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Abstract—The analysis of linear minimum mean-square error (MMSE)
detection in a band-limited code-division multiple-access (CDMA) system
that employs random spreading sequences is considered. The key features
of the analysis are that the users are allowed to be completely asynchronous,
and that the chip waveform is assumed to be the ideal Nyquist sinc function.
It is shown that the asymptotic signal-to-interference ratio (SIR) at the de-
tector output is the same as that in an equivalent chip-synchronous system.
It is hence been established that synchronous analyses of linear MMSE de-
tection can provide useful guidelines for the performance in asynchronous
band-limited systems.

Index Terms—Asymptotic analysis, asynchronous systems, band-limited
communication, code-division multiple access (CDMA), least mean squares
methods, matched filters (MFs), minimum mean-square error (MMSE) de-
tection, sinc function.

I. INTRODUCTION

Multiuser detection in code-division multiple-access (CDMA) sys-
tems has been a topic of intense research for more than a decade [1].
Several criteria have been used for designing multiuser detectors, and
a particularly appealing one is to minimize the mean-squared error
(MSE) of the symbol estimates at the output of the detector. When the
detector is further constrained to be linear we obtain the linear min-
imum mean-squared error (LMMSE or simply, MMSE) detector [2].
Equivalently, the MMSE detector also maximizes the output signal-to-
interference ratio (SIR) over the class of linear detectors. In addition, it
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allows for an adaptive implementation [3]. Hence, the MMSE detector
has been a subject of considerable study.

Detailed performance analysis for the MMSE detector was first con-
sidered in [4]. The spreading sequences were assumed to be arbitrary
but fixed, and the Gaussianity of the multiaccess interference at the
output of the detector was analyzed under various asymptotic scenarios.
A more promising approach for analysis was introduced in [5], [6].
Here, the spreading sequences were treated as independent random
vectors, and limits of the SIR and capacity were studied as the number
of users(K) and the processing gain(N) tend to infinity with the ratio
K=N approaching a constant. The limitation of the analysis in [5], [6]
is that it is restricted to the situation where the users are symbol-syn-
chronous. In [7], the SIR analysis of [5] was extended to the case where
the users are symbol-asynchronous but chip-synchronous, i.e., the de-
lays of all the users are aligned to the chip timing.

While it allows for accurate large-system analysis, the synchronous
or chip-synchronous assumption is not realistic for the received signal
on the reverse link of a cellular CDMA system, especially with user
mobility and the resulting variations in the delay. Thus, we would
like to allow the users to be completely asynchronous, i.e., symbol-
as well as chip-asynchronous. Analysis of the MMSE detector with
random spreading sequences and completely asynchronous users was
considered in [8]. However, the performance measure was the average
near–far resistance of the detector and bounds were obtained on this
quantity for finiteK andN . Furthermore, the analysis relied on the
assumption that the chip waveform was limited to a chip interval.

In this correspondence, we allow the users to be completely asyn-
chronous and consider SIR at the detector output as the performance
metric. We also assume that the system employs the ideal band-limited
(and hence, of infinite duration) sinc chip waveform. For single-user
narrow-band systems, the sinc waveform maximizes the signaling rate
when the symbol waveforms are constrained to have a given bandwidth
and to have no intersymbol interference [9]. In spread-spectrum sys-
tems, we have an additional degree of freedom, since the processing
gain of the system can be varied with the excess bandwidth of the
chip waveform to keep the symbol rate and occupied bandwidth fixed.
In such a framework, the sinc waveform maximizes the processing
gain since it has zero excess bandwidth. For the matched-filter (MF)
detector, the maximum processing gain also results in the maximum
output SIR across all waveforms [10], [11]. Hence, practical CDMA
systems (e.g., [12]) employ waveforms that have an approximately flat
spectrum over the band of operation. Similar observations hold for the
MMSE detector as well, although a formal proof of the optimality of the
sinc waveform appears to be open [13]. Based on the above remarks,
the sinc waveform can be considered to be a benchmark for band-lim-
ited systems. Hence, analysis of the MMSE detector when the users are
completely asynchronous and employ the sinc waveform is of much in-
terest, from a theoretical as well as a practical viewpoint.

II. SYSTEM MODEL AND MF DETECTION

We consider a direct-sequence CDMA (DS/CDMA) model withK+
1 users, where the received complex baseband signal is given by

r(t) =

K

k=0

sk(t� �kTc)e
i� + w(t); t 2 [�1; 1] (1)

wheresk(t) is the signal transmitted by userk

sk(t) =

1

m=�1

p
Ek b(m)

k c
(m)
k (t): (2)
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The notation used in (1) and (2) is as follows. The quantityb
(m)
k is

symbolm of userk, and

c
(m)
k (t) =

N�1

n=0

c
(m)
k; n  (t�mTs � nTc)

is its spreading waveform. HereTs andTc are the symbol and chip
periods, respectively, andN = Ts=Tc is the processing gain of the
system. As discussed in Section I, the results of this correspondence
are derived for the case where (t) is the sinc chip waveform (normal-
ized to have unit energy). To distinguish between statements that are
applicable to a general chip waveform and those that hold only for the
sinc pulse, we denote the specific sinc waveform by ?(t)

 ?(t) =
1p
Tc

sinc
t

Tc

where

sinc(x) =
sin(�x)

�x
:

Furthermore, in (1) and (2),�k; �k andEk are the carrier phase offset,
delay, and symbol energy of userk, respectively. Finally,w(t) is a zero
mean proper complex Gaussian process with two-sided power spectral
densityN0, i.e.,

Rw(�) = E[w�(t)w(t+ � )] = N0�(� ):

Since the sinc function is of infinite duration, we have allowed the
observation interval for the continuous time CDMA signal to be infi-
nite. In addition, we make the following assumptions throughout this
correspondence.

• The delays�k are normalized to the chip periodTc and take on
real values in[0; N ]. When�k is restricted to be an integer, the
users arechip-synchronous. In particular, when�k = 0 8 k, the
users aresymbol-synchronous.

• The desired user corresponds tok = 0, and the timing reference
at the receiver is synchronized to the desired user, so that�0 = 0.

• The chipsc(m)
k; n are modeled as complex,independent, and iden-

tically distributed (i.i.d.), variance1=N random variables, with
finite fourth moments. In addition, the symbols are modeled as
i.i.d. zero mean, unit variance random variables.1

We begin with a review of the analysis for the conventional MF de-
tector [10]. The desired symbol of user0 is taken to beb(0)0 . The MF
statistic is then obtained through correlation with the corresponding
spreading waveform

X =
1

�1

r(t)c
(0)
0 (t)e�i� dt: (3)

The performance metric used is the SIR(�) at the output of the de-
tector. With the MF, the SIR forb(0)0 is defined as

�0 =
Eb jE[X jb0]j2
Var[X jb0] (4)

where the expectation is taken over the sequences of all the users, and
the symbols and delays of the interferers. If the delaysf�kg are mod-

1Note that the independence of sequences across symbol indexm amounts to
assuming long spreading sequences. The analysis of this correspondence could
be extended to a short sequence system where different symbols of a given user
employ the same spreading sequence, but we make the long sequence assump-
tion for the sake of simplicity.

eled to be uniform in[0; N ], then, for a general chip waveform (t)
(see [10])

�0 =
E1

N0 +
�

N

K

k=1

Ek
(5)

where

� =
1

Tc

1

�1

j	(f)j4 df

with 	(f) being the Fourier transform of (t). It is also shown in
[10] that, if 	(f) is limited to a bandwidthW , the sinc waveform
 ?(t) with Tc = 1

2W
minimizes the quantity 1

�1
j	(f)j4 df . Thus,

under equal bandwidth and symbol rate constraints, ?(t) maximizes
the output SIR of the MF detector (see also [11]). In addition, when
 (t) =  ?(t), we have� = 1, and

�0 =
E1

N0 +
1
N

K

k=2

Ek
:

It can be easily seen that the above SIR is the same as that obtained
in a symbol-synchronous system (i.e.,�k = 0 8 k), with K users,
processing gainN , and i.i.d. random spreading sequences. We refer
to this equality as the equivalence result for the MF detector. We will
be interested in establishing a similar equivalence result for MMSE
detection in the remainder of the correspondence.2

For this purpose, it is of interest to note that the equivalence for the
MF detector holds even when we do not average over the delays of the
asynchronous interferers. With�k fixed, the variance of the interference
in the asynchronous case takes on the form

1

N

K

k=2

Ek
1

j=�1

sinc2(j + �k)

and the equivalence follows immediately from the following key prop-
erty of the sinc waveform:

1

j=�1

sinc2(j + � ) = 1; 8 �: (6)

We also note that the above equivalence is obtained for a finite
system, with SIR in (5) defined through an average over the spreading
sequences. Alternately, we can obtain the equivalence without aver-
aging over the sequences or the delays, but under the large-system
asymptote ofK; N ! 1 with K=N ! �.

Result 1: Under the random sequence model, the SIR of the MF
detector converges in mean square to that in the symbol synchronous
case asK; N ! 1 with K=N ! �. The limiting SIR is

�0 =
E1

N0 + �EE E
where the expectation is over the limiting empirical distribution of the
symbol energiesfEkg, and this distribution is assumed to exist.

The result can be proved in a straightforward manner using tech-
niques similar to those used in [7], along with the property (6). We
now consider the equivalence result for linear MMSE detection.

III. MMSE DETECTOR: PROBLEM FORMULATION

In formulating the SIR problem for MMSE detection, we need to
consider a few additional issues and make appropriate assumptions.
While it is possible to derive the MMSE detector with an infinite se-

2It can also be seen that the SIR in the symbol and chip-synchronous cases
are equal for the MF detector. However, the distinction between these two cases
will be important for the MMSE detector.
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quence of symbols transmitted by each user, the analysis appears diffi-
cult. Hence, we assume that the desired user transmits onlyM symbols,
indexed fromm = 0 tom = M � 1. Note that, under the ideal sinc
waveform assumption, each symbol occupies an infinite time duration.
However, with delay�0 = 0, we can think of each symbolb(m)

0 as cor-
responding to the interval[mTs; (m+1)Ts]. Furthermore, we assume
thatM = 2p + 1, and the symbol of interest is taken to be theb(p)0 ,
which “occurs” at the center of the interval[0; MTs].

Since the interferers are asynchronous, we assume thatM +1 sym-
bols are transmitted by each interferer, with an additional symbol3 “oc-
curring” at the left of the interval[0; MTs]. The interfering symbols
of userk are indexed fromm = �1 tom = M � 1. Hence, the anal-
ysis can be thought of as corresponding to a multishot detector over an
M -symbol observation.

For convenience in notation, we now reindex the symbols in (1) by
using a single indexj = k(M + 1) + m. Since there are a total of
Ke = M +K(M + 1) symbols, we have

r(t) =

K �1

j=0

Ajbjcj(t� � 0jTc)ei� + w(t)

where, forj = k(M + 1) +m, bj = b
(m)
k , cj(t) = c

(m)
k (t), Aj =pEk, �0j = �k, and� 0j = �k + mN . For further simplification, we

abuse notation slightly and drop the primes in� 0j to have

r(t) =

K �1

j=0

Ajbjcj(t� �jTc)ei� + w(t): (7)

Thus, we think ofj as indexingKe effective users, with the implicit
understanding that across the symbols of the same actual user, the am-
plitudesAj are equal and the delays�j are related through linear shifts.
With the above reindexing, the desired symbol becomesbp and the first
interfering symbol becomesbM .

The MMSE detector forbp is more conveniently expressed and an-
alyzed in the discrete-time domain. It is possible to generateKe dis-
crete sufficient statistics by correlating with the spreading waveforms
of each symbol transmitted by each user. These statistics are sufficient
for joint detection of all the symbols of all the users. We can then de-
rive the linear MMSE detector based on these correlation statistics. The
correlation approach was used to analyze the MMSE detector in [4], [6]
for the symbol-synchronous case. However, for the completely asyn-
chronous case, analysis with this approach again appears difficult. In-
stead, we assume thatMN statistics are generated by sampling the
output of a chip-MF once every chip interval

yn =
1

�1

r(t) (t�nTc) dt; n = 0; . . . ; MN � 1

yyy := [y0; y1; . . . ; y ]>: (8)

This approach to obtaining the discrete system model is followed in the
MMSE analysis in [5], [7]. Note that the statistics generated are suffi-
cient only under the assumption of synchronous and chip-synchronous
users, and are not sufficient in the general asynchronous case [13]. In
particular, with the sinc waveform assumption, while the above sam-
pling rate is equal to the Nyquist rate, the loss in sufficiency is due to
the fact that we have restricted ourselves to afinite number of statistics.
However, we expect the loss in sufficiency to go to zero asM ! 1,
since the sinc functions would then span the received signal. In the anal-
ysis for finiteM below, we derive the MMSE detector forbp based on
the observationyyy in (8), and consider any loss in sufficiency to be a
part of the suboptimality of the detector.

3We could have included this additional symbol for the desired user as well.
But we choose to ignore this symbol since it simplifies the notation and does
not affect the analysis.

Now, since chip-matched filtering is a linear operation, the discrete
system model is additive across the transmitted symbols, and we have

yyy =

K �1

j=0

bjsssj +www (9)

wherewww is a zero-mean white Gaussian vector with variance�2 = N0,
andsssj is a vector of lengthMN with components

sssj(n) =
1

�1

Ajcj(t��jTc) (t�nTc) dt; n = 0; . . . ;MN �1:

This implies that

sssj = Aje
i� RRR (�j)cccj (10)

wherecccj is the i.i.d. spreading sequence of effective userj, and

RRR (�j)[n; `] = R (�j + `� n);
n = 0; . . . ; MN � 1; ` = 0; . . . ; N � 1:

Here

R (�) =
1

�1

 (t) (t� � )dt

is the autocorrelation function of the chip waveform. In general,RRR(�j)
is anMN �N Toeplitz matrix that involves only the correlation func-
tionR and the delay�j . For the sinc waveform,R (�) = sinc(� ).
For brevity in notation, we denote the matrixRRR (�j) by RRR(�j), so
that

RRR(�j)[n; `] = sinc(�j + `� n): (11)

Based on the observationyyy in (9), the linear MMSE estimate forbp
is given by [2]

b̂p =
sssypBBBpyyy

1 + sssypBBBpsssp
(12)

where

BBBp = (SSSSSSy + �2I)�1

andSSS = [sss0; . . . ; sssp�1; sssp+1; . . . ; sssK �1] is the matrix of inter-
fering vectors. For fixed spreading sequences, the SIR achieved at the
output of the MMSE detector is defined analogous to (4) and can be
written as

�p = sssypBBBpsssp = sssyp(SSSSSS
y + �2I)�1sssp: (13)

The problem then is the analysis of the above SIR in the asynchronous
system, and its relation to chip/symbol synchronous systems. Clearly,
the SIR is independent of the phases of the users, and henceforth, we
set the phases to zero without loss of generality.

IV. MMSE DETECTOR: SIR ANALYSIS

Following the work in [5], [6], we model the sequencescccj to be
i.i.d. random vectors and consider the large system asymptote where
the number of users(K) and the processing gain(N) are scaled to in-
finity with K=N ! �. Now, the asymptotic analysis in [5], [6] relies
on the condition that the sequence vectorsssj has i.i.d. entries. For the
symbol-synchronous case, we only need to consider one symbol per
user, and we havesssj = cccj , 8j = 0; . . . ; K. Thus, the required i.i.d.
condition is immediately satisfied. In [7], the condition onsssj is relaxed
to having independent entries conditioned on the delay�j . This require-
ment is satisfied in the chip-synchronous situation, since each entry in
sssj is either equal to zero or an entry in the corresponding spreading se-
quencecccj . However, when the users are completely asynchronous, the
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Fig. 1. Pictorial representation of (a) the matrix~III(d); (b) the matrixIII(d).

elements ofsssj are neither i.i.d. nor independent when conditioned on
the delay�j , as can be seen from (10). Hence, it appears that standard
results from random matrix theory cannot be applied to compute the
asymptotic SIR.

Our approach to the asynchronous problem is to consider the specific
case where all the users employ the infinite duration sinc waveform
 ?(t). As discussed in Section II, the sinc waveform is optimal for
the MF detector, and use of this waveform allows us to establish an
equivalence between asynchronous and (symbol) synchronous systems
for the MF detector. The key property of the sinc waveform underlying
this equivalence is (6). To establish a similar equivalence for the MMSE
detector, the key property required of the sinc waveform is less obvious
and is stated later in Lemma 1. We first give the following definitions.

Definition 1: For givenM andN , and an integerd, thechip-syn-
chronousmatrix is defined as

~III(d) = RRR(d)

whereRRR is as defined in (11). Furthermore, thepartial identity matrix
of sizeMN �MN is defined as

III(d) = ~III(d)~III(d)y:

Sinced is an integer, it can be seen from (11) that the entries of~III(d)y

are zeros except along the diagonald, and the entries along diagonal
d are all equal to1. Here, the main diagonal is indexed as0, and the
index is positive above the main diagonal and negative below it. Con-
sequently,III(d) is aMN �MN diagonal matrix with a string of ones
along a part of the main diagonal and zeros elsewhere (see Fig. 1).

III(d)[i; m] =

1; i = m andi 2 fd+ 1; . . . ; d+Ng
\f1; . . . ; MNg

0; otherwise.

(14)

Now, let�j = dj + 
j , where�j is the delay of symbolj, anddj is its
integer part. By Definition 1, the vector~III(dj)cccj is a lengthMN vector
obtained when the symbol is chip-synchronous with delaydj . Thus, if
we can replace the matrixRRR(�j) in (10) by~III(dj) for eachj, we obtain
the chip-synchronous system. To obtain an equivalence, we thus need
RRR(�j) to be close to~III(dj). The precise requirement is given in terms
of the partial identity matrix by the following lemma.

Lemma 1: Let � be an arbitrary real number, and let� = d + 
,
whered = b�c and
 2 [0; 1). Then, the matricesRRR(�)RRR(�)y and
III(d) become equivalent asN increases, i.e.,

lim
N!1

1p
N

RRR(�)RRR(�)y � III(d) = 0

wherekAAAk = [Tr(AAAyAAA)] is the Frobenius norm of a matrixAAA.

Proof: The proof is somewhat cumbersome, but essentially in-
volves getting bounds on each of the elements inRRR(�)RRR(�)y � III(d).
In addition to (6), we make use of the fact that
1

j=�1

sinc(j + � ) sinc(j + � + q) = 0; 8� and any integerq 6= 0:

See Appendix A for the complete proof.

It is important to note that, as with (6), Lemma 1 is just a mathe-
matical property of the sinc waveform, with no direct relation to the
CDMA system under consideration. However, the notation used in the
lemma is indeed motivated by the CDMA system:� can be thought of
as representing the delay (normalized toTc) of a generic user in the
system, withd and
 being the corresponding integer and fractional
parts, respectively. Further, we note that� can be an arbitrary function
of N in Lemma 1. However, in the context of asynchronous CDMA,
it is reasonable to assume that�

N
, the delay normalized to thesymbol

interval, converges to a constant, i.e.,� is asymptotically linear inN .
Finally, from the proof in Appendix A, note thatRRR(�)RRR(�)y does not
go to the partial identity matrix elementwise, since some of the ele-
ments in the difference remain finite for allN . But the contribution of
these elements to the Frobenius norm becomes negligible when divided
by
p
N .

We are now in a position to provide our main result, which is that
the equivalence result can indeed be obtained by using the property of
the sinc waveform stated in Lemma 1. While it is possible to prove this
result for a general value ofM , we begin with the one-shot scenario
(M = 1; p = 0) for simplicity in exposition of the proof. We assume
that the symbol energies of the actual (as opposed to effective) users
Ek are bounded fork = 0; . . . ; K, and their empirical distribution
converges to a fixed distribution in the large-system asymptote. Simi-
larly, the actual delays normalized to thesymbolinterval,f�k=Ng for
k = 0; . . .K, have an empirical distribution that converges to a fixed
distribution.

Theorem 1: As K; N ! 1 with K=N ! �, the SIR�0 of the
one-shot MMSE detector converges in mean square to the asymptotic
SIR for the one-shot chip-synchronous system.

Proof: (Outline) The complete proof is provided in Appendix B.
We summarize here the basic idea and the connection to Lemma 1. It
is relatively straightforward to show that

lim
N!1

�0 = lim
N!1

A2

0

1

N
Tr (SSSSSSy + �2I)�1 (15)

where the equality is in the mean-square sense. The proof then relies on
a repeated application of the matrix inversion lemma to the expression
in the right-hand side (RHS) of (15). In each step, the rank one matrix
corresponding to effective interfererj

sssjsss
y
j = A2

jRRR(�j)cccjccc
y
jRRR(�j)

y
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is separated from the matrixSSSSSSy, and the resulting perturbation of the
SIR is shown to be close to a function of the matrixRRR(�j)RRR(�j)y.
Lemma 1 is then invoked and the matrixRRR(�j)RRR(�j)y is replaced by
the matrixIII(dj) = ~III(dj)~III(dj)

y (see (32) and (33)). Finally, this re-
placement is shown to be equivalent to replacingRRR(�j)cccj by ~III(dj)cccj .

Thus, the basic idea of the proof is to sequentially replace each of the
asynchronous interferers’ vectors with an equivalent chip-synchronous
vector, and show that resulting difference is asymptotically negligible.
Note that the proof does not rely on any averaging over the delays or
sequences. The details are provided in Appendix B.

The technique extends to the multi-shot scenario (M > 1), with an
appropriate modification of the initial steps in the proof of Theorem 1.

Proposition 2: For the multishot detector, the SIR of symbolp,
�p, converges in mean square to the SIR for the multishot chip-syn-
chronous system.

Proof: See Appendix C.

For the sake of completeness, we note that the SIR for the chip-
synchronous system converges in probability to a limit given by the
following implicit equation, as shown in [7]:

lim
N!1

�p =
p+1

p

w(x) dx

where

w(x) =
E1

�2 + �EEE� I E ; E1; C(x;�)
w(z)dz

(16)

and the region of integrationC(x; �) is given by

C(x; �) =

[0; �]; x 2 [0; �]

[� +m� 1; � +m]; x 2 [� +m� 1; � +m]

for m = 1; . . . ; (M � 1)

[� +M � 1; M ]; x 2 [� +M � 1; M ].

Here,

I(E ; E1; �) =
EE1

E1 + E�

and the expectation is over the limiting empirical distributions offEkg
andf�kg, where�k = �

N
. Note that, while our convergence result is

in the stronger mean-square sense, the overall convergence of the SIR
for the asynchronous system to the expression in (16) is in probability,
since the convergence shown in [7] is in probability.

Now, asM ! 1, the SIR of the chip-synchronous system is also
known to converge to the SIR for the symbol-synchronous system [7].
The equivalence result in Proposition 1 then leads us to conclude the
following: the SIR of the MMSE detector in the asynchronous system
converges, asM increases, to the SIR in an equivalent symbol-syn-
chronous system.4 By equivalent, we mean that all parameters, except
the delays of the users, are kept the same in both systems.

The theoretical results and observations above are easily verified
through numerical simulations for a finite system. In Fig. 2, the value
of N is set at 32 and the average of the SIR (over spreading sequences
as well as delays) is shown for the one-shot detector(M = 1) and for
M = 3. The SIR with symbol-synchronous users is also shown. We see
an excellent match between the asynchronous and chip-synchronous
cases, and note that the average SIRs approach that in the symbol-syn-
chronous case asM increases. Since we have proved convergence in
mean square, it is also of interest to study the convergence rate of the
SIR to its mean. Fig. 3 shows the ratio of the standard deviation to the

4It is also interesting to note that it is whenM !1 (and not justN !1)
that the chip-MF statistics become sufficient.

Fig. 2. Average SIR for asynchronous, chip-synchronous and
symbol-synchronous systems,N = 32. As expected, the SIR for
the asynchronous system with the sinc waveform matches that in the
chip-synchronous system.

Fig. 3. Ratio of standard deviation to mean of the SIR,N = 16; 32; 64. As
expected, the ratio decreases with increasingN , for all values of�.

mean of the SIR for different values ofN . We note that, while the ratio
does decrease withN for all values of�, the convergence is rather slow,
with the ratio taking values of up to0:2 whenN = 64.

Finally, we note that the equivalence result for the MMSE detector
has more general implications. Indeed, what we have proved is more
fundamental than what the results for the MMSE detector indicate. De-
fine the Stieltjes transform ofSSSSSSy as [14]

m(z) =
1

N
Tr (SSSSSSy � zIII)�1

wherez 2 C. Then, the equivalence is a result of the fact thatm(z) for
the asynchronous system approaches that in the symbol-synchronous
case for anyz such thatRefzg < 0. It follows that any performance
measure which can be expressed in terms ofm(z), withRefzg < 0, is
equal for the chip-synchronous and asynchronous cases. In particular,
consider the sum of the information rates of the users when we allow
for joint decoding of all the users. If we assume that the symbols have
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an i.i.d. Gaussian distribution, the sum rate (normalized toN ) is given
by [15, eq. 141]

Cs =
1

N
log

2
det III +

1

�2
SSSSSS

y bits per chip

=
1

0

1

t
1�

�2

t
m �

�2

t
dt: (17)

Thus, the sum rate can be directly related to the Stieltjes transform.
To allow for an interchange of the limit and the integral when we let
N ! 1 in (17), we need to impose a mild sufficient condition that
ccc
y
jcccj is bounded above for all symbolsj, with a bound that is inde-

pendent ofN . (This condition is clearly satisfied for sequences from a
finite alphabet.) Under this condition, we have the following corollary
to Proposition 1.

Corollary 1: When all the users have i.i.d. Gaussian symbols, the
sum rate is asymptotically equal in the chip-synchronous and asyn-
chronous systems. Further, asM ! 1, the limit (in N ) of the sum
rate in the asynchronous system converges to that for the synchronous
system.

When the transmitters do not know the delays, asynchrony would
reduce the capacity from that of the symbol-synchronous system [16],
[17]. Furthermore, the i.i.d. Gaussian distribution is optimum for
the symbol-synchronous system [18]. These two observations, when
combined with Corollary 1, suggest that the i.i.d. Gaussian distribution
could be optimum for the asynchronous system asN ! 1 and
thenM ! 1. However, we note immediately that this argument is
not rigorous. We have implicitly assumed long spreading sequences,
which makes the multiaccess channel time varying in addition to
having memory. Further, it is not clear if the limits inM andN can
be interchanged. A rigorous information-theoretic capacity analysis in
the asynchronous scenario appears to be a nontrivial problem.

V. CONCLUSION

We have considered analysis of MMSE detection in an asynchronous
system with random spreading. Under the assumption that the chip
waveform is the ideal sinc function, we have shown that the SIR is the
same as that in an equivalent chip-synchronous system, for any fixed
window size. As the window size goes to infinity, our results imply
that the SIR is the same as that in an equivalent symbol-synchronous
system.

Now, the sinc chip waveform maximizes the processing gain for a
given symbol rate and bandwidth. We conjecture that this fact would
make the sinc waveform optimal for the MMSE detector over all chip
waveforms, in the sense of maximizing the SIR under equal symbol
rate and bandwidth constraints. Furthermore, practical CDMA stan-
dards use chip waveforms that have an approximately flat spectrum.
Hence, a system employing the sinc waveform is a natural benchmark
for asynchronous analyses. Since we have proved that such a system
is equivalent to a synchronous system, our results provide a justifi-
cation for synchronous random sequence analyses for asynchronous
band-limited CDMA systems.

To formally establish the optimality of the sinc waveform, it may
be necessary to analyze the SIR with a general chip waveform. This
appears to be a more difficult problem and could be a subject for fur-
ther study. It would also be of interest to study equivalence for other
detectors, notably the decorrelating detector. While the decorrelating
detector can be obtained as the limit of the MMSE detector as�2 ! 0,
our proof relies on bounds involving1

�
and is not applicable for the

decorrelator. Since the equivalence result for the MMSE detector stems
from the convergence of the Stieltjes transform of the covariance matrix
SSSSSSy, it is possible that the equivalence holds more generally, perhaps
for the class of detectors considered in [19].

APPENDIX A
PROOF OFLEMMA 1

We make use of the following simple result in the proof.

Lemma 2: Let g(x) be a positive, integrable, and monotone-de-
creasing function. Then, for integersa; b > 1; a fraction
 2 [0; 1)

b

k=a

g(k + 
) �

b

k=a

g(k) �
b

a�1

g(x) dx:

In particular, forg(x) = 1
x

andg(x) = 1
x

, we have, respectively,

b

k=a

1

k+

� log

b

a�1
= log 1 +

b�a+1

a�1
(18)

b

k=a

1

(k + 
)2
�

1

a� 1
�

1

b
�

1

a� 1
(19)

wherea � 2 andb > a.

Proof of Lemma 1:Let XXX = RRR(� )RRR(�)y, d = b�c, and

 = � �d 2 [0; 1). Throughout the proof,N is kept fixed, and hence,
the dependence ofd, 
 andXXX onN is suppressed. We have

XXX[i; m] =

N

k=1

RRR(�)[i; k]RRR(�)[m; k]

=

N

k=1

sinc(d+ 
 + k � i)sinc(d+ 
 + k �m)

and we need to show that

lim
N!1

1

N

MN

i;m=1

(XXX[i; m]� III(d)[i; m])2 = 0:

The Frobenius norm is estimated along the diagonals ofXXX�III(d). The
elements ofXXX along diagonalq are given by

XXX[i; i+ q] =

b

k=a

sinc(k + 
)sinc(k + 
 � q) := f(a; b; q)

wherea = d�i+1 andb = d�i+N . We can write outf(a; b; q) as

f(a; b; q) =
1

�2

b

k=a

(�1)k(�1)k�q sin2(�
)

(k + 
)(k + 
 � q)

= c
(�1)q
b

k=a

1

(k + 
)(k+ 
 � q)

wherec
 = sin (�
)

�
.

SinceXXX � III(d) is a symmetric matrix, we only need to con-
sider the upper half corresponding toq = 0; . . . ; MN � 1 and
i = 1; . . . ; MN � q. Let h(q) be the contribution of diagonalq to
kXXX � III(d)k2, i.e.,

h(q) =

MN�q

i=1

(XXX[i; i+ q]� III(d)[i; i+ q])2

=

MN�q

i=1

jf(a; b; q)� III(d)[i; i+ q]j2 (20)

and we would like to show

1

N

MN�1

q=0

h(q)! 0:

We studyh(q) for three different cases: i) the main diagonal,q = 0; ii)
the firstN off-diagonals,q = 1; . . . ; N ; iii) the remaining diagonals,
q > N .
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A. Main Diagonal Elements,q = 0

Along the main diagonal, the entries are positive and close to1 be-
tweeni = d + 1 andi = d + N , and close to0 otherwise. Hence,
we further split the diagonal elements into three groups:i � d; i 2
fd+ 1; . . . ; d+Ng, andi > d+N . Note that some of the sets may
be empty depending on the value ofd, since we also requirei to be be-
tween1 andMN . However, this does not affect the analysis, and we
retain all three groups.
For i < d, we havea = d� i + 1 > 1 and, using (19)

jf(a; b; 0)j = c


b

k=a

1

(k + 
)2
�

c


a� 1
: (21)

For i > d+N + 2, we haveb = d� i+N < �2 and

jf(a; b; 0)j = c


jaj

k=jbj

1

(k � 
)2
� c


1

jb+ 2j
: (22)

For the intermediate index seti 2 fd+ 3; . . . ; d+N � 1g, we have
a < 0 andb > 0 so that

j1� f(a; b; 0)j = c


a�1

k=�1

1

(k + 
)2
+

1

k=b+1

1

(k + 
)2
(23)

where we have used the fact that
1

k=�1
sinc2(k + 
) = c


1

k=�1

1

(k + 
)2
= 1; 8 
:

Consequently

j1� f(a; b; 0)j � c

1

ja+ 1j
+

1

b
:

Note that we have ignored a few terms around the transition points
i = d+ 1 andi = d+N in the above estimation, specifically

i 2 fd; d+ 1; d+ 2g

and

i 2 fd+N; d+N + 1; d+N + 2g:

The number of such terms remains finite asN increases and hence,
their contribution can be bounded by anO(1) term.

Now, recall from Definition 1 and (14) thatIII(d) is a diagonal matrix
with a string of ones fromIII(d)[d+ 1; d+ 1] to III(d)[d+N; d+N ].
Hence, combining (21)–(23), and using (20), we have

h(0) =

d�1

i=1

jf(a; b; 0)j2 +

d+N�1

i=d+3

j1� f(a; b; 0)j2

+

MN

i=d+N+3

jf(a; b; 0)j2 +O(1)

= c
2




d�1

i=1

1

(d� i)2
+ c

2




d+N�1

i=d+3

1

(i� d)
+

1

(d� i+N)

2

+ c
2




MN

i=d+N+3

1

(i�N � d� 2)2
+O(1)

� c
2




d�1

j=1

1

j2
+ 2

N�1

j=3

1

j2
+

1

(N � j)2

+

MN�N�d�2

j=1

1

j2
+O(1) � O(1):

Thus, the main diagonal elements yield anO(1) term toTrf(XXX �
III(d))2g, and the contribution to1p

N
kXXX�III(d)k goes to zero withN:

B. Off-Diagonal Elements,q > 0 andq � N

Broadly, the off-diagonal elements are finite but small. Forq > 0,
we can writef(a; b; q) as

f(a; b; q) = c
(�1)q
b

k=a

1

(k + 
)(k + 
 � q)

= c

(�1)q

q

b

k=a

1

k + 
 � q
�

1

k + 

:

Sinceb � a = N � 1, there are alwaysN terms in the summation.
Sinceq � N , some of the terms cancel to yield

f(a; b; q) = c

(�1)q

q

a�1

k=a�q

1

k + 

�

b

k=b�q+1

1

k + 

:

Note thati goes from1 toMN�q as we move down diagonalq. Hence,
a (=d�i+1)goes fromd down tod+q+1�MN . We again consider
different groups of elements along diagonalq, even though some of the
groups may be empty for given values ofd andq.

Case 1,a � q > 1: We haveb� q + 1 > 0, and

jf(a; b; q)j �
c


q

a�1

k=a�q

1

k + 


�
c


q
log 1 +

q

a� q � 1

where we have used (18). The contribution of this group of elements to
h(q) is

a:a�q>1
jf(a; b; q)j2 =

d�q

j=2

jf(j + q; j + q +N � 1; q)j2

�
c2


q2

d�q

j=2

log2 1 +
q

j
:

Now, for anyJ � 1

1

q2

J

j=1

log2 1 +
q

j

�
1

q2

q

j=1

log2 1 +
q

j
+

1

q2

1

j=q+1

log2 1 +
q

j

�
1

q
log2(1 + q) +

1

q2

1

j=q+1

q2

j2

�
1

q
log2(1 + q) +

1

q

where we have again used (19) along with the monotonicity of thelog
function and the inequalitylog(1 + x) � x. Noting thatq � N , we
can get a loose estimate as

a: a�q>1
jf(a; b; q)j2 � 2c2


log2(N + 1)

q
:

Finally, summing up across the diagonals (q = 1 toN ), we see that the
total contribution of such elements can be at mostO(log3N), which
goes to zero when we divide byN .

Case 2,a�q < 0 buta�1 > 0: We haveb�q+1; b > 0. Hence,

jf(a; b; q)j �
c


q

a�1

k=a�q

1

k + 

+

c


q

b

k=b�q+1

1

k + 

:
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The second term can be bounded by a logarithmic quantity as in Case 1,
since the summation is over positive indexes. The summation in the first
term is over both positive and negative indexes. Hence, we distinguish
between those indexes that have a negative counterpart and those that
do not. With

a0 = min(ja� qj; ja� 1j)
a1 = max(ja� qj; ja � 1j)

we have

c

q

a�1

k=a�q

1

k + 


� c

q

a

k=�a

1

k + 

+
c

q

a

k=a +1

1

k � 


=
c

q


+
c

q

a

k=1

2


k2 � 
2
+
c

q

a

k=a +1

1

k � 


� f

q

+
c

q
log 1 +

q

j
(24)

for somej > 0 and a constantf
 independent ofq orN . (If ja� qj <
ja � 1j, the sign for
 is +, and� otherwise.) The sum (overj) of
the squares of the second term in (24) can be bounded as in Case 1.
Since we have at mostq terms along diagonalq that fall under Case 2
considered here, the sum of the squares of the first terms in (24) is less
than

q
f2

q2

=
f2

q
:

Hence, summing across the diagonals (q = 1 toN ) gives an estimate
of theO(logN) from this set of terms, which again goes to zero when
divided byN .

We have now covered all the bounding techniques involved forq �
N . The arguments can be carried through to other groups of elements
along each diagonal, e.g.,a � 1 butb� q+ 1 > 0 etc., and we get an
overall estimate ofO( log N

N
) from the firstN diagonals.

C. Off-Diagonal Elements,q > N

Whenq > N , we have

f(a; b; q) = c

(�1)q
q

b

k=a

1

k + 
 � q
� 1

k + 


and the terms do not cancel. Instead, each element on diagonalq can
be bounded as

jf(a; b; q)j � c

q

b�q

k=a�q

1

k + 

+
c

q

b

k=a

1

k + 

:

The number of terms in each summation isN . Hence the estimation
techniques for the caseq � N in Appendix A, part B above would hold,
with the modification thatlog(1+ q

j
)would be replaced bylog(1+N

j
).

Consequently, the contribution to the Frobenius norm would involve,
for someJ � 1,

1

q2

J

j=1

log2 1 +
N

j
� N

q2
log2(1 +N) +

N

q2

� log2(1 +N)

q
+

1

q

where the last step follows sinceq > N . Finally, summation of1=q
across the diagonals fromN+1 toMN is bounded bylog(MN=N) =
logM , which would yield an estimate ofO(log2N) on

q>N
h(q).

Hence, the contribution of this part also goes to zero when divided by
N , and we have the desired result in Lemma 1

lim
N!1

1p
N
kXXX � III(d)k = 0:

APPENDIX B
PROOF OFTHEOREM 1

We will need the following result from [20].

Lemma 3 [20, Lemma 14]:Suppose�1; . . . ; �MN are i.i.d. random
variables, each with zero mean, variance1=N , and a finite fourth mo-
ment. LetBBB be anMN �MN constant Hermitian matrix. Define the
vector

sss=[a1�1; . . . ; a1�N ; a2�N+1; . . . ; aM�N(M�1)+1; . . . ; aM�MN ]
>

wherea1; . . . ; aM are deterministic and real-valued. Then

EsssyBBBsss =
1

N

M

m=1

jamj2Tm(BBB)

and

Var sssyBBBsss �C1
�(BBB)2

N

where�(BBB) is the spectral radius (or maximum eigenvalue) ofBBB, the
constantC1 depends only onfamg and the fourth moment of�1, and

Tm(BBB) =

mN

i=(m�1)N+1

Bii:

Proof of Theorem 1:To make it more readable, we number the
key steps in the following proof.

1) Reduction to the Trace:We begin with the SIR expression

�0 = sssy0 SSSSSSy + �2I
�1

sss0

wheresss0 = A0RRR(�0)ccc0 andSSS is theN � 2K matrix corresponding
to the effective spreading sequence of the interfering vectors. Since we
have assumed�0 = 0,RRR(�0) is the identity matrix. Hence,

�0 = A2
0ccc
y
0BBBccc0

whereBBB = (SSSSSSy+�2I)�1. The vectorccc0 is a vector of lengthN with
i.i.d. entries of zero mean, variance1=N , and a finite fourth moment.
Also, note thatjBBBj � 1

�
. Hence, applying Lemma 3 withM = 1 and

a1 = 1, cccy0BBBccc0 converges in mean square to1
N
T1fBBBg = 1

N
TrfBBBg.

We denote this convergence as

cccy0BBBccc0
m:s:! 1

N
TrfBBBg:

Thus, we need to prove that1
N
TrfBBBg converges to the same limit

as in the chip-synchronous case. In other words, we need to prove
that the fractional delays of the interfering symbols can be set to zero
without affecting the limit. We prove this by applying the matrix inver-
sion lemma for each of the2K interfering vectors (indexed fromj = 1
to 2K) in an iterative manner.

2) Application of the Matrix Inversion Lemma to a Single Interferer:
Let

BBB(1) = (SSS(1)SSS
y

(1) + �2I)�1

where the matrixSSS(1) is formed by removing the first interfering
symbol’s vectorsss1 fromSSS. Also, letRRRj = RRR(�j) for j = 1; . . . ; 2K.
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Then, by the matrix inversion lemma

TrfBBBg =Tr BBB(1) � sss
y
1BBB

2
(1)sss1

1 + sss
y
1BBB(1)sss1

=Tr BBB(1) � A2
1ccc

y
1RRR

y
1BBB

2
(1)RRR1ccc1

1 + A2
1ccc

y
1RRR

y
1BBB(1)RRR1ccc1

=Tr BBB(1) � 1

N

A2
1 Tr RRR

y
1BBB

2
(1)RRR1

1 + 1
N
A2
1 Tr RRR

y
1BBB(1)RRR1

+�f1

where

�f1 =
1

N

A2
1 Tr RRR

y
1BBB

2
(1)RRR1

1 + 1
N
A2
1 Tr RRR

y
1BBB(1)RRR1

� A2
1ccc

y
1RRR

y
1BBB

2
(1)RRR1ccc1

1 +A2
1ccc

y
1RRR

y
1BBB(1)RRR1ccc1

:

(25)

Furthermore, ifXXX1 = RRR1RRR
y
1, we note that the first term in the RHS of

(25) can be written as

1

N

A2
1 Tr RRR

y
1BBB

2
(1)RRR1

1 + 1
N
A2
1 Tr RRR

y
1BBB(1)RRR1

=
1

N

A2
1 Tr BBB2

(1)XXX1

1 + 1
N
A2
1 Tr BBB(1)XXX1

=
1

N

A2
1 Tr BBB2

(1)III(d1)

1 + 1
N
A2
1 Tr BBB(1)III(d1)

��g1

where

�g1=
1

N

A2
1Tr BBB2

(1)III(d1)

1+ 1
N
A2
1 Tr BBB(1)III(d1)

� 1

N

A2
1 Tr BBB2

(1)XXX1

1+ 1
N
A2
1 Tr BBB(1)XXX1

:

(26)

Finally, we define

� ~f1 =
1

N

A2
1 Tr BBB2

(1)III(d1)

1 + 1
N
A2
1 Tr BBB(1)III(d1)

� A2
1~ccc

y
1
~III(d1)

yBBB2
(1)
~III(d1)~ccc1

1 +A2
1~ccc

y
1
~III(d1)yBBB(1)

~III(d1)~ccc1
(27)

where~ccc1 is a vector of lengthN independent of, and identically dis-
tributed asccc1. Note that the definition of� ~f1 is similar to that of�f
in (25), except thatccc1 is replaced by~ccc1 andRRR1 is replaced by~III(d1).
Putting the above equations together, we have

1

N
TrfBBBg = 1

N
Tr BBB(1) � 1

N

A2
1~ccc

y
1
~III(d1)

yBBB2
(1)
~III(d1)~ccc1

1 +A2
1~ccc

y
1
~III(d1)yBBB(1)

~III(d1)~ccc1

+
1

N
�f1 +�g1 �� ~f1

=
1

N
Tr ~BBB(1) +

1

N
�f1 +�g1 �� ~f1

where~BBB(1) = (~SSS(1)~SSS
y

(1) + �2I)�1 and~SSS(1) is obtained by replacing
the first column inSSS by a corresponding chip synchronous vector
A1

~III(d1)~ccc1.
3) Extension to All Interferers:Repeating the above procedure for

each of the2K vectors inSSS, we have

1

N
TrfBBBg = 1

N
Trf~BBBg+ 1

N

2K

j=1

�fj +�gj �� ~fj

=
1

N
Trf~BBBg+ �N

where�fj ; �gj ; and� ~fj are defined at stepj, analogous to the
respective definitions in (25)–(27). Note thatBBB(j) is obtained by re-

moving columnj from ~BBB(j�1), with ~BBB(0) = BBB and ~BBB = ~BBB(2K).
Thus,~BBB is the matrix formed when all the2K interfering symbols are
chip-synchronous.

Now, A2
0

1
N
TrfBBBg andA2

0
1
N
Trf~BBBg converge to the SIRs in the

asynchronous and chip-synchronous cases, respectively. Hence, the re-
maining task is to show that�N converges to zero in mean square as
N ! 1.

4) Boundingj�fj j and j� ~fj j: From (25), we have

�fj =
1

N

TrfYYY jg
1 + 1

N
TrfZZZjg �

ccc
y
jYYY jcccj

1 + ccc
y
jZZZjcccj

whereYYY j = A2
jRRR

y
jBBB

2
(j)RRRj andZZZj = A2

jRRR
y
jBBB(j)RRRj . Consequently,

by Lemma 3

ccc
y
jYYY jcccj

m:s:! 1

N
TrfYYY jg and ccc

y
jZZZjcccj

m:s:! 1

N
TrfZZZjg: (28)

Note that the application of Lemma 3 requires that the spectral radius
of YYY j andZZZj be uniformly bounded. Assuming the symbol energies
are uniformly bounded, this can be verified as follows:

�(ZZZj) =A
2
j� RRR

y
1BBB(1)RRR1 = A

2
j� BBB(1)RRR1RRR

y
1

�A
2
j� BBB(1) �(RRR1RRR

y
1)

� A2
j

�2
�(RRRy1RRR1) � A2

j

�2
:

The last step follows since

�(RRRy1RRR1) = max
ccc

ccc
y
1RRR

y
1RRR1ccc1

ccc
y
1ccc1

(29)

and the numerator can be interpreted as the energy of the projection of
the underlying continuous time signal onto the chip-MF basis functions
(see (10)). The same argument holds forYYY j as well.

Now, the convergence in (28), along with the facts that the spectral
norm ofYYY j is bounded and the function1

1+y
� 1 for y � 0, imply the

mean-square convergence of�fj to zero. Specifically, we have

Ej�fj j2 � C1A
4
j

N
(30)

whereC1 is a constant independent ofj as well. The same bound would
also hold forEj� ~fj j2.

5) Boundingj�gj j: The final estimate we require is for�gj . From
(26), we have

�gj =
1

N

A2
j Tr BBB2

(j)III(dj)

1+ 1
N
A2
j Tr BBB(j)III(dj)

� 1

N

A2
jTr BBB2

(j)XXXj

1+A2
j

1
N
Tr BBB(j)XXXj

wheredj is the integer part of�j . In general, sinceTrfAAAXXXg is an inner
product forN �N matricesAAA andXXX, we have

jTrfAAA(XXX � YYY )gj � kAAAk kXXX � YYY k �
p
N �(AAA)kXXX � YYY k

wherek:k denotes the Frobenius norm. Consequently

1

N
Tr BBB

2
(j)III(dj) � 1

N
Tr BBB

2
(j)XXXj

� 1

�4
1p
N
kXXXj � III(dj)k

1

N
Tr BBB(j)III(dj) � 1

N
Tr BBB(j)XXXj

� 1

�2
1p
N
kXXXj � III(dj)k: (31)

Again, since the function 1
1+y

, the random variable
1
N
TrfBBB2

(j)III(dj)g, and the symbol energiesA2
j are all bounded,

we have

j�gj j � C2A
2
j

1p
N
kXXXj � III(dj)k (32)
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for some constantC2 independent ofj as well. We now apply Lemma
1 to note that the RHS goes to zero for all realizations of the delays
�j = dj + 
j . Hence, we have that�gj converges to zero in mean
square for allj. More precisely, from the proof of Lemma 1

E j�gj j
2 � ~C2A

4
j

log3N

N
(33)

for some constant~C2. Finally, using (30) and (33), we have

E j�N j
2 �

3

N

2K

j=1

E j�fj j
2 + E j�gj j

2 +E j� ~fj j
2

� 3
2C1

N
+ ~C2

log3N

N

1

N

2K

j=1

A
4
j

! 0; asN !1:

The proof of Theorem 1 is complete.

APPENDIX C
PROOF OFPROPOSITION1

The proof of Theorem 1 relied on the one-shot assumption most im-
portantly at the first step,viz., in reducing the SIR�0 to the traceof
the matrixBBB. WhenM > 1, the SIR for symbolp is given by

�p = sss
y
p(SSSSSS

y + �
2
I)�1sssp:

where the matrixSSS excludes the vectorsssp. Now, the symbols of the
desired user correspond tom = 0; . . . ; M � 1. The corresponding
spreading vectorssssm are of lengthMN and can be written down as
[0; . . . ; 0; ccc>m; 0; . . . ; 0], where the nonzero entries go from the in-
dexesmN + 1 to (m + 1)N for symbolm, m = 0; . . . ; M � 1.
Hence, applying Lemma 3 withdp = 1 anddm = 0 for all m 6= p,
the SIR for symbolp is given by

�p
m:s:
!

A2
p

N
Tp(BBB):

Thus, the SIR reduces to a partial diagonal sum and not trace of the
matrix, and we would like to show that this partial sum is asymptot-
ically equal to that in the chip-synchronous case. Note that, since we
are already synchronized to user1, the spreading vectors inSSS that cor-
respond to the desired user need not be modified.

For anyM , the first interfering symbol corresponds to the indexM ,
and has the effective spreading vectorsss . Define

BBB(M) = (SSS(M)SSS
y

(M) + �
2
III)�1

whereSSS(M) is formed by removing the vectorsssM . Applying the matrix
inversion lemma, we then have

BBB = BBB(M) �
BBB(M)sssMsss

y

MBBB
y

(M)

1 + sss
y

MBBB(M)sssM

which implies that

Tp(BBB) = Tp BBB(M) �
Tp BBB(M)sssMsss

y

MBBB(M)

1 + sss
y

MBBB(M)sssM
:

Now, we partitionBBB(M) intoM submatrices of sizeMN �N

BBB(M) = BBB(M)[0]; . . . ; BBB(M)[p]; . . . ; BBB(M)[M � 1]

whereBBB(M)[p] is formed by choosing the columns frompN + 1 to
(p+ 1)N . SinceBBB(M) is Hermitian, it can be shown that

Tp BBB(M)sssMsss
y

MBBB(M) = sss
y

MBBB(M)[p]BBB(M)[p]
y
sssM

and

Tp(BBB) = Tp BBB(M) �
sss
y

MBBB(M)[p]BBB(M)[p]
ysssM

1 + sss
y

MBBB(M)sssM
: (34)

The form of (34) is similar to that in the one-shot case except that the
matrixBBB2

(M) = BBB2
(1) in the earlier case is now replaced by the matrix

BBB(M)[p]BBB(M)[p]
y. The only property ofBBB2

(1) required in the proof of
Theorem 1 is the fact that its spectral norm is uniformly bounded for
all N in obtaining (28) and (31). Since the matricesBBB(M)[p]BBB(M)[p]

y

are positive definite, we immediately have

� BBB(M)[p]BBB(M)[p]
y � �

M�1

m=0

BBB(M)[m]BBB(M)[m]y

= � BBB
2
(M) �

1

�4
:

Thus, the spectral norm ofBBB(M)[p]BBB(M)[p]
y is uniformly bounded as

well. The remaining steps in the proof of Theorem 1,viz. the defini-
tions (25)–(27) and the techniques to bound them, can now be carried
through. In particular, note that the application of Lemma 1 in (32) and
(33) holds whenM > 1 as well.
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