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Abstract—In this paper, we investigate a binary decentralized
detection problem in which a network of wireless sensors provides
relevant information about the state of nature to a fusion center.
Each sensor transmits its data over a multiple access channel.
Upon reception of the information, the fusion center attempts
to accurately reconstruct the state of nature. We consider the
scenario where the sensor network is constrained by the capacity
of the wireless channel over which the sensors are transmitting,
and we study the structure of an optimal sensor configuration.
For the problem of detecting deterministic signals in additive
Gaussian noise, we show that having a set of identical binary
sensors is asymptotically optimal, as the number of observations
per sensor goes to infinity. Thus, the gain offered by having more
sensors exceeds the benefits of getting detailed information from
each sensor. A thorough analysis of the Gaussian case is presented
along with some extensions to other observation distributions.

Index Terms—Bayesian estimation, decentralized detection,
sensor network, wireless sensors.

I. INTRODUCTION

T HE ESTIMATION of a random variable based on noisy
observations is a standard problem in statistics. In this

work, we investigate the related scenario where information
about a random variable is made available to a fusion center
by a set of geographically separated sensors. Each sensor
receives a sequence of observations about the state of nature

and transmits a summary of its information over a wireless
multiple access channel. Based on the received data, the fusion
center produces an estimate of the state of nature. We focus our
attention on the special case of binary hypothesis testing, where

takes on one of two possible values, where the observations
across sensors are independent and identically distributed
(i.i.d.) conditioned on , and where the observation process at
each sensor conditioned on is a sequence of i.i.d. random
variables.

If the structure of the information supplied by each sensor
is predetermined, the fusion center faces a classical hypothesis
testing problem. The probability of estimation error is then min-
imized by the maximuma posterioridetector. Alternatively, one
can consider the problem of deciding what type of information
each sensor should send to the fusion center. Providing some
answers to the latter question will be the aim of this paper.
We begin by mentioning that several different variants of this
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problem have been studied in the past. Notably, the class of de-
centralized detection problems where each sensor must select
one of possible messages has received much attention. In this
setting, which was originally introduced by Tenney and Sandell
[1], the goal is to find what message should be sent by which
sensor and when. See Tsitsiklis [2] and the references contained
therein for an elaborate treatment of the decentralized detection
problem. More recently, the problem of decentralized detection
with correlated observations has also been addressed (see, e.g.,
[3] and [4]).

In essence, having each sensor select one ofpossible mes-
sages upper bounds the amount of information available at the
fusion center. Indeed, the quantity of information relayed to the
fusion center by a network of sensors, each sending one of

possible messages, does not exceed bits per unit
time. In the standard decentralized problem formulation, the
number of sensors and the number of distinct messagesare
fixed beforehand. A more natural approach in context of wire-
less sensor networks is to constrain the capacity of the multiple
access channel available to the sensors. For instance, a multiple
access channel may only be able to carrybits of informa-
tion per unit time. Thus, the new design problem becomes se-
lecting and , where is the number of messages admis-
sible to sensor , to minimize the probability of error at the
fusion center, subject to the capacity constraint

(1)

In the remainder of this paper, we consider the detection
problem where the sensor network is limited by the capacity of
the wireless channel over which the sensors are transmitting.
In Section II, we introduce a mathematical framework for
the study of decentralized detection in capacity constrained
wireless sensor networks. In Section III, we review briefly
some useful concepts from statistics, and we establish that,
under certain conditions, the design problem admits a very
simple solution. That is, we find sufficient conditions for which
having identical binary sensors minimizes the probability of
error at the fusion center. We also show that these conditions
are fulfilled whenever observations have Gaussian or expo-
nential distributions, although they do not hold for arbitrary
distributions. Section IV contains an alternative formulation of
the Neyman–Person type for the detection problem at hand.
Finally, we give our conclusions in the last section.

II. STATEMENT OF THE PROBLEM

Let be a random variable drawn from the binary alphabet
with prior probabilities and , respectively. Cou-
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Fig. 1. Block diagram of a wireless sensor network where sensors transmit
information to the fusion center over a multiple access channel.

pled with this random variable is a network of wireless sensors,
with each sensor receiving a sequence of observations

(2)

about the value of . We assume that the random variables
are i.i.d., given , with conditional distribution .
At discrete time , the sensors are required to send a summary

of their own observation to a fusion center.
Information is transmitted over a multiple access channel. The
information-theoretic capacity of a Gaussian multiple access
channel is governed by bandwidth, power, and noise spectral
density. More generally, the admissible rate of a practical
system with a simple encoding scheme may depend on band-
width, power, noise density, and maximum tolerable bit error
rate at the output of the decoder. Specifying these quantities is
equivalent to fixing the admissible rate of the multiple access
channel. In this paper, we disregard the specifics of these
parameters and assume a joint constraint on the information
rates of the sensors. Furthermore, we neglect communication
errors in the transmitted bits. In other words, we assume that
the network of sensors can transmit reliably at a maximum
rate of bits per unit time. Upon reception of the data, the
fusion center produces an estimate of the state of nature

. This setting is illustrated in Fig. 1. Our goal is to design
an admissible strategy that minimizes the probability of error

.
Definition 1: An admissible strategy, which is denoted by,

consists of an integer and a set of decision rules
such that

(3)

At time , sensor evaluates message , which
is subsequently forwarded to the fusion center. We write
to denote the set of all admissible strategies corresponding to a
multiple access channel with capacity.

Remark 1: We assume that the set is endowed with
a -field and that the decision rules are measurable
functions with respect to . Furthermore, we assume that the
channel capacity is an integer.

In this work, we are primarily concerned with the asymptotic
regime where the observation interval goes to infinity

. For any reasonable transmission strategy, the associated
probability of error at the fusion center goes to zero exponen-
tially fast as grows unbounded. Thus, a suitable way to com-
pare transmission schemes is through the error exponent mea-
sure

(4)

where is the probability of error at the fusion center as-
sociated with strategy when a maximuma posterioridetector
is used. The error exponent is also known as the Chernoff infor-
mation. For a multiple access channel that is able to carrybits
of information per unit time, we can pose the design problem
formally as follows.

Problem 1: Find an admissible strategy that max-
imizes the error exponent

(5)

III. B ASIC CONCEPTS ANDRESULTS

We begin our analysis with a concise review of some basic
concepts and properties of Bayesian statistics related to the
problem at hand. Consider an arbitrary admissible strategy

(6)

We denote the space of received information corresponding to
this strategy by

(7)

so that

(8)

for all observation vectors . In general,
the maximuma posterioridetector is known to minimize the
probability of estimation error at the fusion center. For a finite
observation interval , it may be impractical (or impossible)
to compute this probability of error exactly. We can, however,
evaluate the error exponent corresponding to strategyby using
Chernoff’s theorem, which we state without proof (see, e.g.,
[5]).

Let and represent the conditional
probability mass functions on, given hypotheses and ,
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respectively. Mathematically, for and
, we have

(9)

where represents the probability of event under hy-
pothesis , and

We underline briefly that (9) exploits conditional independence
across sensors.

Theorem 1 (Chernoff):Suppose is given. The
best achievable exponent in the probability of error at the fu-
sion center is given by

(10)

In light of Theorem 1, we can rewrite our original problem as
follows.

Problem 2: Find an admissible strategy such that
the Chernoff information

(11)

is maximized.
As stated, Problem 2 is difficult to solve. Even when assign-

ment vector is fixeda priori, the problem of
finding optimal decision rules is, in most cases,
hard (see, e.g., [2]). In the remainder of this section, we derive
a set of conditions under which Problem 2 simplifies greatly. In
particular, we find sufficient conditions for which havingsen-
sors, each sending one bit of information, is optimal. First, we
establish the following useful result, where we upper bound the
contribution of a single sensor to the Chernoff information.

Proposition 1: For strategy , the contribution of
sensor to the Chernoff information is bounded above
by the Chernoff information contained in one observation

, i.e.,

(12)

Proof: Without loss of generality, we consider the con-
tribution of sensor . The Chernoff information for strategy

is given by

(13)

where is the value of that maximizes the Chernoff informa-
tion . It is then clear that the contribution of sensorto
the Chernoff information is no greater than

(14)

which in turn is upper bounded by the Chernoff information
contained in one observation.

In words, Proposition 1 asserts that the contribution of a
single sensor to the total Chernoff information cannot exceed
the information contained in each observation. Based on this
proposition, we derive a sufficient condition for which having

binary sensors is optimal.
Define to be the Chernoff information corresponding

to a single sensor with decision rule, i.e.,

(15)

and let be the set of binary functions on the observation space
.
Proposition 2: Suppose there exists a binary function
such that

(16)

then having identical sensors, each sending one bit of infor-
mation, is optimal.

Proof: Let rate and strategy
be given. To prove the claim, we construct an admissible

binary strategy such that . We begin
by dividing the collection of decision rules
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into two sets; a first set contains all the binary functions, whereas
the other is composed of the remaining decision rules. Formally,
we define to be the set of integers for which the function
is a binary decision rule

(17)

Similarly, we let . We choose a binary
decision rule such that

(18)

Such a function always exists since by assumption
and

(19)

Notice that implies that , which in turn yields
. Thus, we can replace each sensor with index

in by two binary sensors without exceeding the capacity
( bits per unit time) of the multiple access channel. We then
consider the alternative schemein which we replace every
sensor with index in by a binary sensor with decision rule
and every sensor with index in by two binary sensors with
decision rule . By construction, is an admissible strategy.
Furthermore, this new scheme outperforms the original strategy

. Indeed

(20)

Implicit to this proof is the fact that observations are i.i.d. across
sensors, conditioned on. We also note that for a fixed decision
rule , the Chernoff information at the fusion center is mono-
tonically increasing in the number of sensors. We can therefore
improve performance by augmenting the number of sensors in

until the rate constraint is met with equality. The strategy
being arbitrary, we conclude that havingidentical sensors,

each sending one bit of information, is optimal.
Our attempt to simplify Problem 2 is in vain if the conditions

of Proposition 2 are never satisfied. In the following examples,
we show that these requirements are indeed fulfilled for the
problem of detecting deterministic signals in Gaussian noise
and for the problem of detecting a fluctuating signal in Gaussian
noise using a square-law detector. In such cases, having
identical binary sensors is optimal. In proving these assertions,
we repetitively use the Bhattacharyya coefficient as a lower

bound for the Chernoff information. The Bhattacharyya coef-
ficient corresponding to a single sensor with decision
rule is given by

(21)

The appeal of the Bhattacharyya coefficient obviously lies in its
greater simplicity. Examples are next.

A. Gaussian Observations

For a binary signal in Gaussian noise, we consider the condi-
tional distributions given by

(22)

(23)

where denotes a Gaussian distribution with mean
and variance . We remark that the results of this section

can easily be extended to Gaussian observations with arbitrary
means. However, because allowing for arbitrary means renders
notation complex and provides no further insight, we adopt the
symmetric case where . We
initiate our analysis of the Gaussian case by finding the max-
imum contribution from each sensor to the total Chernoff infor-
mation.

Lemma 1: For observations with Gaussian distributions, the
contribution of a single sensor to the Chernoff information
is less than or equal to .

To demonstrate that having binary sensors is optimal, we
establish the condition of Proposition 2, namely, that there exists
a binary decision rule such that . As
a potential strategy candidate, we consider the binary threshold
function , where is the indicator function
of set

.
(24)

We lower bound by computing the Bhattacharyya coef-
ficient associated with the binary decision rule.

Lemma 2: Let be the binary decision rule defined by
. The Bhattacharyya coefficient corre-

sponding to is equal to

(25)

where is the complementary Gaussian cumulative distribu-
tion function

(26)
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Proof: This result is evident from the definition of the
Bhattacharyya coefficient

(27)

This completes the proof.
Lemmas 1 and 2, together with Proposition 2, imply the fol-

lowing theorem.
Theorem 2: For a binary signal in additive Gaussian noise,

having identical sensors, each sending one bit of information,
is optimal.

Proof: Again, we let denote the binary decision rule
defined by . By Proposition 2, it is sufficient
to show that the inequality holds true to prove
the theorem. We note that

(28)

Thus, we need only show that the inequality

(29)

is valid for every . This is accomplished by a simple
change of variables in the integral definition of thefunction

(30)

This establishes the desired result.

B. Exponential Observations

The strategy proposed in Theorem 2 possesses a simple struc-
ture that is well suited for both implementation and analysis.
A natural question to ask, then, is whether havingidentical
binary sensors is also optimal for non-Gaussian observations.
In this section, we provide a partial answer to this question
and show that the results of the previous section can be dupli-
cated for signals with exponential distributions. Exponentially
distributed observations occur, for instance, when one attempts
to detect the presence of a fluctuating complex Gaussian signal
in additive white Gaussian noise from the data available at the
output of a preprocessing scheme consisting of a match filter

and square-law detector. The conditional distributions for expo-
nential observations are given by

(31)

(32)

where . Without loss of generality, we assume that
. For convenience, we define the ratio ,

with .
Lemma 3: For observations with exponential distributions,

the contribution of a single sensor to the Chernoff information
is less than or equal to

(33)

Proof: By Proposition 1, we know that the contribution
of a single sensor to is at most the Chernoff information
contained in one observation. We obtain (33) by computing
the latter quantity explicitly from the optimization problem

(34)

First, we evaluate the integral part

(35)

We determine the extreme values of equation (35) by differen-
tiating it with respect to ,

(36)

This yields a unique critical point at

(37)

We observe that , as desired. A second derivative test
insures that is a local minimum and a straightforward eval-
uation of equation (35) at the end points confirms
that is a global minimum over the set . As a conse-
quence, the Chernoff information contained in one observation
reduces to

(38)

and the lemma is verified.
We turn to the problem of estimating the amount of infor-

mation provided to the fusion center by each binary sensor.
Again, we seek a decision rule such that

. For the exponential case, we select the binary decision
rule , where threshold is given by

.
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Lemma 4: Let be the binary threshold function defined by
with threshold at .

The Bhattacharyya coefficient corresponding tois equal to

(39)

Proof: The decision rule yields the following quanti-
ties:

(40)

(41)

(42)

(43)

which we use to compute the Bhattacharyya coefficient

(44)

The last equality is precisely the statement of the lemma.
Lemmas 3 and 4 are preliminary steps in establishing the fol-

lowing theorem.
Theorem 3: For a binary hypothesis test with exponential ob-

servations, having identical sensors, each sending one bit of
information, is optimal.

Much like in the proof of Theorem 2, we validate Theorem 3
by showing that the inequality holds for all

. However, in the case of exponential observations,
proving this fact requires a substantial effort. A comparative
graph of and as functions of is presented in
Fig. 2. See a formal proof of Theorem 3 in the Appendix.

C. Counterexamples

At this point, we may be lured into believing that having
identical binary sensors is always optimal. Unfortunately, this is
not true. In this section, we provide examples for which using

binary sensors is suboptimal. Proposition 2 states sufficient
conditions for which having binary sensors is optimal; not ful-
filling these conditions does not imply that binary sensors are
suboptimal. To obtain counterexamples, we need to develop a
set of requirements that insures the suboptimality of binary sen-
sors. This is accomplished in the following proposition.

Proposition 3: Suppose the maximum transmission rateis
an even integer. If there exists a quaternary functionsuch that

(45)

then having binary sensors is a suboptimal strategy.

Fig. 2. Bhattacharyya coefficient corresponding to binary decision rule~


versus half of the Chernoff information contained in one observation.

Proof: Let admissible strategy
be given, and assume that for all such that

. We prove the claim by constructing an admissible
strategy such that . Consider the alter-
nate strategy composed of quaternary sensors
with decision rule . These two strategies are related as fol-
lows:

(46)

That is, strategy outperforms any admissible binary strategy
. Hence, having sensors, each sending one bit of informa-

tion, is suboptimal.
To construct counterexamples, we consider the simple sce-

nario where . That is, there are only four pos-
sible observations at each sensor. The conditional probability
mass functions are assigned values

(47)

(48)

where is a free parameter . In this
example, only the binary sensors need to quantize their obser-
vations. The quaternary sensors simply retransmit the value of
each observation to the fusion center. Without loss of optimality,
we can assume that the binary decision rules are deterministic
threshold rules on the likelihood ratio of the observation space
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Fig. 3. Comparative plot of the performance per transmission bit of a
quaternary sensor versus binary sensors. For parameter values nearp = 0:29,
the quaternary sensor outperforms binary sensors.

. Indeed, in maximizing Chernoff information, there always
exists a deterministic likelihood ratio quantizer that is optimal
[6]. Because of the symmetry in the problem, we need only con-
sider two binary threshold rules, namely, and

. We write for the optimal binary deci-
sion rule. Fig. 3 provides a comparative plot of the quaternary
function and the binary function for various
values of the free parameter. Obviously, for values of near
0.29, the quaternary decision rule performs better than the best
binary decision rule. By Proposition 3, this implies that binary
strategies are suboptimal for the corresponding conditional dis-
tributions ( even).

In general, it is not easy to create good counterexamples. Bi-
nary policies seem to be optimal for most probability distri-
butions. Whenever they are not, the performance loss inherent
to using the best binary policy appears negligible. This section
serves to illustrate the limitations of our results. In practice, the
simplicity of binary sensors may prevail over a small hit in per-
formance.

D. Correlated Observations

Throughout, we have assumed that observations are indepen-
dent. This assumption is reasonable if the limited accuracy of
the sensors is responsible for noisy observations. However, if
the observed signal is stochastic in nature or if the sensors are
subject to external noise, this assumption may fail. In general,
decentralized detection with dependent observations is a diffi-
cult topic (see, e.g., [3]).

To illustrate how correlation affects our previous results,
we study the specific case of a binary signal in equicorrelated
Gaussian noise. In this scenario, the conditional distributions

are given by

(49)

(50)

Fig. 4. Chernoff information captured byL sensors as a function of correlation
coefficient�.

where the covariance matrix is of the form

...
...

.. .
...

(51)

The Chernoff information contained in observations is equal
to

(52)

Fig. 4 shows the amount of information contained inob-
servations for signal energy and unit
noise variance. As the correlation coefficientgoes to one, the
amount of information contained in observations approaches
the amount of information contained in one observation. Hence,
in the limit, having one sensor sendingbits of information is
optimal. This suggests that correlation in the observations fa-
vors having fewer sensors sending multiple bits, or having non-
identical sensors, rather than employing a set of identical binary
sensors.

We complement this remark with a simple example. In Fig. 5,
the performance of two identical binary sensors with threshold
at zero is plotted against that of a single quaternary sensor. In
this example, the signal energy is set to and the noise
variance to unity. For illustrative purposes, the Chernoff infor-
mation corresponding to a single binary sensor with threshold
at zero also appears on the graph. Not surprisingly, the Chernoff
information provided by the two binary sensors with threshold
at zero decreases to the information supplied by a single such
sensor as increases to one. It is interesting to note however
that the quaternary sensor outperforms the two binary sensors
for correlation coefficient . Thus, it should not be as-
sumed that having identical binary sensors is optimal for an
arbitrary correlation matrix.
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Fig. 5. Comparative plot of the performance of one quaternary sensor versus
two binary sensors in correlated Gaussian noise.

IV. NEYMAN–PEARSONPROBLEM

This section presents an alternative formulation of the
Neyman–Pearson type for the problem studied in the preceding
sections. We consider the optimization problem where one of
the probabilities of error is fixed and we wish to minimize the
second probability of error. In this case, the best achievable
exponent in the probability of error is given by the relative
entropy (Kullback–Leibler distance). We state this standard
result, known as Stein’s lemma, without proof (see, e.g., [5]).

Theorem 4 (Stein’s Lemma):Suppose is given,
and assume that

(53)

where represents the relative entropy of probability
distribution with respect to true distribution. Let
be an acceptance region for hypothesis, and let the proba-
bilities of error be

(54)

Furthermore, for , define

(55)

Then

(56)

The relative entropy between joint distributions of indepen-
dent random variables being additive, we can upper bound the
contribution of a single sensor to

(57)

by the relative entropy corresponding to one observation. We
make this statement precise in the following proposition.

Proposition 4: For strategy , the contribution of
sensor to the relative entropy

(58)

is bounded above by the relative entropy corresponding to a
single observation ,

(59)

Proof: Without loss of generality, we consider the con-
tribution of sensor . The relative entropy for strategy

is given by

(60)

where , and is the product space

(61)

The contribution of sensor to the relative entropy
is therefore no greater than

(62)

which in turn is upper bounded by the relative entropy contained
in one observation .

With an upper bound on the contribution of each sensor to
the relative entropy of the joint observation distributions, we
proceed to establish a result analog to Proposition 2.

Proposition 5: If there exists a binary function such
that

(63)

then having identical sensors, each sending one bit of infor-
mation, is optimal.

Proof: We only provide a sketch for the proof of Proposi-
tion 5 since it parallels closely the proof of Proposition 2. Let
rate and strategy be given. We
define to be the set of integers for which the functionis a



CHAMBERLAND AND VEERAVALLI: DECENTRALIZED DETECTION IN SENSOR NETWORKS 415

binary decision rule. Similarly, we let
. We select a binary decision rule such that

(64)

We replace every sensor with index in by a binary sensor
with decision rule and every sensor with index in by
two binary sensors with decision rule. By construction, this
admissible scheme outperforms the original strategy. Hence,
having identical sensors, each sending one bit of information,
is optimal.

A. Gaussian Observations

We immediately turn to an example to show that Proposition 5
applies to concrete problems. As before, we consider the
problem of detecting deterministic signals in Gaussian noise.
For such signals, we employ the conditional distributions

given by

(65)

(66)

where is a positive real number.
Lemma 5: The relative entropy corresponding to Gaussian

distributions as defined above is equal to

To show that having binary sensors is optimal for the
Neyman–Pearson problem formulation with Gaussian ob-
servations, we establish the condition of Proposition 5. As
a strategy candidate, we use the binary threshold function

. We emphasize that this threshold
function differs from the one employed in Section III. The
dissimilarity arises from the difference between the Bayesian
problem formulation and the Neyman–Pearson problem for-
mulation.

Lemma 6: Let be the binary decision rule defined by
. The relative entropy corresponding to

is equal to

(67)

Proof: We compute the relative entropy corresponding to
as follows:

(68)

which possesses the desired form.
Lemmas 5 and 6, along with Proposition 5, yield the desired

theorem.
Theorem 5: For a binary signal in additive Gaussian noise,

having identical sensors, each sending one bit of information,
is optimal.

Proof: Let denote the binary decision rule defined
by . By Proposition 5, we need only show
that the inequality

(69)

holds true to prove the claim. This is manifest from Lemma 5,
Lemma 6, and (29).

V. CONCLUSIONS ANDDISCUSSION

We considered a decentralized detection problem in which a
network of wireless sensors provides relevant information about
the state of nature to a fusion center. We addressed the spe-
cific case where the sensor network is constrained by the ca-
pacity of the multiple access channel over which the wireless
sensors are transmitting and where observations are indepen-
dent and identically distributed. Our primary focus was on min-
imizing the Chernoff information, which is equivalent to min-
imizing the error exponent associated with decisions taken at
the fusion center. For Gaussian and exponential observations,
having identical binary sensors was found to be optimal in
the asymptotic regime where the observation interval goes to
infinity . In other words, the gain offered by having
more sensors outperforms the benefits of getting detailed infor-
mation from each sensor whenever the number of observations
per sensor is large.

We demonstrated, through counterexamples, that this prop-
erty cannot be generalized to arbitrary observation distributions.
In particular, there exist distributions for which the performance
of quaternary sensors exceeds that of binary sensors. Moreover,
having identical binary sensors may not be optimal when ob-
servations are dependent across sensors. Indeed, dependence
across sensors may favor having fewer sensors sending mul-
tiple bits, or having nonidentical sensors over employing a set
of identical binary sensors.

Finally, we showed that a similar analysis can be performed
for an alternative problem formulation of the Neyman–Pearson
type, where one of the probabilities of error is fixed, and the
second probability of error is minimized. Again, in this case,
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we found that having identical binary sensors is optimal for
independent Gaussian observations.

The optimality of wireless sensor networks with identical bi-
nary sensors is encouraging. Such networks are easily imple-
mentable, amenable to analysis, and provide robustness to the
system through redundancy. Avenues of further research include
a more in depth analysis of the detection problem with depen-
dent observations as well as extending the problem formulation
to composite hypothesis testing.

APPENDIX

PROOF OFTHEOREM 3

This section is devoted to the proof of Theorem 3. As men-
tioned in Section III-B, it is sufficient to establish that there ex-
ists a binary policy such that to prove
the theorem. We consider the binary decision rule

with threshold at . For conve-
nience, we introduce the concise notation

(70)

Recalling the results of Lemmas 3 and 4, we have

(71)

We define the function by

(72)

and proceed to show that for all , which
is equivalent to proving that . First, we state a
few straightforward preliminary results.

Lemma 7: For element

(73)

Lemma 8: For element

(74)

Based on Lemmas 7 and 8, we can show that
for every by differentiating explicitly and

by making appropriate substitutions. Thus, the function is
monotonically increasing on the interval . Taking its limit
as approaches one, we obtain

(75)

That is, the inequality holds for every ,
as desired. This completes the proof of Theorem 3.
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