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ABSTRACT: For the simple binary detection problem of detecting a known signal in the 
presence of additive noise, the matched.filter is well known to yield the highest output signal- 
to-noise ratio (SNR). When the detection is carried out in discrete time, selecting an optimal 
Jilter length for a speciJc detection problem is important. Bounds on the SNR of the matched 
filter can assist in this selection. Exact bounds on the SNR can be computed in terms of the 
eigenvalues of the noise covariance matrix, but these bounds can be dtjicult to compute. An 
approximate lower boundfor the SNR has been suggested recently by Martinez and Thomas 
(see Ref (2) Franklin Inst. VoI. 321, No. 5, pp. 251-260, 1986). A supplement to this bound 
which is more accurate for small values of jilter length is discussed in this paper. Some 
examples which delineate a comparison between the two approximate bounds are presented. 

1. Introduction 

A simple binary detection problem requires the detection of a known deter- 
ministic signal vector s in the presence of an additive zero-mean interference noise 
vector n. When the covariance matrix of the noise vector is known, an optimal 
detector known as the matched jilter (MF) can be designed for this detection 
problem. The MF is optimal in the sense that it maximizes the signal-to-noise ratio 

(SNR) at its output (1). 
For a given noise covariance matrix and for a fixed signal length, the signal shape 

can be chosen in such a way that the MF yields the highest SNR. For a given signal 
length, theoretically exact bounds on the SNR of the MF can be computed in terms 
of the eigenvalues of the noise covariance matrix, but this can be a tedious task 
especially when the signal lengths are large. Easily computed bounds are sought 
for, which will assist in choosing an appropriate signal length for a specific detection 
problem. Martinez and Thomas (2) have recently suggested a simple approximation 
to the lower bound for the SNR of the MF. This approximate lower bound 
converges to the theoretical value for large signal lengths but differs significantly 
from it for smaller signal lengths. We propose an easily computed lower bound on 
the SNR which is a good approximation at small signal lengths but diverges from 
the theoretical value at large signal lengths. Our bound should thus serve as a 
supplement to the bound suggested by Martinez and Thomas. 
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II. Background 

The problem of detecting the known signal in the presence of additive noise can 
be viewed as a binary hypothesis testing problem. The decision is based on an 
observation vector x, of length N, which is composed of noise n under the hypothesis 
Ho and a known signal s added to noise n under the alternative H,. 

Ho: x=n 

HI: x=s+n. 
(1) 

We assume here that signal has unit energy, i.e., 

s7’s = 1. (2) 

If the noise covariance matrix R is known, an optimal filter (the MF) can be 
designed for this detection problem (1). The MF can be shown to have an output 
SNR which is given by 

SNR, = sTR- Is. (3) 

For a given noise covariance matrix R, and for signals of constant energy, the 
SNR, of the MF can take on a range of values depending on the choice of signal 
shape. Bounds on the SNR, of the MF can be found in terms of the eigenvalues 
of R. 

The N x N covariance matrix R is positive definite and Hermitian. Hence its 

eigenvalues ;li are real and positive and can be ordered as given below : 

0 < 1, 6 2, < . . . d 1,. (4) 

Since srs = 1, we get from the Rayleigh quotient theorem (3) that 

i.e. that 

1 
-<SNR,+ 
1, 

(6) 
1 

If we make the assumption that the noise is stationary with unit variance the SNR 
at the input of the MF is given by 

SNRi= f. (7) 

The improvement in SNR due to the MF is given by 

SNR, 
SNR,, = sNR- = N*srRp’s. 

I 

Hence we get from Eq. (6) that 

(8) 

140 
Journal of the Franklin Institute 

Pergamon Journals Ltd. 



Approximate Lower Boundfor the SNR of Matched Filters 

(9) 

The bounds in Eq. (9) are tight bounds. In fact, it is easily shown that the lower 
bound is met when the signal is chosen to be the eigenvector of R corresponding 
to eigenvalue AN, and the upper bound is met when the signal is chosen to be the 
eigenvector corresponding to eigenvalue 1,. Even though these bounds look very 
promising, it is difficult to use them in choosing an appropriate filter length N since 
they require the knowledge of the eigenvalues of the noise covariance matrix R. 
Martinez and Thomas (2) have suggested a looser but easier to compute lower 
bound for the SNR when the noise is stationary. 

For stationary noise, the covariance matrix is Toeplitz, i.e. it has constant values 
along all its diagonals parallel to the main diagonal. If we denote the value in the 
ith diagonal by ri, i = -(N- l), . . . , - l,O, 1,. . . , (N- l), an upper bound on the 
largest eigenvalue AN of R can be found (2) in terms of these values. 

2, d f lril. (10) 

Thus using Eq. (9) we get a lower bound for SNR,, as 

N 
SNR,..m 2 co (11) 

Since we shall be referring to these bounds often, we shall denote the tight lower 
bound of Eq. (9) by LB, and the loose bound of Eq. (11) by LB,. It has been shown 
through some examples (2) that LB, converges to LB, for large values of N. But 
for small values of N there is a considerable difference between these two bounds. 
In this paper we introduce another easily computable lower bound on SNR,, 
which is more accurate for small values of N and would thus serve as a supplement 
to LB,. We shall discuss this bound in the next section. 

III. Supplementary Bound 

A host of matrix inequalities, specifically relating to bounds on the eigenvalues 
of the matrix, can be formulated in terms of the trace of the matrix and the trace 

of its square (4). An upper bound on the largest eigenvalue 2, of R, written in 
terms of the trace of R and the trace of R*, is as follows : 

1, d m+sJKi, (12) 

where m and s are defined as 

Here, Tr {*} stands for the trace of the matrix within the brackets. 

(13) 
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From Eq. (12), we get a lower bound on SN&r as shown below. We shall refer 
to this bound as LB2 : 

SNRMF 2 --p-y- 
m+sJZi’ 

(14) 

With the previously stated assumption that the noise is stationary with unit variance 
the expressions for m and s defined in Eq. (13) reduce to 

N 
m=F= 1, 

From Eqs (14) and (15), we get 

LB2 = ___.-!!!-- 
l+ 

(15) 

(16) 

It should be noted that the bound on 1, given in Eq. (12) does not require R to 
be Toeplitz. Using this, one can derive a bound on the SNR of the filter for a 
general case when the noise is non-stationary. In that sense our bound is less 
restrictive than the bound LB,. 

IV. Some Examples 

Martinez and Thomas (2) chose four noise autocorrelation functions to illustrate 
the accuracy of their lower bound. We have chosen the same four examples to 
delineate the domains where each of the bounds LB, and LB2 is more accurate 
than the other. Before we describe these autocorrelation functions we introduce a 
quantity called the correlation length of the noise (I), which represents the time 
extent of the noise autocorrelation function. 

The four noise autocorrelation functions are 

the exponential : 

, 

the triangular : 

1 1-y if Jil<l 
ri = 9 

0 if lij>l 

(17) 

(18) 

the Gaussian : 
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xi2 
ri = exp -2 , ( ) I 

the hyperbolic secant : 

ri = sech 7 . 
(3 

(19) 

The parameters of these four correlation functions were chosen so that for each of 
them, the quantity IZim_ __m lri/ approximately equals 1. Thus LB, for each of these 
functions is given approximately by 

LB 
N 

, z-. 
1 

(21) 

We computed LB,, LB, and LB, as a function of filter length N for the four 
examples given above with 1 = 10 (we chose I= 10 in order to compare with the 
results of Martinez and Thomas (2)). These bounds have been plotted in Figs 1 (a)) 
l(d). As we can see, for large values of N, LB, converges to LB,. But for small N 
(i.e. N < 20) there can be as much as 6 dB difference between these two. LB2 on 
the other hand is more accurate for small values of N. The graphs of LB, and LB, 
intersect at N zz 15. For values of N to the right of the intersection point the more 
accurate bound is LB,, and for values to the left of this point LB2 is more accurate. 
Hence, for a particular value of N the more accurate bound is the larger of LB, 
and LB2. 

We also observed that the value of N at which LB, and LB, intersect is a function 
of the correlation length 1. Figures 2(a))2(d) show plots of the three lower bounds 
for the exponential correlation function with three different values of 1. From these 
plots, it can be seen that the value of N at the intersection is an approximately 
linear function of 1. A similar behaviour was also observed (but not shown here) 
for the other three correlation functions. Thus we suggest the computation of both 
lower bounds in general. When the correlation length 1 is seen to be smaller than 
the filter length N, LB, should be better than LB2. On the other hand, if 1 is greater 
than N, we should compute and use LB,. 

V. Conclusions 

Signal selection is important for the MF to perform optimally. The tools that 
can aid in signal length (or filter length) selection are bounds on the SNR of the 
filter which are computed as a function of the filter length. Since exact bounds on 
the SNR are difficult to obtain, looser bounds have to be used in signal length 
selection. We have derived an approximation to the lower bound of the SNR which 
is more accurate than an existing approximation, for small values of filter length. 
We suggest that for a specific detection problem both the loose lower bounds must 
be computed, and, for a particular value of filter length, the larger of the two 
computed bounds must be chosen as the more accurate bound. 

Vol. 324, No. I, pp. 139-147, 1987 

Printed in Great Bntain 143 



B. V. K. Vijaya Kumar and Venugopal V. Veeravalli 

(4 ‘8 I I 0 / IO 
Filter l%gth N 

30 40 

(b) I I / I 
/ 10 

Filter length N 
30 40 

Legend 

n LB, 

0 LL- 

*Et_ - 

Legend 

. LB, 

0 LA- 

*&!- _ 

FIG. 1. LB,, LB, and LB, for four different correlation functions with 1 = 10. (a) Exponential 
correlation. (b) Triangular correlation. (c) Gaussian correlation. (d) Hyperbolic secant 

correlation. 
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FIG. 1. (c) and (d). 
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2. LB,, LB, and LB, for the exponential correlation function for three different values 
of correlation length 1. (a) I = 5. (b) I = 10. (c) I= 20. 
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FIG. 2. (c). 
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