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Abstract—There is significant interest in battery-powered sensor
networks to be used for detection in a wide variety of applications,
from surveillance and security to health and environmental mon-
itoring. Severe energy and bandwidth constraints at each sensor
node demand system-level approaches to design that consider
detection performance jointly with system-resource constraints.
Our approach is to formulate detection problems with constraints
on the expected cost arising from transmission (sensor nodes to a
fusion node) and measurement (at each sensor node) to address
some of the system-level costs in a sensor network. For a given
resource constraint, we find that randomization over the choice of
measurement and over the choice of when to transmit achieves the
best performance (in a Bayesian, Neyman—Pearson, and Ali-Silvey
sense). To facilitate design, we describe performance criteria in the
send/no-send transmission scenario, where the joint optimization
over the sensor nodes decouples into optimization at each sensor
node.

Index Terms—Decentralized detection, distributed detection, en-
ergy constraints, resource constraints, sensor networks.

1. INTRODUCTION

NTRUDER detection, traffic monitoring, wildlife observa-

tion, and data collection are just some of the wide variety of
applications envisioned for battery-powered sensor networks. In
many of these applications, detection of a particular “trigger”
event is the initial (or primary) step executed before any other
processing. When trigger events occur rarely, sensor nodes will
spend a vast majority of their lifetime in the detection loop. The
efficient use of system resources during detection then plays a
key role in the longevity of the sensor nodes.

Traditionally, decentralized detection problem formulations
have addressed detection in sensor networks by focusing on
measures of performance such as error probability and have ne-
glected system costs. The energy dissipation in the system in-
cluding transmit energy and the energy due to processing has not
been considered directly in the detection problem. We address
the problem of detection in sensor networks with energy con-
straints as a system-level problem that requires the considera-
tion of detection performance jointly with system resources. We
formulate detection problems with constraints on the expected
cost arising from transmission (sensor nodes to a fusion node)
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and measurement (at each sensor node) to address some of the
system-level costs in a sensor network.

The following example illustrates one realistic problem
addressed by our formulation. Consider sensor nodes having
two different sensing modalities (e.g., any two of the following:
acoustic, seismic, and image). Suppose a primary detector
can make use of both modalities, while a secondary detector
uses only one of the modalities; the cost of measurement and
operation for the primary detector is, thus, greater than the
costs in the secondary detector. A lower transmission rate using
the primary detector may achieve the same performance in
terms of error probability as a higher transmission rate using
the secondary detector. Given a constraint on the expected cost
to be satisfied, the relevant problem is to decide how often, and
at what transmit rate, to use a particular detector.

In typical application scenarios, target arrivals do not follow
any particular distribution. For example, the occurrence of in-
truders in a home is typically a rare and unpredictable event.
In such scenarios, our main result is that under a constraint on
the expected cost, the sensor nodes must randomize their choice
of measurement and how frequently they transmit to achieve
the best performance (in a Bayesian, Neyman—Pearson (N-P),
or Ali-Silvey (A-S) sense). In particular, for sensor nodes that
are either awake or asleep, the result implies that sensor nodes
should sleep for periods of time to save energy. In practice,
the issue of how to determine the optimal decision strategy, in-
cluding the randomization parameters, is a major issue, particu-
larly in time-varying noise and target environments. Therefore,
to facilitate design, we describe several cases in which the joint
optimization over the sensor nodes is decoupled.

There has been some important work on incorporating system
cost into detection problems. Fu et al. [1] consider a pattern-
recognition problem in which a set of features with associated
costs of computation may be used for discriminating various
patterns. Various assumptions about the dependence between
feature measurements were considered to reduce the complexity
of the optimization, posed as a dynamic programming problem.
Ertin [2] uses a decision-theoretic formulation to formalize the
work of Fu et al. Ertin finds that under resource constraints,
the optimal decision strategy involves randomization over deter-
ministic decision strategies. The randomization results are ap-
plied to a sequential detection problem with a constraint on the
expected cost. Wald’s approximations from sequential analysis
and a receiver operating characteristic (ROC)-based technique
are used to determine the optimal design parameters.

The introduction of measurement costs to detection problems
has been considered in detail in sequential detection problems,
where an interpretation of cost as delay is typical. In sequential
problems, the test statistic is the sequential probability ratio test
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Fig. 1. Topology of “censoring” decentralized detection problem showing
choice of measurement and choice of transmit.

and stopping thresholds determine when to stop taking observa-
tions and declare a result [3, p. 101]. Our problem formulation
differs from the sequential problem formulation in that we con-
sider sensor nodes that can collect, compute and transmit in each
observation interval. Randomization of how often nodes collect
observations and transmit plays the important role in the prob-
lems we consider.

The novelty of our work is in the particular (convenient)
formulation of the decentralized detection problem with asso-
ciated system costs due to transmission and observation. By
making use of existing results [4]-[6] which consider only the
cost of transmission and known results on randomization [2],
[7], we are able to make statements regarding the design of
sensor nodes.

The remainder of the paper is organized as follows. In
Section II, the send/no-send censoring transmission scenario
and expected cost are defined and randomized strategies are
introduced. In Section III, the no-send-zone quantizer is in-
troduced. The three sections that follow describe results for
the censoring transmission scenario: Section IV describes the
optimality of likelihood-ratio detectors and randomization,
Section V describes the dual problems, and Section VI presents
and demonstrates our approach for the special case of on—off
sensor nodes. Finally, Section VII describes results for the
no-send-zone quantizer transmission scenario.

II. CENSORING PROBLEM FORMULATION

We begin by describing the decision problem faced by
the sensor nodes. We are concerned with the binary hypoth-
esis-testing problem of determining the true state of nature
H as Hy (null) or H; (target) based on a set of observations
gathered at each sensor node. For : = 1,2,...,N, let X;
denote the set of observations available at sensor node ¢, and let
X = (Xy,...,Xy) denote the complete set of observations.
Each sensor node computes a local output based on some
subset X, € &), of its observations which are measured,
where )\; denotes the indices of the measured observations.
Partial information about the local output gy, (X,) (defined
more explicitly later) is then transmitted to a fusion node for
global decision making.

We focus on the parallel sensor network topology shown in
Fig. 1, where the sensor nodes communicate in parallel with a
fusion node and neither communicate with each other nor re-
ceive feedback from the fusion node. The cost of communica-

tion is then due to transmission from each sensor node to the
fusion node and reception at the fusion node.

We will consider two transmission scenarios in which par-
tial observations are available at a fusion node for global de-
cision making. In these scenarios, the cost due to transmission
is determined by the send/no-send rate, also referred to as the
transmit/censoring rate. We are motivated by previous results
[4], [5] which indicate that sensor nodes do not need to transmit
very frequently, particularly when one of the hypotheses is more
likely. When a sensor node does transmit, the energy dissipa-
tion in the radio due to startup may be more significant than
the energy dissipation due to transmission of a few packets [8].
Therefore, for the first transmission scenario, we consider trans-
mission of a real-valued function when the observations are
“informative” to the fusion node.

Scenario C. Censoring a real-valued output: Each sensor
node computes a real-valued function of its observation

gr (Xa,) : A, — R (D

and sends in the “informative” region ), and censors in the
no-send region Riq_ (ie., Ry, U Rii = &),). We define the
transmit rate of the censoring function as

PT,'i(R/\z‘) = PU(X/\z' € R>\i> (2)

where we consider transmission only under the null hypothesis,
and P, is the conditional distribution function under Hy. Let
m; = P(H;) be the prior probability of hypothesis H;, j = 0,
1. Assuming that o > 71, transmission cost under the target
hypothesis is relatively insignificant. (Note the uncustomary use
of the term rate to refer to the probability of transmission.)

We now describe the sensor decision rules and the fusion rule
for the topology in Fig. 1. Let 7 be the set of sensor nodes which
transmit their real-valued outputs, and define 7 as the set of
sensor nodes which censor. The fusion node makes a global de-
cision based on the received {gx, (X),),? € 7 }, and the known
no-send regions {Rii , 0 € Tc}. Then, we can denote the fusion

rule as ¢ ({g)\i (Xx)}ier, { RS, }ieTC) and the complete de-
cision strategy as

¢ = (¢>0-/ {/\Zﬁg)\mR)\i}g\;l) : (3)

We consider the cost of transmission and the cost of measure-
ment to be additive at each sensor node, where, at each node,
a subset of the observations may be measured. We define the
total cost due to measurement and transmission across all sensor
nodes as

N

C£> ex +ori Pri(Ry) )
=1

where ¢y, € [0,00) is the cost due to measurement of Xy,
and cr; € [0,00) is the cost per transmission. By defining the
relative costs at the individual sensor nodes, it is possible to ac-
count for a variety of node-dependent scenarios (e.g., a transmit
cost that depends on the number of quantization levels (to be
defined), or on the distance to the fusion node).
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We now give the notation for the distribution of the observa-
tions and list our assumptions. The observations at the sensor
nodes are described statistically by their conditional distribu-
tions, which are assumed to be known. Let PJL be the distribu-
tion function of X; under H;, j = 0, 1, and p;(xz) be the corre-
sponding probability density function (pdf) at X; = z;. We drop
the superscript ¢+ when it can be determined from the context. We
describe the joint distribution function over the observations as
Pj =P} x P} x---x P].

Assumption 2.1 (Conditional Independence): The observa-
tions are statistically independent from sensor node to sensor
node, conditioned on each hypothesis.

The conditional independence assumption is common in
decentralized detection problem formulations and has been
critical to the development of sensor decision rules based on
likelihood ratios. Independence under the null hypothesis is
satisfied in a variety of scenarios including measurement-domi-
nated noise or noise due to local phenomena. Independence can
also arise in practice under the target hypothesis. Some staple
examples are signals arriving at each node with uniformly
random phase offset or independent fading. When the obser-
vations are dependent, decentralized detection problems are
less tractable and complexity of design is an issue [9]. While
the observations are assumed to be conditionally independent
across sensor nodes, the observations at a particular sensor node
may be dependent (i.e., given X; = [X7 1, X7 2], X711 may
depend on X7 »). At a given sensor node, it is very likely that
observations will be dependent across modalities. In particular,
given dependent observations, measuring observations with
lower measurement costs is preferable.

We impose the no-point-mass assumption as a smoothness
condition on the distribution of the observations.

Assumption 2.2 (No-Point Mass): For each sensor node ¢ and
every choice of );, the likelihood ratio defined as I(X),) =
p1(xy,)/po(xy,) has no point mass under either hypothesis

Pi(l(Xy,) =1) =0,

tef0,00), j=0,1. (5

A. Randomization

For centralized detection problems, the N-P Lemma [3]
states that randomization of the threshold in the likelihood-ratio
test may be required to meet a desired false-alarm rate, while
minimizing the miss probability. In decentralized detection
problems, randomization of the decision strategy may also
be required due to the constraint on the expected cost. In
decentralized problems, we must also distinguish between
dependent and independent randomization due to communica-
tion costs. In a dependent or coordinated strategy, the fusion
node may generate a random variable to determine the sensor
rules for all of the sensor nodes and, subsequently, broadcast
the sensor rules. (Note that sensor nodes may avoid reception
by following a preassigned randomization schedule.) In an
independent strategy, each sensor node generates a random
variable independent of other sensor nodes to determine its
sensor rule and, subsequently, informs the fusion node. In both
types of randomization, the fusion node requires knowledge of
which sensor decision rules are in use.
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We define the set of independently and dependently random-
ized decision strategies [7]. Let ®; be the set of all deterministic
sensor rules for sensor node ¢, where a particular deterministic
sensor rule is the fixed choice of observation \;, censoring func-
tion g, and censoring region R, for all time. Let ® be the set
of all deterministic fusion rules. Then, the set of all decision
strategies can be described as @ = @y X &1 X Py x --- P Let
® be the set of independently randomized decision strategies
in the sense that eac% sensor node has a finite set of candidate

sensor rules {d)l(k)} , where K; is the number of available
rules, and chooses to use rule qﬁgk

) with probability ugk), where
ugk) are determined independently at each sensor node. Let b
be the set of dependently randomized decision strategies in the
same sense as for ®, except that ugk) may be dependent across
sensor nodes. Based on the definitions, it is easy to see that de-
terministic strategies are a subset of independently randomized
strategies which are a subset of dependently randomized strate-
gies (ie., ® C & C P).

Design over the set of randomized strategies is generally
more difficult since the complete decision strategy includes
the choice of sensor decision rules, no-send regions, fusion
rule, and randomization probability for each strategy (i.e.,
(M, ..., T W uF))). The expected communica-
tion rate Pr; and expected cost C' are obtained by averaging
over the candidate rules.

B. System-Level Optimization Problems

Consider the system-level optimization problems given
in (6)—(8), where Pp; is the miss probability, Pp is the
false-alarm probability, the error probability is defined as
Pp = mPr + m Py, and Dy is the A-S distance measure
to be defined. We denote the resource level and maximum
false-alarm rate to be satisfied as ¢y and «, respectively

PB-C: m}n Pg(¢)s.t. C(¢) < ¢ (6)
PN-C: ngn Py(9) @)
s.t. Pr(¢) < a, and C(¢) < cg
N
PD-C: mdz)a,xz Dy(¢;) s.t. C(¢) < co. (8)

i=1

Suppose that a sensor network is to be designed for detection
that lasts for a given period of time, while minimizing the
detection error probability. If the transmission costs at each
node are best modeled by how frequently a node transmits, then
we are interested in the Bayesian problem PB-C (P denotes
problem and B denotes Bayesian). If no prior probability of
target occurrence is known, then we may consider keeping
the false-alarm rate below some maximum level as in the N-P
problem PN-C. When ease of design is an issue such as in
nonstationary noise/target environments, a constraint on the
A-S distance could be considered as in the distance problem
PD-C.

We now define the A-S distance measure. Ali and Silvey
described a general class of coefficients for measuring the di-
vergence or closeness between two distributions which satis-
fies various desirable properties [10]. The A-S distance for the
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sensor decision rule ¢; is Dy(¢;) = Eo[f(¢$:)], where f is a
continuous, convex function, and £ denotes the expected value
under Hy.

III. NO-SEND-ZONE QUANTIZER PROBLEM FORMULATION

As an alternative to Scenario C, we introduce Scenario N
which is useful for digital transmission. In Scenario N, the
output of sensor node ¢ is quantized to D; discrete levels, as in
the canonical decentralized detection problem [11]. We extend
the canonical problem by considering a no-send value at each
sensor node. Each sensor node and the fusion node can agree
on a particular value that is not transmitted and can thereby cut
transmission costs.

Scenario N. No-send-zone quantizer: Each sensor node
maps its observation X, to one of D; values

’}/)\i(X)\i):X,\i%{l,...,Di}. (9)

We assume that only one of the quantizer levels d A; 18 not trans-
mitted, so that the quantizer maps the no-send region to d,

Pri(Ry,) = Po(ya, (Xx,) # d»,)-

In Scenario N,! for a fixed choice of ~,,, the quantizer value
which has largest probability would be chosen as the no-send
value. We denote the quantizer outputs as U = (Uy,...,Un),
where U; = ~v,,(X,,) is the output of the ith quantizer. We
denote the decision strategy as

v = (fyo, {Ai7’y)\i7dv)\i}£il> :

For the quantizer transmission Scenario N, there are several
relevant system-level optimization problems

(10)

Y

PB-N : min Pg(7) s.t. C(y) < ¢ (12)
Bt
PN-N : min Pys(7) (13)
BY
s.t. Pr(y) < a, and C(v) < ¢
N
PD-N: D¢(v;)s.t. C(y) < cp. 14
mgxz F(i) st C(v) <o (14)

1=1

IV. OPTIMAL DECISION STRATEGY FOR CENSORING

In the decentralized detection literature, under Assumption
2.1, results for various criteria have shown the optimality of tests
based on the likelihood ratio of the observations [4], [6], [13]. In
problems PB-C, PN-C, and PD-C, we can obtain similar results
for the optimal decision strategy (3) for the deterministic case.
We develop the results for transmission Scenario C completely
before considering Scenario N in Section VII. For flow of pre-
sentation, proofs of the theorems to be presented are given in
the Appendix.

IScenario N is a special case of the problem of maximizing detection per-
formance under an average bit-rate constraint where the no-send symbol is en-
tropy coded to zero bits. Observe that in the canonical decentralized detection
problem, one could easily use entropy coding on the output of the sensor quan-
tizers to reduce the average bit rate. Since the fusion node is assumed to know
the distribution of I(U; ), the entropy-coded values could be mapped back to the
original 7y, ;. A practical approach would be to choose the quantizer according
to a distance criterion [12] and Huffman code the quantizer output.

Theorem 4.1: Given a constraint on the expected cost (and
a false-alarm rate in PN-C) to be satisfied, over the set ®, the
optimal decision strategy for PB-C, PN-C, and PD-C has sensor
decision rules ¢, which are censored likelihood ratios of the
form

l(XAq')
Pis

Z(X)\q') € RM
otherwise

¢>\i (X)\l) = { ’ (15)

where RS = {t1; < l(Xx,) < to,} is a single interval of
[(Xy,) and

_ P(I(Xy) ERS)

Px; = : (16)
Py (l(X)M-) € Rg\q)
The optimal fusion rule is of the form
L >
¢o() =19 & Ilicion(Xn) =7 (17
0, <

where ¢ is the randomization parameter, independent of X,
and arbitrary for problems PB-C and PN-C, which is chosen to
meet the false-alarm rate constraint. (Note that randomization
at the fusion node is due to point mass where all sensor nodes
censor their likelihoods).

Theorem 4.1 implies that each sensor node chooses a single
interval in which not to send its likelihood ratio. The no-send in-
terval is deemed uninformative to the fusion node since it likely
corresponds to a null event. At the fusion node, the product of
the received likelihoods and the average likelihoods for the cen-
soring nodes (these are known to the fusion node) is compared
against a threshold to make a global decision.

Over the set of deterministic strategies, an expected cost con-
straint can be met with equality by choosing the rate of transmis-
sion, since Pr; € [0, 1] is continuous, while measurement cost
ca, typically has discrete levels. For each subset of the measure-
ments, the sensor node could transmit anywhere from very infre-
quently to always. With the introduction of randomized strate-
gies, an expected cost constraint can be met by also randomizing
over the choice of measurement.

In Sections IV-A-C, we show that the optimal sensor deci-
sion rules gy, over the set of randomized strategies are censored
likelihood ratios. The results on randomization given here can be
derived from the results for the centralized sequential problem
with generalized cost given in [2]. The particular cost function
we have considered allows us to address decentralized problems
and explore the tradeoff between cost due to measurement and
cost due to transmission. While we have chosen to use linear
programming (LP) arguments, supporting hyperplane theorem
arguments could also be used to prove the results [2], [7].

A. Dependent Randomization

Over the set of randomized strategies, we are interested in
the complexity of the decision strategy in terms of the number
of deterministic decision strategies K over which to randomize.
By considering person-by-person-optimal (pbpo) sensor deci-
sion rules and using simple linear-programming arguments, we
can show that for dependently randomized strategies, K < 2 for
problems PB-C and PD-C since they have a single constraint,
and K < 3 for problem PN-C since it has two constraints.
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Theorem 4.2: Given a constraint on the expected cost to be
satisfied, consider the problems PB-C, and PD-C. Over the set
d, the optimal decision strategy randomizes between at most
two deterministic decision strategies ¢(*) and ¢(®) with corre-
sponding probabilities ;«(1) and 1 — (1), where ¢(!) and $(?)
are as given in (15) and (17).

In PN-C, the introduction of a false-alarm constraint increases
the number of constraints in the LP by one, so we have the fol-
lowing result.

Theorem 4.3: Given expected cost and false-alarm rate
constraints to be satisfied, over the set <i>, the optimal decision
strategy for problem PN-C randomizes between at most three
deterministic decision strategies.

B. Independent Randomization

The performance of the optimal independently randomized
strategy is at best as good as the performance of the optimal de-
pendently randomized strategy, since the former is a subset of
the latter. However, because of the ease of implementation, in-
dependently randomized strategies may be more relevant from
a system design perspective. We find the number of sensor de-
cision rules ,K;, over which to randomize at each node by con-
sidering pbpo sensor decision rules.

Theorem 4.4: Given a constraint on the expected cost (and a
false-alarm rate constraint in PN-C) to be satisfied.

1) Over the set ®, the optimal decision strategy for PB-C
and PD-C randomizes between at most two deterministic
sensor decision rules, qﬁf\li) and qﬁgi), with corresponding
probabilities y; and 1 — p; at each sensor node, where qﬁf\l)
and ¢>(A2) are as given in (15).

Over the set ®, the optimal decision strategy for PN-C
randomizes between at most three deterministic sensor
decision rules at each sensor node.

2)

The optimal independently randomized strategy may involve
randomization over two send rates. Consider fixing the choice
of measurement at all sensor nodes and the choice of send rate
at all sensor nodes except for node k. The error probability Pg
is monotone decreasing in the send rate for node k, but not nec-
essarily convex. It is possible then that randomization over two
send rates lowers error probability compared with selecting a
fixed send rate.

C. System Design Perspective

Theorems 4.2—4.4 provide important guidelines on the de-
sign of sensor networks. For the proposed transmission scenario,
each sensor node need only have two modes of operation corre-
sponding to two sensor decision rules. In general, the choice of
randomization probability and send rate at each sensor node re-
quires joint optimization over all sensor nodes. From the system
design perspective, we are particularly interested in settings in
which the joint optimization separates into independent opti-
mization at each sensor node. We point out two settings in which
the joint optimization separates:

1) PD-C, where the distance measure and expected cost at
each sensor node are considered;
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2) problems of maximizing the deflection at the fusion node
subject to a constraint on the expected cost at each sensor
node.

In setting 1), the detection performance is additive over the
sensor nodes, so each node maximizes its distance measure sub-
ject to its own cost. Setting 2) is important in many applications
and was shown to be separable in [5], since the deflection mea-
sure can be written as a particular A-S distance at each sensor
node.

V. DUAL PROBLEMS

In many applications, we are interested in maximizing the
system lifetime subject to constraints on the detection per-
formance. For example, we may be interested in finding the
smallest battery or lowest cost solar cell which will achieve a
given detection performance. If transmission cost is dominated
by how frequently nodes transmit, then we are interested in
Scenario C, while if data rate is also relevant, then Scenario
N is of interest. We may also be interested in constraining the
false-alarm rate and miss probability individually instead of
constraining the error probability.

Such problems of minimizing expected cost subject to per-
formance constraints are dual to the problems considered in
(6)—(8) and include the following, where DB-C represents the
dual Bayesian problem in Scenario C, and so on:

DB-C: m(/in C(¢) s.t. Pr(d) < eg (18)
DN-C : min C(¢) (19)
s.t. PF(¢> < a, and P]\,[((/)) <p

.
DD-C : min () s.t. Z D¢(¢i) > do (20)

=1

where eg, a, and (3 are the largest tolerable error-probability,
false-alarm rate, and miss probability, respectively, and dy is
the minimum acceptable A-S distance. For the dual problems,
extensions of the results on optimality of likelihood-ratio tests
and randomization follow from LP duality arguments.

VI. ON—OFF SENSOR NODES

The simplest application of decentralized detection problems
with a constraint on the expected cost is for sensor nodes which
are either awake or asleep (on—off sensor nodes). The sensor
node may have only one modality, or the cost of measurement
across all modalities may be small compared with the cost of
computing likelihoods. In such problems, it is reasonable to con-
sider the total cost of measurement and computation as the cost
of the node being awake. In practice, the cost of the detector
implementation (i.e., complexity) is related to properties of the
likelihood ratio. Although the cost of implementation is a rele-
vant issue, the largest cost savings will most likely be achieved
from turning the entire sensor node off.

We assume that when a sensor node is awake, it measures
all sensing modalities, so the measurement is the entire space
of observations (i.e., X, = X;). We include the cost of com-
puting local decisions with the cost of measuring X; as ¢;. Since
there is no choice of measurement, only randomization over the
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Fig. 2. Hypothetical curves for distance as a function of expected cost.

choice of send rate and asleep or awake is necessary. When
¢i > cr,;, we would expect randomization between awake and
asleep to play a large role in achieving the optimal detection per-
formance and meeting a constraint on the expected cost. When
cr,i > ¢;, randomization over the choice of send rates is likely
to play the important role.

As mentioned before, in many problems, likelihood-ratio-
based approaches are frequently substituted for tests which
maximize the A-S distance or deflection measure. We elaborate
on distance-measure approaches for on—off sensor nodes. In
the on—off scenario, the choice of measurement is fixed, so the
sensor node computes the likelihood ratio when it is awake.
Based on Theorem 4.4, it is clear that randomization over
two sensor decision rules is optimal. Randomization between
sleeping and a fixed send rate is possible, as well as randomiza-
tion between two send rates and corresponding no-send regions
RM (dM), and R® (d®).

For Scenario C, the problem of maximizing distance for
on—off sensor nodes can be described as

max Dy (¢:)
s.t. C(g/)L) S Co

where the decision rule ¢; = (gi7R§1)7u51)7R§2)) is to be
)

obtained, p, ’ is the fraction of time that the sensor node uses
1

the send region R,El), 1- NE )
sensor node uses the send region R§2) , and the desired resource
level is denoted as cg.

The choice of transmit rate when awake, and how often a
sensor node should sleep, can be determined graphically and
depends on the curvature of Dy and the ratio c; / cr;. Fig. 2
shows the distance measure as a function of the expected cost for
two possible detectors. For detector B, it is optimal to randomize
between two choices of send rate. For detector A, if ¢y < c¢*,
then it is optimal for the sensor node to sleep for the fraction of
time 1 — (co/c*) and transmit at the rate (¢* — ¢;)/cr,; when
awake. For ¢g > ¢*, the sensor node stays awake with the fixed
transmit rate (co — ¢;)/cr ;. Since the sensor node stays awake
for cg > c*, we define ¢* as the always-awake cost, and the
corresponding always-awake transmit rate as x*. We note that
convexity of Dy is a sufficient but not necessary condition for
the existence of an always-awake region.

is the fraction of time that the

A. Example: Kullback—Leibler Divergence

Consider the Kullback-Leibler (K-L) divergence, which is
the particular case of A-S distance with f(Y) = —log(Y). K-L
divergence is relevant for N-P testing when the number of obser-
vations tends to infinity [14, Stein’s Lemma, p. 309]. Let us ex-
amine the decentralized hypothesis-testing problem of detecting
a mean shift in Gaussian noise with /N censoring sensor nodes

Hy: X; ~N (0,01-2) vs. Hy : X; ~ N (9,570,?) 21)
where 6; > 0 is the mean and o7 is the noise variance at sensor
node :. For the mean-shift problem, the likelihood ratio of the
observation is monotone in X, so the likelihood does not have
to be computed locally and there is no computational cost at the
sensor node. It is, hence, sufficient to censor the observation X
directly.

Define the complementary Gaussian cumulative distribution
function as

Q(t) = \/%/t e U2y

where v is the variable of integration. The K-L distance for the
censoring test ¢; can then be written as

2

b (1= Q) + Q)

1—%12‘
| — ) (1 — K14
+ 0g<1_li07i>( K1)
where 7, = (tk,i — 91')/01', k=12 and R = {Xi : X; €

[t1,i,t2,]} is the censoring region, and k;; = P;(RL) is the
probability of the send region under H;, j = 0, 1

K1 =1—Q(m)+ Q(72)
Ko =1 —Q(t1:) + Q(t2:).

Fig. 3 shows the optimal K-L divergence (found by brute-
force search) for each transmit rate, over various values of o;
and 6; = 1. For small transmit rates, the censoring region maxi-
mizing the K-L distance was found to be RS = {X; < t;} (i.e.,
only a single threshold is required), so no search is required, and
t; is chosen according to the transmit rate.

Let ¢ be the cost of transmission, and cg be the cost of the
sensor node (measurement and local computation) in the on—off
scenario. Consider o; = §; = 1, ey = 1/3, and cs = 2/3, cor-
responding to the cost of the sensor node twice as large as the
cost of transmission, and the total cost cs + ¢ normalized to
one. By drawing a tangent to the K-L divergence plot in Fig. 3,
we find that the always-awake cost and always-awake transmit
rate are ¢* = 0.79 and k* = 0.36, respectively. When the de-
sired resource level is less than 79% of the total cost of staying
awake and transmitting every observation, (i.e., cg < 0.79), the
sensor node switches between awake with transmit rate of 0.36
and asleep. For example, if ¢ = 2/3, the sensor node is awake
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Fig. 3. K-L divergence as a function of transmit rate for detecting a mean shift
in Gaussian noise using one or two thresholds for censoring.
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Fig. 4. K-L-distance-optimal on and transmit rates for detecting a mean shift
in Gaussian noise.

for 85% of the time. For ¢y = 0.83, the sensor node stays awake
and transmits 50% of the time.

Similarly, we find the optimal on—off and transmit rates for
¢s/cer = 1, and 1/2, and summarize the results in Fig. 4. We
observe that as the resource level increases (e.g., due to larger
batteries): 1) below the always-awake region, the transmit rate
is fixed and the on rate increases and 2) in the always-awake
region, the transmit rate increases and the sensor node stays
awake. As we consider different sensor node hardware and the
relative cost of transmission to sensor node operation increases,
we find that below the always-awake region, the transmit rate
decreases and the fraction of time the sensor node is awake
increases.

B. Example: Error Probability

Consider design in terms of error probability in which one,
two, three, or four sensor nodes using Scenario C for trans-
mission and a fusion node, which has its own observations, are

699
0.3r one node
8 ¥ o two nodes
0.28f o g three nodes
o x o four nodes
0.26f i 8.1 — fusion center
20.24f 3
=
30.22r
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w 0.18+ Randomized: : ° o
Error Probablility !
0.16 | : |
1 1 1 x
| 1 1
0.14f ' ! ' Ca
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0.12 1 L1 I L 1y ! 1 1
1 2 3 4 5 6 7 8
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Fig. 5. Error probability for detecting a mean shift in Gaussian noise with

one to four nodes, where the fusion node has its own observations, 7o = 0.6,
cs =cr = 1,and crp = 1.

faced with the detection problem (21) (i.e., problem PB-C). Let
o; = 0; = 1 and fix the cost of operating the fusion node to
cr = 1, the cost of transmission from the sensor node to the fu-
sion node to ¢ = 1, and the cost of operating each sensor node
to cs = 1. At the fusion node, there is no cost due to trans-
mission, and complete observations are available for decision
making.

Fig. 5 shows the minimum error probability as a function
of expected cost for 7y = 0.6. When no fusion node is avail-
able, the prior probability determines the best guess, so the error
probability is fixed at min{mg, 1 — 7o }. By simulation, we ob-
tain the error probability and associated cost when one sensor
node or both sensor nodes are awake. It is simple to determine
the censoring intervals by applying results in [5] in which it
is shown that the lower thresholds of the censoring intervals is
zero for sufficiently small communication rates and sufficiently
large my. In general, assigning equal rates of transmission to
the sensor nodes may not be optimal (see [15] for a counterex-
ample in the canonical problem). For this particular example,
we find experimentally that when two sensor nodes are on, it is
not advantageous for the sensor nodes to choose unequal rates
of transmission.

By setting the nodes to sleep and transmitting only a fraction
of the time, it is possible to meet constraints on the expected
cost, while minimizing the error probability. Let ¢y denote the
maximum resource level across all sensor nodes, as in (4). By
drawing tangents to the error-probability curves, we determine
the approximate always-awake cost for one, two, three, or four
sensor nodes as ¢i = 2.3, ¢5 = 3.6, ¢ = 4.9, and ¢ = 6.2,
respectively, for mg 0.6. The corresponding always-awake
transmit rates are 7 = 0.3,7 = 1,2, 3, 4.

The on and censoring rates obtained in Section VI-A for K-L
divergence are similar to the rates obtained in this section for
error probability. For K-L divergence, the rates for each sensor
node are identical since the sensor observations are identically
distributed. Consider a resource level of ¢y = 0.8 to be satisfied
for cs = ¢y = 1, and ¢p = 1. In terms of K-L divergence,
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the optimal on rate and transmit rate are (from Fig. 4 at a nor-
malized resource level of 0.4) 0.65 and 0.24, respectively. In
terms of error probability, for 7y = 0.6, the optimal on rate and
transmit rate are (from Fig. 5) 0.62 and 0.3, respectively, when
considering only a single node. For two nodes, one node is com-
pletely awake and the other is awake 20% of the time (averages
to 60% awake across the two nodes), both with a transmit rate
of 0.3.

VII. OPTIMAL DECISION STRATEGY FOR
NO-SEND-ZONE QUANTIZER

The no-send-zone quantizer belongs to a class of general
quantization problems examined by Tsitsiklis [6]. Applying
definitions and theorems from [6], results for decentralized
detection problems with a constraint on the expected cost can
be derived. See the Appendix for a proof outline.

Theorem 7.1: Given a constraint on the expected cost (and a
false-alarm rate in PN-N) to be satisfied, over the set I" or I, the
optimal decision strategy for PB-N, PN-N, and PD-N has sensor
decision rules ), which are likelihood-ratio quantizers (LRQs)
of the form

1, Z(X)\i) < tl,i

2, tl,i < l(XAi) < tg,i
T (XM) = : (22)
D, tp,—1:< l(X)\i)

where the set of thresholds, 0 < ¢;; < --- < tp,_1 < oo,
depend on the choice of \;, one of the quantizer values J,\i is
censored, and the assignment of yy, is arbitrary when [( X}, ) is
equal to one of the thresholds.

The optimal fusion rule has the form

1, >
VO(U) = {f Hf\;1 l(Ui) =T
0, <

(23)

where I(U;) = P(U;|Hy)/P(U;|Hp), € is a randomization pa-
rameter that does not depend on U, and the {dy, } ¥, are known
at the fusion node.

Theorem 7.1 states that the optimal sensor rule at each node
is a LRQ. At each sensor node, one of the quantization levels
is a no-send level, which is known to the fusion node. At the
fusion node, a likelihood ratio is computed based on the received
quantized values (if a value is not received, it is assumed to be
dy,), and the known distribution of /(X;).

Whereas in Scenario C, independent randomization may
improve performance, in Scenario N, Theorem 7.1 describes
the equivalence of deterministic and independently randomized
strategies. For dependently randomized strategies I, we have
the following result.

Theorem 7.2: Given a constraint on the expected cost (and a
false-alarm rate constraint in PN-N) to be satisfied.

1) Overtheset I, the optimal decision strategy for PB-N and
PD-N randomizes between at most two deterministic de-
cision strategies v(!) and v(?) with corresponding proba-
bilities ) and 1 — 1), where (1) and (?) are as given
by (22) and (23).

2) Over the set I", the optimal decision strategy for PN-N
randomizes between at most three deterministic decision
strategies.

For completeness, we also describe the dual problems for
Scenario N

(24)
(25)

~

DN-N : min C(y
Bt

s.t. PF(’}/) S «, and P]\[(’y) S /B
N
min C(¢) s.t. Y Dy(vi) > do.

K i=1

DB-N : min C(v) s.t. Pg(v) < eq
)

DD-N: (26)

VIII. CONCLUSION

Detection problems with a constraint on the expected cost
arising from measurement have been examined by various au-
thors. We have considered a constraint on the expected cost
arising from measurement and transmission. A send/no-send
scenario for transmission led to a tractable and realistic problem
formulation where likelihood-ratio-based detectors are optimal.
We found that randomization of the measurement and choice
of transmit rate could be used to meet a constraint on the ex-
pected cost and to optimize detection performance. In the ex-
amples, some reasonable settings for the detection problem and
the sensor node led to interesting results on the design of sensor
nodes. For on—off sensor nodes, we found an always-awake re-
gion above a particular resource level. When the cost of mea-
surement is large, randomization over measurement was partic-
ularly useful, while censoring effectively reduces transmission
cost independent of the particular cost per transmission. For the
problem of detecting a mean shift in Gaussian noise, we found
that design in terms of error probability gives similar results to
design in terms of K-L distance. While we have considered con-
ditionally independent observations, a future area of work is to
develop optimal decision strategies for dependent observations.
In particular, formulations based on distance metrics may be
tractable and lead to approaches for determining optimal system
parameters.

APPENDIX

A. Proof Outline of Theorem 4.1

Fix a particular subset \; of the observations to be measured
at each sensor node and apply results from [4] and [5]. Consider
a censoring region consisting of two nonoverlapping no-send
intervals of {(X;). By the no-point mass assumption, there ex-
ists a consolidation from two no-send intervals to one no-send
interval that preserves the no-send probability under both hy-
potheses P; (R{), j = 0, 1. It is possible to show that the error
probability does not increase (and similarly for PN-C and PD-C)
due to the consolidation. The complete proof is rather lengthy
and can be found in the [4], [5]. |

We clarify a mistake in the result for A-S distances pro-
vided in [4]. It is claimed that maximizing the A-S dis-

tance Dy (HiNzldui(X)\i)) is the same as maximizing
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Hij\;l Dy (¢, (Xy,)) due to the conditional independence of
the observations. However, such a claim is not true in general
(e.g., f(X) = Xlog X). Instead, for the detection problems
under consideration, we maximize the sum of the A-S distances
over the individual sensor decision rules. For the particular case
of maximizing the deflection at the fusion node, the equivalence
with maximizing the A-S distance f(Y) = Y2 at each sensor
node is shown in [5].

B. Proof of Theorem 4.2

Consider the pbpo solution obtained by fixing all sensor de-
cision rules ¢»;(X», ), j # 4 and the fusion rule. We can write
the average error probability as

K;
Pp=>"u PP Q7
k=1

where Pék) is the error probability, which depends on the

choice of all the sensor decision rules and, in particular,
on the decision rule for sensor %, (;55 2 Similarly, we can
write C(¢) = Zk 1 I k)C(qﬁ(k)), where ¢(*) is the deci-
sion strategy employing the sensor decision rule gb,fk) for
sensor ¢. Problem PB-C is then a LP problem in p;
( (1),...,N(Ki)) with the additional constraints u(.k) > 0,

and ) k’ 1 u(k) = 1. In standard form, the LP problem has two
constraints, which implies that a basic feasible solution has at
most two components of p, that are strictly nonzero. Since the
form of the pbpo solution is independent of the choice of the
other sensor decision rules and the fusion rule, the class of pbpo
solutions is also globally optimal. The same arguments can be
applied to problem PD-C by replacing Pg with Dy. [ |

C. Proof of Theorem 4.4

The proof is very similar to the proof of Theorem 4.2. Con-
sider the pbpo solution obtained by fixing all sensor decision
rules ¢y, (Xy,), j # 4, and the fusion rule. We can write the
average error probability as

K;
)= n"ry
k=1

(28)

where P]g“) is the error probability, which depends on the

choice of all the sensor decision rules and, in particular, the
decision rule for sensor node 7, ¢§"’>. Similarly, we can write
C(p) = S5 uF (™), where ¢(*) s the decision strategy
employing the sensor decision rule ¢§k) for sensor node i.
WD, )
Z

with the additional constraints u( ?) > 0, and Z -1 ufk) =
In standard form, the LP problem has two constraints, which
implies that a basic feasible solution has at most two com-
ponents of p, that are strictly nonzero. For the N-P problem
PN-C, the number of constraints increases by one, so at most
three components of g, are strictly nonzero. |

Problem PB-C is then a LP problem in p; =

701

D. Proof of Theorem 7.1

Fix a particular subset \; of the observations to be measured
at each sensor. The main idea of the proof is to show that the
sensor decision rule at sensor ¢ can be selected from the class
of LRQs when all other sensor decision rules vyx,(Xy,), 7 # i,
and the fusion rule vy is fixed (i.e., the pbpo solution). Since
the class of LRQs is optimal at each sensor independent of the
choice of other sensor rules, LRQs are also globally optimal.

In the pbpo setting, the expressions for Pys, Pr, and D¢ sim-
plify considerably and depend only on vy, and R, (e.g., see [7,
p. 311]. We have

PF _EXM, ,XXN\HO[’YO(’Y/M(XM) """ » VAN (X)\N))]
—EX,\ 1o [Z0 (2, (X))

_ZZO

where Z(d) depends on the output, U; = d, of the ith quantizer,
and the third equality is almost always equal (a.e.) to the second
equality (i.e., except on a set of probability zero). Similarly, we
can obtain

)P3(7a, (X)) = d) (29)

Py = Zzl
—EXM.|H0 [f(U(U;))]

= Zpé(Vki (Xx) = d)
d=1

(Pf('-y)\i(XAi) = d)>
Pg('_y)\i (XM) = d)

where Z;(d) depends on the output U; = d of the th quantizer.
The constraint on the expected cost (4) becomes

Pl (Xx) #dy,) < &

where & is independent of the choice of the +th sensor decision
rule.

Applying [6, Proposition 3.5] directly, we can conclude
the optimality of LRQs in PB-N, PN-N, and PD-N under the
no-point mass assumption. An alternative approach for PB-N
and PN-N is to consider the following problem P1 in which the
optimality of LRQs has been established [16]:

: mm E Z1(

d=1
PO (’YM (XM )

D,
and Z ag = 1.
d=1

Let v be the optimal solution to PN-N, and let a be the value
of P{(vH(Xy,) =d),d = 1,..., D;, achieved by 'yT Fix ag =
a]}, d=1,..., DZ, in P1. Slnce LRQs are optimal in P1 for
this choice of {oz,l} 7-1> LRQs are optimal in PN-N as well. A
similar argument works for relating PB-N to P1.

Determining the fusion rule is easy since we have a central-
ized detection problem in the sensor outputs U. When the sensor

VP (72, (X)) = d)

Df('yz)

x f (30)

€19

P1 Pl YA; X)‘):d)

s.t. =d)=aq Vd,

(32)
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does not send, the fusion center attributes no-send to the quan-
tizer value CL

Using results from [6], it is possible to argue that PB-N,
PN-N, and PD-N have the same solution over I' as over I
In [6], a more general definition of LRQs is given where the
assignment of the quantizer value «y,, when /(X},) is equal
to one of the thresholds, is not arbitrary. It is shown that over
the set of dependently randomized strategies, the general class
of LRQs is optimal for PB-N, PN-N, and PD-N. Under the
no-point-mass assumption, the probability of the event that
[(Xy,) is equal to one of the thresholds is zero, so decision
strategies in I" have the same detection performance as decision
strategies in I" except on a set of probability zero. ]
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