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MMSE Detection in Asynchronous CDMA Systems: An While it allows for accurate large-system analysis, the synchronous
Equivalence Result or chip-synchronous assumption is not realistic for the received signal

on the reverse link of a cellular CDMA system, especially with user
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as well as chip-asynchronous. Analysis of the MMSE detector with
) ) o random spreading sequences and completely asynchronous users was
Abstract—The analysis of linear minimum mean-square error (MMSE)

o i U : considered in [8]. However, the performance measure was the average
detection in a band-limited code-division multiple-access (CDMA) system . . f
that employs random spreading sequences is considered. The key featuresn®ar—far resistance of th? detector and bounds were obtained on this
of the analysis are that the users are allowed to be completely asynchronous, quantity for finite X and V. Furthermore, the analysis relied on the
and that the chip waveform is assumed to be the ideal Nyquist sinc function. assumption that the chip waveform was limited to a chip interval.

It is shown that the asymptotic signal-to-interference ratio (SIR) at the de- In this correspondence, we allow the users to be completely asyn-
tector output is the same as that in an equivalent chip-synchronous system. h d id SiR t the detect tout th £
Itis hence been established that synchronous analyses of linear MMSE de-© rolnous and consider at the detector outpu a§ € per orr.ngnce
tection can provide useful guidelines for the performance in asynchronous Metric. We also assume that the system employs the ideal band-limited
band-limited systems. (and hence, of infinite duration) sinc chip waveform. For single-user
Index Terms—Asymptotic analysis, asynchronous systems, band-limited narrow-band systems, the sinc Waveform maximizes thg signaling r.ate
communication, code-division multiple access (CDMA), least mean squares When the symbol waveforms are constrained to have a given bandwidth
methods, matched filters (MFs), minimum mean-square error (MMSE) de-  and to have no intersymbol interference [9]. In spread-spectrum sys-
tection, sinc function. tems, we have an additional degree of freedom, since the processing
gain of the system can be varied with the excess bandwidth of the
chip waveform to keep the symbol rate and occupied bandwidth fixed.
In such a framework, the sinc waveform maximizes the processing
Multiuser detection in code-division multiple-access (CDMA) sysgain since it has zero excess bandwidth. For the matched-filter (MF)
tems has been a topic of intense research for more than a decadeddfector, the maximum processing gain also results in the maximum
Several criteria have been used for designing multiuser detectors, aneput SIR across all waveforms [10], [11]. Hence, practical CDMA
a particularly appealing one is to minimize the mean-squared erggfstems (e.g., [12]) employ waveforms that have an approximately flat
(MSE) of the symbol estimates at the output of the detector. When t#gectrum over the band of operation. Similar observations hold for the
detector is further constrained to be linear we obtain the linear miRHVISE detector as well, although a formal proof of the optimality of the
imum mean-squared error (LMMSE or simply, MMSE) detector [2kinc waveform appears to be open [13]. Based on the above remarks,
Equivalently, the MMSE detector also maximizes the output signal-tghe sinc waveform can be considered to be a benchmark for band-lim-
interference ratio (SIR) over the class of linear detectors. In additionitéd systems. Hence, analysis of the MMSE detector when the users are
completely asynchronous and employ the sinc waveform is of much in-
terest, from a theoretical as well as a practical viewpoint.
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The notation used in (1) and (2) is as follows. The quamﬁﬂ) is eled to be uniform if0, N], then, for a general chip waveform(¢)
symbolm of userk, and (see [10])

N—1 (91

c(m)(z‘) = Z ) b(t — mTs —nT.) Ty" = - Kk ®)
k 2 kon ¥ s ¢ No + U\;s, Z &

n=0 !
k=1

is its spreading waveform. HefE, andT. are the symbol and chip
periods, respectively, and = T /T is the processing gain of the -
system. As discussed in Section I, the results of this correspondence oy = € / [T ()| df
are derived for the case whetét) is the sinc chip waveform (normal- T. |

ized to have unit energy). To distinguish between statements that e,
applicable to a general chip waveform and those that hold only for t
sinc pulse, we denote the specific sinc waveform/Byt)

where

¥(f) being the Fourier transform af(t). It is also shown in
rﬁ] that, if ¥'(f) is limited to a bandwidtid1”, the sinc waveform
Y*(t) with T. = 55 minimizes the quantity ™ _ |¥(f)[* df. Thus,
1 + under equal bandwidth and symbol rate constraintsf) maximizes
O (t) = Nin sinc <f> the output SIR of the MF detector (see also [11]). In addition, when
¢ ‘ (t) = ¢*(t), we haver,, = 1, and
where rar _ & _
sin(mx) No + % Y &
wr ’ k=2
It can be easily seen that the above SIR is the same as that obtained
Furthermore, in (1) and (2}, 7+ and< are the carrier phase offset,in a symbol-synchronous system (i.e,, = 0 V), with K users,
delay, and symbol energy of userrespectively. Finally(#) isazero  processing gairV, and i.i.d. random spreading sequences. We refer
mean proper complex Gaussian process with two-sided power speqahis equality as the equivalence result for the MF detector. We will
densityNo, i.e., be interested in establishing a similar equivalence result for MMSE
. ) detection in the remainder of the correspondénce.
Ru(r) = Elw” (H)w(t + 7)] = Nod(7). For this purpose, it is of interest to note that the equivalence for the
MF detector holds even when we do not average over the delays of the

Since the sinc function is of infinite duration, we have allowed th h interf. With fixed, th . fthe interf
observation interval for the continuous time CDMA signal to be infigSynchronous interterers. ) 1Ixed, the varlance otthe interierence

nite. In addition, we make the following assumptions throughout thid the asynchranous case takes on the form
correspondence. 1

K oo
~ Z Ek Z sinc? (J+ 7%)
* k=2 <}

j=—o0

sinc(x) =

» The delaysr; are normalized to the chip peridd and take on
real values ir0, N]. Whenr, is restricted to be an integer, theand the equivalence follows immediately from the following key prop-
users arehip-synchronous. In particular, when = 0 V&, the  erty of the sinc waveform:
users arsymbolisynchronous. o

. 2. _
» The desired user correspondsite= 0, and the timing reference Z sinc”(j+71)=1, V. (6)

at the receiver is synchronized to the desired user, sa¢hat0. 7= _ ) _ o
() We also note that the above equivalence is obtained for a finite

The chipse,”,, are modeled as complexdependent, and iden- system, with SIR in (5) defined through an average over the spreading
tically distributed (i.i.d.) variancel /N random variables, with sequences. Alternately, we can obtain the equivalence without aver-
finite fourth moments. In addition, the symbols are modeled agjing over the sequences or the delays, but under the large-system
i.i.d. zero mean, unit variance random variatles. asymptote o', N — oo with K/N — 3.

We begin with a review of the analysis for the conventional MF de- Result 1: Under the random sequence model, the SIR of the MF
tector [10]. The desired symbol of usiis taken to be"’. The MF  detector converges in mean square to that in the symbol synchronous
statistic is then obtained through correlation with the correspondiggse as, N — oo with K/N — 3. The limiting SIR is
spreading waveform

erf — 51
s o 3y 0 No+ (E¢ €
— o 3 —t®0 . . L .. . . .
Xue = /7 r(t)ey  (t)e dt. () where the expectation is over the limiting empirical distribution of the

symbol energie$&s }, and this distribution is assumed to exist.
The performance metric used is the SIR) at the output of the de-

tector. With the MF, the SIR fdrf)o) is defined as The result can be proved in a straightforward manner using tech-

niques similar to those used in [7], along with the property (6). We
Es, [E[Xur |bo]|? now consider the equivalence result for linear MMSE detection.

MF

Lo Var[Xur|bo] “)
IIl. MMSE DETECTOR PROBLEM FORMULATION
where the expectation is taken over the sequences of all the users, and ) )
the symbols and delays of the interferers. If the delayg are mod- !N formulating the SIR problem for MMSE detection, we need to
consider a few additional issues and make appropriate assumptions.

INote that the independence of sequences across symbobindexountsto  While it is possible to derive the MMSE detector with an infinite se-
assuming long spreading sequences. The analysis of this correspondence could
be extended to a short sequence system where different symbols of a given us#it can also be seen that the SIR in the symbol and chip-synchronous cases
employ the same spreading sequence, but we make the long sequence assarapgual for the MF detector. However, the distinction between these two cases
tion for the sake of simplicity. will be important for the MMSE detector.
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quence of symbols transmitted by each user, the analysis appears diffNow, since chip-matched filtering is a linear operation, the discrete
cult. Hence, we assume that the desired user transmitdéslymbols, system model is additive across the transmitted symbols, and we have

indexed fromm = 0 tom = M — 1. Note that, under the ideal sinc Ke—1
waveform assumption, each symbol occupies an infinite time duration. y= Z bis; +w 9
However, with delay, = 0, we can think of each symbbg’") as cor- j=0

responding to the intervéin T, (mm +1)T]. Furthermore, we assume

thatM = 2p + 1, and the symbol of interest is taken to be Hﬁ:)’@

which “occurs” at the center of the intenf@l, A T]. o
Since the interferers are asynchronous, we assuméfhatl sym-  s;(n) = / Aje;(t—m; Tt —nT,.)dt, n=0 MN —1.

ey

wherew is a zero-mean white Gaussian vector with variarice= Ny,
ands; is a vector of lengthl/ N with components

bols are transmitted by each interferer, with an additional sy#riioct —oo
curring” at the left of the intervel0, MT.]. The interfering symbols This implies that
of userk are indexed fromn = —1 tom = M — 1. Hence, the anal-

A% R, .
ysis can be thought of as corresponding to a multishot detector over an 8; = A" Ry(1))e; (10)

M-symbol observation. . . . L
: - . . . heree; is the i.i.d. spreading sequence of effective ysemd
For convenience in notation, we now reindex the symbols in (1) BIY/ el M P g sequ Ve us
using a single indey = k(M + 1) 4+ m. Since there are a total of By (7)[n, {] = Ry (75 + £ —n),
K. = M + K(M + 1) symbols, we have n=0,..., MN-1; {=0,..., N —1.

Ke—1
r(t) = Z Ajbje;(t — 'T;Tp)c":(’ﬁ;' + w(t) Here -
j=0 Ry(r) = / ()t — 1) dt
where, forj = k(M + 1) 4+ m, b; = (™, ¢;(t) = (™ (1), 4; = _ T _
V&, ¢ = ¢x, andr) = 7 + mN. For further simplification, we IS the autocorrelatlor_l functhn of the chip waveform. In gen@ah]-)
abuse notation slightly and drop the primesrto have isanM N x N Toeplitz matrix that involves only the correlation func-
' tion R, and the delay;. For the sinc waveformz,,«(7) = sinc(7).

Ke—1 . . .
- i For brevity in notation, we denote the matd;« (7;) by R(r;), so
r(t) = Z Ajbjei(t — m;T.)e" ™ +w(t). M that 4 +(75) by ’
=0
Thus, we think ofj as indexingl. effective users, with the implicit R(7))[n, (] = sinc(7j +{ —n). (11)

understanding that across the symbols of the same actual user, the am- _r . .
plitudesA; are equal and the delaysare related through linear shifts. . B_ased on the observatignin (9), the linear MMSE estimate fa,
With the above reindexing, the desired symbol becoipesd the first is given by [2]
interfering symbol becomés,;. ) siB,y

The MMSE detector fob,, is more conveniently expressed and an- by = m (12)
alyzed in the discrete-time domain. It is possible to genefatealis- ppoP
crete sufficient statistics by correlating with the spreading waveformhere
of each symbol transmitted by each user. These statistics are sufficient ‘
for joint detection of all the symbols of all the users. We can then de- B,=(88"+s°)"
rive the linear MMSE detector based on these correlation statistics. The
correlation approach was used to analyze the MMSE detector in [4],
for the symbol-synchronous case. However, for the completely as
chronous case, analysis with this approach again appears difficult.

= [80, ..., 8p—1, 8pt1, ..., 8K_—1] IS the matrix of inter-
ﬁ_ing vectors. For fixed spreading sequences, the SIR achieved at the
Quitput of the MMSE detector is defined analogous to (4) and can be

stead, we assume thaf N statistics are generated by sampling th¥/ritten as
output of a chip-MF once every chip interval T, = s;Bpsp _ s;(SST T 8. (13)
Yn = / rt)y(t—nT.)dt, n=0,...,MN -1 The problem then is the analysis of the above SIR in the asynchronous
- T system, and its relation to chip/symbol synchronous systems. Clearly,
yi=[yo, yrs s Yyuna] ®)  the SIRis independent of the phases of the users, and henceforth, we

This approach to obtaining the discrete system model is followed in tRg! the phases to zero without loss of generality.
MMSE analysis in [5], [7]. Note that the statistics generated are suffi-
cient only under the assumption of synchronous and chip-synchronous IV. MMSE DETECTOR SIR ANALYSIS
users, and are not sufficient in the general asynchronous case [13]. Ig|lowing the work in [5], [6], we model the sequencesto be
particular, with the sinc waveform assumption, while the above saffy.4. random vectors and consider the large system asymptote where
pling rate is equal to the Nyquist rate, the loss in sufficiency is due {Re number of userg’) and the processing gairV) are scaled to in-
the fact that we have restricted ourselves finiée number of statistics. finjty with &/N — 3. Now, the asymptotic analysis in [5], [6] relies
However, we expect the loss in sufficiency to go to zerdAs— oo, on the condition that the sequence veatphas i.i.d. entries. For the
since the sinc functions would then span the received signal. In the anglyhol-synchronous case, we only need to consider one symbol per
ysis for finite A/ below, we derive the MMSE detector foy based on ;ser and we have, = ¢;,Vj = 0, ..., K. Thus, the required i.i.d.
the observatioy in (8), and consider any loss in sufficiency to be &ondition is immediately satisfied. In [7], the conditiongpis relaxed
part of the suboptimality of the detector. to having independent entries conditioned on the delayhis require-

3We could have included this additional symbol for the desired user as Wéﬁ'.em is satisfied in the chip-synchronous situation, since each entry in

But we choose to ignore this symbol since it simplifies the notation and do#s IS €ither equal to zero or an entry in the corresponding spreading se-
not affect the analysis. quencez;. However, when the users are completely asynchronous, the
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Fig. 1. Pictorial representation of (a) the matfigd); (b) the matrixI(d).

elements ok; are neither i.i.d. nor independent when conditioned on  Proof: The proof is somewhat cumbersome, but essentially in-
the delayr;, as can be seen from (10). Hence, it appears that standaaives getting bounds on each of the element®{m)R(7) — I(d).
results from random matrix theory cannot be applied to compute theaddition to (6), we make use of the fact that
asymptotic SIR. oo
Our approach to the asynchronous problem is to consider the speciE sinc(j + 7)sinc(j + 7+ ¢) =0, V7 and any integey # 0.
case where all the users employ the infinite duration sinc waveform—co
¢*(t). As discussed in Section. Il, the sinc waveform is optimgl foéee Appendix A for the complete proof. 0O
the MF detector, and use of this waveform allows us to establish an
equivalence between asynchronous and (symbol) synchronous systenksis important to note that, as with (6), Lemma 1 is just a mathe-
for the MF detector. The key property of the sinc waveform underlyingatical property of the sinc waveform, with no direct relation to the
this equivalence is (6). To establish a similar equivalence for the MMSEDMA system under consideration. However, the notation used in the
detector, the key property required of the sinc waveform is less obvidgg'ma is indeed motivated by the CDMA systentan be thought of
and is stated later in Lemma 1. We first give the following definitionss representing the delay (normalizedrtg of a generic user in the
system, withd and~ being the corresponding integer and fractional
parts, respectively. Further, we note thatan be an arbitrary function
of N in Lemma 1. However, in the context of asynchronous CDMA,
f(d) - R(d) ﬁt is reasonable to assume that th(_a d_elay normal_ized tc_) thsa/r_nbol
interval, converges to a constant, i-2is asymptotically linear inv.
whereR is as defined in (11). Furthermore, thertial identity matrix ~ Finally, from the proof in Appendix A, note thd(7)R(r)" does not

Definition 1: For givenM and V, and an integed, the chip-syn-
chronousmatrix is defined as

of size MN x MN is defined as go to the partial identity matrix elementwise, since some of the ele-
L ments in the difference remain finite for all. But the contribution of
I(d) = I(d)I(d)". these elements to the Frobenius norm becomes negligible when divided
by v NV.
Sinced is an integer, it can be seen from (11) that the emrieﬁ@)‘f We are now in a position to provide our main result, which is that

are zeros except along the diagoriabnd the entries along diagonalthe equivalence result can indeed be obtained by using the property of
d are all equal td. Here, the main diagonal is indexed&sand the the sinc waveform stated in Lemma 1. While it is possible to prove this
index is positive above the main diagonal and negative below it. Coigsult for a general value gi/, we begin with the one-shot scenario
sequentlyJ(d) isaM N x M N diagonal matrix with a string of ones (M = 1, p = 0) for simplicity in exposition of the proof. We assume
along a part of the main diagonal and zeros elsewhere (see Fig. 1).that the symbol energies of the actual (as opposed to effective) users

&, are bounded fok = 0, ..., I, and their empirical distribution
1, i=mandie{d+1,...,d+ N} converges to a fixed distribution in the large-system asymptote. Simi-
I(d)[i, m] = N{1,..., MN} (14) larly, the actual delays normalized to tegmbolinterval, {r; /N'} for
0, otherwise. k =0, ... K, have an empirical distribution that converges to a fixed
distribution.

Now, letr; = d; + ~;, wherer; is the delay of symbal, andd; is its )

integer part. By Definition 1, the vectdtd, e, is alengtiM/ N vector ~ Theorem 1:As K, N' — oc with K/N — 33, the SIRT, of the
obtained when the symbol is chip-synchronous with délayThus, if one-shot MMSE detectpr converges in mean square to the asymptotic
we can replace the matrR(7;) in (10) by(d,) for eachj, we obtain SIR for the one-shot chip-synchronous system.

the chip-synchronous system. To obtain an equivalence, we thus need Proof: (Outline) The complete proof is provided in Appendix B.
R(;) to be close t(f(dj). The precise requirement is given in termaVe summarize here the basic idea and the connection to Lemma 1. It

of the partial identity matrix by the following lemma. is relatively straightforward to show that
Lemma 1: Let 7 be an arbitrary real number, and let= d + ~, lim To= lim A] i Tr {(SS"' + 0’21)_1} (15)
whered = |7] and~ € [0, 1). Then, the matrice®(7)R(7)" and Mmoo N—eo TN
I(d) become equivalent a¥ increases, i.e., where the equality is in the mean-square sense. The proof then relies on
a repeated application of the matrix inversion lemma to the expression
lim 1 HR(T)R(T)T - I(d)” =0 in the right-hand side (RHS) of (15). In each step, the rank one matrix
N—oo /N corresponding to effective interfergr

where||A|| = [Tr(A"A)]? is the Frobenius norm of a matrik. s,8' = ASR(j)c;c! R(r;)"
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is separated from the matrB&*, and the resulting perturbation ofthe ,[ T [ symbol synchronous |
SIR is shown to be close to a function of the matiXr;)R(7;)". § + Asynchronous with Sinc
Lemma 1 is then invoked and the mat®r;)R(;)" is replaced by R U o] = = - Chip synchronous
the matrixI(d;) = I(d;)I(d;)! (see (32) and (33)). Finally, this re- : ‘ :
placement is shown to be equivalent to repladiig; )c; by I(d,)c;.

Thus, the basic idea of the proof is to sequentially replace each of t @ :
asynchronous interferers’ vectors with an equivalent chip-synchronog A RN B e .
vector, and show that resulting difference is asymptotically negligible 5 § § :
Note that the proof does not rely on any averaging over the delays g : : N e b
sequences. The details are provided in Appendix B. O g : : :

The technique extends to the multi-shot scenakib % 1), with an @

appropriate modification of the initial steps in the proof of Theorem 1 : ..................... §

Proposition 2: For the multishot detector, the SIR of symhal : . .
T',, converges in mean square to the SIR for the multishot chip-syi § j +"’~r.,._*
chronous system. ) ; ; ;

Proof: See Appendix C. O 0 0.5

1
Loading factor, B
For the sake of completeness, we note that the SIR for the chip-

synchronous system converges in probability to a limit given by thgy. 2. Average SIR for asynchronous, chip-synchronous and

following implicit equation, as shown in [7]: symbol-synchronous systemsy = 32. As expected, the SIR for
the asynchronous system with the sinc waveform matches that in the
. s chip-synchronous system.
N11111 r, = w(a) dx
IN — OO p
where
&
w(x) = (16)
02+ BEE, I (E' &, f(‘(:c,n) w(z) d:)
=
and the region of integratiofi(, 7) is given by s
S
[0, ). z € [0, 7] o
»n10
Cla ) = [n+m—1,n4+m], z€[n+m—1,n+m] =
o= form=1,.... (M —1) 3
°
[n+ M -1, M], x €+ M-1, M. 5
®
Here, e
£& 23
I(E &, T)= ——=
€& =s7%r
and the expectation is over the limiting empirical distribution§&f} 1072 i ; H
and{n:}, wheren;, = Z&. Note that, while our convergence result is 0 0.5 o1 1.5 2
{1} =N g Loading factor, B

in the stronger mean-square sense, the overall convergence of the _...

for the asynchronous system to the expression in (16) is in probabililt:\I/E,J 3. Ratio of standard deviation fo mean of the SIR= 16. 32. 64. As

since the convergence shown in [7] 'S_m probability. . expected, the ratio decreases with increasindor all values off.
Now, asM — oc, the SIR of the chip-synchronous system is also

known to converge to the SIR for the symbol-synchronous system [7].

The equivalence result in Proposition 1 then leads us to conclude thean of the SIR for different values 8f. We note that, while the ratio

following: the SIR of the MMSE detector in the asynchronous systeies decrease with for all values of3, the convergence is rather slow,

converges, ag/ increases, to the SIR in an equivalent symbol-synvith the ratio taking values of up t2 whenN = 64.

chronous systerh By equivalent, we mean that all parameters, except Finally, we note that the equivalence result for the MMSE detector

the delays of the users, are kept the same in both systems. has more general implications. Indeed, what we have proved is more
The theoretical results and observations above are easily verifigddamental than what the results for the MMSE detector indicate. De-

through numerical simulations for a finite system. In Fig. 2, the valuihe the Stieltjes transform #ST as [14]

of IV is set at 32 and the average of the SIR (over spreading sequences

as well as delays) is shown for the one-shot detgctér= 1) and for m(z) = 1 Ty {(SS* o }

M = 3. The SIR with symbol-synchronous users is also shown. We see N ‘

e T o SO . Thn, he ecnalence s aresulo e fcthat for

chronéus case a¥ increases g?Since Wephgve roved converyenceﬁ@ asynchronous system approaches that in the symbol-synchronous

L L P 9 se for any: such thaRe{z} < 0. It follows that any performance
mean square, it is also of interest to study the convergence rate of

. . . o €asure which can be expressed interma Of), with Re{z} < 0, is
SIR to its mean. Fig. 3 shows the ratio of the standard deviation to { Sual for the chip-synchronous and asynchronous cases. In particular,

4t is also interesting to note that it is whéd — oo (and notjustV — o0)  consider the sum of the information rates of the users when we allow
that the chip-MF statistics become sufficient. for joint decoding of all the users. If we assume that the symbols have
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an i.i.d. Gaussian distribution, the sum rate (normalizedl Jas given APPENDIX A
by [15, eq. 141] PROOF OFLEMMA 1
C. = 1 log, det (I + 1 55+> bits per chip We make use of the following simple result in the proof.
fTN PR o2
1y 2 2 Lemma 2: Let g(x) be a positive, integrable, and monotone-de-
= / n <1 - m <——>) dt. (17) creasing function. Then, for integersb > 1, a fractiony € [0, 1)
0
. .. b b b

Thus, the sum rate can be directly related to the Stieltjes transform.

' . L . k4+v) < k) < x)dr.
To allow for an interchange of the limit and the integral when we let ; gk +7) < LZ: g(k) < _/afl glw) de

N — o in (17), we need to impose a mild sufficient condition that ) ‘ L , L )
¢le; is bounded above for all symbojs with a bound that is inde- N Particular, forg(x) = 3 andg(x) = 7, we have, respectively,

pendent ofV. (This condition is clearly satisfied for sequences from a b 1 .
finite alphabet.) Under this condition, we have the following corollary Z . < log < 1) = log (1 + : . ) (18)
to Proposition 1. = Rkt a— o

Corollary 1: When all the users have i.i.d. Gaussian symbols, the b 1 1 1 1
sum rate is asymptotically equal in the chip-synchronous and asyn- LZ: (k+)2 < a1 b-"a-1 19)
chronous systems. Further, 36 — oo, the limit (in ) of the sum =
rate in the asynchronous system converges to that for the synchrongtigrea > 2 andb > a.

system. Proof of Lemma 1:Let X = R(r)R(r)',d = |r], and

When the transmitters do not know the delays, asynchrony would= 7 —d € [0, 1). Throughout the proofy is kept fixed, and hence,
reduce the capacity from that of the symbol-synchronous system [16)¢ dependence af,  andX on V is suppressed. We have

IN

[17]. Furthermore, the i.i.d. Gaussian distribution is optimum for N
the symbol-synchronous system [18]. These two observations, when X[i, m] = Z R(7)[i, K]R(7)[mn, k]
combined with Corollary 1, suggest that the i.i.d. Gaussian distribution k=1
could be optimum for the asynchronous systemMas— oc and N
thenM — oo. However, we note immediately that this argument is = Z sinc(d 4y + k —i)sinc(d + v + k —m)
not rigorous. We have implicitly assumed long spreading sequences, k=1
which makes the multiaccess channel time varying in addition &nd we need to show that
having memory. Further, it is not clear if the limits M and N can MN .
be interchanged. A rigorous information-theoretic capacity analysis in m > (X[, m] = I(d)[i, m))* = 0.
the asynchronous scenario appears to be a nontrivial problem. ¢, m=1
The Frobenius norm is estimated along the diagonal§ efI(d). The
V. CONCLUSION elements ofX along diagona are given by

We have considered analysis of MMSE detection in an asynchronous b
system with random spreading. Under the assumption that the chipX[i- i +al = Y sinc(k + )sinc(k +v — ) := f(a, b, q)
waveform is the ideal sinc function, we have shown that the SIR is the k=a
same as that in an equivalent chip-synchronous system, for any fixgderea = d —i+1 andb = d —i+ N. We can write ouff («, b, ¢) as
window size. As the window size goes to infinity, our results imply L DV (=151 §in2 (7
that the SIR is the same as that in an equivalent symbol-synchronous flab. gy == > (=17 (=1) ™" sin(77y)
system. = (k+)(E+y—q)

Now, the sinc chip waveform maximizes the processing gain for a b 1
given symbol rate and bandwidth. We conjecture that this fact would =c,(—1)1 Z Ty Y
make the sinc waveform optimal for the MMSE detector over all chip = Nkt =a)

waveforms, in the sense of maximizing the SIR under equal symtwhereC _ sin?(x)
. . . ol 72 .

rate and baanW|dth constraints. Furthermore, p_ractlcal CDMA stan-; .oy _ I(d) is a symmetric matrix, we only need to con-
dards use chip Waveforms that h_ave an appro>_<|mately flat spectr er the upper half corresponding o= 0, ..., MN — 1 and
Hence, a system employing thg sinc waveform is a natural benchm«;a\r: 1,.... MN — q. Let h(q) be the contribution of diagonal to
for asynchronous analyses. Since we have proved that such a syjpfn_ I, ie
is equivalent to a synchronous system, our results provide a justifi-
cation for synchronous random sequence analyses for asynchronous
band-limited CDMA systems. h(q)

To formally establish the optimality of the sinc waveform, it may
be necessary to analyze the SIR with a general chip waveform. This
appears to be a more difficult problem and could be a subject for fur-
ther study. It would also be of interest to study equivalence for other
detectors, notably the decorrelating detector. While the decorrelatif
detector can be obtained as the limit of the MMSE detectoras: 0, | Myt
our proof relies on bounds involving; and is not applicable for the N Z h(q) = 0.
decorrelator. Since the equivalence result for the MMSE detector stems =0
from the convergence of the Stieltjes transform of the covariance matwe studyh(¢) for three different cases: i) the main diagoned: 0; ii)
887, it is possible that the equivalence holds more generally, perhahs first V off-diagonalsy = 1, ..., N; iii) the remaining diagonals,
for the class of detectors considered in [19]. qg> N.

MN—q

Y (Xlii+a =T i+a)’
=1

MN—q

= > Ifa, b g) = I(d)i. i + q]]” (20)

=1

d we would like to show
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A. Main Diagonal Elementsg; = 0 B. Off-Diagonal Elements, > 0 andg < N

Along the main diagonal, the entries are positive and clodetie- Broadly, the off-diagonal elements are finite but small. Fas 0,
tweeni = d + 1 andi = d + N, and close td) otherwise. Hence, we can writef(a, b, ¢) as
we further split the diagonal elements into three groups: d, i €

{d+1,...,d+ N}, andi > d + N. Note that some of the sets may b o) — 1y ° 1
be empty depending on the valuedfince we also requirieto be be- fla, b, q) =c,(=1) Z k+k+7v-q)
tweenl and M N. However, this does not affect the analysis, and we k’*b"’
retain all three groups. _,. =y 3 { 1 1 } .
Fori < d,we haves = d —i+ 1 > 1 and, using (19) 7 g —|k+y-a k+~y
b
. 1 Cy Sinceb — « = N — 1, there are alway®' terms in the summation.
. b, 0)] = ¢~ —_ < 21 ) ! .
|£a. b, 0)] = e, kz::a (k+v)? " a-1 (21) Sinceq < N, some of the terms cancel to yield
Fori >d+ N +2,wehaveh=d—-i+ N < -2 and 1\ a—1 b
(1) 1 1
la| ) f((l, b, q) = cy p Z k+7/_ —k—i-’\," .
|f(a, b, 0)]=c, Z (k — )2 <oy b+2 (22) heee Febma
=ppl Note that goes froml to M N —¢q as we move down diagonalHence,
For the intermediate index se€ {d+3, ..., d+ N — 1}, we have ¢ (=d—i+1)goesfrom/ downtod+g¢+1—MN.We again consider
a < 0andb > 0 so that ’ different groups of elements along diagogpatven though some of the
e groups may be empty for given valuesdandg.
. 1 - 1 Caselg— g >1: Wehaveh —¢+1 > 0,and
1— f(a, b, 0)] =c, —_— t —1 (23 ’
1= f(a, b,0)] = e, k;@@ (k+)? k:zb;ﬂ (k+7)2 (23) B
Cy 1
where we have used the fact that |f(a, b, )l < q Z [
e oC k=a—q
; 1
Z sine” (k + ) = ¢y Z s =1 Y. < D op q
' = 1+ ——
k=—o0 k=—oco (k+7) ~q o6 +a—q—1
Consequently where we have used (18). The contribution of this group of elements to
1 1 h(q) is
1-— , b, <oy | ——+ ). ‘
1= srol<e (g + )
Note that we have ignored a few terms around the transition points > [f(a, b, )" =Y [fGi+a j+a¢+ N -1, )
i =d+ 1andi =d+ N inthe above estimation, specifically aza—q>1 j=2

o
2N

ie{d, d+1,d+2}

I
|-

[

d—q

S tor? (144).
—~ j
1=

=)

and

i€ {d+ N, d+N+1,d+N+2}. Now, for any.J > 1

The number of such terms remains finite sincreases and hence, J

their contribution can be bounded by @q1) term. 1 ZlogZ <1 + 2)
Now, recall from Definition 1 and (14) thd{d) is a diagonal matrix 7 = J

with a string of ones frondf(d)[d + 1. d + 1] to I(d)[d + N, d + N].

. ; 1 &, I &,
Hence, combining (21)—(23), and using (20), we have <5 ) log? <1 + g) +5 Y log? <1 + g)
d—1 d+N—1 = ! R !
= ' 2 - 2 1 I — ¢
h(0) Z |£(a. b, 0)]* + Z |1 — f(a. b, 0)] <liogirg+ L Y T
=1 i=d+3 q q- . J
MN 1 1 I=at
+ >0 If(a b 0 +0(1) < Zlog’(1+4¢) + =
i=d+N+3 q q
, , TN 1 1 2 where we have again used (19) along with the monotonicity ofdhe
=y Z a2 T4 Z — o T iy function and the inequalitiog(1 + =) < «. Noting thaty < N, we
L (d—1) L |(i—=d) (d—i+ N)
=t . i=dts ' can get a loose estimate as
, 1
+ — 5 TOWM) log?(N +1
v i:d+ZN+3 (i— N—d-2)? Z 1f(a, b, @)> < 262 M
d—1 1 N—1 1 1 ara—g>1 q
2 ¢
<6 {Z i +2 E_:J L_Z + (N — j)?] Finally, summing up across the diagonajs< 1 to V), we see that the
- W\_Nidj:z total contribution of such elements can be at mo&iog® V), which
+( Z 1 Lom\ ~om goes to zero when we divide kLY.
= j2 ) Case2p—q < Obuta—1 > 0: Wehaveh—q+1, b > 0. Hence,
a—1 b
Thus, the main diagonal elements yield @q1) term to Tr{(X — If(a, b, )] < G Z 1 + & Z 1
V)2 ibuti 1 _ ithv JA 0 DT = k+n ¢ E+~|
I(d))*}, and the contribution teﬁHX I(d)|| goes to zero withV. 7,52, Y O P Y
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The second term can be bounded by a logarithmic quantity as in Casklénce, the contribution of this part also goes to zero when divided by
since the summation is over positive indexes. The summation in the firét and we have the desired result in Lemma 1

term is over both positive and negative indexes. Hence, we distinguish

between those indexes that have a negative counterpart and those that Lim

1
— | X — I(d)|| = 0.
do not. With N—oo /N

ag = min(|a — gl, |a — 1)
ar = max(|a —g¢|, |a — 1) APPENDIX B
PROOF OFTHEOREM 1

we have
a1 1 We will need the following result from [20].
Cy
q Z E+ Lemma 3[20, Lemma 14]'Suppose, ..., vun arei.i.d.random
k=a—q variables, each with zero mean, variai¢éV, and a finite fourth mo-
e | X 1 Cy “1 1 ment. LetB be anM N x M N constant Hermitian matrix. Define the
< - T ey vector
a4 | = R N P
_ Gy Cr = 27 Cry azl 1 8= [(11 Vly oo o s QIUN, Q2UN 415 e oo s AMUN(M —1)415 -+ s aAK/IZ,l\/[ANY]T
VAR e O L whereay, ..., ay are deterministic and real-valued. Then
f7 ~ q M
<2 log (14 % 24 1 2
=7 + og + _)’ ( ) ESJrBS = JTv Z |ﬂrm| n7z(B)

m=1

for somej > 0 and a constar, independentof or N. (If |a — ¢| < gpg

|a — 1], the sign forvy is +, and - otherwise.) The sum (ovg'r? of i : p(B)?

the squares of the second term in (24) can be bounded as in Case 1. Var (8 BS) <Gy N

Since we have at mosgtterms along diagonal that fall under Case 2 ) ] ) )

considered here, the sum of the squares of the first terms in (24) is [4&€rep(B) is the spectral radius (or maximum eigenvalueBofthe

than constantC; depends only offa., } and the fourth moment of;, and
mN
s
=L T.(B)= > B
q q : ,
i=(m—1)N41

Hence, summing across the diagonals<1 to V) gives an estimate
of theO(log N') from this set of terms, which again goes to zero when  Proof of Theorem 1:To make it more readable, we number the
divided by N. key steps in the following proof.
We have now covered all the bounding techniques involved far 1) Reduction to the Trac&¥e begin with the SIR expression
N. The arguments can be carried through to other groups of elements , N
along each diagonal, e.@.,< 1 butb — ¢+ 1 > 0 etc., and we get an o= 83; (SST + UZI) 80

overall estimate o«f)(%) from the firstV diagonals. ) i i ) ,
wheres; = AqR(70)co andS is the N x 2K matrix corresponding

C. Off-Diagonal Elements; > N to the effective spreading sequence of the interfering vectors. Since we

have assumed, = 0, R(ry) is the identity matrix. Hence,
Wheng > N, we have

Fo = flé chC()

, (—1)7 & 1 1
fla, b, q) = ¢y Z AN - % - + a1 . .
1 =lkt+r-a + v whereB = (88" +0°I)”'. The vector; is a vector of lengthV with
i.i.d. entries of zero mean, variant¢N', and a finite fourth moment.
Also, note thatB| < -;. Hence, applying Lemma 3 with/ = 1 and
a1 = 1, ¢} Beo converges in mean square 40T {B} = L Tr{B}.
We denote this convergence as

and the terms do not cancel. Instead, each element on diagacaal
be bounded as

>k
k=a k + v

The number of terms in each summatiomNis Hence the estimation
techniques for the cage< 1V in Appendix A, part B above would hold, - Thys, we need to prove tha Tr{B} converges to the same limit
with the modification thalog(1+ ) would be replaced biyg(1+ 7). a5 in the chip-synchronous case. In other words, we need to prove
Consequently, the contribution to the Frobenius norm would involvgat the fractional delays of the interfering symbols can be set to zero
for someJ > 1, without affecting the limit. We prove this by applying the matrix inver-

b—q 1

Cn
[f(a, b, )] < =
q |
—_-a q

c
+ X
q

ciBey ™5 % Tr{B}.

J 7 N N sion lemma for each of tHel{ interfering vectors (indexed froph= 1
]_ 2 .ZV _r\ 2 - :\ —~ . . .
Z Zlog 1+ 7 < Z log™(1+ N) + Z to 2K) in an iterative manner.
J=1 2) Application of the Matrix Inversion Lemma to a Single Interferer:
Slog?1+N) 1 Let
- q q 20y —1
1 1 B, = (5,5}, + 1)

where the last step follows singe> N. Finally, summation ofl /¢
across the diagonals froM+1 to M N is bounded byog(M N/N) =  where the matrixS(,, is formed by removing the first interfering
log M, which would yield an estimate @ (log” N) on > 4>~ @), symbol's vectos, fromS. Also, letR; = R(r;) forj =1, ..., 2K.
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Then, by the matrix inversion lemma moving column;j from B(,_,,, with B,y = B andB = Box).
sTBstl Thus, B is the matrix formed when all th2K" interfering symbols are
Tr{B} =Tr {B)} — T+sBoysr chip-synchronous. i
S Now, 43 & Tr{B} and 47 + Tr{B} converge to the SIRs in the
Ty {B } _ 1013 Bm)Rlcl asynchronous and chip-synchronous cases, respectively. Hence, the re-
W 1+ Aje 1RTB(1)R1 ¢ maining task is to show thaty converges to zero in mean square as
N — oc.
1 AlTr {RTB?U& } 4) Bounding|A f,| and |A f,|: From (25), we have
=Tr{Bw} - +Af )
where TN+ T{Z} 1+ciZje,
1 AITr {RTBfl)m } A2¢IRIB? Ruey whereY; = AR'B{)R; andZ; = AR!B, R;. Consequently,
Afi=— - ot . byLemma 3
N4 kAT {R Bu)Rl} 1+ Aiei RiBo)Riey o e 1 fo me 1
25) ciYje; = A—TTI‘{Y]'} and ¢;Z;e; — v Tr{Z;}. (28)

Note that the application of Lemma 3 requires that the spectral radius
of Y; andZ; be uniformly bounded. Assuming the symbol energies
are uniformly bounded, this can be verified as follows:

o(Z;) :A?/} (RIBU)Rl) = A?/} (B(anRJ{)

< A?-p (Bny) p(R\RY)
1 ATTr{B{,X:}

J— _12,
N 1+ ALAf Tr {B(l)X1} > .

Furthermore, ifX, = RIR1 , we note that the first term in the RHS of
(25) can be written as

1 A? Tr{Rj-B(Zl)Rl}
N + ATy {RIB(1)R1}

1 Al Tr {B},)I(d1)} Ay The last step foIIows since
- N 142 - 2401 ot
N 14+ A2 Te{ByI(d1)} p(R]Ry) = max LlRiRICI (29)
where ¢y cle
1 AT {B'(zl)I(dl)} 1 ATy {B?I)X1} and the numerator can be interpreted as the energy of the projection of
Agq

=N 1+ L A2 Te (B I(d))} N 1+L A2 Te (B, X} the underlying continuous time signal onto the chip-MF basis functions
‘ . (see (10)). The same argument holds¥gras well.

(26) Now, the convergence in (28), along with the facts that the spectral

Finally, we define norm ofY’; is bounded and the functioﬁfy < 1fory > 0,imply the
AF 1 A2 Ty {Bf1)1((l1)} mean-square convergencedf; to zero. Specifically, we have
Afr =+ 12 4

N 1+ &—,Ai Tr{B(l)I(dl)} E|Af]'|2 < Cl\fl (30)

A2t T(d)) B I(dy)é ‘
_ ~_5~1) wIde — (27) whereC} is a constantindependentjoés well. The same bound would
L+ Afe(I(dr)TByI(di)er also hold forE|A f;|°.

whereé, is a vector of lengthV independent of, and identically dis- 5) BoundingAg;|: The final estimate we require is faxg,. From

tributed as:;. Note that the definition oﬁﬁ is similar to that ofA f  (26), we have

in (25), except that, is replaced by, andR, is replaced byl (d,). A 1 AXTe{B2,I(d))} 1 ATy (B}, X}

Putting the above equations together, wg haveT ) ) B9 =N 1+%A§ Tr {B(J-)I(dj)} N1t a2 ir Ty {B(J-)X]»}
1 Tr{B} = Tr (B} - 1 ATl ()" BY wl(d)es whered; is the integer part of;. In general, sinc8r{AX } is an inner

N "1+ A2eTI(d, )*B(l)I(fh ¢ product forN x N matricesd andX, we have

ITHAX - Y)} < A IX - Y] < VN p(4)|1X - Y|

where||.|| denotes the Frobenius norm. Consequently

+ % [Afl +Ag - Afl]

1 ~ 17T, ) N
-N T {B(l)} + N [Aﬁ + a9 Af]] %Tr {B(])I } - — Tr
]

whereB,,, = (81,50, + 02I)~* and§|, is obtained by replacing 1
the first column inS by a corresponding chip synchronous vector < =y ﬁ X5 = I(d)l
‘411(d1)él.
3) Extension to All InterferersRepeating the above procedure for — Tr {BI(dj)} — —= T1
each of the K vectors inS, we have 11
N 2K N <= = = I(d;)||. (31)
TTHBY = T Te{BY + 1+ 3 [Af, 4 Ag; - A o , ,
‘ N Again, since the function 1, the random variable
1 2 . ied?
:—TI{B}-FEN ~ Ir{B(;yI(d;)}, and the symbol energied; are all bounded,
we have
where Af;, Ag;, and Af; are defined at step, analogous to the
. defin ? il < CoAT = ||IX; = I(d;)| (32)

respective definitions in (25)—(27). Note thBi; is obtained by re-

\/_
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for some constar; independent of as well. We now apply Lemma By, [p] B [p]*. The only property OB%U required in the proof of
1 to note that the RHS goes to zero for all realizations of the delayheorem 1 is the fact that its spectral norm is uniformly bounded for
T; = d; + ;. Hence, we have thakg; converges to zero in meanall V in obtaining (28) and (31). Since the matrid@g.;[p] B(ar)[p]"

square for allj. More precisely, from the proof of Lemma 1 are positive definite, we immediately have
) . log® N M1
E|Ag;|” < CoA) (33) !
R TN o (BanlBonlel') <o | Y BonimlBonlm]'
for some constant’,. Finally, using (30) and (33), we have m=0
- 1
2K 2
3 ; 5 =p(Bun) £ =-
Elex” < = 3 (BIALP +E|Ag [ +E|Af) (Bow) < 5

j=1 Thus, the spectral norm @ . [p]B ) [p]" is uniformly bounded as

<3 <& Y log® N) 1 221\: A well. The remaining steps in the proof of Theorenvik,. the defini-

= N TN - tions (25)—(27) and the techniques to bound them, can now be carried
through. In particular, note that the application of Lemma 1 in (32) and

(33) holds whenV/ > 1 as well.

i=1
— (0, asN — .

The proof of Theorem 1 is complete.
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