4354

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

Sleep Control for Tracking in Sensor Networks

Jason A. Fuemmeler, Member, IEEE, George K. Atia, Member, IEEE, and Venugopal V. Veeravalli, Fellow, IEEE

Abstract—We study the problem of tracking an object moving
through a network of wireless sensors. In order to conserve
energy, the sensors may be put into a sleep mode with a timer
that determines their sleep duration. It is assumed that an asleep
sensor cannot be communicated with or woken up, and hence
the sleep duration needs to be determined at the time the sensor
goes to sleep based on all the information available to the sensor.
Having sleeping sensors in the network could result in degraded
tracking performance, therefore, there is a tradeoff between
energy usage and tracking performance. We design sleeping
policies that attempt to optimize this tradeoff and characterize
their performance. As an extension to our previous work in
this area, we consider generalized models for object movement,
object sensing, and tracking cost. For discrete state spaces and
continuous Gaussian observations, we derive a lower bound on
the optimal energy-tracking tradeoff. It is shown that in the low
tracking error regime, the generated policies approach the derived
lower bound.

Index Terms—Dynamic programming, Markov models,
POMDP, sensor networks, sleep control, tracking.

I. INTRODUCTION

ARGE sensor networks collecting data in dynamic envi-
L ronments are typically composed of a distributed collec-
tion of cheap nodes with limited energy and processing capabil-
ities. Hence, it is imperative to efficiently manage the sensors’
resources to prolong the lifetime of such networks without sacri-
ficing performance. Our focus in this paper is on sensor resource
management for tracking and surveillance applications.
Previous work on sensor resource management considered
the design of sensor sleeping protocols for sensor sleeping via
wakeup mechanisms [2]-[7] or by modifying power-save func-
tions in MAC protocols for wireless ad hoc networks [8]-[10].
In the context of target classification, Castanon [11] developed
an approximate dynamic programming approach for dynamic
scheduling of multi-mode sensors subject to sensors resource
constraints. In [12], [13] we studied a single object tracking

Manuscript received August 11, 2010; revised March 14, 2011; accepted May
30, 2011. Date of publication June 13, 2011; date of current version August
10, 2011. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Deniz Erdogmus. This work was supported
in part by a grant from the Motorola corporation, a U.S. Army Research Office
MURI grant W911NF-06-1-0094 through a subcontract from Brown University
at the University of Illinois, an NSF Graduate Research Fellowship, and by a
Vodafone Fellowship.

J. A. Fuemmeler is with Rockwell Collins, Cedar Rapids, IA 52498 USA
(e-mail: femlerl @gmail.com).

G. Atia is with the Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL 61801 USA (e-mail: atial @illinois.edu).

V. Veeravalli is with the Electrical and Computer Engineering Department,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
vvv@illinois.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2011.2159496

problem where the sensors can be turned on or off at consec-
utive time steps to conserve energy (sensor scheduling). A con-
troller selects the subset of sensors to activate at each time step.
Also in [1], we studied a tracking problem where each sensor
could enter a sleep mode with a sleep timer (sensor sleeping).
While in sleep mode, the sensor could not assist in tracking
the object by making observations. In contrast to [13], in [1]
we assumed that sleeping sensors could not be woken up ex-
ternally but instead had to set internal timers to determine the
next time to come awake, wherefore, the control actions corre-
spond to the sleep durations of awake sensors. In turn, this did
not only entail a different control space, but also led to a signif-
icantly different policy design problem since a decision to put a
sensor to sleep implies that this sensor cannot be scheduled at
future time steps until it comes awake. The consequences of the
current action on the tracking performance could be more dra-
matic rendering future planning more crucial. This led to a de-
sign problem that sought to optimize a tradeoff between energy
efficiency and tracking performance. While optimal solutions to
this problem could not be found, suboptimal solutions were de-
vised that were demonstrated to be near optimal. We extended
our results to multi-object tracking in [14]. To aid analysis, in
[1] and [14] we assumed particularly simple models for object
movement, object sensing, and tracking cost. In particular, we
assumed that the network could be divided into cells, each of
which contained a single sensor. The object moved among the
cells and could only be observed by the sensor in the currently
occupied cell. Tracking performance was a binary quantity; ei-
ther the object was observed in a particular time slot or it was
not observed depending on whether the right sensor was awake.

In this paper, we continue to examine the fundamental theory
of sleeping in sensor networks for tracking but we extend our
analysis to more generalized models for object movement, ob-
ject sensing, and tracking cost. We allow the number of possible
object locations to be different from the number of sensors. The
number of possible object locations can even be infinite to model
the movement of an object on a continuum. Moreover, the ob-
ject sensing model allows for an arbitrary distribution for the
observations given the current object location, and the tracking
cost is modeled via an arbitrary distance measure between the
actual and estimated object location.

Not surprisingly, this generalization results in a problem that
is much more difficult to analyze. Our approach is to build on the
policies designed in [1]. The design of those policies relied on
the separation of the problem into a set of simpler subproblems.
In [1], we have shown that under an observable-after-control as-
sumption, the design problem lends itself to a natural decompo-
sition into simpler per-sensor subproblems due to the simplified
nature of the tracking cost structure. Unfortunately, this does not
extend to the generalized cases we consider herein. However,
based on the intuition gained from the structure of the solution

1053-587X/$26.00 © 2011 IEEE

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

4355

TABLE 1
NOTATION, SYMBOLS AND DEFINITIONS

g Cost function
J Value function
€ Erasure symbol
T Termination state

B The state space with cardinality m + 1. m is oo for a continuous state space
P Probability Kernel defining the object transition model
Pk Belief at time k&
Th,e Residual sleep time for sensor ¢ at time k
n The total number of sensors
Uk, ¢ Sleep action for for sensor £ at time k
b Object location at time k
Sk Observation vector at time k
Iy Information state at time k
pe(.) Policy at time k
lA)k State estimate at time k

Distance measure defining the tracking cost

Increase in tracking cost due to not waking up sensor £ given initial location b

in the simplified case, in this work we artificially separate our
problem into a set of simpler per-sensor subproblems. The pa-
rameters of these subproblems are not known a priori due to
the difficulties in analysis. However, we use Monte Carlo sim-
ulation and learning algorithms to compute these parameters.
We characterize the performance of the resulting sleeping poli-
cies through simulation. For the special case of a discrete state
space with continuous Gaussian observations, we derive a lower
bound on the optimal energy-tracking tradeoff which is shown
to be loose at the high tracking error regime, but is reasonably
tight for the low tracking error region.

The remainder of this paper is organized as follows. In
Section II, we describe the tracking problem in mathematical
terms and define the optimization problem. In Section III
we derive our suboptimal solutions and the aforementioned
lower bound. In Section IV, we provide numerical results that
illustrate the efficacy of the proposed sleeping policies. We
summarize and conclude in Section V.

II. PROBLEM FORMULATION

Notation

First, we introduce some notation that will be used throughout
the paper.

» The vector ¢; is a vector with a one in the sth position and
zeros elsewhere.

¢ 0 denotes a vector of all zeros and 0_, is a vector of all
zeros except for the /th entry which could be anything
greater than 0.

* The indicator function is denoted 1{.}.

* Vectors are written in bold face (e.g., p).

* We collected the important symbols and their definitions
in Table I.

A. Partially Observable Markov Decision Process (POMDP)
Formulation

Consider a network with n sensors. Each sensor can be in
one of two states: awake or asleep. A sensor in the awake state
consumes more energy than one in the asleep state. However,
object sensing can be performed only in the awake state. We
denote the set of possible object locations as B such that |B| =
m+1 where the (m+1)th state represents an absorbing terminal

state that occurs when the object leaves the network. We also
refer to this terminal state as 7. If B is not a finite set then m
is 0co. We define a kernel P such that P(x,)) is the probability
that the next object location is in the set) C B given that the
current object location is . We can predict ¢ time steps into the
future by defining P! = P and P? inductively as

Pl(z,)) = /BPt_l(x,dz)P(z,y).)

Suppose p is a probability measure on B such that p(X) for
X € Bis the probability that the state is in X at the current time
step. Then the probability that the state will be in) after ¢ time
steps in the future is given by

(pPH(Y) = /Bp(dx)Pt(:v, V). 2)
This defines the measure p P* which depends on both the prior p
and the transition Kernel P. Let b;, denote the state for the object
at time k. Also, let 0,, denote a probability measure such that
0:(A) = 1if z € A, and §,(A) = 0 otherwise. Conditioned
on the object state by, the future state by has a distribution
0p, P. This defines the evolution of the object location. For a
discrete state space this is simply the probability mass function
defined by the bith row of a transition matrix P. We assume
that it is always possible to determine if the object has left the
network, i.e., if by = m + 1. To this end, we define a virtual
sensor 7 + 1 that detects without error whether the object has
left the network. In other words, sensor n + 1 is always awake
but consumes no energy.

To provide a means for centralized control, we assume the
presence of an extra node called the central controller. The cen-
tral controller keeps track of the state of the network and assigns
sleep times to sensors that are awake. In particular, each sensor
that wakes up remains awake for one time unit during which the
following actions are taken: (i) the sensor sends its observation
of the object to the central unit, and (ii) the sensor receives a new
sleep time (which may equal zero) from the central controller.
The sleep time input is used to initialize a timer at the sensor that
is decremented by one time unit each time step. When this timer
expires, the sensor wakes up. Since we assume that wakeup sig-
nals are impractical, this timer expiration is the only mechanism
for waking a sensor.

4356

Let 71 ¢ denote the value of the sleep timer of sensor ¢ at
time k. We call the (n + 1)-vector 7, the residual sleep times of
the sensors at time k. Also, let uy ¢ denote the sleep time input
supplied to sensor £ at time k. We add the constraints r 1 = 0
and ug n+1 = 0 due to the nature of the virtual sensor n + 1.
We can describe the evolution of the residual sleep times as

Thtt,e = (Tee — D)U{rie > 0} + up e 1{ry e =0} (3)

forall k and ¢ € {1,...,n + 1}. The first term on the right
hand side of this equation expresses that if the sensor is cur-
rently asleep (the sleep timer for the sensor is not zero), the sleep
timer is decremented by 1. The second term expresses that if
the sensor is currently awake (the sleep timer is zero), the sleep
timer is reset to the current sleep time input for that sensor.

Based on the probabilistic evolution of the object location and
(3), we see that we have a discrete-time dynamical model that
describes our system with a well-defined state evolution. The
state of the system at time k is described by z = (bg,Tk).
Unfortunately, not all of xj, is known to the central unit at time
k since by, is known only if the object location is being tracked
precisely. Thus we have a dynamical system with incomplete
(or partially observed) state information.

We write the observations for our problem as

Z = (Sk,’l'k) (4)

where sy, is an (n + 1)-vector of observations. These observa-
tions are drawn from a probability measure og;, that depends on
1. However, we add two restrictions. The first is that if a sensor
is not awake at time k, its observation is an erasure. Mathemati-
cally, we say that v, , > 0 implies s; ¢ = €. The second restric-
tion is that sy, ,, 11 is a binary observation that indicates whether
the object has left the network.

The total information available to the control unit at time & is
given by

I = (20, -y 2k 80, -+ UR—1))

with Iy = 2z denoting the initial (known) state of the system.
The control input for sensor £ at time k is allowed to be a func-
tion of the information state I, i.e.,

U — /I,k(Ik). (6)

The vector-valued function fy, is the sleeping policy at time &
which defines a mapping from the information state I}, to the set
of admissible actions wy,.

We now identify the costs present in our tracking problem.
The first is an energy cost of ¢ > 0 for each sensor that is awake.
The energy cost can be written mathematically as

n

Z C]l{?"k,/ = 0}. (7)

(=1

The second cost is a tracking cost. To define the tracking cost,
we first define the estimated object location at time k to be b.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

‘We can think of lA)k as an additional control input that is a func-
tion of Iy, i.e.,

b = Br(I1). (8)

Since Bk does not affect the state evolution, we do not need past
values of this control input in [. The tracking cost is a distance
measure that is a function of the actual and estimated object
locations and is written as

d(br., br.). ©)

We assume that d is a bounded function on 5 x B. Two examples
of distance measures we might employ are the Hamming cost (if
the space B is finite), i.e.,

d(br, by) = 1{by, # br} (10)
and the squared Euclidean distance (if the space B is a subset of
an appropriate vector space), i.e.,

(b, b) = ||br — be||3. (11)
The parameter c is used to trade off energy consumption and
tracking errors. .

Recall that the input b, does not affect the state evolution;
it only affects the cost. Therefore, we can compute the optimal
choice of by, given by 35 (1., using an optimization minimizing
the tracking error over a single time step. We can thus write

Gr(ly) = argm}jn E [d(bk, Bk)‘lk} . (12)

Remembering that once the terminal state is reached no fur-
ther cost is incurred, we can write the total cost for time step &
as

g(bg, 1) = Wb #7T}

X <d (b, Bp(Ix)) + > cl{r = 0}) . (13)

=1

The infinite horizon cost for the system is given by

IO] |

Since g is bounded (since the function d is bounded) and the
expected time till the object leaves the network is finite, the cost
function .J is well defined. The goal is to compute the solution
to

J(Io,uo,ul,. .) =E [Zg(bk,lk) (14)
k=1

J*(Ip) = min J(Iy, po, p1,---)-

Ko, L5

15)

The solution to this optimization problem for each value of ¢
yields an optimal sleeping policy. The optimization problem
falls under the framework of a Partially Observable Markov De-
cision Process (POMDP) [15]-[18].

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

B. Dealing With Partial Observability

Partial observability presents a problem since the informa-
tion for decision-making at time k given in (5) is unbounded in
memory. To remedy this, we seek a sufficient statistic for op-
timization that is bounded in memory. The observation s, de-
pends only on x, which in turn depends only on 1, ug_1,
and some random disturbance wy,_1. It is a standard argument
(e.g., see [19]) that for such an observation model, a sufficient
statistic is given by the probability distribution of the state x
given Ij. Such a sufficient statistic is referred to as a belief
state in the POMDP literature (e.g., see [15] and [16]). Since
the residual sleep times portion of our state is observable, the
sufficient statistic can be written as v, = (py, 71), where py, is
a probability measure on B. Mathematically, we have

pr(X) = P(br € X[I). (16)
The task of recursively computing py, for each k is a problem
in nonlinear filtering (e.g., see [20]). In other words, px4+1 can
be computed using standard Bayesian techniques as the poste-
rior measure resulting from prior measure p P and observations
Sk41- .

The function §3; that determines b, can now be written in
terms of p; and 7y, instead of I,. We can rewrite it as

Bi(ps. i) = argmin€ [dby, D) ~pe| (17

= argmjn/ d(be, b)pr(db). (18)
B

b

Note that due to the stationarity of the state evolution, 3} has the
same form for every k and is independent of 7. Thus, we can
drop the subscript and refer to 3} as 3*, a function of p;, alone.

Now we write our dynamic programming problem in terms
of the sufficient statistic. We first rewrite the cost at time step
k. Since only expected values of the cost function g appear in
(14), we can take our cost function to be the expected value of g
[defined in (13)] conditioned on by, being distributed according
to pi. With a slight abuse of notation, we call this redefined cost
g. The cost can then be written as

9(Pr.Tr)

= /B 1{b# T} (d(b.ﬁ*(pk)) +) el{r, = 0}>pk(db)

(=1

= /B_T <d(b,,3*(pk)) + idl{rk,[= ()}) pe(db). (19)

(=1

There is no loss in optimality if we define the policy and the
cost function in terms of the sufficient statistic. In the class of
history-dependent policies it is enough to consider mappings
from the space of the sufficient statistic vy = (pg,T%) to the
control set. The selection of sleep times, originally presented in
(6), can now be rewritten as

uy = g (P, Th)- (20)

The total cost defined in (14) becomes
J<p07'r07/1’07ll/17"') =E [ZQ(pk/"k) ’U()] (21)

k=1

4357

and the optimal cost defined in (15) becomes

J*(p(],’l'(]) = min J(FO»"'O;NO»le--) (22)

Ho, 5.

III. SUBOPTIMAL SOLUTIONS

Similar to the problem in [1], an optimal policy could be
found by solving the Bellman equation

J(p,‘l‘) =
muin E [g(ph’rl) + J(p17’l‘1>|p0 =p;To=T,% = M(p(];’ro)] :
(23)

However, since an optimal solution could not be found for the
simpler problem considered in [1], we immediately turn our at-
tention to finding suboptimal solutions to our problem.

Note that in [1], simpler sensing models and cost structures
were employed. Under a simplifying observable-after-control
assumption, the simplicity of the sensing models allowed for the
decoupling of the contributions of the individual sensors. The
simplicity of the cost structures allowed the cost to be written as
a sum of per-sensor costs. The result was a problem that could be
written as a number of simpler subproblems. The present case is
more complicated. In general, the cooperation among the sen-
sors may be difficult to analyze and understand. Furthermore,
the tracking cost may not be easily written as a sum across the
Sensors.

Based on the intuition gained from [1], our approach to gen-
erating suboptimal solutions is to artificially write the problem
as a set of subproblems that can be solved using the techniques
of [1]. The tracking cost expressions (which are a function of
the sleeping actions of the sensors) in these subproblems will
be left as unknowns. To determine appropriate values for these
tracking costs, we either perform Monte Carlo simulations be-
fore tracking begins or use data gathered during tracking. The
intuition is that if the resultant tracking cost expressions cap-
ture the “typical” behavior of the actual tracking cost, then our
sleeping policies should perform well.

A. General Approach

The complexity of the sleeping problem stems from:

1) The complicated evolution of the belief state p; (nonlinear
filtering).

2) The complexity of the model including the dimensionality
of the state space, the control space and the observation
space.

To address the aforementioned difficulties, our approach has
two main ingredients. First, we make assumptions about the
observations that will be available to the controller at future
time steps. To generate sleeping policies, we assume that the
system is either perfectly observable or totally unobservable
after control. Hence, we define approximate recursions with
special structure as surrogates for the optimal value function.
Second, we devise different methodologies to evaluate suitable
tracking costs in Sections III-B and III-C whereby we capture
the effect of each sensor on the overall tracking cost. Writing the
combined tracking cost as the sum of independent contributions

4358

of different sensors (with respect to some baseline) allows us to
write the Bellman equation as the sum of per-sensor recursions.
Instead of solving the Bellman equation in (23), we alternatively
solve n simpler Bellman equations to find per-sensor policies
and cost functions. The overall policy is then the per-sensor poli-
cies applied in parallel.

We denote by J() the cost function of the /th sensor ap-
proximate subproblem. We define T2 (b, £) to be the increase
in tracking cost due to not waking up sensor £ at time k given
that b1 = b. This is meant to capture the contribution of the
£th sensor to the total tracking cost. Next we define our approx-
imations.

1) Qupp: Firstintroduced in the artificial intelligence liter-
ature [21], [22], the Qnpp solution for POMDPs assumes that
the system will be perfectly observable after control, i.e., the
partially observable state becomes fully observable after taking
a control action. In other words, under a Qy;pp assumption the
belief state simply evolves as
(24)

Pr+1 = 6bk+1 .

Noting that the future cost is not only affected by the current
control action through belief evolution, but also by the fact that
no future decisions can be made for a sleeping sensor until it
wakes up, the observable-after-control policy is by no means
a myopic policy. Note that (24) does not imply zero tracking
errors; it is merely an assumption simplifying the state evolution
in order to generate a sleeping policy. Now we can readily define
a Qnpp per-sensor Bellman equation analogous to the one in
[1] as

JO(p) = IIllIl <

u—1

S /B TGP)

[e+ 1) (pP"“)(db))- 25)

To clarify, the first summation in the right hand side (R.H.S.)
of (25) corresponds to the expected tracking cost incurred by
the sleep duration u of sensor £. The second term consists of:
(i) the energy cost incurred as the sensor comes awake after its
sleep timer expires (after v + 1 time slots); and (ii) the cost
to go under an observable-after-control assumption (hence the
belief state is ;). We cannot find an analytical solution for (25).
However, note that if we can solve (25) for p = &, for all b, then
it is straightforward to find the solution for all values of p. Thus,
given a function T2, (25) can be solved through standard policy
iteration [19], but only if B is finite.

2) First Cost Reduction (FCR): Similarly, we define a First
Cost Reduction (FCR) Bellman equation analogous to the one
in [1] as

u—1
J(e) = mln <Z /

+c / (pP"H)(db)+J“>(pPu+1)). (26)
B-—-T

A(b, £)(pP?)(db)

In this case, it is assumed that we will have no future observa-
tions. In other words, we define the belief evolution as pr41 =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

piP. Again, it is worth mentioning that this does not mean that it
would be impossible to track the object; we are simply making a
simplifying assumption about the future state evolution in order
to generate a sleeping policy. Given a function 72, it is easy to
verify that the solution to (26) is

me {[o0,

o/ _T(pPHl)(db)} @7

J(f)

and the associated policy is to choose the first value of u such
that

c / (pP"+)(db) > / TA(b,0)(pP")(db), (28)
B-T JB-T

In other words, the policy is to come awake at the first time the
expected tracking cost exceeds the expected energy cost where
the tracking cost is defined based on T2 (to be determined)
hence the name First Cost Reduction.

The solutions to the per-sensor Bellman equations in (25) and
(26) define the Qy\pp and FCR policies for each sensor, respec-
tively. Note that, unlike [1], [12], [13], the solution to the Qnipp
recursion does not necessarily provide a lower bound on the op-
timal value function since the employed tracking cost is not a
lower bound on the actual tracking cost. In Section III-D we
derive a lower bound on the optimal energy-tracking tradeoff
for discrete state spaces with Gaussian Observations. The re-
maining task is to identify appropriate values of 7' (b, £) for all
b # T and for all £. This is the subject of the next two sections.

B. Nonlearning Approach

For now, suppose that 3 is a finite space. Suppose bx_1 = b.
To generate T (b, £) for a particular £, we first assume a “base-
line” behavior for the sensors, i.e., we make an assumption about
the set of sensors that are awake at time k given that by_; = b.
We consider two possibilities:

1) That all sensors are asleep.

2) That the set of sensors awake is selected through a greedy
algorithm. In other words, the sensor that causes the largest
decrease in expected tracking cost is added to the awake set
until any further reduction due to a single sensor is less than
c. The expected tracking cost can be evaluated through the
use of Monte Carlo simulation (repeatedly simulating our
system from time & — 1 to time k) to avoid the need for
numerical integration.

Starting with this set of awake sensors, the value of 72 (b, /) is
then computed as the absolute difference in expected tracking
cost incurred by changing the state of sensor £. Again, Monte
Carlo simulation can be used to evaluate the change in expected
tracking cost. We can think of this procedure as linearizing the
tracking cost about some baseline behavior.

If B is not finite, then a parameterized version of T4 can
be computed instead. We choose 7 elements of B — 7 and
evaluate 7 at these points. The value of 72 at all other values
of b € B — T can be computed via an interpolation algorithm.
Recall that only an FCR policy is appropriate in the infinite state

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

case, since solving the Qnpp Bellman equation for an infinite
number of point mass distributions is infeasible.

C. Learning Approach

In this section, we describe an alternative learning-based ap-
proach. For ease of exposition, suppose that B is a finite space.
Then our probability measure pj, can be characterized by a prob-
ability mass function. We refer to this probability mass function
as p; (a row vector). Define a4 ¢ to be the approximated ex-
pected increase in tracking cost due to sensor £ sleeping at time
k as

akl—zpk 1 bf)

bAT

(29)

Ideally, we would like this approximation to be equal to the ac-
tual expected increase in tracking cost due to sensor ¢ sleeping.
Unfortunately, we do not have access to actual tracking costs at
time & since by, is not known exactly. However, we do have ac-
cess to p;,, T, and p;,_ ;. It is therefore possible to estimate the
tracking cost as

[0.5 pian), (30)
B

For example, if Hamming cost is being used, then we can esti-
mate the tracking cost as

1 — maxpi({}) @D
and if squared Euclidean distance is being used we can estimate
the tracking cost using the variance of the measure pj;. Next we
describe how we learn T by solving a least squares problem.

Determining an estimate of the increase in the tracking cost
due to the sleeping of sensor / at time k, denoted ay, ¢, depends
on the value of 7, . If r;, , = 0, we ignore the observation from
sensor £ and generate a new version of p, called p}. We can

compute ay ¢ as
E Pk

are =Y _ pr(b)d(b,B
VAT

b£T

d(b, B*(p1.)). (32)

If on the other hand r, ¢ > 0, we first generate an object location
b}, according to p;, and then generate an observation according to
the probability measure oy, . This observation is used to generate
a new distribution pj, from p,. Then we compute ay, ¢ as

IWES Zpk d(b, 5" (py.)) Zpk d(b, B* () (33)

bAT bAT

We now have an approximation sequence Gy ¢ and an obser-
vation sequence ay ¢. At time k — 1, our goal is to choose A
to minimize

E [(&kl — ak7g)2] . (34)

We apply the Robbins-Monro algorithm [23], a form of sto-
chastic gradient descent, to this problem in order to recursively
compute a sequence of T2 that will hopefully solve this mini-
mization problem for large k. The update equation is

=Ty (b, £) — 20, 1{b # T }pj_1 (b) (G0 — an,e)
(35)

T2 (b, £)

4359

where ay, is a step size. Note that 1{b # 7 }p,,_,(b) is the gra-
dient of ay, , with respect to T2 (b, £).

Using a constant step size in our simulations, we could only
observe small oscillations in the values of 7. It is unclear
whether there are conditions under which the local or global
convergence of this learning algorithm is guaranteed. The dif-
ficulty is that the observations we are trying to model depend
on the model itself. The problem is reminiscent of optimistic
policy iteration (see [19]), the convergence properties of which
are little understood. We have left a proof of convergence for fu-
ture work. It should be pointed out that the algorithm will likely
converge more slowly for a two-dimensional network than a
one-dimensional network. The reason is that in two dimensions
it is easier for an object to avoid visiting an object location state
and causing an update to that particular value of T2.

If B is not finite, then we can again parameterize 7> as in the
previous section. The Robbins-Monro algorithm can be applied
in this context as well, although the gradient expressions will
depend on the type of interpolation used.

D. A Lower Bound

Deriving a lower bound is generally difficult for the consid-
ered problem. However, in this section we derive a lower bound
for the special case of a discrete state space with Gaussian obser-
vations. Our approach is similar to [13] in which we considered
a related scheduling problem. The idea is to combine the ob-
servable-after-control assumption with a separable lower bound
on the tracking cost as we demonstrate in what follows.

When awake, the sensors’ observations are Gaussian, i.e.

Sk~ N ((36)

v
(I//—bk)Z—l—l,

where vy is the location of sensor £ and V' some positive con-
stant.

First, the following Lemma provides a lower bound on the
expected tracking cost.

Lemma Ill.1: Given the current belief p,., an action vector uy,
the current residual sleep times vector 7, the Gaussian obser-
vation model in (36), the Hamming cost definition in (10), and
a mean received signal strength m; when the target is at state 7,
the expected tracking cost is lower bounded by

Eld(bry1,brs1)|pr, we]
S - d In 2~

:Z pbk+1—J|bk—L)maXQ< iy d—k>
i=1 1

ki
j= J

(37

where m is the size of the discrete state > space, i.e., the number of

possible object locations, dij M Am

m;, and Q(.) is the normal distribution ()-function.]
Proof: See the Appendix.

Since the mean received signal strength depends on whether
the sensors are awake or asleep, the distance dy; is a function
of the next step residual sleep vector r1 as clarified in the
Appendix. To highlight this dependence, we will sometimes use
the notation dy;(r) when needed.

kj = M —

4360

To this end we have derived a lower bound on the expected
tracking cost. The next step is to use this result to compute a
separable bound on the tracking error, which combined with an
observable-after-control assumption would lead to a decompos-
able lower bound on the optimal value function. The idea is to
separate out the contribution of every sensor by assuming that
every other sensor is awake and study the tracking error when
that sensor is awake or asleep as we elaborate next. Our next
Lemma establishes a separable lower bound on the expected
tracking cost.

Lemma II1.2: The expected tracking cost is lower bounded
by

E[d(i)k-i-h bi+1) Py, wre, 7]

>y Ae<pk>{n{rk+1,e = 0} P T (i)

(=1 =1

+]1{7"k+1 ¢ > 0} Zpk
=1

T(p,i f)} (38)
where

To(pii 0) 2 p(brsr = jlbw = i)
j=1

[pP];
d;(0) | 10 [pp,
3
Q| T g0) @)
and
T(p; L,g) = Zp(bk+1 = J|bk = L)
Jj=1
[pP];
d;(0_,) ' pp,
4
X miu;(Q 5 + iy (0_0) (40)

where 0 is the all zero vector and 0_; denotes a vector of length
n with all entries equal to zero except for the /th entry which
can be anything greater than 0.

Proof: First, we separate out the effect of each sensor on
the tracking error by observing that:

E[d(i)k-i-l; brt1)|Pr- ke, 71

(a) N

> Wrpt1,e = 0YE[d(bk+1, brt1)[Pg, Tit1 = 0]

+ Hrrt1e > 0} E[d(bkt1, bkr1)|Prs Tht 1,0 = 0 Vi # /]
for every £ (41)

where 0 is the all zero vector designating that all sensors will be
awake at the next time slot. The inequality in (a) follows from
the fact that if we separate out the effect of the /th sensor we get
a better tracking performance when all the remaining sensors
are awake. In other words, if the residual sleep time of the /th
sensor is zero at the next time step, then the expected tracking
cost is lower bounded by the tracking cost when all the sen-
sors are awake. On the other hand, if the /th sensor is in sleep
mode, then the tracking cost is bounded from below by the ex-
pected tracking cost when every sensor except for the /th sensor

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

is awake. Since this holds for every ¢, a lower bound on the ex-
pected tracking error can be written as a convex combination of
all sensors contributions

Eld(bis1, bry1) Py, wr, 7]
> Z)\Z(pk){]l{rk-l—l,i =0}E[d(bet1, brs1)|py, Ths1 =0]
=1
o+ Hrigr,e > O} B[, bi) Py 7y 1,i =0 Vi # 4]
(42)

where >, A\e(p,) = 1.
Let 0_; denote a vector of length n with all entries equal to

zero except for the /th entry which can be anything greater than
0. This accounts for the case where the sleep timer of the /th
sensor does not expire at the next time step when every other
sensor is awake. Then using the result of Lemma III.1 and re-
placing from (37) in (42)

[d(i)k+1>bk+1)|pk Up, T

>Z)\z Dy {I{Tk+1 = O}Zpk Z (b1 = jlbre =)
j=1
. In ™
X max @ <ko(0) + o 7”'))

2 di; (0
i)Y

1

+ Y{ris1,0 > 0} Zpk

i=1

b1 = jlbx = 1)

() In 2
8 1?7%5((2 < > di;j(0_¢) | |

To simplify notation, we introduce the 2 quantities To(p; ¢, £)
and T'(p; i, ¢) defined in Lemma II1.2 and Lemma IIL.2 follows.
|

Intuitively, To(p; 4, £) represents the contribution of sensor ¢
to the total expected tracking cost when the underlying state is
1, the belief is p and when all sensors are awake. On the other
hand T'(p;i,¢) is the ¢th sensor contribution when it is asleep
and all the other sensors are awake.

We can readily state a lower bound on the optimal value func-
tion in the following Theorem.

Theorem II1.1: A lower bound on the optimal value function
at belief state e, can be obtained as a solution to the following
optimization problem

x> min { z_: Z[ebpim(i, OT(i,)

(43)

J(ey) = max

3

Z [es P A\ (2, £)To (i, £) —i—cZ[ebP“'H]

e =1

Z ebP“'H] J[eq;)}
1=1

subject to A1, =1,, (44)

where 1,,, is a column vector of all ones of length m. The matrix
A is defined for every value of ¢, where A(c) is an m X n matrix
with the (i, ¢) entry equal to A(¢,£), i.e., A(c) = {\(¢,£)}. The

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

quantities 7'(7,¢) and A(%, ¢) are shorthand for T'(e;;,¢) and
Ae(ei), respecnvely The inner minimization is over the control
action u} for sensor £ given a belief state ey,.

Proof: If we assume that the target will be perfectly ob-
servable after taking the sleeping action, and given the derived
separable lower bound on the tracking cost in Lemma IIL.2, a
lower bound on the total cost can be obtained from the solution
of the following Bellman equation:

ZJ PTM

p7 TO (45)

where

J@(p7 TO,Z) = nq1li[n {]1{7“1,[=0} (Zp(b)/\gTo(p; b, ?)

b

oS+ 3P >)
+ 1{ry, > 0} (Zp AT (p; b,) + Z[pP] J(e;, ug)> }

=1
(46)

which represents a per-sensor value function. Note that if we can
solve the equation above forp = e; foralli € {1,...,m}, then
it is straightforward to find the solution for all other values of
p. We therefore focus on specifying the value function at those
points. As such, we further simplify our notation and use 7'(%, £)
and \(z, £) as shorthand for T'(e;; 4, £) and A¢(e;), respectively.
Also, since an action only needs to be made when the sensor
wakes up, we only need to define actions at 79 , = 0. Observing
that

T(e;,u) = MG, TG, £) + Z[ejp] Jeu—1)Yu>1

“47)
and

Je(eﬁ 1) =)‘(ng)TO(Jv)

Z e;Pl; + Z e; e,

(48)
we recursively substitute from (47) and (48) in (46) until the
system reaches (e;,0). We can see that a lower bound on the
value function of sensor ¢ can be obtained as a solution of the
following minimization problem over u}, where u{ is the control
action for sensor ¢ given a belief state e,

J(ey) = min { z_: > les PILiA(i,)T (i,)

j=0 i=1

+) e PUA(OTo (i, 8) + ¢ [en P H;
=1 =1

ie PU+1] JZ eL)}

(49)

Equation (49) together with (45) define a lower bound on the
total expected cost. To further tighten the bound we can now
optimize over a matrix A for every value of ¢, where A(c) is an

4361

m x n matrix with the (7, £) entry equal to (¢, ¢), i.e., A(c) =
{A(%,£)}. Hence,

J(ep) = mamem{uz_:i [es PP \(3,)T (i,)

+ Z [es P"iA(%, £)To (4, £) + cz[ebpuﬂ]i
=1 =1
+ Z[ebP"H]iﬂ(ei)}

subject to A1, =1 (50)
where 1,, is a column vector of all ones of length m proving
Theorem III.1.]

A closed form solution for (44) cannot be obtained, and
hence, we solve for .J(e;) numerically. First, we fix A and use
policy iteration [19] to solve for the control of each sensor at
each state. Then, we change A and repeat the process. The
envelope of the generated value functions (corresponding to
different instants of A) is hence a lower bound on the optimal
value function.

IV. NUMERICAL RESULTS

In this section, we show some simulation results illustrating
the performance of the policies we derived in previous sections.
We focus on one-dimensional sensor networks, but the general
behavior extends to two-dimensional networks as shown later.
In each simulation run, the object was initially placed at the
center of the network and the location of the object was made
known to each sensor. In a later example we relax this assump-
tion and assume an initial belief which is uniform over all pos-
sible object locations. A simulation run concluded when the ob-
ject left the network. The results of many simulation runs were
then averaged to compute an average tracking cost and an av-
erage energy cost. To allow for easier interpretation of our re-
sults, we then normalized our costs by dividing by the expected
time the object spends in the network. We refer to these normal-
ized costs as costs per unit time, even though the true costs per
unit time would use the actual times the object spent in the net-
work (the difference between the two was found to be small).

For the nonlearning policies, the value of T2 (b, £) for each
b and ¢ was generated using 200 Monte Carlo simulations. The
results of 50 simulation runs were averaged when plotting the
curves. For the learning policies, the values for T2 were ini-
tialized to those obtained from the nonlearning approach using
greedy sensor selection as a baseline. A constant step size of
0.01 was used in the learning algorithm. First, 100 simulation
runs were performed but the results were not recorded while
the values for T2 stabilized. Then an additional 50 simulation
runs were performed (T2 continued to be updated) and these re-
sults were averaged when plotting curves. In the case of Qnpp
learning policies, computation time was saved by performing
policy iteration only after every fifth simulation run.

We first consider a simple network that we term Network A.
This is a one-dimensional network with 41 possible object loca-
tions where the object moves with equal probability either one to
the left or one to the right in each time step. There is a sensor at

4362

—_

. —— Asleep
0.8 —+— Greedy
" | —D— Learning

Tracking Errors per Unit Time

Ol Ao s\N n e vs s i anmmospE v i sHaRRAE
0.2
0 i)
0 2 4 6 8
Sensors Awake per Unit Time
()

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

1 :
—— Asleep
LA —t+— Greedy
06 —S— Learning ||

04} -

0.2

Tracking Errors per Unit Time

8

Sensors Awake per Unit Time
(b)

Fig. 1. Tradeoff curves for Network A. (a) Qupp policies. (b) FCR policies.

0.5
5t My f :] 0.45
0.4
10
0.35
=
S 15
® 0.3
3
o 2 0.25
O . s
QO ! 3 :
i) E s =3 v el L £
8 : : : 0.2
30 10.15
10.1
35
! L 10.05
5 10 15 20 25 30 35 40
Sensor

Fig. 2. The final matrix for 72 for the Qupp learning policy and small ¢ for
Network A. Only the sensor on the left has an impact on the tracking error.

each of the 41 object locations that makes (when awake) a binary
observation that determines without error whether the object is
at that location. Hamming cost is used for the tracking cost. For
Network A, we illustrate the performance of the Qypp versions
of our policies in Fig. 1(a) and the FCR versions of our policies
in Fig. 1(b). The curves labeled “Asleep” are for the nonlearning
approach for computing T2 where we assume that all sensors
are asleep as a baseline. The curves labeled “Greedy” are for
the nonlearning approach for computing 72 where we use a
greedy algorithm to determine our baseline. The curves labeled
“Learning” employ our learning algorithm for computing 74.

From the tradeoff curves, it is apparent that using the learning
algorithm to compute T2 results in improved performance. A
close inspection of Fig. 1(a) and (b) will reveal that the Qnpp
policies perform somewhat better than their FCR counterparts.
This is consistent with what was observed in [1].

It is instructive to consider the final matrix of values for
TA(b,£) that was obtained at the end of all learning algorithm
simulations. In Figs. 2 and 3, we plot this matrix for the Qnpp
learning policy simulations for the smallest c and for the largest

0.5

0.45

0.4

0.35

0.3

0.25

Object Location

10.15

10.1

10.05

5 10 15 20 25 30 35 40
Sensor

Fig. 3. The final matrix for T4 for the Qupp learning policy and large ¢ for
Network A. This corresponds to the case where no sensors are awake. The sen-
sors on either side of the object location appear to have a major impact on the
tracking cost.

¢ used in simulation, respectively. In Fig. 2, it is evident that
only a single sensor has an impact for each value of b. Due
to the way our simulations worked, it is the sensor to the left
that has the impact, but it could just as easily be the sensor to
the right of the current object position. The fact that most of
the nonzero values of the matrix are less than 0.5 reflects the
fact that the sensor to the right of the current object location
might wake up due to a sleep time selected at a previous time
step. In Fig. 3, it is evident that the sensors on either side of
the current object location (which is actually not known since
Fig. 3 corresponds to the case where no sensors are awake)
appear to have a major impact on the tracking cost. There are
nonzero values off the two main diagonals due to probabilistic
nature of the learning process when the actual object location
is not known.

We now consider a new one-dimensional network termed
Network B. The possible object locations are located on the

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

[0}
£ —— Asleep
 0sf —+— Greedy
5 —S—Learning
o ---LB
g 06
B
g
T 0.4
(o))
£
g o2
o
'_.
0 L L
0 2 4 6 8 10
Sensors Awake per Unit Time
(a)

4363

—— Asleep
0.8 % . —+— Greedy

—6— Learning
0.6 = S LB

Tracking Errors per Unit Time

0 L L b B
0 2 4 6 8 10
Sensors Awake per Unit Time
(b)

Fig. 4. Tradeoff curves for Network B and a lower bound (a) Qupp policies (b) FCR policies.

integers from 1 to 21. The object moves according to a random
walk anywhere from three steps to the left to three steps to the
right in each time step. The distribution of these movements is
given in Table II. The change in position indicate movement
by a corresponding number of steps to the right or to the left.
There are 10 sensors in this network so that m # n. The
locations of the sensors are given in Table III and awake sensors
make Gaussian observations as in (36). Results for the Qnpp
and FCR versions of our policies are shown in Fig. 4(a) and
(b), respectively. The results confirm the same general trends
observed for Network A. The figures also show our derived
lower bound on the energy-tracking tradeoff using the approach
described in Section III-D. Not surprisingly, the lower bound is
particularly loose at the high tracking cost regime, yet the gap
is reasonably small for the low tracking error region. This is
expected since the lower bound uses an all-awake assumption
to lower bound the contribution of each sensor to the tracking
error. However, it is worth mentioning that we can exactly
compute the saturation point for the optimal scheduling policy,
which matches the saturation limit of the shown curves, since
every policy has to eventually meet the all-asleep performance
curve when the energy cost per sensor is high. At that point,
all sensors are put to sleep and hence the target estimate can
only be based on prior information. The small gap at the
low tracking error regime combined with the aforementioned
saturation effect highlight good performance for our sleeping
policies. For illustration, we plot the matrix for 72 for the
Qumpp learning policy simulations for the smallest ¢ and for
the largest ¢ when the object moves according to a symmetric
random walk in Figs. 5 and 6, respectively. Note the difference
between the rows corresponding to object locations 7 and 8 in
Fig. 5. Examining the sensor locations, we see that sensor 4 is
located at 8.09. This sensor is useful for distinguishing between
object locations 6 and 8 (for an initial object position of 7) but
is of less value for distinguishing between object locations 7
and 9 (for an initial object position of 8). This is evidenced in
the figure as a large value for 72(7,4) and a small value for
TA(8,4).

Fig. 7 illustrates the energy tracking tradeoff for Network B
when the object location is not known a priori. Namely, the ini-

2 0.4
4 o 0.35
6..
= oe
= 8-
S (| 0.25
® 10}
S o2
w5 12¢ |
(9]
3 =
O 14 10.15
L {0.1
18 E=
|t 005
20 s q
L L L | i L dJdpo
2 4 6 8 10
Sensor

Fig. 5. The final matrix for 72 for the Qupp learning policy and small ¢ for
Network B. The figure highlights how useful it is for a given sensor to be awake
at the next time step given an object location at a previous time step for a low
value of the energy cost c. For low ¢, a large number of sensors are naturally
turned on. Hence, the effect of a particular sensor on the overall tracking error
is generally reduced.

tial belief is a uniform distribution over all possible object lo-
cations. Comparing to the case where the initial object location
is known to each sensor, our results demonstrate that there is no
performance degradation due to introducing this initial uncer-
tainty. Our results are not restricted to 1-D networks but easily
extend to 2-D networks. Namely, Fig. 8 (right) shows the en-
ergy-tracking tradeoff of the Qypp and FCR policies for the
2-D network of Fig. 8 (left) with continuous observations and
Hamming cost.

To demonstrate that our techniques can be applied to an
object that moves on a continuum, we define a new network,
Network C. This network is identical to Network B except
for two changes. First, the object can take locations anywhere
on the interval [1,21]. Second, the object moves according
to Brownian motion with the change in position between
time steps having a Gaussian distribution with mean zero and

4364 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

TABLE III
SENSOR LOCATIONS FOR NETWORK B

Sensor 1 2 3 4 5

6 7 8 9 10

Location | 136 | 1.61 | 391 | 8.09 | 11.96

13.39 | 13.52 | 13.66 | 16.60 | 18.68

Object Location

Sensor

Fig. 6. The final matrix for 7'* for the Qunp learning policy and large c for
Network B. The dark regions are enhanced for the high energy cost scenario.

TABLE II
OBJECT MOVEMENT FOR NETWORK B

[Change in Position | 0] 1] 2] 3]
[Probability [03125 | 0.2344 | 0.0938 | 00156 |
1 T T T T
: —— Asleep
: —— Greedy |
e ‘ —E&— Learning
0.8 & AU DU e " - g

Tracking Errors per Unit Time

10

Sensors Awake per Unit Time

Fig.7. Energy-tracking tradeoff of the Qupp sleeping policies for Network B
with a uniform initial belief. The initial object location is unknown.

variance 1. As aforementioned, only FCR policies can be gen-
erated for this type of network. Values of 7'® were computed
for each integer-valued object location on [1,21] and linear
interpolation used to compute values of T2 for other object
locations. Since continuous distributions cannot be easily
stored, particle filtering techniques were employed (e.g., see
[20]). The number of particles used was 512 and resampling
was performed at each time step. As is consistent with particle

12 * o o o¥ o
g
10 ¥ * [
o o o o ‘i—:;
8%
7 x ¥ % 5
[0} Q.
g 6 o o o o g
i
> 4 * 2
o o ¥o o =
35 o i :
* *
0t—x * = :
0 5 10 15 0 5 10 15 20
X (meters) Sensors Awake per Unit Time

Fig. 8. (Left) 2-D network with 17 sensors (stars) and 25 possible object
locations (squares). (Right) Energy-tracking tradeoff of the Qypp and FCR
sleeping policies for a 2D network with continuous observations and Hamming
cost.

Asleep
—+— Greedy
—O&— Learning | |

MSE

Sensors Awake per Unit Time

Fig. 9. Tradeoff curves for FCR policies for Network C.

filtering, in generating the sleep times the computation of future
probability distributions was approximated through Monte
Carlo movement of the particles. The number of simulation
runs that were averaged for each data point was increased to
200 for these simulations. Tradeoff curves for Network C are
shown in Fig. 9. Although the tradeoff curves are less smooth
than before, this figure illustrates performance trends similar
to those already seen. The reason the curves are not as smooth
is that occasionally the particle filter would fail to keep track
of the distribution with sufficient accuracy. This would cause
the network to lose track of the object and cause abnormally
bad tracking for that simulation run. These outliers were not
removed when generating the tradeoff curves. A recovery
mechanism would need to be added to the sleeping policies to
overcome this limitation of particle filters.

V. CONCLUSION

In this paper, we considered energy-efficient tracking of an
object moving through a network of wireless sensors. While

FUEMMELER et al.: TRACKING IN SENSOR NETWORKS

an optimal solution could not be found, it was possible to de-
sign suboptimal, yet efficient, sleeping solutions for general mo-
tion, sensing, and cost models. We proposed Qypp and FCR
approximate policies, where in the former, the system is as-
sumed to be perfectly observable after control, and in the latter,
to be totally unobservable. We combined these approximations
with a decomposition of the optimization problem into sim-
pler per-sensor subproblems, and developed learning and non-
learning based approaches to compute the parameters of each
subproblem. The learning-based Qyipp policies were shown to
provide the best energy-tracking tradeoff. In the low tracking
error regime, our sleeping policies approach a derived lower
bound on the optimal energy-tracking tradeoff.

Avenues for future research include developing distributed
sleeping strategies in the absence of central control and solving
the tracking problem for unknown or partially known object
movement statistics.

APPENDIX
PROOF OF THEOREM LEMMA III.1

We derive a lower bound on the tracking error given the cur-
rent belief p,,, an action vector uy, and the current residual sleep
times vector 7, and the Hamming cost definition in (10). The
expected tracking cost can be written as

E[d(bt1, bres1) pros wres 7]

> Prlbeir # jlprs we, T biga = 51 Pribrg = iy, wi]
J

= Pil
= Zpk(L) Zp(bk+1 = jlbx =1)
i=1 J=1

X Prlbei1 # 51e, we, Ty b1 = - (A.1)

When awake, the sensors observations are Gaussian as in (36).
Defining

P(E|H;) 2 Prlbir # j|py, wi, Thy b1 = 5]

which is a conditional error probability for a multiple hypothesis
testing problem with m hypotheses, each corresponding to a
different mean vector contaminated with white Gaussian noise.
Note that the hypothesis H; corresponds to the case where the
target moves to location j at the next time step. Conditioned on
H;, the observation model is

H;:s(t) = (m;(¢) + w)l{res1,0 = 0} + el{rps1,¢ > 0}
(A.2)
where s(¢) is the /th entry of an n X 1 vector s denoting the re-
ceived signal strength at the n sensors, m; is the mean received
signal strength when the target is at state j (jth hypothesis) and
w is a zero mean white Gaussian Noise, i.e., w ~ N(0,0?).
According to (A.2), if awake at the next time step, sensor ¢ gets
a Gaussian observation that depends on the future target loca-
tion, and an erasure, otherwise. Since the current belief is p;,,
then using the known dynamics the prior for the jth hypothesis
is T = [pkp]j.
Given the Hamming cost definition in (10), an error occurs
when the estimated object location is different from the true

4365

target location. Another hypothesis is favored when, condi-
tioned on the sensors’ observations, another hypothesis is more
likely than the true hypothesis. Hence, the error event E can be
written as the union of pairwise error regions as

p(E|Hj) = Pr{Uks;Crjl (A.3)

where

is the region of observations for which the kth hypothesis Hy, is
more likely than the jth hypothesis H;, and where

f(s|H)

A
ijzi

f(s|H;)

denotes the likelihood ratio for I, and H ;. Using standard anal-
ysis for likelihood ratio tests [24], [25], it is not hard to show that

di.: ln%
PGl H) = Q | =2 C (A4)
2 dk]’
- AmfjAm,kj

where dij = p , Amy; = my —m;, and Q(.) is the
normal distribution @-function. The quantity dj; plays the role
of distance between the two hypothesis and hence depends on
the difference of their corresponding mean vectors and the noise
variance o2. Hence, dy; is a function of the next step residual
sleep vector rj41. Note that, for different values of k and 7, (x;
are not generally disjoint but allow us to lower bound the error
probability in terms of pairwise error probabilities, namely, a
lower bound can be written as

P(E|H;) 2 maxp(Gj| H;). (A.5)
And we can readily lower bound the expected tracking error

E[d(bry1, brir)|py»]

> pi(i) > plbrsr = jlbx = #) max p(Crj | H;)
=1

Jj=1
:Eme bry1 = jlbr =1 —4 4 Tk
i=1 k(L> j=1p(e J| * L) I’I“?JXQ 2 dkj
(A.6)

proving Lemma III.1.

REFERENCES

[1] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleeping policies for
energy efficient tracking in sensor networks,” IEEE Trans. Signal
Process., vol. 56, no. 5, pp. 2091-2101, May 2008.

[2] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target
classification and tracking in sensor networks,” Proc. IEEE, vol. 91, no.
8, pp. 1163-1171, Aug. 2003.

[3] S. Balasubramanian, I. Elangovan, S. K. Jayaweera, and K. R. Na-

muduri, “Distributed and collaborative tracking for energy-constrained

ad-hoc wireless sensor networks,” in Proc. IEEE Wireless Commun.

Netw. Conf., Mar. 2004, vol. 3, pp. 1732-1737.

R. Gupta and S. R. Das, “Tracking moving targets in a smart sensor

network,” in Proc. 58th IEEE Veh. Technol. Conf., Oct. 2003, vol. 5,

pp- 3035-3039.

[4

=

4366

[5] H. Yang and B. Sikdar, “A protocol for tracking mobile targets using
sensor network,” in Proc. IEEE Int. Workshop Sens. Netw. Protocols
Appl. (SNPA), May 2003, pp. 71-81.

[6] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for en-
ergy saving in object tracking sensor networks,” in Proc. IEEE Int.
Conf. Mobile Data Manage., Jan. 2004, pp. 346-357.

[7]1 L. Yang, C. Feng, J. W. Rozenblit, and J. Peng, “A multi-modality

framework for energy efficient tracking in large scale wireless sensor

networks,” in Proc. 2006 IEEE Int. Conf. Netw., Sens. Contr., Apr.

2006, pp. 916-921.

C. Gui and P. Mohapatra, “Power conservation and quality of surveil-

lance in target tracking sensor networks,” in Proc. ACM MobiCom, Sep.

2004, pp. 129-143.

[9] C. Gui and P. Mohapatra, “Virtual patrol: A new power conservation
design for surveillance using sensor networks,” in Proc. 4th Int. Symp.
Inf. Process. Sens. Netw. (IPSN), Apr. 2005, pp. 246-253.

[10] N. A. Vasanthi and S. Annadurai, “Energy saving schedule for target
tracking sensor networks to maximize the network lifetime,” in Proc.
1st Int. Conf. Commun. Syst. Software Middleware, Jan. 2006, pp. 1-8.

[11] D. A. Castanon, “Approximate dynamic programming for sensor man-
agement,” in Proc. 36th IEEE Conf. Decision Contr., 1997, vol. 2, pp.
1202-1207.

[12] G. K. Atia, J. A. Fuemmeler, and V. V. Veeravalli, “Sensor sched-
uling for energy-efficient target tracking in sensor networks,” in Proc.
Asilomar Conf. Signals, Syst., Comput., Nov. 2010.

[13] G. K. Atia, V. V. Veeravalli, and J. A. Fuemmeler, “Sensor scheduling
for energy-efficient target tracking in sensor networks,” IEEE Trans.
Signal Process., Jul. 2010, submitted for publication.

[14] J. Fuemmeler and V. Veeravalli, “Energy efficient multi-object tracking
in sensor networks,” IEEE Trans. Signal Process., vol. 58, no. 7, pp.
3742-3750, Jul. 2010.

[15] D. Aberdeen, “A (revised) survey of approximate methods for solving
partially observable Markov decision processes,” National ICT Aus-
tralia, Canberra, Australia, 2003 [Online]. Available: http://users.rsise.
anu.edu.au/~daa/papers.html

[16] M.L.Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Proc. 12th Int.
Conf. Mach. Learn., 1995, pp. 362-370.

[17] G. Monahan, “A survey of partially observable Markov decision pro-
cesses: Theory, models and algorithms,” Manage. Sci, vol. 28, pp. 1-16,
Jan. 1982.

[18] M. Hauskrecht, “Value-function approximations for partially observ-
able Markov decision processes,” J. Artif. Intell. Res. (JAIR), vol. 13,
pp. 33-94, 2000.

[19] D. P. Bertsekas, Dynamic Programm. Opt. Contr., 3rd ed. Belmont,
MA: Athena Scientific, 2007.

[20] , A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte
Carlo Methods. New York: Springer-Verlag, 2001.

[21] A.Cassandra, M. L. Littman, and N. L. Zhang, “Incremental pruning: A
simple, fast, exact algorithm for partially observable Markov decision
processes,” in Proc. 13th Ann. Conf. Uncert. Artif. Intell., 1997, pp.
54-61.

[22] M.L.Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Proc. 12th Int.
Conf. Mach. Learn., 1995, pp. 362-370.

[23] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 404-407, Sep. 1951.

[24] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd
ed. New York: Springer-Verlag , 1994.

[25] B. C. Levy, Principles of Signal Detection and Parameter Estima-
tion. Boston, MA: Springer, 2008.

[8

—_

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

Jason A. Fuemmeler (S’97-M’00) received the
B.E.E. degree in electrical engineering from the
University of Dayton, Dayton, OH, in 2000 and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign
in 2004 and 2008, respectively.

He has been awarded a NSF Graduate Research
Fellowship and a Vodafone fellowship. He is
currently with the Advanced Technology Center,
Rockwell Collins, performing research in electronic
warfare and wireless communications.

George K. Atia (S’01-M’04) received the B.Sc. and
M.Sc. degrees from Alexandria University, Egypt, in
2000 and 2003, respectively, and the Ph.D. degree
from Boston University, MA, in 2009, all in electrical
and computer engineering.

He joined the Department of Electrical and
Computer Engineering, University of Illinois at Ur-
bana-Champaign in fall 2009, where he is currently
a Postdoctoral Research Associate with the Coor-
dinated Science Laboratory. His research interests
include wireless communications, statistical signal
processing, and information theory.

Dr. Atia is the recipient of many awards, including the Outstanding Grad-
uate Teaching Fellow of the Year Award in 20032004 from the Electrical and
Computer Engineering Department, Boston University, the 2006 College of En-
gineering Dean’s Award at the BU Science and Engineering Research Sympo-
sium, and the Best Paper Award at the International Conference on Distributed
Computing in Sensor Systems (DCOSS) in 2008.

Venugopal V. Veeravalli (M’92-SM’98-F’06)
received the B.Tech. degree (Silver Medal Honors)
from the Indian Institute of Technology, Bombay, in
1985, the M.S. degree from Carnegie Mellon Uni-
versity, Pittsburgh, PA, in 1987, and the Ph.D. degree
from the University of Illinois at Urbana-Cham-
paign, in 1992, all in electrical engineering.

He joined the University of Illinois at Ur-
bana-Champaign in 2000, where he is currently a
Professor with the Department of Electrical and
Computer Engineering, and a Research Professor
with the Coordinated Science Laboratory. He served as a Program Director for
Communications Research at the U.S. National Science Foundation, Arlington,
VA, from 2003 to 2005. He has previously held academic positions with Har-
vard University, Cambridge, MA; Rice University, Houston, TX; and Cornell
University, Ithaca, NY, and has been on sabbatical at MIT, IISc Bangalore,
and Qualcomm, Inc. His research interests include distributed sensor systems
and networks, wireless communications, detection and estimation theory, and
information theory.

Prof. Veeravalli is a Distinguished Lecturer for the IEEE Signal Processing
Society for 2010-2011. He has been on the Board of Governors of the IEEE
Information Theory Society. He has been an Associate Editor for Detection and
Estimation for the IEEE TRANSACTIONS ON INFORMATION THEORY and for the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. Among the awards he
has received for research and teaching are the IEEE Browder J. Thompson Best
Paper Award, the National Science Foundation CAREER Award, and the Pres-
idential Early Career Award for Scientists and Engineers (PECASE).

