
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 2, MARCH 1993 433 

Decentra lized Sequentia l Detection with  
a  Fus ion Center Performing 

the Sequentia l Test 
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and H. Vincent Poor, Fellow, IEEE 

Abstract-A decentral ized sequential detection problem is con- 
sidered in which each  one  of a  set of sensors receives a  sequence of 
observat ions about  the hypothesis. Each sensor  sends a  sequence 
of summary messages to the fusion center where a  sequential 
test is carried out to determine the true hypothesis. A Bayesian 
framework for this problem is introduced, and  for the case when  
the information structure in the system is quasi-classical, it is 
shown that the problem is tractable. A detailed analysis of this 
case is presented along with some numerical results. 

Index Terms-Decentral ized detection, sequential analysis, dy- 
namic programming. 

. I. INTRODUCTION 

W  ITH THE INCREASING INTEREST in decentralized 
detection problems in recent years, extensions of vari- 

ous centralized detection problems to decentralized cases have 
been formulated and studied [l]. In particular, there has been 
considerable interest in the solution to decentralized detection 
problems of a  sequential nature [2]-[6]. In decentralized 
sequential hypotheses testing, each one of a  set of sensors 
receives a sequence of observations about the hypothesis. Two 
distinct formulations are possible. In one case, first each sensor 
performs a sequential test on its observations and arrives at a  
final local decision; subsequently the local decisions are used 
for a common purpose at a  site possibly remote to all the 
sensors. In the other case, each sensor sends a sequence of 
summary messages to the fusion center, where a sequential 
test is carried out to determine the true hypothesis. 

In this paper, we study the latter case. More formally, 
let there be N sensors 5’1,. . . , 5’~ in the system. At time 
IcE{l, 2,. . .}, sensor 5’1 observes a random variable XL, and 
forms a summary message U: of the information available for 
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Fig. 1. General setting for decentralized sequential detection with a fusion 
center performing the sequential test. 

decision at time k. In a general setting, we allow a two-way 
communication between the sensors and the fusion center as 
shown in Fig. 1. In particular, the fusion center could relay 
past decisions from the other sensors. This means that at time 
Ic, each sensor has access to all its observations up to time k 
and all the decisions of all the other sensors up to time k - 1. 

We  now introduce a Bayesian framework for this sequential 
hypothesis testing problem. The two hypotheses HO and HI 
are assumed to have known prior probabilities. Also, the 
conditional joint distributions of the sensor observations under 
each hypothesis are assumed to be known. A positive cost c 
is associated with each time step taken for decision making. 
The fusion center stops receiving additional information at 
a  stopping time r and makes a final decision S based on 
the observations up to time 7. Decision errors are penalized 
through a decision cost function W(S; H). The Bayesian 
optimization problem then is the minimization of E(c7 + 
W(S; H)} over all admissible decision policies at the fusion 

001%9448/93$03.00 0 1993 IEEE 



434 IEEE TRANSACTIONS ON IHFORMATION THEORY, VOL. 39, NO. 2, MARCH 1993 

center and over all possible choices of local decision functions 
at each of the sensors. 

Throughout this paper we shall make the following assump- 
tion. 

Assumption 1: The sensor observations are independent, in 
time as well as from sensor to sensor, conditioned on each 
hypothesis. 

We  will also have occasion to use the following extension 
to Assumption 1, especially when we consider infinite-horizon 
problems. 

Assumption 2: The sensor observation sequences are inde- 
pendent (from sensor to sensor) i.i.d. sequences, conditioned 
on each hypothesis. 

Once the decision rules of the sensors are fixed, the fusion 
center is faced with a classical sequential detection problem 
and hence an optimal decision policy for the fusion center can 
be found in the class of generalized sequential probability ratio 
tests (GSPRT’s) [.5]. Namely, at time k, the fusion center forms 
a likelihood ratio ,%I, (as a function of all the information it 
has accumulated) and compares it to two thresholds ok and 
,& Qk < ,&. If Lk _< ak, then HO iS chosen. If Lk 2 ,&, then 
HI is chosen. If ok < LI, < pk, then the decision is deferred. 

Let us now consider the sensor decision functions. Several 
different cases can be considered depending on the information 
the sensor decisions are allowed to depend on. 

Case A) System with Neither Feedback from the Fusion 
Center nor Local Memory: Here, uk is constrained to depend 
only on XL, i.e., 

u: = g5gx:,. 
This case was considered in [5], where it was easily shown that 
person-by-person optimal (p.b.p.0.)’ sensor decision functions 
are likelihood ratio tests. The optimal thresholds satisfy a set 
of coupled equations, which are however almost impossible 
to solve numerically even if we restrict our attention to 
relatively short time horizons. Under Assumption 2, it may 
seem that for this case, stationary sensor decision functions 
are optimal and that an SPRT is optimal at the fusion center. 
Typically such “stationarity” results are established using 
dynamic programming (DP) arguments [7]. Unfortunately, 
dynamic programming cannot be used here because of the 
nonclassical2 nature of the information in the system [S], [9], 
thus leaving this as an open problem. 

Case B) System with no Feedback, but Full Local Mem- 
0y: 

u: = f&x;, . . . ,x:,. 
Hashemi and Rhodes [6] considered this case with a finite 
horizon and argued incorrectly that p.b.p.0. sensor decision 
functions are likelihood ratio tests (a counterexample can be 
found in [S] which predates [6]). We  point out this mistake in 

‘A set of decision functions is said to be person-by-person optimal if it is 
not possible to improve the corresponding team performance by unilaterally 
changing any one of the decision functions. Clearly, globally optimal decision 
functions are also person-by-person optimal. 

‘We  refer to an information structure as nonclassical if, roughly speaking, 
all the decision makers in the system do not have the same dynamic 
information about the past. 

[lo], where we also argue that likelihood ratio tests are indeed 
optimal if we restrict ub to depend on XL and (~~11, . e  + , u”,-,), 
as given below in Case C. 

Case C) System with no Feedback, and Local Memory 
Restricted to Past Decisions: 

u; = 4 :(x;, u ;, . . .&l). 
Here, p.b.p.0. sensor decision functions are likelihood ratio 
tests with thresholds depending on the past decision infor- 
mation. But just as in Cases A and B, we have a nonclassical 
information pattern and dynamic programming arguments can- 
not be used. 

Case D) System with Full Feedback and Full Local Mem- 
ory: Here, uf, is allowed to depend on all the information that 
sensor S’l has access to in the setting of Fig. 1, i.e.,3 

u: = $k(-ql, k]i U[l, k-l], . . * > $, k-l]). 

Then, as in Case B, likelihood ratio tests are not optimal. 
Furthermore, we still have a nonclassical information pattern. 

Case E) System with Full Feedback, but Local Memory 
Restricted to Past Decisions: 

For this system, the past (one-step delayed) information at the 
fusion center and each of the sensors is the same, and is nested 
at successive stages. This, together with the fact that the cost 
function depends only on the local decisions (and through them 
on the observations), implies that the information structure for 
this case is quasi-classical. It is well-known that stochastic 
control or team problems with such an information structure 
are tractable via DP arguments [8], [9]. 

In the remainder of this paper, we study Case E in detail. 
As we will show, definite progress can be made in the analysis 
of this case. In Section II, we provide a formal mathematical 
description of the problem. In Section III, we provide a useful 
characterization of sensor decision functions. In Section IV, we 
consider a finite-horizon version of the problem and establish 
the optimality of likelihood ratio tests at the sensors. Then, in 
Section V, we study the infinite horizon optimization problem 
and show that stationary decision functions are optimal at the 
sensors and that an optimal fusion center policy has a simple 
SPRT-like structure. In Section VI, we provide some numerical 
results. Finally, in Section VII, we include some concluding 
remarks. 

II. MATHEMATICAL DESCRIPTION 

We begin with a formal description of the decentralized 
sequential detection problem we wish to analyze here. 

1) 

2) 

The hypothesis is denoted by a binary random vari- 
able H that takes on values HO and HI, with prior 
probabilities 1/ and 1 - v, respectively. 
There are N sensors in the system. The observation 
sequence received by sensor Sl is denoted by {XL}&, 
where k denotes the time index. Each observation 
at sensor Sr comes from a set Xl. The sequences 

3 We  use the notation [u, b] to represent the set of all t ime indices between 
a and b, inclusive. 
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3) 

{Xl}r?“=,, {Xi}‘&, . . . , {X/}r=l are independent, 
i.i.d. sequences, when conditioned on each hypothesis. 
Let PljH, be the probability measure on Xl that describes 
the conditional distribution of Xi given Hj. 
At time Ic, sensor S’l sends, to the fusion center, a  local 
decision U: that takes values in the finite set { 1, . . 9  , Ol}. 
Past decision information for all the sensors is available 
at each sensor for local decision making. We  denote the 
past decision information at time Ic by 1k.-1, which is 
given by 

Ik-1 = {$, k-l], $1, k-l], ” ’ ‘$, k-l]h 

with the understanding that Ia is the null set. Now, let 

Then the local decision function (LDF) at sensor S’l at 
time k is a measurable mapping from Xl x Vk-t to 
(1,. . ’ , 0~). We  denote this mapping by c#&. The local 
decision u: is then given by 

But for a  particular realization i&i, the LDF 44, can 
be considered to be a mapping from &to (1,. . + , Dl}, 
which we denote by $L,ik--l, i.e., c#$(.; i&l) = 
&, ilc--l (s). The set of all LDF’s at time k is represented 
by the vector 

4) The fusion center performs a sequential test based on 
the information it receives from the sensors. That is, 
the policy y of the fusion center consists of selecting a 
stopping time 7, and a final decision SE{O, 1) based on 
the information up to time 7. 

5) Decision errors are penalized through a cost function 
W(S, H). For most of the analysis, we will assume 
that the cost function W  is of the form: W(0, Ho) = 
W(1, HI) = 0, and W(0, HI) = Lo, W(1, Ho) = L1, 
where Lo and L1 are positive. Also, each time step taken 
for decisionmaking is assumed to cost a  positive amount 
c. 

The total expected cost resulting from the sequential pro- 
cedure just described is E{cr + W(6, H)}. The problem that 
we wish to solve can now be stated as follows. 

Problem (Pl): Minimize E{cr+W(S, H)} over all admis- 
sible decision policies at the fusion center and over all possible 
choices of local decision functions at each of the sensors. 

III. LOCAL DECISION FUNCTIONS 

The decision function &, ik--l defined in Section II is a  
mapping from Xl to { 1, . . . , Dl}. Let @  denote the set of 
all mappings from Xl to { 1, . e  + , Dl}. We  will refer to these 
mappings as decision functions in the sequel. Now, consider a 
representative element $J’E@‘, and let X’denote the “generic” 
random variable in the i.i.d. sequence {Xk}r=r. Then, we 

define the following: 

q$(dl) := Prob (#(Xl) = dl[Hj), 
dl = l,...,Dl, j = 0, 1; 

q$l := (q;i (I), . . . , q;i (&I>, j = 0, 1; 

44” := (q$, q.$). 

The vector 441 describes the conditional distributions of 
#(Xl), conditioned on each of the hypotheses. Let Q1 := 
{q41 (#E@}. We  state the following result which was proved 
in [ll] in the context of optimal likelihood ratio quantizers. 

Proposition 2: The set Q1 is a compact subset of [O, 1120”, 
for 1  = l,...,iV. 
To utilize this result in our framework, we concatenate the 
mappings@, Z= 1,s.. , N, into the vector r+3 = ($I, . . . , c$~), 
and define 

Then Q~ belongs to the set Q = Q1 x . .. x QN. 
By Proposition 1, Q is a compact set. Now suppose that 
J: [0, l] 2D1 x ‘.’ x 2D~ H IR, is a continuous function, and that 
the cost of using the decision function vector 4 is given 
by J(q+). Then by the Weierstrass theorem, Proposition -1 
implies the existence of a  decision function vector (say 4) 
that minimizes J over the set Q. 

Now, since c#$, ilr--l E&, 1 = 1, . + . , N, the vector qQk, 2b- 
is well defined and describes the joint distribution of thk 
observation vector Uk = (u:, . . +, u:), conditioned on each 
hypothesis and on the event that 4-1 = i&t. Note that two 
LDF’s 44, and & are equivalent, i.e., their use results in the 
same expected cost for the sequential test by the fusion center, 
if 

That is, the LDF’s for our problem are completely character- 
ized by their corresponding conditional distribution vectors. 

IV. FINITE-HORIZON OPTIMIZATION 

Before we address the solution of the infinite-horizon op- 
timization problem (Pl), we study a finite-horizon version 
of it in which the stopping time 7 is restricted to a finite 
interval, say [0, T]. In this case, the cost of the sequential 
procedure is a function of IT (which in turn depends on all 
the LDF’s up to time T), as well as the decision policy y of 
the fusion center and the hypothesis. We  denote this cost by 
G,(h, H). Let X[I,TI denote the set of all observations up 
to time T, i.e., {Xii, Tl, + . . , X[, Tl}. Then, the finite-horizon 
optimization problem can then be stated as follows. 

Problem (P2): Minimize 

over all possible choices of y and all possible choices of 
y!$, 1  = l,...,N, k = l,...,T. 

Now, before we consider globally optimal solutions to this 
problem, we first study the common structure of all p.b.p.0. 
LDF’s. This common structure would obviously be valid for 
globally optimal LDF’s as well. 
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A. The Structure of Optimal LDF’s 

We  can characterize p.b.p.0. LDF’s as follows. We  first fix 
1, 1  < 1 5 N, and k, 1  5 k 5 T. Then, we fix the policy 
y and all the LDF’s in the set {I&, j = l,a.. , N, m  = 
l,..’ , T}, except cpk. The expected cost we wish to minimize 
is then a function of cp; alone, say Rv;. The expectation 
needed for Rv; can be computed in two steps as 

R4: = E~~l,k-Il>->~~ k--1l>X::> H 

’ {EX(k+l, Tl> ifk, Tl,-~>X~~:,lTl> X;k+,$l,-J~, TlIH 
. {G&:(X;; Ik-l), Ikel, u;,-&-~, u;+‘,-, 

N 
. Uk > u;k+l, qr . . . >++l,T]; W I). 

In the previous inner expectation, we do not need to condition 
on observations up to time k - 1  because of the conditional 
independence assumption stated in Section II. Also, the outer 
expectation is taken with respect to the local decisions, since 
the local decision functions up to time k - 1  are fixed. The 
inner expectation in the previous equation is a function of 
4-1, H, and $f(XL; b-11, say K(&(X:; h-l), 4-l; HI. 
Therefore, 

R4; = EI,-l,X;,H W(&X:; I/c-I), -fk-1; HI) 

=E Ik--l,x;{Prob(H = HolL-1, $1 

. G&X:; Ll), h-1; Ho) 
+ Prob (H = HlIIk-1, XL) 

. W&(X:; L-I), 4-l; HI)). 

Minimizing R,L with respect to 4: is equivalent to minimizing 
the quantity inside the expectation almost everywhere. Hence, 
every p.b.p.0. solution $4, for the LDF of sensor Sl at time I? 
(when it exists) satisfies the equation 

&Ax:; Ik-1) 
= arg d EtyinDLIProb (H = H0l4-1, $4 

. K(il, ;,‘I; Ho) + Prob (H = HllIk-1, XL) 

. K(dl, Ik-1; HI)} a.e. (1) 

Our goal in this section is to show that p.b.p.0. local decision 
functions (when they exist) can be found within a structured 
class of decision functions admitting a finite-dimensional 
parametrization. To this end, we first define Ll: Xr H [0, cc] 
as the likelihood ratio of PilH, with respect to PilH,. In 
particular, if Xl is a  Euclidean space and if the conditional 
probability density function of XL given Hj is fi, then Ll is 
given by 

Ll(XL) = $f$ w.p. 1. 
0 k 

We now define a class of decision functions, based on 
this likelihood ratio, that can be parametrized by a set of 
thresholds.4 

Definition 1: 

a> 

b) 

A decision function #: Xl H { 1, . .. , Dl} is called 
a monotone likelihood ratio test (MLRT) if there exist 
thresholds Xi, . . . , XD[-~ satisfying 0 5 X1 I: X2 5 
... 5  xD1-i 2  DC, such that 

c+(x) = dl only if Ll(z)E&, dl = l,...,DI, 

where 11 = [0, Xl], IDI = [xDl-i, 001, and Id, = 
[hi-l, &I, 4  = 2,..*,D1 - 1. 
A decision function $l: Xl H { 1, . . . , Dl} is called a 
likelihood ratio test (LRT) ‘if there exists a permutation 
mapping C: {l,.*.,Da} H {l,...,Dl} such that the 
composite function C o # is a monotone likelihood ratio 
test. 

Proposition 2: Person-by-person optimal local decision 
functions (when they exist) can be found in the class of LRT’s, 
with thresholds that depend on the past decision information. 

Proofi We  know that a p.b.p.0. solution & for the LDF 
of sensor Sl at time k satisfies (1). Using Bayes rule, we have 

Prob (H = HiIIk-1, XL) = L1(x;) (1 -P&-l) 
Prob (H = HoIrk--l, XL) PkLl ’ 

W .P. 1, (2) 

where pk denotes the posterior probability of HO given the 
decision information up to time k, i.e., 

pk = Prob (H = HoIlk), k = O,...T. 

From (2), it follows that & satisfies the equation at the bottom 
of the page. From this, it should be clear that there exists 
a solution for & in the class of LRT’s with thresholds that 
depend on I& 1. q 

B. A Sufficient Statistic for DP 

As we mentioned earlier, the information structure in the 
system under consideration is of a  quasiclassicalnature. Hence, 
we would expect that a  sufficient statistic for a  dynamic 
programming (DP) solution to problem (P2) is the posterior 
probability defined earlier, i.e., 

pk = Prob (H = HoIlk), k = O,..+,T. 

Using the independence assumptions, a  recursion for pk can 
be obtained quite readily. Before we proceed to write the 
recursion equations, we introduce two functions, g: D x Q x 
[0, l] H [0, l] and f: D x Q x [0, l] H [0, 11, as follows. 

4Similar definitions can be found in [ll]. 

argmindl~{l,...,Dl}{(l - Pk-l)K(dl, Ik-1; Hl)b(X:) 

&(x:; rk-1) = 
+Pk-lK(dl, 4-l; Ho)), if Ll(Xk) < 00, 

a%mindiE{l,...,Dl} K(&, Ik-1; a), if Ll(XL) = 00. 
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Far d= (di,... ,dN)ED, &a1 x .+a x QN, and p~[0, 11, In this equation, it is clear that the conditional distribution vec- 

g(d; q4; P) := p&l (4) . . . d& (hv), 
tor q+* is a function of only pk. Both parts of the proposition 
follow from this fact. q 

and The main consequence of Proposition 3 is that we do not 

f(d; !&hi P) := g(d; $#,; P) + (1 - P)‘& (dl) ’ ’ ’ &‘(dN). 
lose optimality if we restrict the local decision U; to be a 
function of only XL and pk-1. From here on, we impose this 

Note that f(.; q4,, Ik--l ; pk-1) is the joint conditional distri- restriction. Then, by a possible abuse of notation, 

bution of U$ = (z$, . . +, u,“), given I&.1. 
We  now give the recursion for pk. For ,% = 0, ’ + . , T, 

u; = &XL; pk-1). (4) 

Pk+l = Prob (H = &(Ik+l) 
For fixed p~[0, l], the mapping &(.; p) belongs to the set @ ’ 
defined earlier. We  denote this decision function by &, p, i.e., 

= Prob(H = Ho(u~+~,~~~,u~+~, Ik) 

Prob(H = Hol~k)l)(~~+l,...,~~+llH~, Ik) die; P) =  45:,,0 
ZZ 

Pbd+, >  . . * j %?+l Irk) W ith the LDF’s defined as in (4), we obtain the following 
d”k+l; q&.+,, Jk ; pk) useful recursion for pk. For k = 0, + . . , T  - 1, we have 

= f(Uk+l; ~&+l,lg; pk)’ 
(3) 

d”k+l; q+lc+lrPk; pk) 

with po = V. However, we will not find this recursion useful “+l = f(uk+l; !&$,+,,,, ; pk) 
(5) 

unless we can show that the RHS of (3) depends on Ik only 
through pk, i.e., that pk is indeed a sufficient statistic for (P2). with pu = V. All the decision makers in the system have to 

retain only the sufficient statistic pk, which they can easily 

C. Finite-Horizon DP 
update using (5). 

For completeness, we rewrite the finite-horizon DP equa- 
The DP equations for problem (P2) are derived as follows. tions in terms of the redefined LDF’s: 

The (minimum) expected cost-to-go at time h, 0  5 k 5 T, 
is a  function of the information available to the fusion center J?(m) = min ((1 - PT)LO, 1)TLl)~ (6) 
at time k, i.e., rk, which we denote by jr(Ik). It is easily 
seen that and for Ic = 0, ... ,T - 1, 

G(b) =  min {Cl- PTVO, PTLI), J:(pk) =  min ((1 - pkjLO, PkLl, c + A:(pk)}, (7) 

where the first (respectively, second) term in the above mini- where 
mum is the conditional expected.cost of choosing Ho (respec- 
tively, HI), given 1~. A%&) := 

For 0 2 k 5 T, we have the following backward recursion: 
$$EJ:+l (7;: ;; ;;) f(d; ‘&$i Pk). (8) 

E 

jF(lk) = m in 
C (I - pk)LO> PkLl, 

where the third term is the minimum expected cost of contin- 
uing conditioned on 4. 

Proposition 3: 
a) For each ,$ 0 < k 5 T, the function jT(Ik) can be 

written as a function of only pk, say JF(pk). 
b) For each Ic, 0  5 k < T  - 1, the search for optimal LDF’s 

at time k + 1 can be restricted to a class of decision 
functions that depend only on pk. 

Pro08 Clearly, jTT(&) is a function of only pT, say 
J;(~T). We  now make the following induction argument. For 
any /G, 0 5 k 5 T  - 1, suppose that j&i(lk+i) is a  function 
Of Only Pk+l, say J,T+l(Pk+$ Now, 

j:(4) =  min {(I - Pk)LO, Pk-h, 

D. Finite-Horizon Policy of the Fusion Center 

Our goal in this section is to use the DP equations (6x8) 
to find the structure of an optimal finite-horizon policy of 
the fusion center. To this end, we first present some useful 
properties of the functions Jr and the functions A: in the 
following lemmas. 

Lemma 1: The functions Jc (p) and AZ(p) are nonnegative 
concave functions of p, for pE[O, 11. 

Lemma 2: The functions Jr(p) and AZ(p) are monotoni- 
cally nondecreasing in k, that is, for each pg[O, 11, 

Jz- (P) I J#z+1 (PL Olk<T-1. 

A: (P) 5 A:+‘,, (P) > O<k<T-2. 

Lemma 3: The functions AT(p) satisfy the following prop- 
erty: 

A;(O) = A;(l) = 0. q 

Lemmas 2 and 3 are easily proven by simple induction 
arguments. The proof of Lemma 1 is not as straightforward 
and is given in the Appendix section. 
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If we now assume that Finally, if we define the set QM by 

(9) QM = {q+EQ: 4 is a vector of MLRT’s}, 

holds, then Lemmas l-3 give us the following threshold then Ar(Pk) can be written as 
property of an optimal finite-horizon fusion center policy (see 
Section 3.5 of [7] for a  similar analysis). Az(pk) := min g(d; ‘&#,; Pk> 

q+EQM f(d; ‘&&i Pk) >  
f(d; %$; pk). 

Theorem 1: Let (9) hold. Then an optimal finite-horizon 
fusion center policy has the form 

V. INFINITE-HORIZON OPTIMIZATION 
accept HO, if Pk > a:, 
accept HI, if Pk I b;, 

In order to solve the original optimization problem (Pl), 

continue, if br<pk<aF, 
we need to remove the restriction that r belongs to a finite 
interval, by letting T  + 00. Toward this end, we first note 

where the scalars a:, b:, k = 0, 1  . . . , T  - 1, are determined > the inequality 
from the relations 

Lo(l - b;) = c + A;(b;), 
J:+‘(P) I J:(P), 

Liar = c + Az(az). which holds because the set of stopping times increases with 
T. Furthermore, by leaving out the third term in (7), we obtain 

Furthermore, {a~}~~~ is a nonincreasing sequence and 
{b~}~~~ is a nondecreasing sequence. 0 5 J:(P) 54~1, for all T, and for all k 5  T, 

Remark 1: If (9) does not hold, then the thresholds a: and where 
bz of Theorem 1 are both identically equal to Lo/(Lo + L1) 
for all k greater than some m, 1 5 m  < T, which essentially 77(p) =  min {LIP, L0(l -PI}. (10) 
reduces the finite horizon to m. Hence, condition (9) does not 
impose any restrictions on the problem parameters. The fact that JT is bounded below implies that, for each finite 

k, the following limit 

E. Optimal Finite-Horizon LDF’s 

The DP equations (6)-(8) can also be used to find optimal 
LDF’s stagewise, starting from time T  and going backwards. 
The concavity of the cost-to-go function Jr+1 implies that the 
function 

dd; q4; Pk> 

f(d; qc#,; pk) 
f(+; ‘&b; pk) 

is continuous in q+. By Proposition 1, this fact implies the 
existence of optimal LDF’s at time k + 1. 

We  showed earlier (Proposition 2) that the search for 
globally optimal LDF’s at time Ic + 1 can be restricted to the 
set of LRT’s with thresholds depending on Ik. Propositions 1 
and 3 further show that globally optimal LDF’s at time Fc + 1 
can be found in a class of LRT’s with thresholds depending 
only on pk. Now, suppose &+i is a globally optimal LDF 
for sensor I at time Ic + 1. Then we can replace & by 
6: = Cl 0 il,,,, where Cl is a  permutation mapping that 
makes &, pk a monotone likelihood ratio test (MLRT), without 
changing the value of E{ J~+,(pk+~)lpk}. Hence, globally 
optimal LDF’s at time Ic + 1 can be found in the smaller 
class of MLRT’s with thresholds that depend on pk. 

Now, suppose an MLRT &,, is characterized by the 
thresholds xi (pk), . . . , x0, -1 (pk). Then, 

‘-lb;, pk (h) =  Prob (‘f?X:)E[h-l(Pk), &ii (Pk)]lHj), 

with the understanding that &(pk) = 0 and AD,&) = 00. 
Hence, the minimization to obtain Ar(pk) in (8) can be done 
over ID] thresholds. 

T+kmT>kJkT(~) = $>;J:(P) =: J/?(P) 

is well defined. Also, due to the i.i.d. nature of the observa- 
tions, a  time-shift argument easily shows that 

JiY(p) = J&(P)> 

for all Ic, and we can denote the common value by J(p), which 
we will refer to as the infinite-horizon cost-to-go function. 

Now, by the dominated convergence theorem, the following 
limit is well defined for all k: 

f(4 q4; P). 

This limit, which is independent of k, is denoted by AJ(~). 
It follows that the infinite-horizon cost-to-go function J(p) 
satisfies the Bellman equation 

J(P) = min {LIP, Lo(l - P), c +  &(P)}. (11) 

We note that the optimum cost for problem (Pl) is J(v). 

A. The Structure of an Optimal Fusion Center Policy 

If we compute the infinite-horizon cost-to-go function J(p), 
p~[0, 11, then an optimal policy of the fusion center can be 
obtained from the RHS of (11). However, it is possible to 
obtain the qualitative structure of an optimal fusion center 
policy without actually computing J(p). To this end, we state 
the following result, whose proof follows by taking limits as 
T  -+ cc in Lemmas l-3. 



Lemma 4: The functions J(p) and AJ(~) are nonnegative Proof: Let G be any fixed point of 7, and let $G be 
concave functions of p, pc[O, I]. Furthermore, they satisfy the such that 
end-point conditions 

J(0) = J(1) = AJ(0) = AJ(l) = 0. Fix po = &[O, l], and let pr, pa, . . . , be defined recursively 
by 

From Lemma 4, it is clear that, provided the condition 
d=k+l; %$Gk ; pk) 

(12) 
Pk+l = f(Uk+l; q”;, ; Pk) ’ 

Now define a stopping time N and a decision rule fiN as 

holds, an optimal policy of the supervisor will have the 
follows: 

threshold property given in Theorem 2 (see [7, Section 6.31 N = min {k 2 oidpk) < C + wG(@, ; pk)}, 

for a similar analysis). and 
Theorem 2: Let condition (12) hold. Then an optimal fu- sN = 1, if LIPN I Lo(l -PN), 

sion center policy for problem (Pl) has the form 0, if LlPN > LO(l - PN). 

accept HO, if pk 2 a 
From the definition of N and the fact that G is a fixed point 

accept Hr , if pk < b 
of 7, we obtain the following relations: 

continue taking observations, if b < pk < a, G(v) = c + E{G(pl)} 

where the thresholds a and b are determined from the relations 
G(PI) = c + E{G(~2)(11} 

Lo(l - b) = c + AJ(~), 
Lla = c + AJ(a). WPN-1) = c + E{G(PN)IIN-I) 

G(PN) = V(PN). 
Remark 2: It should be noted that if (12) does not hold, Substituting backwards and taking expectations, we obtain 

then it would be optimal for the fusion center to ignore all the 
data it receives from the sensors, and base its decision solely G(v) = E{d + w(fiN, H)) 2 J(v), 

on the value of the prior probability V. Hence, (12) does not where the last inequality follows from the definition of J. 
bring any loss of generality to the result of Theorem 2. To show the reverse inequality, we first note that for each 

PEP, 113 
B. Uniqueness of J(p) and Its Consequences G(P) I V(P) = J;(P)> for all T. 

Let S c C[O, l] be the set of all concave functions on [0, l] 
that are bounded (in sup norm) by the function q(p), p~[0, 11, 

Now fix T, and suppose that for some m < T - 1, Jz+l 2 

defined in (10). For GES, we define 
G(p). Then, 

J:(p) = min 
C 

v(p), c + min WJT 
q+EQnn m+l (Q6 p)} 

2 min 

It is clear that the infinite-horizon cost-to-go function J = G(P). 
belongs to the set 5’. Furthermore, the Bellman equation that 
J satisfies can be written as 

By induction, it follows that for each pc[O, 11, 

J:(P) > G(P), for all T, and for all k 5 T. 

J(p) = min Lip, L0(1 -P), c+ min wdq+; p) 
q$EQnn 

Fixing Ic and taking the limit as T + cc in the previous 
equation, we obtain 

Then, we define the mapping 7: S H S by 

?-G(P) = min {LIP, Lo(~ -P), c 

Theorem 3: The infinite-horizon cost-to-go function J is 7”+h(P) I I”rl(P), for each p~[0, 11. 

the unique fixed point of the mapping 1. This means that lnr/ converges monotonically to J as n ---t co. 
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J(P) 2 G(p). 

0 
The first important consequence of Theorem 3 is that J(p) 

can be obtained by successive approximation. We can show, 
using an induction argument, that 
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C. Optimal Injinite-Horizon LDF’s 

Theorem 3 also implies that a  stationary vector of LDF’s is 
optimal for the infinite-horizon problem (Pl), as the following 
argument shows. Let 4; be such that 

where J(p) is the infinite-horizon cost-to-go function for 
problem (Pl). Then, in the problem setting for (Pl), we 
restrict ourselves to the singleton vector of LDF’s $* = 
p1*,... ,c+bN*), where #*: X1 x [0, l] H {l,...,Dl} is 
such that 

&*(.; p) EE q$(.). 

In other words, for each 1, 1  = 1, . . . , N, 

‘& = d’*(@; pk-l), for all k. 

We  denote the optimization problem with this restriction 
by (Pl’). We  can solve (Pl’) in a manner parallel to the 
way we solved (Pl), i.e., by first solving the corresponding 
finite-horizon problem and then extending this solution to the 
infinite-horizon case. The Bellman equation for the infinite- 
horizon cost-to-go function J’(p) for problem (Pl’) satisfies 

J’(P) = min {LIP, Lo(l -P), c + wJt(qdg; P)}. 

By Theorem 3, it follows that J(p) = J’(p), for all pc[O, 11, 
which implies the optimality of the stationary vector of LDF’s 
4* for problem (Pl). 

VI. NUMERICAL RESULTS 

For all the examples presented in this section, we assume 
that the local decisions are binary. For these examples, it is 
convenient to write the LDF’s in terms of the log-likelihood 
ratio. In this section, the function L(e) represents the log- 
likelihood ratio of the observations. We  consider three cases 
in increasing order of complexity. 

Case I) Single Sensor: Here, the LDF is characterized by 
a single threshold X. Hence, for each GES, W G  is a function 
of only X and p. Let X denote the generic random variable in 
the set of i.i.d. observations that the system receives. Then, 

wG(& P) = eG( g(d’ ” ‘)).r(d. A, P), 
dzl f(dT 4 P) 

where 

g(d, A, P) =  p[~o(L(X)>X)I”-‘[~o(L(X) 5  412-d> 

f(d, A, P) = dd, 4 P) + (1 -P) 
. [Pl(L(X) > X)]d-‘[Pl(L(X) 5 ii)]“-% 

An optimal threshold (as a function of p) is obtained by 
minimizing WG(X, p) over XEIR. It is easy to see that 

lim wG(& p) = xlim wG(& p) = G(p). 
x+00 ‘03 

Also, by the concavity of G, for fixed p~[0, l] 

wG(k P) 5  G(P), for all X. 
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Fig. 2. Results for the single sensor case with c  = 0.01, v  = 1.0, and 
LO = ~51 = 1.0. (a) Infinite-horizon cost-to-go function. (b) Opt imum 
stationary LDF threshold. 

In addition it is easy to show that, for fixed p, WG(X, p) has 
bounded left- and right-hand derivatives for every X&C. This 
means that the minimizing threshold can be found to within a 
desired accuracy by a systematic search procedure [12]. 

Example 1: The observations that the sensor receives are 
i.i.d. Gaussian random variables with mean 0 and variance w 
under HO and mean 1 and variance v under Hr. In this case, 
L(X) is N(-1/2v, l/v) under HO and N(1/2w, l/w) under 
HI. 

An optimal stationary LDF threshold X*(p) and the infinite- 
horizon cost-to-go function are obtained by successive approx- 
imation. As indicated earlier, we start the iteration with v(p) 
and repeatedly apply the transformation 7, and stop at iteration 
n if lnv is sufficiently close to 7”+lq. 

Numerical experimentation suggests that W G  (X, p) is uni- 
modal in X, for all GES. We  have hence used a golden section 
search procedure [12] to obtain an optimal threshold at each 
stage of the successive approximation. Representative results 
are shown in Fig. 2. A hundred iterations were run, and the 
norm difference between the 99th and 100th iterates was less 
than 10-4. The figure indicates the values of the optimal fusion 
center thresholds a and b. The optimal local decision threshold 
as a function of p  is also plotted. 

It is interesting to observe that x*(p) is a  discontinuous 
function in both cases (the spikes around the points of dis- 
continuity and at the end points are attributed to quantization 
and finite-precision). This might be surprising at first, but 
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such behavior is commonly observed in control systems where 
“bang-bang” control is optimal. For example, if we consider 
f(~, x) = -ux, and we wish to minimize f over UE[-1, l] 
for each fixed x, then the minimizing u as a function of x 
is sgn (x). 

Case 2) Two Identical Sensors: Here, in addition to As- 
sumption 2, we assume that the observations received by the 
two sensors are identically distributed conditioned on each 
hypothesis. The vector of LDF’s is characterized by two 
thresholds Xr and Xz, with Xi being the threshold at sensor 
Si. Hence, WC is a function of Xr, X2, and p, and is given by 

*f(&, da, Xl, x2, PI, 

l=l 

’ [Po(L(X) I h)12-d”: 

f(dl, da, xl, x2, P) =  g(&, d2, Xl> X2, P) 

+fiCl-P) 
l=l 

. [Pl(L(X)>Xl)]d”-’ 

. [Pl(L(X) 5 Xl)]2-d”. 

Optimal thresholds (as functions of p) are obtained by mini- 
mizing wG(xl, x2, p) over (x1, &)ER2. 

Example 2: The observations received by the system are 
i.i.d. Gaussian random variables with mean 0 and variance ‘u 
under Hu and mean 1 and variance u under HI. In this case, 
L(X) is N(-1/2v, l/w) under Ho and N(1/2w, l/v) under 
HI. 

Here also, numerical experimentation suggests that for each 
GES, wG(h, x2, P> is unimodal on the set {(Xl, Xz): (Xl, 
X~)ER~}. The unimodality would imply that the search for 
optimal thresholds can be restricted to the set {(Xl, X2): X1 = 
X2}. This is confirmed in the optimization results (see Fig. 3) 
where the optimal thresholds X*1(p) and xa (p) are seen to be 
identical functions of p. The thresholds at each iteration were 
found by a two-dimensional golden section search procedure. 
A hundred iterations were used to obtain these results, and the 
norm difference between the 99th and 100th iterates was less 
than 10w4. We  note that the same results are obtained if we set 
?r = X2 = X and optimize W G  over the single threshold X. 

Case 3) Two Nonidentical Sensors: This case is similar to 
Case 2 except that functions f and g are given by 

g(dl, da, AI, X2, P) = fi~[~o(~(Xd>x1)]“‘-’ 
l=l 

. po(q&) I &)]2--df, 

f(&, dz, Al, X2, P) =  ddl, d2, X1, X2, P) 

+&-PI 
l=l 

s c, 
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Fig. 3. Results for the case of two identical sensors with c  = 0.01, u = 1.0, 
and Lo = L1 = 1.0. (a) Infinite-horizon cost-to-go function. (b) Opt imum 
stationary LDF thresholds. 

. [w&%)>Xl)]d’-’ 

. [J3(L(XI) i &)12-d”, 

where Xl denotes the generic random variable in the i.i.d. 
sequence of observations received by sensor &. 

Example 3: The observations received by sensor Si are 
i.i.d. Gaussian random variables with mean 0 and variance 
v under HO and mean l/2 and variance u under HI. The 
observations received by sensor Sz are i.i.d. Gaussian ran- 
dom variables with mean 0 and variance II under HO and 
mean 1 and variance w under HI. In this case, L(X1) is 
N(-1/8v, 1/4w) under HO and N(1/811, 1/4v) under HI, 
and L(X2) is N(-1/2v, l/v) under HO and N(1/2v, l/v) 
under HI. 

Here again, numerical experimentation suggests that for 
each GES, WG(X~, X2, p) is unimodal on the set {(Xi, X2): 
(Xl, X~)EIR”}. Optimal thresholds at each iteration were 
hence found by a two-dimensional golden section search 
procedure. Representative results are shown in Fig. 4. A hun- 
dred iterations were run, and, as before, the norm difference 
between the 99th and 100th iterates was less than 10e4. 

VII. DISCUSSION 

As we demonstrated in the preceding sections, the infor- 
mation pattern that we assumed for our analysis (Case E of 
Section I) gave rise to a very tractable problem. Our main 
results are the following. 
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Fig. 4. Results for the case of two nonidentical sensors with c  = 0.01, 
u = 1.0, and Lo = Lr = 1.0. (a) Infinite-horizon cost-to-go function. (b) 
Opt imum stationary LDF thresholds. 

1) 

2) 

3) 

At each stage k, it is optimal for each sensor to quan- 
tize its current observation using a likelihood ratio test 
whose thresholds are determined by the past decision 
information Ik- 1. 
The optimal thresholds at the sensors at stage k depend 
on the Ik-1 only through the one-dimensional sufficient 
statistic Pk-1. Furthermore, the sufficient statistic can be 
updated using a simple recursion. 
An optimal policy for the fusion center is a sequential 
test based on Pk, with fixed boundaries (a and b) in the 
infinite-horizon case. Also for the infinite-horizon prob- 
lem, a stationary set of decision functions is optimal at 
the sensors. That is, the optimal MLRT for each sensor is 
a time-invariant function of the current observation and 
the sufficient statistic of the past decision information. 
This reduces the complexity of the design considerably. 

The reason we were able to use dynamic programming 
arguments in our analysis to obtain optimality results is that 
all the decisionmakers in the system have the same dynamic 
information about the past. This is not true for the information 
patterns of Cases A, B, C, and D, as discussed in Section 
I. An interesting open problem for these cases would be to 
investigate if stationary LDF’s are optimal under Assumption 
2. Such a result would be especially useful for Cases A and C 
since we have already established the optimality of likelihood 

ratio tests. Also, if we do not allow feedback from the fusion 
center, then Case E reduces to Case C. Hence, any results for 
the infinite-horizon problem in Case C would tie in very well 
with the results presented in this paper. 

VIII. APPENDIX 

Proof of Lemma 4.1: The assertion is true for Ic = T  since 
J;(P) is the minimum of two affine functions of p. Now 
swme JZ+1 (P) is concave in p, pi [0, 11. This is possible 
if, and only if, there exists a collection of affine functions 
{X,p + ,LL~: ZEZ}, for some index set 2, such that [13] 

Then, 

fc (P) 
= inf C inf {X,g(d; Qg; P) + p~f(4 Q4; P)] 

q,EQ dcD zEz 

ZI inf inf C {X,g(d; Q,++; P) + kf(d; Q+; P)). 
q+cQ =EZ dED 

Hence, AZ(p) is concave in p, because each term in this 
infimum is affine in p. This further implies that J:(p) is 

r-l concave in p, which completes the proof. Y 
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