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Decentralized Detection in Sensor Networks

Jean-Francois Chamberlgrgtudent Member, IEEBNd Venugopal V. Veeravallsenior Member, IEEE

Abstract—in this paper, we investigate a binary decentralized problem have been studied in the past. Notably, the class of de-
detection problem in which a network of wireless sensors provides centralized detection problems where each sensor must select
relevant information about the state of nature to a fusion center. - one of) possible messages has received much attention. In this
Each sensor transmits its data over a multiple access channel. . . - .

Upon reception of the information, the fusion center attempts setting, Wh'ch Was.or|g|nally|ntroduced by Tenney and Sandell
to accurately reconstruct the state of nature. We consider the [1], the goal is to find what message should be sent by which
scenario where the sensor network is constrained by the capacity sensor and when. See Tsitsiklis [2] and the references contained
of the wireless channel over which the sensors are transmitting, therein for an elaborate treatment of the decentralized detection
and we study the structure of an optimal sensor configuration. 4p1em. More recently, the problem of decentralized detection

For the problem of detecting deterministic signals in additive . .
Gaussian noise, we show that having a set of identical binary with correlated observations has also been addressed (see, e.qg.,

sensors is asymptotically optimal, as the number of observations [3] and [4]).
per sensor goes to infinity. Thus, the gain offered by having more  In essence, having each sensor select orde pdssible mes-

sensors exceeds the benefits of getting detailed information from sages upper bounds the amount of information available at the
each sensor. A thorough analysis of the Gaussian case is presenteqysion center. Indeed, the quantity of information relayed to the
along with some extensions to other observation distributions. . ’ .
fusion center by a network af sensors, each sending one of
Index Terms—Bayesian estimation, decentralized detection, D possible messages, does not excB@dg, D] bits per unit
sensor network, wireless sensors. time. In the standard decentralized problem formulation, the
number of sensork and the number of distinct messadesire
|. INTRODUCTION fixed beforehand. A more natural approach in context of wire-

. ._less sensor networks is to constrain the capacity of the multiple
HE EST'.MATI.ON of a random vanab!e basgd-on NOISY, ccess channel available to the sensors. For instance, a multiple
observations is a standard problem in statistics. In t

. . ) . Wecess channel may only be able to calnpits of informa-
work, we investigate the related scenario where informati

bout d able i d ilable 1o a fusi ?fon per unit time. Thus, the new design problem becomes se-
about a random varable 1S made avallable 10 a fusion Cenf@&tingL andD,, whereD, is the number of messages admis-
by a set of geographically separated sensors. Each se

. i "hle to sensolS,, to minimize the probability of error at the
receives a sequence of observations about the state of naFHE'T:’on center, subject to the capacity constraint

H and transmits a summary of its information over a wireless
multiple access channel. Based on the received data, the fusion I
center produces an estimate of the state of nature. We focus our > [logs(De)] < R 1)
attention on the special case of binary hypothesis testing, where
H takes on one of two possible values, where the observations
across sensors are independent and identically distributedn the remainder of this paper, we consider the detection
(i.i.d.) conditioned o, and where the observation process gtroblem where the sensor network is limited by the capacity of
each sensor conditioned di is a sequence of i.i.d. randomthe wireless channel over which the sensors are transmitting.
variables. In Section Il, we introduce a mathematical framework for
If the structure of the information supplied by each sensthe study of decentralized detection in capacity constrained
is predetermined, the fusion center faces a classical hypothegikeless sensor networks. In Section I, we review briefly
testing problem. The probability of estimation error is then mirsome useful concepts from statistics, and we establish that,
imized by the maximura posterioridetector. Alternatively, one under certain conditions, the design problem admits a very
can consider the problem of deciding what type of informatiaggimple solution. That is, we find sufficient conditions for which
each sensor should send to the fusion center. Providing sonawing R identical binary sensors minimizes the probability of
answers to the latter question will be the aim of this papegtror at the fusion center. We also show that these conditions
We begin by mentioning that several different variants of thare fulfilled whenever observations have Gaussian or expo-
nential distributions, although they do not hold for arbitrary
distributions. Section IV contains an alternative formulation of
Manuscript received February 19, 2002; revised September 24, ZOEZ.’e Neyman—Person type for the detection problem at hand.
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| H | At time ¢, sensorS, evaluates message ; = ve(ye,+), which
is subsequently forwarded to the fusion center. We WI{t&)

to denote the set of all admissible strategies corresponding to a
Yig Y Yig multiple access channel with capaciy
Remark 1:We assume that the séf is endowed with
a o-field F and that the decision ruleg, are measurable
functions with respect t¢F. Furthermore, we assume that the
) channel capacity? is an integer.
] In this work, we are primarily concerned with the asymptotic
W regime where the observation interval goes to infifify —
o0). For any reasonable transmission strategy, the associated
MAC probability of error at the fusion center goes to zero exponen-
tially fast asI” grows unbounded. Thus, a suitable way to com-
pare transmission schemes is through the error exponent mea-

W
v\/\l/ sure
1
— lim =log P
O(v) = = lim ~log P (7) 4)

| FUSION I

whereP§T> (7) is the probability of error at the fusion center as-
o 1 Block di o il ‘wh sociated with strategy when a maximuna posterioridetector
1g. 1. ocC lagram or a wireless sensor network where sensors transgi H H _
information to the fusion center over a multiple access channel. i@uged. The error ,eXponem is also known a_ls the Chemo,ff infor
mation. For a multiple access channel that is able to datvits

of information per unit time, we can pose the design problem
pled with this random variable is a network of wireless sensofgrmally as follows.

with each sensor receiving a sequence of observations Problem 1: Find an admissible strategye I'( R) that max-
imizes the error exponent

Yeut=1,2...,T) @)
e C(v) = = lim %bgPe(T)(v)- (5)

T—oo
about the value off . We assume that the random varialdies
are i.i.d., givenH, with conditional distributionpy ¢ (-|H;).
At discrete timet, the sensors are required to send a summary
Ui, = 7e(Yz,+) of their own observation to a fusion center. We begin our analysis with a concise review of some basic
Information is transmitted over a multiple access channel. Thencepts and properties of Bayesian statistics related to the
information-theoretic capacity of a Gaussian multiple accepsoblem at hand. Consider an arbitrary admissible strategy
channel is governed by bandwidth, power, and noise spectral
density. More generally, the admissible rate of a practical v = (71, Y2, -5 VL) (6)
system with a simple encoding scheme may depend on band-
width, power, noise density, and maximum tolerable bit errgge denote the space of received information corresponding to
rate at the output of the decoder. Specifying these quantitiestg strategy by
equivalent to fixing the admissible rate of the multiple access
channel. In this paper, we.dllsregard tr_le specnﬁc; of thels?:{L 2, ..., Di}x{1,2, ..., Do}x---x{1,2, ..., Dy}
parameters and assume a joint constraint on the information -
rates of the sensors. Furthermore, we neglect communication )
errors in the transmitted bits. In other words, we assume that
the network of sensors can transmit reliably at a maximufi? that
rate of R bits per unit time. Upon reception of the data, the
fusion center produces an estimdie of the state of nature ((y2), v2(y2), - velyn)) €T ®
H. This setting is illustrated in Fig. 1. Our goal is to desigfor all observation vector§y:, v», ..., yz,) € Y*. In general,
an admissible strategy that minimizes the probability of erréie maximuma posterioridetector is known to minimize the
P. = P{H # H}. probability of estimation error at the fusion center. For a finite
Definition 1: An admissible strategy, which is denotedfy observation interval’, it may be impractical (or impossible)
consists of an integek and a set of decision rules: ) — to compute this probability of error exactly. We can, however,
{1,2, ..., D¢} such that evaluate the error exponent corresponding to strajdgyusing
Chernoff’s theorem, which we state without proof (see, e.g.,
L [5)).
ZﬂogQ D/ <R. ©) Let py | (:|Ho) and py x(-|H1) represent the conditional
= probability mass functions oif, given hypothese#, and H1,

lll. BAsic CONCEPTS ANDRESULTS
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respectively. Mathematically, foi = (u1, us, ..., ur) and Proof: Without loss of generality, we consider the con-
i € {0, 1}, we have tribution of sensorS;. The Chernoff information for strategy
v = (715 Y2, -+, VL) IS given by
puia(ulH;) = P{y: (v1(y1), v2(v1), -+ vo(yr)) = u} o))
L
=[] Pid{r; " (ue)} 9) ) . .
e:l_Il ‘ =~ omin log ZT(PQH(MHO)) (puim (ulHy))'
ue
L D,
where P’;{ A} represents the probability of eveAtunder hy-  _ _, Pofy—1 s (P L 1-s*
othosiall.. and = ~tog | IT{ 3 (oo o))" (P ()
L D, ) )
v M) = {y: vely) = uek- =- ;log Zl(Po{v[l(W)})s (Pufn (ue) ) ]
= Up=

D,
We underline briefly that (9) exploits conditional independence= — log [Z (Po{v; (u1)})® (Pl{'yll(ul)})l—s*]
across sensors.

up=1

Theorem 1 (Chernoff):Supposey € I'(R) is given. The L D, ) )
best achievable exponent in the probability of error at the fu- — Zlog Z (Po{v; Hue)})™ (Pl{ye_l(u[)})l_s']
sion center is given by =2 up=1

(13)

wheres* is the value ok that maximizes the Chernoff informa-
tion C (). It is then clear that the contribution of sensfrto

0<s<
- e
- the Chernoff informatiorC(~) is no greater than

Cly)=- min log [2:(11@H(@|1L]0))S(PQ|H(@|H1))1_S )

(10)
D,
In light of Theorem 1, we can rewrite our original problem as— miu log Z (Po{w_l(ue)})S(Pl{w_l(w)})lS] (14)
follows. o ue=1
Problem 2: Find an admissible strategye I'(R) such that o _ _ _
the Chernoff information which in turn is upper bounded by the Chernoff information
contained in one observatidn. |
In words, Proposition 1 asserts that the contribution of a
B ) < 1—s single sensor to the total Chernoff information cannot exceed
Cln) = _0?.321 log [Z(pQIH(MHO)) (pu | (u[H1)) ] the information contained in each observation. Based on this
u€Y proposition, we derive a sufficient condition for which having
1) g binary sensors is optimal.
DefineCi(~,) to be the Chernoff information corresponding
is maximized. to a single sensor with decision rujg, i.e.,
As stated, Problem 2 is difficult to solve. Even when assign- 5
mentvectof Dy, D,, ..., Dp)isfixeda priori, the problem of ) | 1 . . s
finding optimal decision rules;, 72, ..., 7z is, in most cases, Ci(ve) = _021,}211(’% Z(PO{W ()} (Privg (w)})

u=1

hard (see, e.g., [2]). In the remainder of this section, we derive
a set of conditions under which Problem 2 simplifies greatly. In

particular, we find sufficient conditions for which havidtsen- ] ) )
sors, each sending one bit of information, is optimal. First, w&d [etl's, be the set of binary functions on the observation space

establish the following useful result, where we upper bound tHe

(15)

contribution of a single sensor to the Chernoff information. _ PTOPOSition 2: Suppose there exists a binary functign
Proposition 1: For strategyy, the contributionCs, (y) of L' such that

sensorS, to the Chernoff informatior” () is bounded above C*

by the Chernoff informatiorC* contained in one observation C1(n) 2 > (16)

Y,ie,

then havingR identical sensors, each sending one bit of infor-
mation, is optimal.
*A s Proof: Let rate R and strategyy = (1, ) €
Cs,(v) < C* = mmlog[/pz y|H, ayy Y1, V25 -5 VL
() 0<s<1 . y( vi(vHo)) I'(R) be given. To prove the claim, we construct an admissible
binary strategyy’ € I'(R) such thatC(+") > C(v). We begin

1—s
ey (ylHy)) " dy| . (12) by dividing the collection of decision ruleSy;, 72, ..., .}
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into two sets; afirst set contains all the binary functions, wherebsund for the Chernoff information. The Bhattacharyya coef-
the other is composed of the remaining decision rules. Formaligient B;(~,) corresponding to a single sensor with decision
we definel}, to be the set of integers for which the functign rule 4, is given by

is a binary decision rule

D,
A -1 1/2 -1 1/2
I, ={6:1<{< L,y €Ty} (17) Bi(ve) =—log UZ::l(PO{'V (w)})7=(Pr{y~ " (uw)}) ]
D,
Similarly, we letl,, = {1, 2, ..., L} —I,,. We choose a binary < - min log Z(Po{v_l(U)})S(P1{7_1(U)})1_S]
decision ruley;, € T'y, such that =7= u=1
=C1(7). (21)
X, C* - - . . . .
C1(%p) > max I}gf{ol ok 5 - (18) The appeal of the Bhattacharyya coefficient obviously lies in its

greater simplicity. Examples are next.

Such a functiory, always exists since by assumpti®n € I', A Gaussian Observations

and
For a binary signal in Gaussian noise, we consider the condi-
. cr tional distributions given b
Ci(v) > - (19) ensy
PY|H(.U|H0) ~./\/(—m, 02) (22)

Notice that/ € I,;, implies thatD, > 2, which in turn yields
[log, D¢] > 2. Thus, we can replace each sensor with index py (e (y|Hi) ~N(m, o?) (23)
in I, by two binary sensors without exceeding the capacity
(R bits per unit time) of the multiple access channel. We th
consider the alternative scheméin which we replace every
sensor with index ird}, by a binary sensor with decision rujg

(Where/\/(m./ o?) denotes a Gaussian distribution with mean
m and variancer>. We remark that the results of this section
D . . > can easily be extended to Gaussian observations with arbitrary
and_ every sep sor with index .'h‘b t3y two blnar_y sensors with means. However, because allowing for arbitrary means renders
decision ruleyb._By constructiony Is an adm|SS|bI-e_strategy. notation complex and provides no further insight, we adopt the
Furthermore, this new scheme outperforms the original Strate@'mmetric case wher®[Y |H,] = —E[Y|Ho] = m > 0. We

7- Indeed initiate our analysis of the Gaussian case by finding the max-
imum contribution from each sensor to the total Chernoff infor-

Q
)

AV

, .
) mation.
(1| + 2/ Tup)C1 (B) > | T|C1(30) + [T |C™ Lemma 1: For observations with Gaussian distributions, the
I D contribution of a single sensor to the Chernoff informatigy)
: * 2 2

— min lo Pl ue) V) (Py (7 (ug) 1) is less than or equal 0™ = m?*/20°.
ez:; 0<s<1 & 1;1( o{re () )" (P (ue) ) To demonstrate that having binary sensors is optimal, we

I establish the condition of Proposition 2, namely, that there exists
>_ min 1 Pofy—1 (P {1 1—s a binary decision rulé;, € T'}, such thatCy(y,) > C*/2. As
- 01311.321 & Z(g( olye " () )" (Prd " (ue)}) a potential strategy candidate, we consider the binary threshold
function,(y) = X0, o) (¥), Wherex 4 is the indicator function

u€eY

=C) (20) of setA
- . . . . 1, ye A
Implicit to this proof is the fact that observations are i.i.d. across xa(y) = { (24)
sensors, conditioned dii. We also note that for a fixed decision 0, y¢ A

rule 9, the Chernoff information at the fusion center is monapse |ower boundCy (71,) by computing the Bhattacharyya coef-
tonically increasing in the number of sensors. We can therefggeant associated with the binary decision réie
improve performance by augmenting the number of sensors in g;mma 2: Let 4, be the binary decision rule defined by

o ur_1ti| the rate constraink is met with ejqu.ality..The strategy%(y) = X[0.«0)(y). The Bhattacharyya coefficient corre-
~ being arbitrary, we conclude that havidyidentical sensors, sponding t¥, is equal to
[

each sending one bit of information, is optimal.

Our attempt to simplify Problem 2 is in vain if the conditions 1 m m
of Proposition 2 are never satisfied. In the following examples, Bi() = —5log [49 (——) Q (—)}
we show that these requirements are indeed fulfilled for the
problem of detecting deterministic signals in Gaussian noiggere Q is the complementary Gaussian cumulative distribu-
and for the problem of detecting a fluctuating signal in Gaussigan function
noise using a square-law detector. In such cases, haking
identical binary sensors is optimal. In proving these assertions, [T —€/2) 4
we repetitively use the Bhattacharyya coefficient as a lower Q) = /T ¢ 3

(25)

(26)

2T
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Proof: This result is evident from the definition of theand square-law detector. The conditional distributions for expo-

Bhattacharyya coefficient nential observations are given by
2 —apy
. _ _ py 1 (Y|Ho) = cge™ Y (31)
Bl(?’b) = log Z(PO{’yb 1(“’)})1/2(})1{71) 1(”)})1/2] ( |H ) —a1y (32)
u=t pya(y[H1) = e™
mAN 1/2 mAN 1/2 |
=—log (Q (—;)) (Q (;)) wherey € [0, o). Without loss of generality, we assume that

s 1/2 s 172 0 < o < a1. For convenience, we define the ratie= oo /o,
(2()" (o(-))" With 0 < o < 1
g g Lemma 3: For observations with exponential distributions,
__1 log [4Q (_ﬁ) o) (_)} . (27) the contribution of a single sensor to the Chernoff information
2 o g C(v) is less than or equal to

+

This completes the proof. [ | log 1
Lemmas 1 and 2, together with Proposition 2, imply the fol- C* = —log {_ 982 exp ( o8e 1)} _ (33)
lowing theorem. 1= l-a

Theorem 2: For a binary signal in additive Gaussian noise,  proof. By proposition 1, we know that the contribution
having? identical sensors, each sending one bit of informatiog; single sensor t6'(~) is at most the Chernoff information

is optimal. contained in one observatidn. We obtain (33) by computing

_ Proof: Again, we lety, denote the binary decision ruley,q |5ter quantity explicitly from the optimization problem
defined by, (y) = X0, =) (%) By Proposition 2, it is sufficient

to show that the inequalit¢; (3,) > C*/2 holds true to prove ) i s s
o et e nedue 0" = = win, o | [ (s (41Ho))" (1 41H)
Ci() — o > Bi(w) — ¢ = —log | min ooase_saoyal_ge_(l_s)aly dy|. (34)
17" 5 = 17" 2 0<s<1 J, 0 1
1 m m m?
“jpe(-Me(]- -
5 log Q - Q > 152 First, we evaluate the integral part
1 m m m?
(28) o s
— agai—s/ ef(sa0+(1fs)a1y) dlj — 1a—1 (35)
Thus, we need only show that the inequality 0 —s(1—a)
L @2 We determine the extreme values of equation (35) by differen-
Q(-z)Q(z) < ze (29) tiating it with respect tos,
is valid for everyz € [0, co). This is accomplished by a simple ¢ a® a®loga a*(1—a)
; i ; e ; — = . (36)
change of variables in the integral definition of t@eunction ds |1—s(1—a) 1—s(1—a) (1-s(1—a))?
O(—x)Q(z) = i — /T /T QL o (€24¢%)/2) de d¢ This yields a unique critical point at
o Jo <47
1 1 1—a+loga
1 = /2 2 - = . 7
S——/ / — e~ /D pdhdp s 1—a+loga (1-a)loga 37)
4 Jo Jo 27r
— % e—(=?/2) (30) We observe thdi < s* < 1, as desired. A second derivative test
insures that™ is a local minimum and a straightforward eval-
This establishes the desired result. m uation of equation (35) at the end points {0, 1} confirms
thats* is a global minimum over the set< s < 1. As a conse-
B. Exponential Observations guence, the Chernoff information contained in one observation
The strategy proposed in Theorem 2 possesses a simple stfgeuces to
ture that is well suited for both implementation and analysis. i} log a log a
A natural question to ask, then, is whether havidgdentical C* = —log {— [, P <1 — 1)} (38)
binary sensors is also optimal for non-Gaussian observations.
In this section, we provide a partial answer to this questi@and the lemma is verified. [ |

and show that the results of the previous section can be dupliWe turn to the problem of estimating the amount of infor-
cated for signals with exponential distributions. Exponentialljation provided to the fusion center by each binary sensor.
distributed observations occur, for instance, when one attemptain, we seek a decision rufg, € T', such thatB;(y,) >

to detect the presence of a fluctuating complex Gaussian sighdl/2. For the exponential case, we select the binary decision
in additive white Gaussian noise from the data available at thée ¥,(y) = X[, )(y), Where threshold is given byr =
output of a preprocessing scheme consisting of a match filigog a) /(o — @1).
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Lemma 4: Let#;, be the binary threshold function defined by 5 EXPQNENTIAL OBSERVATIQNS

50(8) = Xpr. o) () With threshold at = (loga)/(ao — ay). 10
The Bhattacharyya coefficient correspondingytas equal to %
1/2 —
B1(3) = — log [(1 — exp (‘Lllfg;)) g
510 By ()
<1 . (10ga>)1/2+e < 1+a o )] (39) o Tl D
. —exp|l — Xp| —— loga ||. =
1-a 2(1—a) Z
Proof: The decision ruley, yields the following quanti- X
ties: % 107 } q
Po {3, ([0, 7))} =1—e7 (40) Z |
~, o &)
P, ([0, 7))} =1 —e™ (41) =
Po{y ([r, 00))} =7 42)  107"° : : : :
7 o 0 02 04 06 08 1
Pi{yy ([r, 0))p =™ (43) a
which we use to compute the Bhattacharyya coefficigr () Fig. 2. Bhattacharyya coefficient corresponding to binary decision Jule
B (’NYb) versus half of the Chernoff information contained in one observation.
[ 2
= —log Z(PO{,Yb—l(u)})1/2(p1{7g1(u)})1/2 Proof: Let admissible strategy = (71, v2, ..., 7L) €
=t I'(R) be given, and assume that € I}, for all £ such that
— 1 —em@0m\1/2(] _ g=0n7)1/2 —agT —arT\1/2 1 < ¢ < L. We prove the claim by constructing an admissible
o8 [_( ¢ ) (1=e ) (e ¢ ) } strategyy’ € I'(R) such thaC'(y’) > C(v). Consider the alter-
aloga\? loga \\/? nate strategy’ € I'(R) composed of?/2 quaternary sensors
= —log (1 - exp ( —a >> <1 - exp < _ a)) with decision ruley,. These two strategies are related as fol-
- 1+ lows:
a
+ exp <7 log a)] . (44) . L
\21-a) C(7) == min log | >~ | [T(Potn "uo)})®
The last equality is precisely the statement of the lemmam =5= weT \e=1
Lemmas 3 and 4 are preliminary steps in establishing the fol-
lowing theoretm. _ _ _ . ) (P1{7[1(W)})1_s
Theorem 3: For a binary hypothesis test with exponential ob-
servations, having identical sensors, each sending one bit of I )
information, is optimal. < ~ min 1 Pyl s
Much like in the proof of Theorem 2, we validate Theorem 3 - ; 01%15121 o8 Wz::l( bl (ue)})

by showing that the inequalityg; (7,) > C*/2 holds for all
a € (0, 1). However, in the case of exponential observations, (P YT () )
proving this fact requires a substantial effort. A comparative ¢

graph of By (4,) and C*/2 as functions ofa is presented in C1(3q)
Fig. 2. See a formal proof of Theorem 3 in the Appendix. <R sup {Ci(m)} < RTq =C(y).  (46)
wels
C. Counterexamples That is, strategyy’ outperforms any admissible binary strategy
~. Hence, havingk sensors, each sending one bit of informa-

At this point, we may be lured into believing that havikg ." :
. . : : . ._tion, is suboptimal. ]
identical binary sensors is always optimal. Unfortunately, this is . .
; : . ; .~ To construct counterexamples, we consider the simple sce-
not true. In this section, we provide examples for which usml%é

R binary sensors is suboptimal. Proposition 2 states sufficien riowherey = {1, 2, 3, 4}. That s, there are only four pos-

o . X . : oo S le observations at each sensor. The conditional probability
conditions for which having binary sensors is optimal; not ful= . .
mass functions are assigned values

filling these conditions does not imply that binary sensors are
suboptimal. To obtain counterexamples, we need to develop a  Pv|u(y|Ho) =[0.002 p 0.798—p 0.2]  (47)
set of requ!rements that insures the subppnmahty c_nf binary sen- pyia(WlH) =[0.2 0.798—p p 0.002] (48)
sors. This is accomplished in the following proposition.
Proposition 3: Suppose the maximum transmission rAtis
an even integer. If there exists a quaternary funcjipsuch that

wherep is a free parametef0.008 < p < 0.399). In this
example, only the binary sensors need to quantize their obser-
N vations. The quaternary sensors simply retransmit the value of
M > sup {C1(m)} (45) eachobservation to the fusion center. Without loss of optimality,
2 RINSIAN we can assume that the binary decision rules are deterministic
then havingR binary sensors is a suboptimal strategy. threshold rules on the likelihood ratio of the observation space
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Fig. 3. Comparative plot of the performance per transmission bit of a

quaternary sensor versus binary sensors. For parameter valugsse@29,  Fig.4. Chernoffinformation captured Hysensors as a function of correlation
the quaternary sensor outperforms binary sensors. coefficientp.

Y. Indeed, in maximizing Chernoff information, there alwayg/here the covariance matri is of the form
exists a deterministic likelihood ratio quantizer that is optimal
[6]. Because of the symmetry in the problem, we need only con-
sider two binary threshold rules, namely(y) = x13(y) and
(y) = xq1,23(y). We write~y;; for the optimal binary deci- s oo
sion rule. Fig. 3 provides a comparative plot of the quaternary p p - 1
function C (v,)/2 and the binary functioi®; (+;;) for various
values of the free parametgr Obviously, for values of near The Chernoff information contained ifa observations is equal
0.29, the quaternary decision rule performs better than the bigst
binary decision rule. By Proposition 3, this implies that binary
strategies are suboptimal for the corresponding conditional dis- o — m?Ytm (52)
tributions (R even). 2 '

In general, it is not easy to create good counterexamples. Bi-_ ) ] ] )
nary policies seem to be optimal for most probability distri- F19- 4 shows the amount of mfgrmatmn containedZirob-
butions. Whenever they are not, the performance loss inhergtvations for signal energy = 1= (1, 1, ..., 1)T and unit
to using the best binary policy appears negligible. This sectiffise variance. As the correlation coefficigngoes to one, the
serves to illustrate the limitations of our results. In practice, ttggnount of information contained ih observations approaches

simplicity of binary sensors may prevail over a small hit in pethe amount of information contained in one observation. Hence,
formance. in the limit, having one sensor sendifgbits of information is

optimal. This suggests that correlation in the observations fa-
) vors having fewer sensors sending multiple bits, or having non-
D. Correlated Observations identical sensors, rather than employing a set of identical binary

1 p ... p
p 1 ... p
Y=o, . (51)

Throughout, we have assumed that observations are indep&t1SOrs- _ _ _ _
dent. This assumption is reasonable if the limited accuracy of V& complement this remark with a simple example. In Fig. 5,

the sensors is responsible for noisy observations. Howevert}f Performance of two identical binary sensors with threshold

the observed signal is stochastic in nature or if the sensors &t&€ro is plotted against that of a single quaternary sensor. In

subject to external noise, this assumption may fail. In generiliS €xample, the signal energy is set#to= 1 and the noise
riance to unity. For illustrative purposes, the Chernoff infor-

decentralized detection with dependent observations is a diff2''¢ _ ) _ )
cult topic (see, e.g., [3]). mation corresponding to a single binary sensor with threshold

To illustrate how correlation affects our previous result?,t Zero a_lso appears onthe graph._Notsurprlsmeg_, the Chernoff
ggormatmn provided by the two binary sensors with threshold
Ak zero decreases to the information supplied by a single such
sensor ap increases to one. It is interesting to note however
that the quaternary sensor outperforms the two binary sensors
for correlation coefficienp > 0.65. Thus, it should not be as-
N(—m, X) (49) e o
sumed that havinge identical binary sensors is optimal for an
py i, (y) ~N(m, ¥) (50) arbitrary correlation matrix.

Gaussian noise. In this scenario, the conditional distributio
py|m, (| H;) are given by

Py|H, (E) ~
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OBSERVAITIONS IN CORREI-I'ATED NQISE is bounded above by the relative entropy corresponding to a

single observation’,
Z 06
Q D(pyu(-|Ho) || pym (-|H1))- (59)
z 05! BINARY SENSORS (2) |
S Proof: Without loss of generality, we consider the con-
oé 0.4l QUATERNARY SENSOR tribution of sensgrSl_. The relative entropy for strategy =
= (71, ¥2, ..., vL) is given by
Z,
= 0.3/ BINARY SENSOR (1) 7 Dpgju(1Ho) || pyja (-1Hr))
O (uIHo)}
0.2} = (u|Ho)lo [—
é ;pUlH ulHo) log pu|m(ulHy)
=
= 0.1+ 1
) IT Pof{ve (ue)}
% 02 04 06 08 -2 HPO{W ulog | 5
' ' ' ' ueT | =1 I Pri, *(ue)}
P =1
-1
Fig. 5. Comparative plot of the performance of one quaternary sensor versus __ 0{’7 (Ul)}
two binary sensors in correlated Gaussian noise. - Z PO{% ul)} log {P 1
uy= 1 {71 (ul)}
L
IV. NEYMAN—PEARSON PROBLEM T Po{v; " (ue)}
This section presents an alternative formulation of the  + 2 | [] Po{ve ' (ue)}log | =2
Neyman—Pearson type for the problem studied in the preceding uw €T’ | (=2 II Pl{’y[l(uz)}
=2

sections. We consider the optimization problem where one of

the probabilities of error is fixed and we wish to minimize the (60)
second probability of error. In this case, the best achievable ..
exponent in the probability of error is given by the relativé/Neréw’ = (uz, ua, ..., ur), andY" is the product space

entropy (Kullback—Leibler distance). We state this standard
result, known as Stein’s lemma, without proof (see, e.g., [5]). T={1,2, .., Dapx{1, 2, o, D --x{1, 2, ..., D}
Theorem 4 (Stein’s Lemma)Supposey € T'(R) is given, (61)
and assume that
The contribution of sensorS; to the relative entropy

D(pyu(-|Ho) || pyja(-|H1)) < oo (53) D(py u(-|Ho) || puju (-|H1)) is therefore no greater than
where D(p|| q) represents the relative entropy of probability 5
distributiong with respect to true distributiop. Let A,, C T L 4 [ Po{viH(u1)}
be an acceptance region for hypotheHis and let the proba- Z Po{ri (u1)}log Py Y(un)) (62)
bilities of error be w=t
an = PI(AS), Bn = PI(Ay). (54) Whichinturnis upper bounded by the relative entropy contained
" _ in one observatioly. [ |
Furthermore, fof < e < 1/2, define With an upper bound on the contribution of each sensor to
g = min B, (55) the relative entropy of the joint observation distributions, we
A, CT™ ap<e proceed to establish a result analog to Proposition 2.
Then Proposition 5: If there exists a binary functiofy, € I'}, such
that

lim lim —log,ﬂ6 = —D(pg\H(~|H0) ||PQ\H('|H1))~ (56)

e—0n—oo 2 ~—1
P,
The relative entropy between joint distributions of indepen® _ Po{%; ' (u)} log [%}

dent random variables being additive, we can upper bound thel
contribution of a single sensor to S D(pyu(|[Ho) | py|u(|H1)) (63)

D(py (-1 Ho) || pyja (-1 HL)) (57) - 2

by the relative entropy corresponding to one observation.
make this statement precise in the following proposition.

Proposition 4: For strategyy, the contributionDg, () of
sensorS; to the relative entropy

\meen havingR identical sensors, each sending one bit of infor-
mation, is optimal.

Proof: We only provide a sketch for the proof of Proposi-
tion 5 since it parallels closely the proof of Proposition 2. Let
rateR and strategy = (v1, 72, -- -, 7z) € ['(R) be given. We

D(py u(-|Ho) || pu e (-|H1)) (58) definel, to be the set of integers for which the functignis a
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binary decision rule. Similarly, we Iet,;, = {1, 2, ..., L} — Proof: We compute the relative entropy corresponding to
I,. We select a binary decision ruig € I';, such that 1, as follows:
D(pvu(-|Ho) || poim (- Hy))
2 v—1 2 ~_
. Po{%, * (w)} Po{3; t(u)}
Potiy () o | o0, (0 = 3 Rty 0 o [ P00
2 hiw; Py () 2 Pol () os | e oy

2 ~—1
_ Po{%, " (w)} 1 1 1 1
> max Po{A7 (u 10‘[+ , = =1 e Z1 - -
2 -1
- Po{v (U)}] R [ 2m 2m
P 1 log ¢ ) =——log|4Q|— ) Q| — (68)
Il}éali( {uzzjl 0{71’, (u)} 0og |:P1{’Y[_1(u)} . 2 . o o
(64) which possesses the desired form. [ |
Lemmas 5 and 6, along with Proposition 5, yield the desired
theorem.

We replace every sensor with index Ip by a binary sensor  Theorem 5: For a binary signal in additive Gaussian noise,
with decision ruley, and every sensor with index ihy, by havingR identical sensors, each sending one bit of information,
two binary sensors with decision ruig. By construction, this is optimal.

admissible scheme outperforms the original strategylence, Proof: Let 4;,(y) denote the binary decision rule defined
having? identical sensors, each sending one bit of informatioby 3, () = X, ) (). By Proposition 5, we need only show
is optimal. B that the inequality
2 <1

A. Gaussian Observations Z Po{#; (u)} log [w]

We immediately turn to an example to show that Proposition-1 P, (u)}
applies to concrete problems. As before, we consider the o Dloviu(|Ho) | pyu(|H1)) (69)
problem of detecting deterministic signals in Gaussian noise. - 2
For such signals, we employ the conditional distributionsolds true to prove the claim. This is manifest from Lemma 5,
py 1 (-|Hi) given by Lemma 6, and (29). [ |

9 V. CONCLUSIONS AND DISCUSSION
pya(ylHo) ~N(=m, o7) (65) , . . . .

We considered a decentralized detection problem in which a
pyia(ylH1) ~N(m, %) (66) network of wireless sensors provides relevant information about
the state of nature to a fusion center. We addressed the spe-
wherem is a positive real number cific_ case where t_he sensor network is constr:_ained by _the ca-

) : ' . ._pacity of the multiple access channel over which the wireless
. Le_m”?a 5:The r(_alanve entropy corresponding to Gaussialhngors are transmitting and where observations are indepen-
distributions as defined above is equal to dent and identically distributed. Our primary focus was on min-
imizing the Chernoff information, which is equivalent to min-
2m2 imizing the error exponent associated with decisions taken at
D(PY|H('|H0) ||PY|H('|H1)) =2 the fusion center. For Gaussian and exponential observations,
having R identical binary sensors was found to be optimal in
, , ) ) the asymptotic regime where the observation interval goes to
To show that having®t binary SENsors ls_optlmal ff?f theinfinity (T — o0). In other words, the gain offered by having
Neyman-Pearson problem formulation with Gaussian ORyore sensors outperforms the benefits of getting detailed infor-
servations, we establish the condition of Proposition 5. Afation from each sensor whenever the number of observations
a strategy candidate, we use the binary threshold functigg, sensor is large.
(YY) = X[-m,o0)(y). We emphasize that this threshold \we demonstrated, through counterexamples, that this prop-
function differs from the one employed in Section Ill. Thesrty cannot be generalized to arbitrary observation distributions.
dissimilarity arises from the difference between the Bayesigfparticular, there exist distributions for which the performance
problem formulation and the Neyman-Pearson problem faf quaternary sensors exceeds that of binary sensors. Moreover,
mulation. having identical binary sensors may not be optimal when ob-
Lemma 6: Let 4, be the binary decision rule defined byservations are dependent across sensors. Indeed, dependence
(¥) = X[—m,0)(y). The relative entropy corresponding toacross sensors may favor having fewer sensors sending mul-
b is equal to tiple bits, or having nonidentical sensors over employing a set
of identical binary sensors.
Finally, we showed that a similar analysis can be performed
D(puiu(-[Ho) || puia (-[H1)) for an alternative problem formulation of the Neyman—Pearson
_ 1 log [4Q (_2_m> 0 (2_m>} 67) type, where one of the probabilities of error is fixed, and the
& ) second probability of error is minimized. Again, in this case,
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we found that having? identical binary sensors is optimal forThat is, the inequalityf (a) < e'/2 holds for everys € (0, 1),

independent Gaussian observations. as desired. This completes the proof of Theorem 3.
The optimality of wireless sensor networks with identical bi-
nary sensors is encouraging. Such networks are easily imple- REFERENCES
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N e—(ag(a)/?)(g(a))—u/?)e—(l/?)] , (71)
We define the functiorf(a) by
1/2 1/2
fla)2 (1 _ e—ag(a)) (egw) _ 1) (g(a))~ /2

+ e @9/ (4(a))=(/2) (72) b 4

and proceed to show th#fa) < e'/? for all a € (0, 1), which
is equivalent to proving thaB; (51,) > C*/2. First, we state a
few straightforward preliminary results.
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