The functionsJ; (p) and A} (p) are nonnegative, con-
cave functions of, for p € [0, 1]. Furthermore A7 (1)=J (1) =0,
VEk.

ca+Aj(a)=1—a

when the solution exists. If the curves+ A ;(p) and(1 — p) do not

1) Optimal Finite-Horizon QuantizersWe established earlier in intersect or{0, 1], « is taken to be.
this section that optimal finite-horizon sensor quantizers are LRQs with o . .
thresholds that depend on the past decision information. Theorem 3 furkémark 1: If a = 0 andv > 0, the decision of the fusion center is
ther implies that the thresholds of the optimal LRQs depend omkthethat a disruption took place before the observations were taken.
only throughp,.. Now, a simple permutation argument can be used to While Theorem 4 completes the solution to the Bayesian optimiza-
argue that optimal sensor quantizers at time 1 can be found in the tion problem of (4), the preceding analysis does not specify a clear
smaller class of MLRQs with thresholds that depengpriThus, if we  “recipe” for computing the thresholds for the optimal sensor quantizers
define the se® 1 to be the set of MLRQs, then (p) of (18) can be and the fusion center. In the following, we give a key result that facili-

written as tates the computation of these thresholds.
. ' r (9(d; & p) 2) Uniqueness of (p) and its Consequenced:etS C C[0, 1] be
Ap(p) = Join > Jin <W) h(d; ¢; p), the set of all concave functions {h 1] that are bounded (in sup norm)
Mo Pep by the function(1 — p), p € [0, 1]. Itis clear that the infinite-horizon

forallp € [0, 1].  (19)  cost-to-go functiony belongs to the sek. For anyG' € S, we define

Finally, since an MLRQ@)., »+1 is completely characterized Hy, — 1 g(d: é: p)
thresholds, the minimization to obtaity, (px) in (19) reduces to a fi- We(dip) =Y G <W) h(d; ¢; p).
nite-dimensional optimization problem oVgl," , (D, —1) thresholds. d ek

C. Infinite-Horizon Optimization Clearly, A;(p) of (21) can be written in terms &% as

As derived in [12], it is easy to establish that Ay(p) = min Wy(é;p)
pewy
Jim Sl (p) = inf T (p) = T () = (D)
=~ ’ Now, let the mapping: S — S be defined by
where the last equality follows from the fact that the geometric distri-

bution of " is memoryless. TN s _ . (e
Taking limits asT” — oc in (17) and (18), we get that the infinite 7 Glp) = min {(1 p)-ep+ pedyy Wol; p)}’ for € 5.

horizon cost-to-go functiod (p) satisfies the Bellman equation (23)

J(p) = min{(1 - p), cp+ As(p)} 20)  From (20), it is clear thaf is a fixed point of7 . The following result
where is that this fixed point iminique The proof is nearly identical to that of

[12, Theorem 3], and is hence omitted.
) _ oAl
As(p)= lm Ay () Theorem 5: The infinite-horizon cost-to-go functiohis the unique
‘A b fixed point of 7.
= min Z]<M> h(d; ¢; p), forallpelo, 1].

€2y T h(d; ¢; p) An important consequence of this result is thigp) can be obtained

(21) by successive approximation. Indeed, we can show using a simple in-
duction argument thaf "'y (p) < 7"5(p), for eachp € [0, 1],

Note that the minimum Bayes risk is simply»). In addition, if 7 (p) wheren(p) = 1 — p. This means thal ", converges monotonically
is computed for alp, then the optimal policy of the fusion center can bgo .J asn — oc. Theorem 5 also implies thatstationaryset of sensor
obtained easily from the right-hand side of (20). However, it is possibigiantizers is optimal (also see [12]).
to obtain the qualitative structure of the optimal fusion center policy
without actually computing/ (p).

1) The Structure of the Optimal Fusion Center Policwe begin
with a lemma which follows straightforwardly by taking limits Es— In the following, we exploit the above two consequences of Theorem
oo in Lemma 1. 5to arrive at a recipe for numerical computation of the optimal solution.

IV. NUMERICAL COMPUTATION AND IMPLEMENTATION

Lemma 2: The functions/(p) and A ;(p) are nonnegative concave .
functions ofp, for p € [0, 1]. Furthermore, they satisfy the endpoian' Threshold Computation
condition Note that the stationary set of optimal quantizers are MLRQs. Let
the thresholds for the MLRQ at sens6r be denoted by\fe), i =
A;(1)y=J(1)=0. 1,2, ..., D¢ — 1. Furthermore, we collect the threshold values at all
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the sensors in the vectdr Since the MLRQs are completely characwhereL? is the likelihood ratio of the pmf induced on sensor decisions
terized by the thresholds, we may rewrite the functiong andh of  through the sensor quantizer, i.e.,
(13) and (14) as

P i { ) (g) < Le(Xy) < 5‘50((1)}

LTJ (2’ q) . (33)
(¢ ¢ v
R pr<‘>{ b <LUXD SN } o {3, (0) < Lo(X0) <A ()}
o

(24) H
h(d; X; p)=g(d; \; p) where

: 50000y — \© < P4 ) 24

+(1=p)(1- p)H m{ J,1<L[(X£)gxg?} ) =Aopi \ T3 g (34)

(25) Also, as beforeX, denotes a generic observatiorbat andj\g‘) (¢) =
0, X9 (q) = =, for all ¢.

where X, denotes a generic observationSat and/\gf) =0, ,\gi = The sensor messages at tilnare formed through MLRQs based on
oo, for all £. qr—1, 1.8,

Using the definitions of and given in (24) and (25), we can rewrite
the mappingZ of (23) as Ue,k = ds, only if Xff (qr—1) < Le(Xer) < )\d +1(qk,_1).

T G(p) = min {(1 ) ep m;n Wer (A, p)} (26) Finally, the fusion center stopping time is given by

where, forG € S, 7= iuf {k > p(1— a)}

d; X;
Weh 1) = 3 6 (figarsg ) X @D

C. Relaxing the Geometric Prior Assumption

The Bayesian analysis of the preceding sections depended heavily
To obtainJ, we successively appl§y to 5(p) = 1 — p. This can on the assumption that the prior distribution of the change time was
be done numerically wittp appropriately quantized of), 1]. Since geometric. For theentralizedchange detection problem, it is known
convergence td is guaranteed by the results of Section I1l-C2), wWehat in the absence of prior information, a useful test may be obtained
can stop the iteration as soon as the norm difference between succesgi¢f a limiting form of the Bayes solution, by lettipgand» go to zero.
iterates falls below a desired threshold. The optimal sensor threshotglgs limiting form was first suggested by Girshick and Rubin [9], and
(as functions o) are, of course, obtained from the last iteration as s sometimes referred to as the GRS (Girshick, Rubin, and Shiryayev)
procedure.
Aopt(p) = arg In}%n WA p) (28) For the decentralized change detection problem, there does not seem
to be an obvious way to find the optimal solution (for both the sensor
and the optimum fusion thresholdis obtained by solving (numeri- @nd fgsion center Qecision .ru.les) under. Lorden’s minimax criterion. As
cally) mentioned in Section |, a minimax solution was found in [8], only under
a restriction on the class on sensor functions. The Bayesian solution
(1—a)=rca+Wi(Aopt(p), ). (29) we have found can, of course, be applied to the situation where prior
information is not available, in a similar fashion as in the centralized
case. In particular, if we take limits in (32) as» — 0, in such a way
thatqo — 0, then we get the following recursion fgr.:
To implement the optimal solution, both the sensors and the fusion
center need to compute the sufficient statigticrecursively. There is ! i
obviously a one time-step delay between the recursions at the sensors k1 = [g& + 1] [ Lt (Ue, k415 ax),  with go = 0.
versus that at the fusion center. Using the new definitiong afid 2 =1
given in (24) and (25), we can rewrite the recursion (15) as

B. Implementation of the Optimal Solution

Also, the MLRQ thresholds at the sensors become independenpt of
(Ussr: Aope (0): 11 In particular, from (34), we get

Dol = R with pg = 30
P = (T Aone(0); p2) po=v (30)

N ¢4 4
M) =2, (0., forallq.
wherel.,¢(p) is as specified in (28). Implementation of this recursion

is facilitated by making the variable substitution Finally, the fusion center stopping rule is as in the centralized GRS

procedure, i.e.,
Pk

g = ——————. 31 .
1 (1 —pi) (31 7 =inf {k: qx > A}
In particular, it is easy to show that whereA is varied to the tradeoff &, versus Ra.
- V. CONSTANT-THRESHOLD SUBOPTIMAL POLICY
qrael = "(Ue, ks1s qr with ¢go = — . . . .
kst (e, k15 qe), 10 p(l—v) It is of interest to compare the performance of the optimal solution

(32) with that of a suboptimal policy that ignores all the past message infor-
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mation and simply uses MLRQs with constant thresholds at the sensapsantizers reduce to binary likelihood ratio tests that are characterized

ie., by a single threshold, i.e.,
T . 3 ~ B C
Ue v =de onlyif AY) < Lo(Xe x) < A, Ue o= L ifXe > Al ?(,)k,l)
0, if X < A0 (pr—1).

The question then arises as to howthesewconstantthreéhsﬂrdmld be i
chosen. With the sensor thresholds fixed athe fusion center faces a Furthermore, the functionsand’ of (24) and (25) needed for the DP

centralized change detection problem with independent and identicagjution simplify to
distributed (i.i.d.) vector “observation#’ .. The pmfinduced ol « N ds
by the constant-threshold quantizerSatis given by g(d; X p)=[p+1-p)e] [] [Pl {X{r > A0 }]
~ ~ =1
710 = Preo A2 < LX) < X7},
i=0,....Di—1, j=0,1. (35)

. |:P1 {XC < )\([) :|1 dg

As we shall see in the numerical results given in the next section, forthe, (4. x- »)= a(d: \: - 0\]%
_ : 9 f0rthe, (4; x; p)=g(d; X p)+(1=p) (1=p) [] [P {Xe>2"}]

centralized change detection problem, the slope of the tradeoff curve

betweerin Pra and Byp is roughly equal to the negative of the Kull- ~ @]~

back—-Leibler (KL) “distance” between the distributions after and be- [PO {‘\" <A }] :

fore the change. Hence, we should expect that the best tradeoff betwg

Pra and Bop is obtained wherD(f{,. £',), the KL distance be-

tweenf| , and fS’,, is maximum. Thus, a reasonable choice X67

=1

fd8, the equation foE Y (see (33)) which is required in the recursions
for ¢, becomes

is the one that maximizeB(f{ ;, 5 ,). i ] [pl {Xc > ;\(t’)(q)}]l [pl {Xg < g(fl)(q)}]lﬂ
The optimum fusion center solution (for fixéd is obtained by com- LY (i, q) = - - - i
puting the sufficient statistig; recursively as [Po {Xc > /\(“(q)}] [PO {_Xe < A(l)(q)}]
~ N ~ )
G = B[ = 20 @Wekr), withgo = —2—  whereA(a) = A3 (pa/(1 + p)).
L—p 2= ' p(1—v) In optimizing the thresholds, we first consider the two sensor case

(N = 2). Optimal sensor threshold functiona’’)., A)) are ob-

where . A . Pt .
, tained by minimizingWe (A, X®), p) over AV, A?)) ¢ R? at
zU(i) _ fﬁe(i) each stage of the successive approximation procedure.
TR As a further simplification, we consider the symmetric situation

where the sensors have identical statistics. Through numerical experi-
mentation for a few test cases, it was found that the optimum thresholds
. a were identical (functions af) at the two sensofsfor both examples.
{]‘ > 7} We hence simplify the optimization by settind? = A2 = X
and optimizingW¢ over the single threshold. Sample results for
the Poisson and Gaussian examples are shown in Figs. 2 and 3. The
optimum fusion center thresholdis easily found from/(p) as shown
We illustrate the theoretical results of the previous sections throughthe figures.
two simple examples. It is interesting to note that the optimal sensor threshold functions

. __are nonmonotonic. We also note thdf) is discontinuous for
Example 1: Assume that the sensor observations are Pmss&,'n Heﬂ;t(p)

. o . ~the Gaussian example. The general trend seems to be to progressivel
random variables with different means before and after the dlsruptlc%n. P © o ; prog y
Let the observations at sensarhave mea before the disruntion avor the change hypothesis;agcreases toward; however, there are
' Moe ption, abrupt “corrections” to this trend.

and mearnu . after the disruption. Without loss of generality assume N hat B di h timal solution is i
thatjise > jioe. Then the likelihood ratio s is given by ote that Bayes cost corresponding to the optimal solution is given
by J(v). For the examples shown in Figs. 2 and/3+= 0, and hence
Lo(a) = <M>r exp {— (i1 — jioc)} J(0) is the minimum p(_)ss_ib_le value ofrR + cEpn, _for the given
) ) value ofc. However, the individual performance metrigs\Pand By,
cannot be obtained fromi(0). These quantities may be obtained, for
each value of, via Monte Carlo simulations. The pairs@ra, Epp)
Example 2: Assume that the sensor observations are Gaussiailues thus obtained formteadeoff curvefor the optimal policy.
random variables with different means, but the same variance, befor&ve may compare different policies by plotting their tradeoff curves
and after the disruption. Again, let the observations at sefisbave on the same plot. The three policies of interest are i) the optimal cen-
mean o, before the disruption, and mean. after the disruption, tralized policy; ii) the optimal solution; and iii) the suboptimal solu-

The fusion center stopping time is then given by

VI. NUMERICAL RESULTS

Note that the likelihood ratio is monotonically increasingein

with p1¢ > pioe. Then the likelihood ratio a$, is given by tion of Section V. The tradeoff curves for all three policies are ob-
_ ) 2 _ 2 tained via Monte Carlo simulations for various values.dfhe tradeoff
- ({10 = poe)T  pie = poc . . _ . .
Li(x) = exp 72 T T 9,2 curve for the optimal centralized policy is obtained by varying the
4 4

single-threshold parameter at the fusion center. The tradeoff curves

whereo} is the variance. Note thdt () is monotonically increasing
in 2 in this example as well. 2t is known that in decentralized detection problems, assuming identical dis-

SinceL, is monotonicallv increasing. we can characterize the sen tributions at the sensors does not necessarily result in identical solutions for the
¢ y 9 timal sensor quantizers, except asymptoticallyvas> co[10].

quantizers in terms of thresholds on the observations, rather than O8hs noted in [12], this behavior might be surprising at first, but such behavior

their likelihood ratios. To further simplify the examples, we assume th@atcommonly observed in control systems where “bang—bang” control is op-
the sensor messages are binary, Ig.= 2 for all ¢. Then the sensor timal.
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Fig. 2. Optimum thresholds for two identical sensors sending binafig. 4. Tradeoff curves for two identical Poisson sensors. Sensor observations
messages—Poisson example. Sensor observations are Poisson withOmeare Poisson with meah0 before the disruption, and meaht after the
before the disruption, and mead after the disruption. The parameter valuedisruption. The parameter values are= 0.05 andv = 0. The KL distance

arec = 0.06, p = 0.05, andr = 0. Results were obtained using 200 iterationgor the sensor observations(s7106. The threshold that maximizes the KL

of the successive approximation procedure with 5000 points op &xés. The distance at the output of the sensokis= 13, and the corresponding maximum
optimal sensor threshold function is only shown oK a, since it is not used KL distance is).4473.

for p > «. The fusion center thresholdis marked on the plot showing(p).
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Fig. 5. Tradeoff curves for two identical Gaussian sensors. Sensor
Fig. 3. Optimum thresholds for two identical sensors sending binagbservations areV'(0, 1) and A'(0.75, 1) before and after the disruption,
messages—Gaussian example. Sensor observations Ag® 1) and respectively. The parameter values are- 0.05 andrv = 0. The KL distance
N(0.75, 1) before and after the disruption, respectively. The parameter valulgs the sensor observations §528125. The threshold that maximizes the
arec = 0.1, p = 0.3, andv = 0. Results were obtained using 200 iterationsL distance at the output of the sensoriis= 0.62, and the corresponding
of the successive approximation procedure with 5000 points op &xés. The  maximum KL distance i§.1791.
sensor threshold was quantized to 500 values in the range[fram1.75].

Wheref}fl is as defined in (35) corresponding to the KL distance-max-
for the Poisson and Gaussian examples with two identical Sensorsigiiring threshold.
shown in Figs. 4 and 5, respectively. Also shown in Fig. 6 are tradeoffThe surprising observation in the performance comparison plots is
curves corresponding to two sensors with different Poisson statistigfat in all cases, the suboptimal policy and the optimal policy have
Similar results are obtained for systems with five sensors. roughly the same performance. These results indicate that a simple,
Itis interesting to see that for the centralized policy, the pléi&ia  constant threshold quantizer of the observations may work just as well
and Bp is a straight line with slope that is approximately equal to  as the optimal policy. In other words, each sensor may ignore all the

_ ZD ( {é) fé”) ) past message information without loss of optimality.
L
For the suboptimal policy, the tradeoff curve betwieRys and Bp VIl. CONCLUSION
has slope that is roughly equal to We studied a decentralized extension of the quickest change de-

_ ZD ( v, o%) tection problem and showed that the problem was tractable under a
n " ’ quasi-classical information structure. In particular, we have given an
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0 ! ' ' T [— Centralized I" andI,_,, and the outer expectation is w.r.t. the joint distribution
—— Optimal of X¢, andT’, conditioned orf,_,. The conditioning w.r.tX, i is
~ — Suboptimal dropped in the inner expectation due to the independence of the sensor

observations giveli. The result of the inner expectation is a function
of I—1, T, andUy, &, sayK (U , Ix—1; T'). Therefore,
R, = E[If(Ug7 ks D13 F) |Ik_1]
b Now, forv < k, an application of Bayes rule gives
PUT = 1} [ T) £ (Xe)

P({F:f)}'Ik*l'X@,k): fl(X€k|Ik—1)

wheref;(- | I;— ) denotes conditional pdf oY, ; givenI;_. Simi-
o larly, for v > k&

=E|> K(Ue , Ii—1; 7) PUT = 4} | Temis Xex)
Y=0

: , : . e _ _PUT =} [ L) 187 (Xew)
. ' ; | | : P({F - 7} | Ik—la Xé,k) — fI(Xt,'Jv | IL:—1)

0 2 4 ES 8 10 12 Hence,

Fig. 6. Tradeoff curves for two sensors with different Poisson statisticd?x =E
Observations at both sensors are Poisson with méavefore the disruption.

The means after the disruption aie and 14 for sensorsS; and S,
respectively. The parameter values are- 0.05 andv = 0. The KL distance

k
1 .
A T < (X0 K (U e )

PUT = A} [ Le1) + 757 (Xe k)

~=0

of the observations af®1879 and0.7106 at sensors; andS,, respectively. o

The threshold that maximizes the KL distance at the output of the sénser . KUy v. I_q: ~) PAT =~V | T I.

A = 11, and the corresponding maximum KL distancéi19. For sensor ;1 (Ue ks T ) P H ) kot
vy=k

S2, the values ar@3 and0.4473, as in Fig. 4. L . . . M
? ‘ g Minimizing R; with respect tay, » is equivalent to minimizing the

. . . . . . quantity inside the above expectation almost everywhere. Thus, every
explicit computational technique for an optimal solution for this €aSG:h p.o. solution for the quantizer at sensorat timek satisfies
We have also suggested a simplified implementation for this optimal __, ot (Xe)
E =@ e Ak

solution. It is of interest to develop a better understanding of the non- '’

monotonic, discontinuous behavior of the optimum sensor threshold = arg min
. . . . . . de€{0,...,D—1}

functions. It might be possible, for example, to find simple parametric © v "
models for these functions that would facilitate implementation of the '[H1 (des In—1) fi " (Xe,k)+Ho(de, Ti—1) fo (Xe,k)]
optimal solution. where

Surprisingly, however, the numerical results indicate that it may k
not be necessary to go through the trouble of computing (and Hi(de, Tn—1) = Y K(de, T—1, v) PUT = v} | Tx—1)
implementing) the optimal solution. In particular, using a simple =0

constant threshold in place of the rather complicated optimal seng®d -

threshold function does not seem to result in any performance loss -

in the examples we considered. We believe that)t/hg near optimalityHO(dl’ L) = Z K= (de, Tima, 1) PAT = 7} [ Tiea)
of the constant threshold policy may stem from our assumption thﬁ’ius,

the sensor observations are independent, conditioned on the change, .
point, but we have not been able to establish a rigorous result in this . #(Xe.%) ) )

direction. It is also of interest to study systems in which the sensor arg e Hi(de, Te—v) Le(Xe, 1)

observations are dependent, conditioned on the change point, to see if _ +Ho(de, Ix—1), if Le(Xo ) < o0
past message information is more useful in this scenario.

y=k+1

argnginHl(d/,qu), if Le(Xe ) = o0.
dg
APPENDIX (A1)

Proof of Theorem 2:From (7)l by rep]acingg +1 by k in the From (Al), it is not difficult to see thaﬁ;y & isan LRQ with thresholds
second minimum, it follows that optimal, minimize thatdepend o+, since itis written as a minimum of linear functions

~ ikeli io. Thi . O
Ri—E [JkT (1) |Il.~—1:| of the likelihood ratio. This completes the proof
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The following is a simple example of distributed detection: two sen-
sors, binary hypothesis and additive Gaussian noise. Assume the ob-
servations at these two sensors are

) ) o ] ) Hy:yy = 14w, yo=—1+4 w2
On the Optimality of Finite-Level Quantizations for Hyyi=1+w, y2=1+uws
Distributed Signal Detection
wherew; andw, are zero-mean independent Gaussian random vari-
Jun Hu and Rick S. BlugnMember, IEEE ables with variance3 and2, respectively. We also assume hypotheses
H, andH; have equal prior probabilities.

. ) . ] For a centralized detection system, the optimum decision rule, the
Abstract—Distributed multiple sensor detection problems with quan- . vimuma posteriori (MAP) rule, is relatively easy to find. On the
tized observations are investigated for cases of nonbinary hypothesis and L . L : T
possibly statistically dependent observations from sensor to sensor con- other hand, .flndlng an optimum distributed detection system is much
ditioned on the hypothesis. The observations available at each sensor aremore complicated. Generally, we need to try all possible fusion rules

quantized to produce a multiple digit sensor decision which is sent to a fu- and use numerical techniques to determine the corresponding optimum
sion center. At the fusion center, the sensor decisions are combined to form gecision rules.

a final decision using a predetermined fusion rule. First, it is demonstrated In the followi id ti decisi | ithout
that there is a maximum number of digits that should be used to communi- n the lollowing, we provide opumum decision rules withou

cate the sensor decision from a given sensor to the fusion center. This max-discussing how they are found. This will be discussed later in the
imum is based on the number of digits used to communicate the decisions correspondence. Here we denote a distributed scenario where the first
from all the other sensors to the fusion center. If more than this maximum  sensor makes; decisions and the second sensor makesdecisions

number of digits is used, the performance of the optimum scheme will not e . . g .
be improved. In some special cases of great interest, the upper bound on the by (n1, n2). The resulting optimum decision regions afid for the

number of digits that should be used can be made significantly smaller. Sec- Centralized system and the distributed scenafins ), (1,2), and
ondly, the optimum way to allocate a fixed overall number of digits across (1,3) are illustrated in Fig. 1. Of course, the centralized system,
sensors is investigated. lllustrative numerical results are also presented in shown in Fig. 1(a), should achieve the lowest probability of error. For
this correspondence. distributed systems, at first the more bits used at the second sensor,

Index Terms—Distributed signal detection, multiple digit decisions, non-  the lower the probability of error achieved, as shown by Fig. 1(b) and
binary hypothesis, quantizations. (c). However, whem, > 2, extra decision bits at the second sensor
cannot decrease the probability of error further. This is illustrated
by Fig. 1(c) and (d) since, in either cage, = 0.1974 although the
system in Fig. 1(d) uses an extra bit.

Signal detection algorithms which process quantized observationsThe results for the distributed scenari@s 4), (1,3), (2,2), and
taken from multiple sensors continue to attract attention [1]-[5]. Sugh, 1) are provided in Fig. 2. From Fig. 2, we observe that (hg2)
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