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Optimal Linear Dispersion Codes for
Correlated MIMO Channels

Che Lin and Venugopal V. Veeravalli, Fellow, IEEE

Abstract— The design of space-time codes for frequency flat,
spatially correlated MIMO fading channels is considered. The
focus of the paper is on the class of space-time block codes
known as Linear Dispersion (LD) codes, introduced by Hassibi
and Hochwald. The LD codes are optimized with respect to the
mutual information between the inputs to the space-time encoder
and the output of the channel. The use of the mutual information
as both a design criterion and a performance measure is justified
by allowing soft decisions at the output of the space-time decoder.
A spatial Fourier (virtual) representation of the channel is
exploited to allow for the analysis of MIMO channels with
quite general fading statistics. Conditions, known as Generalized
Orthogonal Conditions (GOC’s), are derived for an LD code to
achieve an upper bound on the mutual information, with the
understanding that LD codes that achieve the upper bound, if
they exist, are optimal. Explicit code constructions and properties
of the optimal power allocation schemes are also derived. In
particular, it is shown that optimal LD codes correspond to
beamforming to a single virtual transmit angle at low SNR,
and a necessary and sufficient condition for beamforming to be
optimal is provided. Due to the nature of the code construction,
it is further observed that the optimal LD codes can be designed
to adapt to the statistics of different scattering environments.
Finally, numerical results are provided to illustrate the optimal
code design for three examples of sparse scattering environments.
The performance of the optimal LD codes for these scattering
environments is compared with that of LD codes designed
assuming the i.i.d. Rayleigh fading (rich scattering) model, and it
is shown that the optimal LD codes perform significantly better.
The optimal LD codes are also compared to beamforming LD
codes and it is shown that beamforming is nearly optimal over
a range of SNR’s of interest.

Index Terms— Beamforming, fading channels,
antennas, space-time codes, virtual representation.
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I. INTRODUCTION

HE use of antenna arrays at the transmitter and receiver

to form a multi-input multi-output (MIMO) system has
emerged as a powerful technique to improve the information
rates and reliability of wireless links at low cost. The initial
theoretical work of [1] and [2] has sparked considerable
interest in designing practical schemes that can approach the
capacity of MIMO channels. Practical approaches to coding
for MIMO channels typically separate the encoding into an
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outer code concatenated with an inner block code, a space-
time code, which is matched to the MIMO channel.

While it is optimal to jointly optimize the inner and
outer codes, to simplify the optimization, the inner codes are
generally designed separately using certain criteria. Among
these criteria, the pairwise error probability (PEP) [3]-[6] and
diversity gain [7] are most extensively used throughout the
literature. Recent work on Low-Density Parity Check Codes
(see, e.g, [8]) has shown that it is possible to construct outer
codes that come close to achieving the mutual information
between the input and output of the inner space-time code.
This motivates the use of mutual information as a design crite-
rion for space-time block code design. Hassibi and Hochwald
[9] have applied the mutual information criterion to design
optimal codes within the class of Linear Dispersion (LD)
codes with i.i.d. Gaussian input symbol. Jiang [10] has con-
sidered design of optimal LD codes for i.i.d. Rayleigh MIMO
fading channel with binary input symbols and conjectured
that the optimizing LD code is the generalized orthogonal
design introduced in [7]. Bresler and Hajek [11] later extended
Jiang’s work to real input symbols with arbitrary distribution
and proved the conjecture proposed by Jiang. It is worth
noting that in [9], mutual information is merely treated as
a design criterion to devise good LD codes, while Bit Error
Rate (BER) is used to measure the performance of the code.
This is due to the implicit assumption that hard decisions
are made at the LD decoder. If soft decisions are allowed
(for instance, passing the likelihood function from the space-
time decoder to the outer decoder), mutual information may
be a more reasonable performance measure to consider, i.e.,
two candidate inner codes should be compared in terms of
the mutual information they achieve. Therefore, in this paper,
we treat mutual information as both a design criterion and a
performance measure.

Much of the existing work on space-time block code design
using the mutual information criterion has focused on the
i.i.d. Rayleigh fading model for the channel. While this model
is reasonable for rich scattering environments, correlation
between the elements of the channel matrix needs to be
considered in more general scattering scenarios. Significant
performance degradation may occur if a space-time code
intended for an uncorrelated scattering environment is used
on a correlated MIMO channel. Therefore, adaptations of the
code design to the scattering environments may be essential
and beneficial. The main contributions of this work are two-
fold: a) we extend the optimal LD code design of [10] and [11]
to general MIMO channels with uniform linear arrays (ULA’s)
at the transmitter and receiver, and b) we study techniques for
adaptive code design in changing scattering environments.

1536-1276/08$25.00 (© 2008 IEEE
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II. CHANNEL AND SYSTEM MODEL
A. Channel Model

Consider a frequency flat, multiple-antenna communication
system with n; transmit antennas and n, receive antennas.
In a discrete-time, complex baseband model, the transmitted
signal matrix X € C™*7 and the received signal matrix Y €
C™*T are related by

/T
Y=//—HX+W
Ty

where H € C"*"t denotes the channel matrix, and W &
C™*T denotes the complex additive white Gaussian noise
with iid. entries W,;; ~ CAN(0,1). We assume that the
channel remains constant over the blocklength of T, i.e.,
T is smaller than the coherence time of the channel. We
also assume that the channel changes in an ergodic fashion
from block to block, and an average input power constraint
of E[Tr{XX'"}] < n,T. Since each pair of transmit and
receive antennas observes the same scattering environment,
it is reasonable to assume that each entry of the channel
matrix H is identically distributed. If we further assume that
the channel matrix is normalized such that E[|H, ;|?] = 1,
then I represents the effective signal-to-noise ratio (SNR) at
each receive antenna. We assume that the receiver knows the
realization of the channel matrix H while the transmitter only
knows its distribution. In a rich scattering environment without
line-of-sight (LOS) component, the distribution of H can be
well modeled by i.i.d. zero-mean circularly-symmetric com-
plex Gaussian random variables. However, in other scenarios,
this may not be true and a general distribution of H needs to
be considered. Our model and assumptions for the distribution
of H are introduced in Section II-C.

B. System Model and Linear Dispersion Codes

As mentioned in the introduction, the coding problem for
the MIMO channel H can be separated into the design of an
inner space-time block code and an outer code, as shown in
Figure 1. We assume that there are K streams of input symbols
x1[t],. .., zk[t] for the space-time encoder at a given symbol
time ¢ and that they satisfy the following assumption

Assumption 1: The streams of  input
xi[t],. .., zx[t] satisfy:

symbols

(i) For each stream, input symbols @j[t] are i.i.d. across
time and are drawn from some real constellations with
marginal distribution p(xy,).

(#2) Different streams are independent from each other.

The second assumption can be justified if @1 [t], ..., xk[t]
are produced as outputs of independent scalar outer encoders
as in the V-BLAST signaling scheme. Applications involving
the use of bit-interleaved codes at the outer encoder also justify
the second assumption. Since the input symbols x;[t] are i.i.d.
across time, we will drop the time index ¢ for the rest of this
paper.

Linear dispersion codes were first introduced in [9] and
subsume both the V-BLAST signaling scheme [14] and the
block codes of [7]. In this paper, we focus on applying LD
codes as our inner space-time codes under the system model
discussed above. The definition of a LD code involves a set of

dispersion matrices {A} € C™*T such that our space-time
code X is given by

K
X = Zwkz‘lk (1)
k=1

where the symbols {:ck}kK:l satisfy Assumption 1. Namely, at
a given symbol time, the outer encoder produces a set of inde-
pendent symbols {x }. Information contained in {x} is then
spread across the spatial and temporal dimensions through
{AR}E_|. After normalizing x; such that E[z?] = 1, the
power constraint is applied to Ay so that Z,f:l Tr{AkAL} <
nT. It may at first seem restrictive to assume that {xj}
are real. However, any sequence of complex symbols with
independent real and imaginary parts can be generated under
the model using two separate input symbol streams. Therefore,
under the assumption that the complex input symbol has
independent real and imaginary parts, the LD codes defined
here are equivalent to those defined in [9].

Since a LD code is required to be an invertible mapping
to guarantee successful decoding, and since the likelihood
function p(x1,...,2x|Y, H) is a sufficient statistic for the
estimation of x1,...,xk from (Y, H), we obtain

I(X;Y|H) = I(x1,...,xx; Y |H)
= I(xy,...,xx; Y|H) )

where Y is the output of the channel and Y is the likelihood

function produced by the ML decoder. From (2), we see that
for a fixed distribution on @1,...,xx, I(X;Y|H) is an
achievable rate for the effective MIMO channel (See Figure
1) under the LD restriction. Therefore, our goal is to find
LD codes that maximize the achievable rate for the effective
MIMO channel.

C. Virtual Representation

The virtual representation is a succinct method to capture
the scattering environment in general scenarios ([12], [13]).
In [12], the virtual representation is applied to compute the
capacity of correlated MIMO channels. Assuming ULA’s at
the transmitter and receiver, the virtual representation matrix
of the channel is the two-dimensional spatial Fourier transfor-
mation

H=S'HS, 3)

where S, and S; are unitary spatial Fourier transform matrices.
If the scattering does not have a Line of Sight (LOS) compo-
nent, under the standard uncorrelated scattering assumption,
we have the following properties of H [12):

Property 1: The virtual channel matrix satisfies

(z) The elements of H are independent.
(1) H k¢ 1S a zero-mean proper-complex random variable,
and H k,¢ has same distribution as -H kot
The virtual representation can be easily extended when there
is a LOS path, as in [12]. For simplicity of presentation,
we restrict to non-LOS scenarios. By applying the virtual
representation (3) of the channel matrix H, we convert our
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Fig. 1. System Model

signal space into the virtual domain. In the virtual domain,
our channel model becomes

- XK .
:,/EzmkHAk+W )
k=1

where A}, = SZA;C, Y = SY, and W = SIW. Since S;
is unitary, the power constraint in the virtual domain remains
the same and is given by S 1 Tr{A,Al} < n,T. We also
define V' as the variance matrix such that V}, , = Var(lEI k.-
For the discussions that follow, we will focus on this channel
model (4) in the virtual domain and make use of Property 1.

III. MUTUAL INFORMATION CRITERION FOR OPTIMAL
LINEAR DISPERSION CODE

Under the mutual information criterion discussed earlier,
our goal is to find the optimal { A}/ | such that the mutual
information I(x1, ..., Tk; 17|1EI) is maximized. We first state
the following theorem.

Theorem 1: Let X be a LD code (1) with K symbols and
corresponding dispersion matrices {A}K | € C"*T. As-
suming that the real symbols x1, ..., xx satisfy Assumption
1, the following upper bound on the mutual information holds

Z (mk,[wkHAk+W‘H> (5)

Equality holds if and only if A, AT+ A; Al =0, Vk, j such
that & # j. Moreover, the following conditions are equivalent:

(1) AM}JFAJAL:E) ki k#§

(i) pz1,...,ox|V, H) = [T, plas|V, H)

(vit) p(Y|x1, cxr, H) = e[ p(Y|xg, H), where ¢ =
p(¥|H)~ (<=1

Proof : This result is proved in Lemma 3.1 in [10] for the
special case where each element of H is i.i.d. CA/(0,1) and
{x} are binary and equiprobable. As in [10], Assumption 1
is crucial in deriving the upperbound. The key steps of the

proof do not exploit the specific distribution of H and {a}.
The extension is thus straightforward. [

We referred to Condition (z) as the first Generalized Or-
thogonal Condition (GOC’s). Conditions (i¢) and (¢42) in
Theorem 1 state that the a posteriori probability and the output
likelihood function factor. If any of these conditions holds,
the complexity of the LD decoder is greatly reduced since the
joint maximum-likelihood decoding is equivalent to applying
maximum-likelihood decoding to each symbol.

In the next theorem, we maximize the upper bound given
in Theorem 1. The upperbound is a summation of terms of

the form
r - - -
I 2 —azkHA;H—W‘H
uz

Therefore, maximizing the upper bound is equivalent to max-
imizing each term subject to the individual power constraint
Tr{Ak k} < agnT. In [10], it was conjectured that the
optimal LD codes for i.i.d. Rayleigh fading MIMO chan-
nels with binary input symbols satisfy the first GOC and
AzAZT = a;TT. Bresler and Hajek [11] later generalized [10]
to real input symbols with arbitrary distribution and proved
the conjecture proposed in [10]. We further extend their results
(Lemma 2) and use techniques in [12] to show that the optimal
flz[lzT is diagonal. For notational simplicity, we ignore the
subscript k in the following discussion.

Theorem 2: Suppose that the channel matrix H satisfies
Property 1. Under an input power constraint Tr{fLZlT} <
ansT, 0 < a < 1, a dispersion matrix A° that maximizes
the mutual information [ (w; \/nftwf{ A+ W ’f{ ) must be

such that A° A" = A°, where A° is diagonal.

Proof: As in the proof of Lemma 2 in [11], we define ¢(a) =
h(y/ax + n|H = H), where 7 is a real zero-mean Gaussian
random variable with variance 1/2. The proof of Theorem 2
then follows techniques similar to those in [12] except with the
difference that having a concave function ¢ in our expression
complicates the proof. Moreover, the fact that ¢ is concave
instead of strictly concave weakens the result in terms of the
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uniqueness of the optimal diagonal matrix A°. The details are
given in Appendix 1. [J

If we denote the optimal diagonal matrix for the kth input
symbol by A7 = diag{A} ;,..., A}, }, then the following
power constraints hold /

ng K
> A <apmT and > ap =1 (6)
j=1 k=1

i.e., we assume separate power constraints {oynT}HS | for
each symbol and they sum up to n;7'. Therefore, for any
channel matrix H that satisfies Property 1, we have the main
result of this paper which is stated below.

Theorem 3: Let X be a LD code (1) with K symbols and
corresponding dispersion matrices {4}/, € C™*7T, and
assume that input symbols x1,...,xx satisfy Assumption
1. A universal upperbound on the mutual information (5)
is achieved if there exist LD codes satisfying the set of
Generalized Orthogonal Conditions (GOC’s):

(i) A AL+ A;AL =0 Vk,j k#j.

(i7) flkﬁk = A7, k=1,...,K, where A} is a diagonal
matrix that maximizes
I xy; \/%a:kf{/lk +W ’I:I> and satisfies the power
constraints (6).

Such LD codes maximize the mutual information
I(X;Y|H) = I(x,,...,zx;Y|H) and are thus optimal
under the mutual information criterion.

Proof: The second GOC maximizes each term on the
RHS of (5) and therefore gives us a universal upperbound
on the mutual information I(X;Y |H) independent of the
dispersion matrices {Aj}. The first GOC further implies that
the universal upperbound is reached. Therefore, I(X ;Y |H)
is maximized when both the first and second GOC’s are
satisfied. [

IV. DESIGN OF OPTIMAL DISPERSION MATRICES

The first GOC implies that equality is reached in (5) and
we obtain

I(xy,...,xx; Y |H)
K T o L
— E I(mkH/wkHAk-f—W‘H) (7
ny
k=1

As mentioned in Section III, this equality can be interpreted
as the decomposition of the joint ML decoder into individual
ML decoders for each symbol. Therefore, each symbol xj, sees
its own channel and we have an equivalent set of K parallel
channels. Finding the optimal A} and the corresponding dis-
persion matrix ;12 is then equivalent to obtaining the optimal
power allocation for the kth subchannel. In the following
section, we focus on finding the optimal power allocation for
the kth subchannel and ignore the subscript k. Optimal power
allocations for other subchannels can be found through similar
procedures.

A. Necessary and Sufficient Condition for Beamforming to be
Optimal

Although simple convex optimization algorithms can be
applied to obtain optimal power allocations numerically, it is
insightful to understand the asymptotic behavior of the optimal
A° in the low SNR regime. Based on the capacity result in
[12], one should expect that beamforming is asymptotically
optimal in the low SNR regime. This can actually be shown
using techniques similar to those in [12]. Furthermore, one can
establish an explicit necessary and sufficient condition such
that beamforming is optimal. The following theorem describes
the condition.

Theorem 4: Beamforming in the ith virtual transmit angle
is optimal if and only if

N

El¢'(TaTx:)] Y Viie —El¢'(TaTxi)xi] <0 (8)
k=1

where

Ny

Ny
[° = ar max Vi, and ;= H; i ?
glgjgnt,jyﬁi’; k,j Xj ;‘ kol

Proof: Following the arguments similar to those given in

the proof of Theorem 3 in [12], we first establish a necessary
and sufficient condition for beamforming to be optimal for
the first virtual angle. Generalizing the condition to the ith
transmit virtual angle is then straightforward. For details of
the proof, refer to Appendix II . [J

B. Explicit Code Construction

In section III, we derived conditions (GOC’s) for a LD code
to achieve an upper bound on the mutual information. The
LD codes that achieve the upper bound, if they exist, are
optimal under the mutual information criterion. The second
GOC involves finding the optimal diagonal power allocation
matrices. Assume that the same power constraints hold for all
subchannels and denote the optimal power allocation matrix
by A° = diag{\{,..., A7 }. Let N be the total number of
non-zero diagonal elements of A° and i,, be the index for the
m!" non-zero diagonal elements. We can then observe that
every row of Ay, is the all-zero vector except the N rows with
indices {i,, }N_,. And we can express A as

~ . T T
i i
Ak:[gﬂ"'agagkl 7"'7QkN 797"'

01"

vi/here g};m is the %,,th row vector for the dispersion matrix
Ay and 0 is the all-zg,ro column vector. Therefore, finding
dispersion matrices {A;}X | satisfying the set of GOC’s is
equivalent to finding { By}, such that

BkBZ _ Asub
ByBl +B;B] = 0 Vj#k
Whe_f_e Asuvb o= diag{\¢ ,..., A7, } and B, =
la;) ,...,a;Y ]T, which are obtained by stacking
all non-zero diagonal elements of Af and non-zero

rows of Ay, together, respectively. If we further define
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U, = [AS“”]_l/QBk, our problem becomes finding {Ux}£ |
with the properties:

UUl = 1 ©)

UUl +UU = 0 Vj#k (10)

These {Uy} correspond to the generalized orthogonal de-
sign introduced in [7] and can be constructed explicitly if

Y

where p(T) is defined in [7]. As a consequence, finding
the optimal LD codes reduces to finding the generalized
orthogonal design that satisfies the constraints (9) and (10).

N<p(T)and K <T

C. Adaptation to Scattering Environments

The nature of the code construction mentioned above allows
us to design codes that can adapt to different scattering
environments. In particular, let {U/} and {U}!} be the
transformed dispersion matrices that correspond to scattering
environment [/ and I/, respectively. Moreover, let A9 be
the optimal power allocation matrix for environment / and
A%; be that for environment I/. If the rank of A¢, is less
than that of A9, each U/l is simply a sub-matrix of U}.
Therefore, our codes can adapt from scattering environment
I to environment [ in a straightforward fashion. Starting
with a set of transformed dispersion matrices of a scattering
environment with a full-rank optimal power allocation matrix,
the transformed dispersion matrices of that with a smaller
rank optimal power allocation matrix can therefore be obtained
directly. The adaptation is crucial since in practice even the
statistics of the wireless environment are prone to change,
especially when users of the wireless service are mobile.
The simple adaptation scheme allows real-time adjustment of
the optimal LD codes when the statistics of the scattering
environment change drastically. For example, when a mobile
in the outdoor environment enters an indoor environment.
The adaptation scheme mentioned above should be carefully
distinguished from the MIMO Precoder System discussed in
[17] to [19]. Our code design adapts to the statistics of the
fading channel while in the MIMO Precoder System, the
precoder is selected according the realization of the fading
channel matrix.

D. Effect of Varying Parameters K and T

For all the discussions above, we fixed the number of input
symbols to be K and the blocklength of our space-time code to
be T'. The question then arises as to what the optimal values
of K and T are if we are given the freedom to vary these
two parameters. For any fixed 7', it is argued in [9] that the
maximum mutual information increases with increasing values
of K if K < 2n,T. However, we notice that in order to make
our LD code an invertible mapping to guarantee a successful
decoding, we further require that X' < 2n,7. The maximum
value for K is therefore

Koz = 2min{n,, n: }T

and has a nice interpretation as the maximum number of
real degrees of freedom of the MIMO channel. From the

independence bound on the mutual information, choosing
T = 1 is optimal, which gives rise to the optimality of the
V-BLAST signaling scheme. It is therefore tempting to pick
T =1 and K = 2min{n,,n,}. However, for T' = 1, the first
GOC can never be satisfied. Moreover, with a larger value of
K, we need more dispersion matrices flk that simultaneously
meet the first GOC. The first GOC is hence more difficult to
be satisfied. It then becomes an engineering problem to find
the optimal K and 7" such that both the GOC’s can be satisfied
and the overall mutual information is maximized. We further
illustrate this design issue by discussing the optimality of the
Alamouti scheme under the mutual information criterion.

The Alamouti scheme [15] (n, =T = 2) can be expressed
as a LD code defined in (1) by

[31 —s§] % 0 ﬁ 0
« | = T1 1| T2 —i
S2 8] 0 7 0 7
=1 0 -
+x3 1 \65 + x4 i \65
V2 V2
where 7 = %:cl + i%mg and sy = %ws + i%:&l. It

is straightforward to show that the Alamouti scheme satisfies
both GOC’s and hence achieves the maximum achievable rate
of the effective MIMO channel for K = 4 and T' = 2. If
we further assume that @1, ..., x4 are the capacity achieving,
zero-mean, real Gaussian random variables, we then expect
that the Alamouti scheme achieves the capacity of the MIMO
channel. However, the optimality of the Alamouti scheme
actually depends on the number of receive antennas n,.. For
n, = 1, K = 4 is the optimal value since the maximum value
of K is 4min{n,,n;}. In this case, the Alamouti scheme
achieves the capacity of a 2x1 MIMO channel. However, for
n,. > 2, K = 4 is smaller than k,,,, and hence the Alamouti
scheme is suboptimal. The above observations are consistent
with the results given in [9].

V. SIMULATION RESULTS

In this section, we present simulation results that illustrate
the advantage of designing the LD codes according to the
correlation of the channel. We assume that equal power
constraints are applied to all input symbols such that the
optimal power allocations are the same for all subchannels.
If we further let KX = T', where 1" is chosen such that (11)
is satisfied and omit the subscript k£ for notational simplicity,
our optimization problem becomes that of finding the optimal
power allocation matrix A° for each subchannel such that

I(A)=E [@ (iﬁ{ﬁz\ﬁﬂ}ﬂ — h(n)

is maximized. The maximum achievable rate for the effective
MIMO channel is then £7(A°) = I(A°). The optimal power
allocation matrix A° can be found numerically by using
the Stochastic Quasi-Gradient Algorithm [20]. We apply the
Kiefer-Wolfowitz procedure, which approximates the gradient
function by the divided differences of I(A). A convergence
analysis of the Kiefer-Wolfowitz procedure can be found in
[21]. Since the fluctuations of the estimate for /(A) are large,
we apply the Control Variate Method [22] to reduce the
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Fig. 2. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment I using
BPSK.
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Fig. 3. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment I using
4-PAM.

variance of I(A). For the results that follow, we apply several
different input distributions that correspond to different signal
constellations for the input symbols, including BPSK, 4-PAM,
and Gaussian inputs.

A. Scattering Environment |

In the first scattering environment, we have a system of 5
transmit and 5 receive antennas [12], where each element of
H is a zero-mean proper complex Gaussian random variable
with the following variance matrix,

01 0 1 0 0
0 01 1 0 0
V= % 0O 0 1 0 0
‘ 0O 0 1 025 O
0 0 1 0 025

The entries of V' are normalized so that > ko Vi = ngny =
25. Such a variance matrix corresponds to a physical environ-

45

optimal power allocation
4t X beamforming
—&— equal power allocation

mutual information (bps/Hz)

0 i i i i
-10 -5 0 5 10

SNR(dB)

Fig. 4. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment I using
Gaussian inputs.

ment with two very small scatterers, two bigger scatterers, and
one large scattering cluster.

We obtain the optimal power allocation and compare the
mutual information achieved by the optimal power alloca-
tion, beamforming, and equal power allocation. For Figure
2, BPSK is used for the input constellation. We observe
that beamforming is almost always optimal even until the
saturation of mutual information at 4dB and the mutual
information achieved by the optimal power allocation and
beamforming is larger than that achieved by equal power
allocation. Similar observations can be made for the 4-PAM
input constellations, with equiprobable input symbols (see
Figure 3), and for Gaussian inputs (see Figure 4). Moreover,
the advantage of using the optimal power allocation is even
more significant with larger constellation sizes. Finally, we
see that beamforming to the third transmit angle is close to
optimal. This is as expected since the channel gains of the
third virtual transmit angle are much higher than that of other
transmit angles (the sum of the third column of V' is much
larger than sums of other columns).

B. Scattering Environment 11

For the second scattering environment, we consider the
following variance matrix

01 0 006 0 0
s | 0 01 006 0 0
v==01 0 0 006 0 0
L1 o 0o 006 025 o0

0 0 006 0 025

This environment is similar to Environment / except that
we assume more absorption for the larger scattering cluster.
In this case, beamforming is expected to be suboptimal starting
at a lower SNR level than that in Environment /. Indeed, the
optimal power allocation outperforms both beamforming and
equal power allocation in terms of the mutual information as
seen in Figure 5 for the BPSK constellation. For 4-PAM and
Gaussian inputs, we again observe that the mutual information
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Fig. 6. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment II using
4-PAM.

achieved by the optimal power allocation and beamforming is
much larger than that achieved by equal power allocation (see
Figure 6 and 7). The performance differences between optimal
power allocation and beamforming, however, become smaller
as the constellation size increases.

C. Scattering Environment 111

In this scattering environment, the sums of each column of
the variance matrix

1 0 021 0 O

0 1 021 0 O

= % 0 0 021 0 O
’ 0 0 021 05 O

0 0 021 05 1

are all fairly close to one. Therefore, equal power allocation
is expected to be close to optimal. However, as observed
in Figure 8-10, the performance gain of using equal power

0.82 - !
-5 0 5

SNR(dB)

Fig. 8. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment III using
BPSK.

allocation over beamforming is not significant. With increasing
constellation sizes, the differences become even more negli-
gible. Although optimal power allocations outperform equal
power allocations and beamformings in all cases, it is also
tempting to simply use beamforming since the performance of
beamforming is close to that of the optimal power allocation
and equal power allocation.

Based on the observations for Scattering Environments I to
111, we therefore conclude the following: In spatially corre-
lated MIMO channels, beamforming is an attractive candidate
for the transmission of symbols with large constellation sizes.

VI. CONCLUSIONS

We have considered the design of LD codes that maxi-
mize the mutual information in spatially correlated MIMO
channels. By exploiting the virtual representation, we de-
rived an upperbound on the mutual information for scattering
environments with general fading statistics that satisfy the



664 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

18
§
5 16
Q
2
=
re]
T 14t
g1
el
£
©
212¢r
=1
£

optimal power allocation
1 X beamforming
—&— equal power allocation
08 i i i i i i
-6 -4 -2 0 2 4 6

SNR(dB)

Fig. 9. Comparison of the mutual information using optimal power allocation,
beamforming, and equal power allocation for scattering environment III using
4-PAM.
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cation, beamforming, and equal power allocation for scattering environment
III using Gaussian inputs.

standard uncorrelated scattering assumption. Furthermore, we
showed that if one can find dispersion matrices satisfying
both GOC'’s, then the corresponding LD code achieves the
upperbound and is hence optimal under the mutual information
criterion. Equivalently, the channel decouples into K parallel
subchannels, where the optimal power allocation is used for
each of the subchannels. We provided an explicit construction
for the optimal LD codes and discussed the effect of the design
parameters K and 7. In particular, we showed that it is nec-
essary to minimize 7" and maximize K while keeping the dis-
persion matrices satisfying both GOC’s . Finally, we presented
numerical simulations for three scattering environments. Our
results indicate that the mutual information achieved by the
optimal power allocation for each subchannel significantly
outperforms equal power allocation (which corresponds to
ignoring the correlation of the fading channel). Therefore,
designing space-time codes base on channel correlation is
essential and advantageous.

APPENDIX |
PROOF OF THEOREM 2

From the proof of Lemma 2 in [11], if we define ¢(a) =
h(y/ax + n|H = H), where 1 is a real zero-mean Gaussian
random variable of variance 1/2, then

T - - .-
argmaxl(a;;,/xHA+W‘H>
A N¢
r
= E — 2
arg g o (1 o?) |

where v = vec(HA) and vec(M) is defined as the column
vector obtained by stacking the columns of matrix M. Note
that conditioned on H = H , a is merely a constant. Therefore,
©(a) is simply a deterministic, scalar function. Moreover, ¢(a)
is a concave function of a (See Appendix III for detail.)

In the following proof, we use techniques similar to those
introduced in the proof of Theorem 1 in [12]. However, the
function ¢ in our expression complicates the proof. Moreover,
the fact that ¢ is concave rather than strictly concave weakens
our result. The uniqueness of the optimal diagonal matrix A°
is hence lost. Let Q = AAT and let

1@ = oy o]

_E }0 (Etn{ﬁmm*})]

~ By (:;Tr{f{QfIT})]
Denote

Q: =
Q. =

{Q:Q=0,T{Q} < anT}

{A € Q: A is diagonal}

where Q > 0 indicates that () is positive semidefinite. Since 2’
is convex and compact and [ (Q)) is differentiable and concave

over (', if there exists a A° such that I (Q)) is maximized over
', A° satisfies the necessary and sufficient condition

5T (A% A — A°) < 0,VA € O

where the directional derivative 6 (A°; A — A°) can be ex-
pressed as

ST (A% A — A°)
d

= T+ 2 (A =A%) oo
d

S {w <;Tr{ﬂ (A® 4+ 2 (A — A%)) ﬂT})]

x=0
~E {@ (FTr{ﬁAOﬂT}>
Ny
nETr{f{ (A — A% H*}} <0
t
(12)

where

o (L TN ) = 2ol

y=L T {HAH"}

Since I (Q) is concave on the convex set (2, it is sufficient to
show that 67 (A%;Q — A°) < 0,VQ € Q to establish that A°
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remains optimal on €. If we split () into the diagonal A¢ and
off-diagonal term F' as

Q=Ao+F
Then
ST (A%Q — A°) =
E [@ (i Te{HAH'}) £Tr{ﬁI(AQ - A“)IEIT}}
+E {@ ( U fAf }) —Te{HFH }] (13)

The first term on RHS is smaller than zero by (12). The
second term can be expressed as

E {cp ( U re{fA°E }) Y iira }}
P (n,,Z N Tr{h,h })

N

kd=1,k#l
- i E @(Fivn{ﬁﬁ})
nt . (2 —1—1
k,i=1,k#l i—1
r = ot
Tr{Fk,thhz}}
N

A particular term (say k = 1,/ = 2) in the above sum can be
written as

I &
E|l®d| — )\‘-’Th
[(mzzr{

i=1

I & -
Q| — Tr{h;h,
( ntE Ai r{zz}>

i=1

}) fTI'{Fl 2h h2}‘|

=E|E

r i ~

7Tr{F1,2hlh2} EQ? ce 7hnt:|:|

Yo
RHS is an odd function of @r By Property 1, ﬁl has the same
distribution as —h; and h; is independent of h,,... h, .
Therefore,

Lt
E|E (D[ — NTr{hh,
r ~ i - ~
;Tr{F1,2h1h2} h27"'7hnt =0
t

This implies that the second term of (13) is zero. We can thus
conclude that

ST (A% Q—A°) <0,YQ € A
The optimal A, Aj is indeed diagonal. (]

APPENDIX II
PROOF OF THEOREM 4

We begin the proof by parameterizing A as

A = diag{an,T — p,pBa,...,pBn, }

where 0 < p < an;T and

B >0, for2<i<my;and » f<1

=2

Writing the mutual information as a function of p gives
r =t
I(p) =E |p —Tr{HAH }
=E 3 —(an,T — H
=Ele | (anT —p Z |H 1|

k=1

+ — Zpﬂj Z \H ), ;|

j2 k=1

r
=E|p| lanT —pha+ - Zpﬂjxg

j 2

Since (a) is a concave function of a, I(p) is also a concave
function of p. As a result, p = 0 maximizes I(p) if and only

if
9Ip)

<0
dp -

p=0

Evaluating the derivative of the mutual information gives

91(p)
dp =0
r r o
=E |¢ (m(antT)M) o -X1 +;ﬂij

I
ng

¢ (CaTx1)(—x1)]

r
- |/ (TaTx) Zﬁ;x; <0
j=2

which is equivalent to

@' (TaTx1) Z B; Z Vi,
Jj=2 k=1

E[¢'(TaTx1)x1] <0

and is a result of the independence of {x;}. The first
term is maximized when (o = 1, where (° =
argMaxi<j<n, j#i O p.q Vk,;. Therefore, the necessary and
sufficient condition for beamforming in the first transmit
virtual angle to be optimal is given by

E[¢'(TaTx1)] Y Vige —E[¢/(TaTx1)xa] <0
k=1

APPENDIX III
CONCAVITY OF ¢ FUNCTION

For a scalar Gaussian channel of the form
~ T

y=+vVay/—x+n
U
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It can be shown from [16] that for fixed 4/ nLt,

dI r
dgl) = Tmmmse(a)
Moreover,
T - -
I(a) = I<:c;\/a —ern‘H:H
Tt
I = ~ -
- h<\/5 :c+n’HH> — h(R)
Ny
Therefore,
dl(a) de(a) T
- de = Tmmmse(a)

where p(a) = h(\/&,/n%m +n|H = H). Since mmse(a) is
a decreasing function of a, we can conclude that ¢(a) is a
concave function of a.
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