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Abstract—Resource allocation is investigated for fading relay
channels under separate power constraints at the source and relay
nodes. As a basic information-theoretic model for fading relay
channels, the parallel relay channel is first studied, which consists
of multiple independent three-terminal relay channels as subchan-
nels. Lower and upper bounds on the capacity are derived, and are
shown to match, and thus establish the capacity for the parallel
relay channel with degraded subchannels. This capacity theorem
is further demonstrated via the Gaussian parallel relay channel
with degraded subchannels, for which the synchronized and asyn-
chronized capacities are obtained. The capacity-achieving power
allocation at the source and relay nodes among the subchannels is
partially characterized for the synchronized case and fully char-
acterized for the asynchronized case. The fading relay channel is
then studied, which is based on the three-terminal relay channel
with each communication link being corrupted by a multiplicative
fading gain coefficient as well as an additive Gaussian noise term.
For each link, the fading state information is assumed to be known
at both the transmitter and the receiver. The source and relay
nodes are allowed to allocate their power adaptively according to
the instantaneous channel state information. The source and relay
nodes are assumed to be subject to separate power constraints. For
both the full-duplex and half-duplex cases, power allocations that
maximize the achievable rates are obtained. In the half-duplex
case, the power allocation needs to be jointly optimized with the
channel resource (time and bandwidth) allocation between the
two orthogonal channels over which the relay node transmits and
receives. Capacities are established for fading relay channels that
satisfy certain conditions.

Index Terms—Capacity, max-min, parallel relay channels, re-
source allocation, wireless relay channels.

1. INTRODUCTION

HE three-terminal relay channel was introduced by van der
Meulen [1] and was initially studied primarily in the con-
text of multiuser information theory [1]-[3]. In recent years, re-
laying has emerged as a powerful technique to improve the reli-
ability and throughput of wireless networks. An understanding
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of wireless relay channels has thus become an important area of
research. Wireless relay channels and networks have been ad-
dressed from various aspects, including information-theoretic
capacity [4]-[21], diversity [22]-[25], outage performance [26],
[27], and cooperative coding [28]-[30]. Central to the study
of wireless relay channels is the problem of resource alloca-
tion. For example, the source and relay nodes can dynamically
allocate their transmit powers to achieve a better rate if the
fading state information is available. Resource allocation for
relay channels and networks has been studied by several recent
papers, including [9], [31]-[34], [26]. Common to all of these
studies is the assumption that the source and relay nodes are
subject to a total power constraint.

In this paper, we study wireless fading relay channels, where
we assume that the source and relay nodes are subject to sepa-
rate power constraints instead of a total power constraint. This
assumption is more practical for wireless networks, because the
source and relay nodes are usually geographically separated,
and are hence supported by separate power supplies. Under this
assumption, the resource allocation problem falls under a class
of max-min problems. We connect such max-min problems to
the minimax two hypothesis testing problem (see, e.g., [35, Sec.
II.C]), and apply a similar technique to find optimal (in the
max-min sense) resource allocation strategies for fading relay
channels.

We first study the parallel relay channel, which consists
of multiple independent relay channels and serves as a basic
information-theoretic model for fading relay channels. We
derive a lower bound on the capacity based on the partial
decode-and-forward scheme as well as a cut-set upper bound.
We show that the two bounds match and establish the capacity
for the parallel relay channel with degraded subchannels. This
generalizes the capacity result in [36, Theorem 12] to mul-
tiple subchannels. We also demonstrate that the parallel relay
channel is not a simple combination of subchannels in that the
capacity of the parallel relay channel can be larger than the sum
of the capacities of subchannels, as was also remarked in [36,
Sec. VII].

We then study the Gaussian parallel relay channel with de-
graded subchannels. There are two types of capacity that can
be defined for this channel. The first is the synchronized ca-
pacity, where the source and relay inputs are allowed to be cor-
related. To achieve the capacity, the source and relay nodes need
to choose an optimal correlation parameter for each subchannel,
and further to choose an optimal power allocation across the
subchannels under separate power constraints. We characterize
the optimal solutions for the cases where the optimization is
convex, and provide equations that need to be solved numeri-
cally for cases where the optimization is nonconvex. We also
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Fig. 1. Parallel relay channel.

study the asynchronized capacity, where the source and relay
inputs are required to be independent. This capacity is easier
to achieve in practice due to the simpler transceiver design for
the source and relay nodes. We fully characterize the capacity-
achieving power allocation at the source and relay nodes in
closed form.

We then move on to study the fading relay channel, which
is based on the classical relay channel with each transmission
link being corrupted by a multiplicative stationary and ergodic
fading process as well as an additive white Gaussian noise
process. The fading relay channel is a special case of the par-
allel relay channel, with each subchannel corresponding to one
fading state realization. We assume that both the transmitter
and the receiver know the channel state information, so that
the source and relay nodes can allocate their transmission
powers adaptively according to the instantaneous fading state
information. We consider the resource allocation problem for
two fading relay models: full-duplex and half-duplex.

The fading full-duplex relay channel has been studied in [9],
where lower and upper bounds on the capacity were derived,
along with the resource allocation that optimizes these bounds,
under a total power constraint for the source and relay nodes. In
this paper, we assume separate power constraints for the source
and relay nodes and study the power allocation that optimizes
the capacity bounds. We focus on the more practical asynchro-
nized case. We obtain the power allocation that maximizes an
achievable rate, and show that the optimal power allocation may
be two-level water-filling, orthogonal division water-filling, or
iterative water-filling depending on the channel statistics and
the power constraints. We also establish the asynchronized ca-
pacity for channels that satisfy a certain condition.

We further study a fading half-duplex relay channel model,
where the source node transmits to the relay and destination
nodes in one channel, and the relay node transmits to the desti-
nation node in an orthogonal channel. We introduce a parameter
6 to represent the channel resource (time and bandwidth) alloca-
tion between the two orthogonal channels. We study three sce-
narios. In Scenario I, where the two orthogonal channels share
the channel resource equally, i.e., # = 1/2, we show that the
optimal power allocation falls into three cases depending on the
ranges of power constraints at the source and relay nodes. The
optimal power allocation for the relay node is always water-
filling, but the power allocation for the source node is not water-
filling in general. In Scenario II, the channel resource alloca-
tion parameter # needs to be same for all channel states but can

(e

be jointly optimized with the power allocation. In Scenario III,
which is the most general scenario, # can change with channel
realizations and is jointly optimized with power allocation. For
both Scenarios II and III, we derive the jointly optimal 6 and
power allocation that maximize the achievable rate. Further-
more, we show that the lower bound achieves the cut-set upper
bound if the channel statistics and power constraint satisfy a cer-
tain condition. We hence establish the capacity for these chan-
nels over all possible power and channel resource allocations.

The paper is organized as follows. In Section II, the par-
allel relay channel is introduced and studied. In Section III, the
optimal resource allocation that achieves the capacity for the
Gaussian parallel relay channel with degraded subchannels is
studied. In Section IV, resource allocation for the fading full-du-
plex relay channel is presented. In Section V, resource alloca-
tion for the fading half-duplex relay channel is studied, where
the three scenarios described above are considered. Finally, in
Section VI, we give concluding remarks.

II. PARALLEL RELAY CHANNELS

In this section, we study the parallel relay channel, which
serves as a basic information-theoretic model for the fading
relay channels that are considered in Sections IV and V. The
parallel relay channel also models the relay channel where the
source and relay nodes can transmit over multiple frequency
bands with each subchannel corresponding to the channel over
one frequency band. It is shown in this section that in contrast
to the parallel point-to-point channel, the parallel relay channel
is not a simple combination of independent subchannels.

Definition 1: A parallel relay channel with K subchan-
nels (see Fig. 1) consists of K finite source input alphabets
Xy, ..., Xk, K finite relay input alphabets X'r1, ..., Xri, K
finite destination output alphabets )1,...,Vk, and K finite
relay output alphabets Vg1,...,Vrx. The transition proba-
bility distribution is given by

K
H Pk (Yks YRE | Tkr TRE)
k=1

ey

where v, € Xy, zrr € XRi,Yr € Vi., and yrr € YVgi for
k=1,... K.

A (2", n) code consists of the following:
+ one message set W = {1,2,...,2"F} with the message
W uniformly distributed over W;
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* one encoder at the source node that maps each message
w € W to a codeword

* aset of relay functions {f;}7_; such thatfor1 <7 <n

-vaKi)
= fi(?JRn»n

(leiv o

5 YR1[i-1) - -

* one decoder at the destination node that maps a received
sequence (Y11s---sYiny---s YK1,-- -, YKkn) tO @ message
weW.

Note that the relay node is allowed to jointly encode and de-

code across the K parallel subchannels.

A rate R is achievable if there exists a sequence of (2", n)
codes with the average probability of error at the destination
node going to zero as n goes to infinity.

The following theorem provides lower and upper bounds on
the capacity of the parallel relay channel.

Theorem 1: For the parallel relay channel, a lower bound on
the capacity is given by
K

C1oy = max min Zl(XkaXRM Yi),
k=1

K
D 1(Qus Yre | Xrr) + I(Xa; Yi | Qr, XRk)} 2
k=1
where Q fork = 1, ..., K are auxiliary random variables. The

maximum in (2) is over the joint distribution
K

1 2+ (ar, 2 re. o)k vk yre | T, 7R
k=1
An upper bound on the capacity is given by
K

Cyp = max min {ZI(Xk,XRk;Yk)>
k=1

K
> T(Xe; Vi, Varg | XRk)} 3)
k=1
where the maximum in (3) is over the joint distribution

K

H Pr(TRE, Tk )Pk (Yks YRE | Ths TRE)-
k=1

Remark 1: The lower bound (2) generalizes the rate given in
[37, Theorem 1] based on the decode-and-forward scheme.

Proof: To derive the lower bound (2), we use the following
achievable rate for the relay channel based on the partial decode-
and-forward scheme given in [3]:

R < maxmin{I(Xg, X;Y),I(Q;Yr | XRr)

We SCtQ = (Q17"'7QK)7X = (X17"'7XK)7XR =
(Xr1,--,XrK),Y = (Y1,...,Yk), and Ygp =
(Ygi,...,Ygrr) in the above achievable rate. We fur-
ther choose to be
independent, and then obtain the lower bound (2).
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The upper bound (3) is based on the cut-set bound [2, The-
orem 4] and the independency of the K parallel subchannels.[]

Remark 2: In the achievable scheme, the relay node first
decodes information sent by the source node over each
subchannel. The relay node then reassigns total decoded infor-
mation to each subchannel to forward to the destination node.
Hence, information that was sent to the relay node over one
subchannel may be forwarded to the destination node over
other subchannels, as long as the total rate at which the relay
node can forward information to the destination node over all
subchannels is larger than the total rate at which the relay node
can decode information from the source node.

The lower and upper bounds in Theorem 1 do not match in
general. We next study a class of parallel relay channels with
degraded subchannels. For this channel, the lower and upper
bounds match, and we hence establish the capacity. Moreover,
this capacity provides an achievable rate for the case where the
subchannels are either stochastically degraded or reversely de-
graded (e.g., fading relay channels).

Definition 2: Consider the parallel relay channel with de-
graded subchannels. Assume each subchannel is either degraded
or reversely degraded, i.e., each subchannel satisfies either

Pk(Yk YRE | Tk TRE)
= pe(YRrk | Tk, TRE)DPE (YK | YRKs TRE), ©)
or

Pk(Yk, YRk | Tk, TRE)
= Pk (Yk | Tk TrE)PE(YRK | Yk» TRE)- (6)

We note that the parallel relay channel with degraded sub-
channels has been studied in [36, Sec. VII] for the two-sub-
channel case. We now generalize the result in [36, Sec. VII] to
channels with multiple subchannels. In fact, our main focus is
on the Gaussian case considered in this section and Section III.

We define the set A to contain the indices of the subchannels
that satisfy (5), i.e., those subchannels where the source-to-relay
channel is stronger than the source-to-destination channel. Then
the set A° contains the indices of the subchannels that satisfy
(6), i.e., those subchannels where the source-to-relay channel
is weaker than the source-to-destination channel. Note that in
general the parallel relay channel with degraded subchannels
is neither a degraded relay channel nor a reversely degraded
channel. For this channel, the lower and upper bounds given in
Theorem 1 match and establish the following capacity theorem.

Theorem 2: For the parallel relay channel with degraded sub-
channels, the capacity is given by
K
C = maxmin {Z (X, Xge; Yi),
k=1

> I(Xk: Yee | Xpp) + Y I(Xii Vi |XRk)}. )

kEA keAe
where the maximum is over the joint distribution
K

H Pr(TRE, Tk )Pk (Yks YR | Ths TRE)-
k=1
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Remark 3: Theorem 2 generalizes the capacity of the par-
allel relay channel with unmatched degraded subchannels in
[36, Theorem 12] to channels with multiple subchannels.

Proof: The achievability follows from Ci,, in (2) by set-
ting Q = Xy for k € A and setting Qr = ¢ for k € A°. The
converse follows from Cyp in (3) by applying the degradedness
conditions (5) and (6). O

Note that the partial decode-and-forward scheme achieves the
capacity of the parallel relay channel with degraded subchan-
nels. From the selection of (J, in the above achievability proof,
it can be seen that the relay node decodes all the information sent
over the degraded subchannels, i.e., Qr = Xj for k € A, and
decodes no information sent over the reversely degraded sub-
channels, i.e., Q@ = ¢ for k € A°. Hence, for the subchannels
with & € A€, the link from the source node to the relay node
can be eliminated without changing the capacity of the channel.

However, the relay node still plays an important role in the
reversely degraded subchannels by forwarding information that
it has decoded in other degraded subchannels to the destina-
tion node. This is different from the role of the relay node in
a single reversely degraded channel, where it does not forward
information at all. Furthermore, we see that in the parallel relay
channel, information may be transmitted from the source node
to the relay node in one subchannel, and be forwarded to the des-
tination node over other subchannels, as we have commented in
Remark 2. More importantly, in contrast to the parallel point-to-
point channel, the capacity of the parallel relay channel with
degraded subchannels in Theorem 2 can be larger than the fol-
lowing sum of the capacities of the subchannels:

max min { > I(Xe, Xer: Ya), > I(Xe: Vi | XRk)}
keA keA

+ Z I(Xk; Yi | XRr)- (8)
ke Ae

This demonstrates that the parallel relay channel is not a simple
combination of independent subchannels. This fact has also
been pointed out in [36, Remark 15] for a two-subchannel case.

We now consider a Gaussian example of the parallel relay
channel with degraded subchannels. The channel input—output
relationship at one time instant is as follows:

Fork € A, Yri = X+ Zgi

Yi = Xk + V/Pre XRrE + ZRE+ Z), ©)

where Z gy, and Z;, are independent Gaussian random variables
w2ith Var2iances 0%, and o} — 0%, respectively. For k € A,
0 > ORpp-

For k € A, Yrie = X+ Zi + Zg,

Y = X +Vpre XRE + Z1 - (10)
where Zj, and Zp, are independent Gaussian random vari-
ables with variances o2 and 0%, — o2, respectively. For
k € A% 0% > of. In (9) and (10), pri (assumed to

be positive) indicates the ratio of the relay-to-destination
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signal-to-noise ratio (SNR) to the source-to-destination SNR
for subchannel k. We assume that the source and relay input se-
quences are subject to the following average power constraints:

n K n K
%ZZE[X,@] <P, and %ZZE[X%W] < Pg

i=1 k=1 i=1 k=1
(11)

where ¢ is the time index.

It can be seen from (9) and (10) that the subchannels with
k € A satisfy the degradedness condition (5) and the subchan-
nels with k& € A€ satisfy the degradedness condition (6). Hence,
the Gaussian channel defined in (9) and (10) is the parallel relay
channel with degraded subchannels. The following capacity the-
orem is based on Theorem 2.

Theorem 3: The capacity of the Gaussian parallel relay
channel with degraded subchannels is given by

C =

max

§K P<P§K PRrL<P
k=1 F="Lip=1 BE=THR>

T0<By, <1,fork=1,....K
min XK:C Py + priPri + 2/ Brpri P Pri
= o ’
1 P, Py
T () ge(52)
k€A REk ke Ac k

where 3, = 1 — f, and the function C(z) := 3 log(1 + ).
In (12), the parameter (3 indicates correlation between the
source input and the relay input to subchannel k, and Py and
Pry. indicate the source and relay powers that are allocated for
transmission over subchannel k.
Proof: The achievability follows from Theorem 2 by
choosing the following joint distribution:

Xgr ~ N(0, Pry)
X}~ N(0, By Pr), with X}, independent of X g,

| By P,
Xk = 1 [k kXRk ‘f‘)(]lC
Pry,

The converse is similar to the steps in the converse proof in [2,
Sec. IV], and is omitted. O

12)

13)

Note that the capacity in Theorem 3 is sometimes referred
to as the synchronized capacity, because the source and relay
nodes are allowed to use correlated inputs to exploit coherent
combining gain. This may not be practical for encoder design. It
is hence interesting to study the asynchronized capacity, where
the source and relay nodes are assumed to use independent in-
puts. The following asynchronized capacity is derived by setting
Or=1fork =1,...,K in (12).

Corollary 1: For the Gaussian parallel relay channel with
degraded subchannels, the asynchronized capacity is given by

K
Py Pru
1nin{ZC(—k+ggk Rk) ,

k=1

C= max

E K pp<p,

k=1 -

E K ppr<p
k=1 REk="FR

dc (%) + 3 c(i’;) . (14
kea NORk keAe Tk
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To obtain the capacity in Theorem 3 and the asynchronized ca-
pacity in Corollary 1, we still need to solve the optimization
problems in (12) and (14), i.e., to find the jointly optimal cor-
relation parameters {0y, for k = 1,..., K} and power alloca-
tions {(Py, Prg),for k = 1,..., K} in (12), and to find the
optimal power allocations {(Py, Pgy),for k = 1,..., K} in

(14). We study these optimization problems in the next section.

III. OPTIMAL RESOURCE ALLOCATION FOR GAUSSIAN
PARALLEL RELAY CHANNELS WITH DEGRADED SUBCHANNELS

In this section, we study the optimization problems in (12)
and (14), which are max-min optimization problems. We first
introduce a general technique for solving this class of max-min
optimization problems. We then demonstrate the application
of this technique by finding the optimal solutions in (12)
and (14). We obtain the analytic form of the jointly optimal
correlation parameters {f,for & = 1,...,K} and power
allocation {(Py, Pgy),for k& = 1,..., K} that achieve the
synchronized capacity for the cases where the optimization
problem is convex. We also obtain a closed-form solution for
the optimal {(Py, Pri),for k& = 1,..., K} that achieve the
asynchronized capacity. This optimal solution may have three
different structures depending on the channel SNRs and power
constraints. This optimal power allocation is directly related to
the power allocation for the fading full-duplex relay channel
presented in Section IV.

A. Technique to Solve a Class of Max-Min Problem

Consider the following max-min problem:

max min{R1(t), R2(t)}

15)
where t is a real vector in a set G, and R;(t) and Ry(t) are
real continuous functions of £. An optimal ¢* is referred to as a
max-min rule.

We now introduce a technique to solve the max-min problem
(15). We will also illustrate this technique with a geometric in-
terpretation. This technique is similar to that used in finding the
minimax detection rule in the two hypothesis testing problem
(see, e.g., [35, Sec. IL.C]).

Consider the following function:

R(a,t) := aRi(t) + (1 — a)Ra(2), 0<a<l1. (16)
As a function of «, R(«,t) is a straight line from R(0,t) =
Ry(t) to R(1,t) = R;(t). Hence, the maximization in (15)
corresponds to maximizing the minimal of the two endpoints
of the line R(«,t) over all possible t € G.

We further define a function

Via) = R(a,t) = R(a, t(®
(@) max (o, t) (a, ')

a7
where £(*) maximizes R(cv, t) for fixed cv. From the definitions
of V(«) and R(a,t), it is easy to see the following two facts
(see Fig. 2 for an illustration):
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Ry (L(a()))

Ry (t)
Ry (i(a“))

Ry(2)

Fig. 2. Tlustration of functions V' () and R(«, t).

Fact1: The function V(«) is continuous and convex for
a € [0,1].
Fact2: For any power allocation rule t € G, R(«,t) as a

function of « is completely below the convex curve
V(«) or tangent to it.

A known general solution to the max-min optimization
problem in (15) is summarized in the following proposition.

Proposition 1: Suppose «* is a solution to V(a*) =
mingeo,1 V(). Then t(®") is a max-min rule, i.e., a solution
to the max-min problem in (15). The relationship between
R1(t(7)) and Ry(t(*")) falls into the following three cases
(see Fig. 3):

Case 1: ifa* = 07R1(§(“*)) > Rz(t(o‘*));

Case 2: ifa* = 1,R(t(®)) < Ry(t(*"));

Case 3: (Equalizer Rule) if 0 < a* < 1,Ri(t(®)) =
Ry ().

This technique of finding the max-min solution is applied
throughout the paper.

B. Optimal Resource Allocation for Gaussian Parallel Relay
Channel: Synchronized Case

In this subsection, we apply Proposition 1 to find jointly op-
timal {f, fork=1,..., K} and {( Py, Pgg),fork=1,..., K}
that solve the max-min problem in (12). This optimal solution
provides the optimal correlation between the source and relay
inputs over each subchannel and the optimal source and relay
power allocation among the K subchannels that achieve the syn-
chronized capacity of the Gaussian parallel relay channel with
degraded subchannels. We study the asynchronized case in the
next subsection.

To simplify notation, we let

P=(P,...,Px), Pgp=(Pgi,...,PrK),
and
K K
g:{(B7BR7§): ZPkSP, ZPRkSPR7
k=1 k=1
0< B <1, fork= K} (19)
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Ry(tle))

Ry @(a‘ ))

Ry(t®)) Ry (7))

Fig. 3. TIllustration of Cases 1, 2, and 3 in Proposition 1.

The max-min optimization problem in (12) can be written in the
following compact form:

¢= in{R1(P,Pr,),Ro(P, P
(z,gf)éegmm{ (2, P, ), Ra(L, Pr. f)}
where
Ri(P,Pg, )

K _
_ ZC <Pk + priPri + 2 /BkPRkPkPRk>
k=1

ne(3)

keAe

Rao(P,Pr.f) =) C <5kpk>

keA TRk

(20)
According to Proposition 1, the max-min rule that solves (20)
may fall into the following three cases.
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Case 1: o* = 0, and (2(0)7£g),[_3(0)) is a max-min rule,
which needs to satisfy the condition

Ry(PO, PR, B0) = Ry (P PR A7), D)
By definition, (B(O),£$)7Q(O)) maximizes
R(0,P, P, B) = Ra(E, PR, ). (22)
It is readily seen that the following ﬁ(o) is optimal:
e (0
ﬂ(O) N {arbltrary, i EEO; : g )

With 3 given in (23), Ro(P, P, ) is a function of P only.
More(?ver, it is a convex function of _£ Then the Kuhn—-Tucker
condition (KKT condition) (see, e.g., [38, pp. 314-315]) char-
acterizes the necessary and sufficient condition that the optimal
P needs to satisfy. The Lagrangian is given by

L= Zc(P’“> ZC(%)—A(kZ:Pk—P) (24)

kea N7Rk keAe
which implies the following KKT condition:

oL 1 1
- . <0,

P, 2In2 o, + Dy

with equality if P > 0, ifke A
oL 1 1
= .~ A<,
(')Pk 21In 2 O-l% + Pk '

with equality if P, > 0, ifk e A°. (25)

Hence, the optimal P,SO) is given by
1 + e
P[go) = (21?2)\ - U%%k_?_ ’ lf keA (26)
(5mex — %) ifk e A

where ) is chosen to satisfy the power constraint Ele P, <
P. The function (- )7 is defined as

@ ={v

For Case 1 to happen, (P PO P(0 [)’(0)) needs to satisfy the
condition (21). To charactenze the least power Pr needed for
Case 1 to happen, ng) needs to maximize Rl(ﬂ(o), Bmﬁ(o))
with g(o) given in (23) and £<0) given in (26), respectively.
The optimal ng) can be obtained by the KKT condition via
the following Lagrangian:

K H(0) K
PO 4 ppiP
ﬁ:ZC(—k U%R" R’“)—M(EjPRk—PR> (28)
k=1

k=1

ifz >0

ifz <0. @7

The KKT condition is given by

oL 1

) PRE
22 52 + PV + ppiPre
with equality if P > 0 (29)

—u<0

— 7
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which implies

+
1 P(O) 2
= Tk %k , fork=1,...,K
2In2p pre PRk

(30)
where p is chosen to satisfy the power constraint Zszl Pri <
Pr.

Note that (30) also follows directly from the standard water-
filling solution if we further derive (28) in the following form:

Py - PR PRE

e xe(%) e ()
—IL(ZPRk—PR>~ €Y

k=1

With P, P, and 8 given in (26), (30), and (23), re-
spectively, condition (21) becomes

K 0
o (18 uri)
P]go) P]go)

This condition is equivalent to the threshold condition Pr >
Pr (P). The threshold Pg ,(P) is a function of the source
power constraint P, and is determined by the value of Pg that
results in equality in (32).

Therefore, if Case 1 occurs, the optimal source power alloca-
tion P(*) has a water-filling form, and the optimal relay power
allocation Eg) also has a water-filling form with P,SO) + 0f as
the equivalent noise levels. The optimal correlation parameter
ﬁ](co) = 1 for P,SO) > 0, which indicates that coherent com-
bining is not needed for this case.

Case 2: o* = 1, and (B(l),Bg),ﬂ(l)) is a max-min rule,
which needs to satisfy the condition

Ry (£<1>7£g>7g(1>) <R, (£<1>7£g>7g(1>). 33)
By definition, (2(1)725%)7@(1)) maximizes
R(1,P,Pp,B) = B1(L, PR, B). (34)
We note that
s {o, . if PV >0and Pp) >0 (35
arbitrary, otherwise.

It can be shown that Ry (P, Pp,[3) is a convex function
of (P,Pp) for ﬁ(l) given in (35). To derive the optimal
(2(1)72%1)) that maximizes R1(£7£R7£(1)), the Lagrangian
can be written as

. X Py + pri. Pric + 2V pRE PR PRI
=Y c
k=1

2
O}

K K
-\ <Z Py, - P) — <Z Pry; — PR> (36)
k=1

k=1
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The optimal (P™), Bg)) needs to satisfy the following KKT
condition:

%Z L vV Px + Vprie Pre < 2/,
0P, 21n2 0’,% (\/ t + VPrEPRE )2 - ’

with equality if P > 0
oL 1 V Pk + Vore PR Pry,

= . < —,
OPry, 2In2 0']%+(\/Pk+\/PRkPRk)2 =H PRE
with equality if Pry > 0. 37

From (37), it is clear thatP< ) =0 = Pz(zlk) = 0. According
to (35), we have ﬂ(l)P(l) Ofork =1,..., K, which implies
Ry (B(l),ﬂg ,ﬁ(l)) = 0. Hence, condition (33) cannot be sat-
isfied. Therefore, Case 2 never happens.

Case3:0 < a* < 1,and (2(“*),25;?7),@(“?)) i$ a max-min
rule, where a* is determined by the following condition:

R, (E(a*)7£$g*)7ﬁ(a*)) = Ry (E(a*)7£$§*)7g(a+)) . (38)

We need to derive (P(*7), P ,*7)) that maximizes

R(a*7£7 BR;@):Q*R1(27£R7£>+ (1_a*)R2(£7 BR?@)

(39)

for a fixed o*. This optimization problem is not convex. Now
the KKT condition provides only a necessary condition that the
optimal (P>, Bg? ‘ )7 %)) needs to satisfy. One can still per-
form a brute-force search over those (P, Py, 3) that satisfy the
KKT condition to find the optimal (P(*"), BE—?K% 3. How-
ever, it may be too complex to implement such an optimal solu-
tion that involves designing correlated source and relay inputs
and also involves allocating the source and relay powers jointly
with the correlation parameter for each subchannel. Hence, it
may not be¢worth searching for the jointly optimal solution
(P, P(a') B (@) except in Case 1, where using indepen-
dent source and relay inputs is optimal and the optimal power
allocation (P(*"), P( )) is simpler. It is hence more interesting
to study the asynchromzed case, where it is assumed that the
source and relay nodes use independent inputs.

C. Optimal Resource Allocation for Gaussian Parallel Relay
Channel: Asynchronized Case

In this subsection, we solve the max-min problem in (14).
This problem is simpler than the max-min problem in (12), be-
cause the optimization is over the power allocation (P, Pg)
only, and does not involve the correlation parameters 3. This
also makes the optimal solution easy to implement in practice.
In the following, we fully characterize the optimal power allo-
cation, which may take three possible structures.

We let

K K
G = {<£,£R) : Y PSP ) Pr < PR} (40)
k=1 k=1

and rewrite the max-min optimization problem in (14) in the
following manner:
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max min{R;(P,Pg),

Ro(P, P
(P.P,)€G 22, Pr)}

K
Py + priP
Ri(P,Pg) = ZC (W)

k=1 Tk
P P
Ro(P,Pg) = ZC <O’T> + Z C(—2>
k€A RE keAe k

(41)

We apply Proposition 1 to solve (41), and consider the fol-
lowing three cases.

Case 1: o* = 0, and (B(O),ng)) is a max-min rule, which
needs to satisfy the condition

Ry (PO, PQ) 2 R (PO PR)). @)

The optimal (P(V), P © )) can be derived following the steps that
are similar to those in Case 1 of the synchronized case, and is
given by

+ .
p© _ ) (gmax —of) ", ifkeA
* (505 —02)",  ifkeac
+
1 PO 2
}(;3‘): S , fork=1 K
211’12[,L PRE PRE

(43)

where A and g are chosen to satisfy the power constraints
YK Pe<Pand Y& | Ppi < Pp.

We refer to the optimal (P p® P(0 ) in (43) as two-level
water-filling for the following reason. The optimal PO is first
obtained via water-filling with respect to the noise levels 012%
and o;. The optimal ng) is then obtained via water-filling with
P,SO) + a,% as equivalent noise levels, where 2(0) is treated as
an additional noise level.

With (P{”, P{?)) given in (43), condition (42) becomes

Se()
>ZC( (O)>+Zc< ) (44)

keA IRk keAe

This condition is equivalent to the threshold condition
Pr > Pg,(P), where the threshold Pg.,(P) is deter-
mined by the value of Pg that results in equality in (44). The
threshold Pg . (P) is clearly a function of the source power
constraint P.

Case 2: o* = 1, and (2(1),25;)) is a max-min rule, which
needs to satisfy the condition

Ry (PO, Py < Ry(PM, PW). (45)
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By definition, (P, Bg)) maximizes
R(1,P,Pg) = R (P, Pp). (46)

We first note that Ry (P, Pg) is a convex function of (P, Pp).

The Lagrangian can be written as
K
()
k=1

K
Py, + pri Pric
(o).
K
—n (Z Pry, — PR> NCY)

k=1
k=1

According to the KKT condition, (P<1)

oc 1 1
8—Pk " 2In2 . U,% + P + pri Pric
with equality if Py > 0
oc 1 . 1 < M
OPri,  2In2 o2+ P+ priPri ~ prE’
with equality if Pri > 0 (48)

) needs to satisfy

<A

which implies that

+
: H 1 2
fAa< —, P,=(—-— , Pri = 0;
! < ka/ k <21D2/\ Uk) ’ Rk '

n 1 o2\t
if A > —, P, =0, PRk:< k> ;
PRk 21n2u PRk
H 1 2 i

onr k + PrEPRE (21n2/\ Uk) 3 (49)

where )\ and p aIe chosen to satisfy the power constraints. In
general, A # -£—. Expression (49) implies an orthogonal di-
vision water- ﬁlllng power allocation, i.e., for each subchannel,
either the source node or the relay node allocates a positive
amount of power. This power allocation is similar to the optimal
power allocation for fading multiple-access channels [39].

For Case 2 to happen, (P(), Bg)) needs to satisfy the con-
dition (45), i.e.,

(1
ZC( )+kaP}(3k)>

O

pO
<Zc( ) Zc(%) (50)
keA T k€Ae Tk

This condition essentially requires that the relay power Pg is
small compared to the source power P.

Case3: 0 < a* < 1,and (B(Q*LBSX)) is a max-min rule,
where «* is determined by the condition

Ry (200, PR7) = Ry (PO, 2G7) . 6D

We first derive (P, P{") that maximizes

R(a™,P,Pg) = a"Ri(P,Pg) + (1 —a")Ra(P, Pg) (52)

for a given «*, and o will be determined later.
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The Lagrangian can be written as

K
. Py + priPric N Py
eoaye (P ) oz e ()

k=1 k€A
P K
* Tk -
+(1—a") Y C<o,3> A(ZPk P)
keAe k=1
K
—p <Z Pry, — PR) (53)
k=1
which implies the following KKT condition:
oL a* 1
Forke A, — = .
orke4, oP;, 21n2 U,%-I-Pk-i-kaPRk
+ 1—-a* 1 <
2In2 O’%k-l-Pk -7
with equality if P, > 0. (54)
oL a* 1
Fork € A, — = .
ork e T 0P, 21n2 U%-I-Pk-i-kaPRk
n 1—-a* 1 <\
2In2 0,% + P~
with equality if P, > 0. (55)

oL o*
OPry

_ PRk <

— ) S M,
2In2 Jk+Pk+kaPRk
with equality if Pri, > 0. (56)

Fork=1,... K,

The optimal (P(*"), Bg*)) can be solved by an iterative algo-
rithm. For a given P j,, the value of P can be obtained by solving
(54) and (55), and its components have the following form:

_ { positive root x of (58) if it exists, otherwise 0, if k€ A

k= positive root x of (59) if it exists, otherwise 0, if k€ A°
(57)
where the roots are determined by the following equations:
* 1 1—a* 1
<. . & =) (58
2In2 x+ priPri + 0} 2In2 z 4oy,
* 1 1—a* 1
:_. 5 =) (59
2In2 x+ priPri + 0} 2In2 x40}

where ) is chosen to satisfy the power constraint 25;1 P, <
P.For a given P, the value of P 5 can be obtained by using (56),
and its components have the following form:

+
————') , fork=1,....K

(60)
where 4 is chosen to satisfy the power constraint Zszl Pri. <
Pr.

If we iteratively obtain P and P j according to (57) and (60)
with an initial P 5, we show in the following that (P, Pp) con-
verges to an optimal (P(®), ng*)). We refer to this optimal
power allocation as the iterative water-filling power allocation.
We finally need to search over 0 < a < 1 to find «* that satis-
fies the equalizer condition (51).

Proof of Convergenece: We show that (P, Pp) obtained
iteratively according to (57) and (60) converges to an optimal
(P, Bg“)). We first note that after each iteration the ob-
jective function (52) either increases or remains the same. We
also note that the objective function is bounded from above be-
cause of the power constraints at the source and relay nodes.
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Fig. 4. Fading full-duplex relay channel.

Hence, the objective function must converge. It is easy to check
that for a given P, the objective function is a strictly concave
function of Pp, and (60) yields the unique optimal P . It is
also true that for a fixed Py, (57) yields the unique optimal P.
Hence, as the objective function converges, (P, P ) must con-
verge. Moreover, (P, P ) converges to the solution of the KKT
conditions, which are sufficient for (P, Py) to be optimal be-
cause the objective function is concave over (P, Pp) € G. O

We now summarize the optimal power allocation that solves
(41) in the following theorem.

Theorem 4: The optimal solution to (41), i.e., the optimal
power allocation that achieves the asynchronized capacity (14)
falls into the following three cases.

Case 1: The optimal (P, Py, ) takes the two-level water-filling
form and is given by (43). This case happens if Pr > Pg_,(P)
where the threshold Pr ., (P) is determined by equality of (44).

Case 2: The optimal (P, Pg) takes the orthogonal division
water-filling form and is given by (49). This case happens if
condition (50) is satisfied.

Case 3: The optimal (P, Pp,) takes the iterative water-filling
form and is obtained iteratively by (57) and (60).

IV. FADING FULL-DUPLEX RELAY CHANNELS

In this section, we study the three-terminal relay channel [1],
[2]inthe contextof wireless networks, where nodes communicate
over time-varying wireless channels. We are interested in how the
source and relay nodes should dynamically change their power
with wireless channel variation to achieve optimal performance.
Such wireless relay channels can be modeled by the fading full-
duplex relay model, where each transmission link of a three-ter-
minal relay channel [1], [2] is corrupted by a multiplicative fading
gain coefficient in addition to an additive white Gaussian noise
term (see Fig. 4). The fading relay channel is referred to as the
full-duplex channel because the relay node is allowed to transmit
and receive at the same time and in the same frequency band.

The channel input—output relationship at each symbol time
can be written as

Y =\/pihiX+\/p2 hoXr+ 2
Yr = \//)_3h3X+ZR

where h1, hs, and hg are fading gain coefficients corresponding
to the three transmission links, respectively, and are assumed
to be independent complex proper random variables (not neces-
sarily Gaussian) with variances normalized to 1. We further as-
sume that the fading processes {h1;}, {h2;}, and {hs;} are sta-
tionary and ergodic over time, where ¢ is the time index. In (61),
the additive noise terms Z and Zp are independent proper com-
plex Gaussian random variables with variances also normalized

(61)
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to 1. The parameters p;, p2, and ps represent the link gain to
noise ratios of the corresponding transmission links. The input
symbol sequences {X;} and {X;} are subject to separate av-
erage power constraints P and Pg, respectively, i.e.,

1 n
~ Y EIXpl* < Pr. (62)

i=1

1 n
- EB|X;|?<P,
n

i=1

Remark 4: The fading relay channel is a special case of the
parallel relay channel with each subchannel corresponding to
one fading state realization. In particular, for a given fading
state the fading relay channel is a Gaussian relay channel by
(61). However, since this Gaussian channel is not physically de-
graded, the fading relay channel is not a Gaussian parallel relay
channel with degraded subchannels that is considered in Sec-
tions II and III, where physically degradedness is assumed for
each subchannel.

We assume that the transmitter and the receiver know the
channel state information instantly. Hence the source and relay
nodes can allocate their transmitted signal powers according to
the channel state information to achieve the best performance.
Our goal is to study the optimal power allocation at the source
and relay nodes. As in Section III-C, we are interested in the
asynchronized case for the fading full-duplex relay channel,
where the source and relay nodes are required to use indepen-
dent inputs. The main reason is because this simplifies the trans-
mitter design, and is more practical in distributed networks,
where nodes need to construct their codebooks independently.

For notational convenience, we collect the fading coeffi-
cients hi, ho, and hg in a vector b := (hq, ha, h3). We define
aset A := {h : ps|hs|> > p1]h1]*}, which contains all the
fading states h with the source-to-relay link being better than the
source-to-destination link. The complement of the set A is A¢ :=
{h : p3lh3|*> < p1]hi|*}. We define a set G that contains all
power allocation functions that satisfy the power constraints, i.e.,

G = {(P(b), Pa(b)) : E[P(L)] < P, E[Pr(k)] < Pr}. (63)

The following lower and upper bounds on the asynchronized
capacity of the fading full-duplex relay channel were given
in [9].

Lemma 1: ([9]): For the fading full-duplex relay channel,
lower and upper bounds on the asynchronized capacity are given
by

Crow = max
(P(h),Pr(h))€g

win {2B1C (PO P + Pa(Bpalhal®)

QB A[C(P(R)pslhol?)] + 2 [C(P@mm]}

(64)
Cor = iy 0% e
{2E[C(P<mm|h1|2 + Pa(b)pslhal),
2E[c<P<@><p1|h1|2+p3|h3|2>>1}. (65)
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Note that the rates in the lower bound of Lemma 1 are the same
as the achievable rates in Corollary 1.

The optimal power allocation that maximizes the lower bound
(64) and the upper bound (65) were obtained in [9] under a sum
power constraint, i.e., the source and relay nodes are subject to a
total power constraint. In this paper, we assume that the source
and relay nodes are subject to the separate power constraints as
given in (62) and (63), and derive the optimal power allocations
that maximize the bounds (64) and (65), respectively. We also
characterize the conditions where the lower and upper bounds
match and determine the capacity of the channel.

Using the same technique as in Section III-C, we characterize
the optimal power allocation that maximizes the lower bound
(64) of the fading relay channel. This optimal power allocation
takes the same three structures as those given in Section III-C,
and is summarized in the following for the sake of completeness.

Optimal power allocation that maximizes the lower
bound (64):

Case 1 (two-level water-filling): If Pr > Pg ,,(P), the optimal
(P(O)(ﬁ),Péo)(ﬁ)) is given by
o 1Y ithea
(an —m) , ifhe
+
(Aﬁq?_ﬁ) ifh e A°

where \ is chosen to satisfy the power constraint E[P(h)] = P.

+
©)/ 1y 11 + p1|h1 PO (h)
Pr (k) = </Lln2 p2|ha|? 67

where p is chosen to satisfy the power constraint E[Pr(h)] =
Pr.

The threshold Pg ., (P) as a function of the source power P
can be solved using the following equation:

B e (PO®pImIE + PY (B)pslhal?)]
= BalC(PO (W)ps|hsl)] + Eac C(PO (Wpr | ). (68)

PO(h) = (66)

Case 2 (orthogonal division water-filling): The optimal
(P(l)(ﬁ),Pg)(ﬁ)) is given by

i a

ol = palhal?’

PM(h) = (L S >+ P (k) = 0;

- Aln2 p1|h1|2 L k

. A m
o~ palha

ﬂ%@z&fﬁ@=<l ——Lﬁi (69)

pn2 - polhol?

where A and p are chosen to satisfy the power constraints
E[P(k)] = P and E[Pg(h)] = Pr.
Case 2 happens if the following condition is satisfied:
B (¢ (PO@pilif* + PF (Wpolhaf?) |
< Ba[C(PP ()ps|hsl*)] + Eac[C(PD (B)p1|ha ).
(70)
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Case 3 (iterative water-filling): The optimal (P(*"), Péa*))
can be obtained by the following iterative algorithm. For a given
Pg(h), the value of P(h) is given by

P(h)
| positive root x of (72) if it exists, otherwise 0, if h€ A
- { positive root x of (73) if it exists, otherwise 0, if he A°

(71)
where the roots are determined by the following equations:

o p1|h1]?
In2  pi|h1?x + Pr(h)p2|ho|* + 1
1—or palhs|?
. =) (72
In2 1—|—p3|h3|2$ (72)
o p1lhi?
In2 pi|hi|?z 4+ Pr(h)p2lha]? +1
1—af hy|?
oot mlhl g

In2 1+ pi|he)x

where ) is chosen to satisfy the power constraint E[P(h)] = P.
For a given P(h), the value of Pgr(h) is given by
1 1+pmPP(R)\*
Pr(h) = ( - )
1 1n 2 p2|h2|?
where (1 is chosen to satisfy the power constraint E[Pr(h)] =
Ph.

The power allocation (P(h), Pr(h)) obtained iteratively
from (71) and (74) with an initial Pgr(h) converges to an
optimal (P(")(h), P}({’ )(ﬁ)). The parameter o is determined
by the following equalizer condition:

(74)

E[C(P(h)p1|h1|* + Pr(h)ps|hal|*)]

= Ea[C(P(h)ps|hs|*)] + Eac[C(P(h)p1|ha|?)].  (75)

The optimal power allocation for the upper bound (65) can
be derived in a similar fashion but it is omitted here since this
optimization does not have an operation meaning. In general, the
upper and lower bounds do not match. In the following theorem,
we characterize the condition where the two bounds match and
establish the asynchronized capacity.

Theorem 5: For the fading full-duplex relay channel, if the
channel statistics and the power constraints at the source and
relay nodes satisfy the condition (70), then the asynchronized
capacity is given by

¢ = 25 [¢ (PO (Wypafis + P Wypalhaf?)]

where  the capacity achieving power  allocation
(PM(h), Pl(zl)(ﬁ)) takes the orthogonal (time)-division
water-filling form given in (69).

Proof: The lower bound (64) and the upper bound (65)
have one term in common inside the “min” in their expression.
If condition (70) is satisfied, Case 2 happens when solving the
max-min problem for the lower bound (64). In this case, the
common term of the bounds is optimized by the power alloca-
tion in (69) and determines both bounds that result in Cy, =
C1ow- This common value is thus the asynchronized capacity.

]

(76)
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Fig. 5. Fading half-duplex relay model.

The condition given in Theorem 5 essentially requires that the
relay power Pr be small compared to the source power P. In
this case, the optimal scheme is to maximize the rate at which
the source and relay nodes can transmit to the destination node.
The optimal scheme is to let the source and relay nodes have a
time-division access of the channel. For a given channel state re-
alization, the node with a better channel to the destination node
is allowed to transmit. This is similar to the optimal power al-
location scheme for the fading multiple-access channel studied
in [39].

V. FADING HALF-DUPLEX RELAY CHANNELS

In this section, we study a fading half-duplex relay channel
model, where the source node transmits to the relay and destina-
tion nodes in one channel (channel 1), and the relay node trans-
mits to the destination node in an orthogonal channel (channel
2). We introduce a parameter 6 to represent the channel resource
(time and bandwidth) allocation between the two orthogonal
channels. We draw this fading half-duplex relay channel model
in Fig. 5 with the solid and dashed lines indicating the transmis-
sion links of channels 1 and 2, respectively.

The input—output relationship for the fading half-duplex relay
channel is given by

Yi = /o X + 24
Yo = \/p2hoXr + Z

Yr = /pshsX + Zr (77)
where h1, hs, and hs are fading gain coefficients that satisfy the
same assumptions as for the fading full-duplex relay channel in
Section IV. The additive noise terms 7, Zo, and Zp are inde-
pendent proper complex Gaussian random variables with vari-
ances normalized to 1. The parameters p1, p2, and ps represent
the link-gain-to-noise ratios of the corresponding transmission
links. The source and relay input sequences are subject to the
same power constraints (62) as in the fading full-duplex relay
channel.

As in the full-duplex case, the channel state information is
assumed to be known at both the transmitter and the receiver.
Hence, the source and relay nodes can allocate their powers
adaptively according to the instantaneous channel state infor-
mation. The half-duplex channel has an additional channel re-
source allocation parameter 6 that may also be optimized. Our
goal is to find the jointly optimal § and power allocation for the
source and relay nodes that achieve the best rate. We also de-
rive an upper bound on the capacity, which helps to establish
capacity theorems for some special cases.
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We study three scenarios. In Scenario I, we fix § = %, and

only consider the maximization of the achievable rate over the
power allocation at the source and relay nodes. In Scenario II,
we restrict § to be the same for all channel states, and jointly op-
timize the achievable rate over this single parameter 6 and power
allocation. In Scenario III, which is the most general scenario,
we further allow 6 to change with channel state realizations, and
optimize the achievable rate over all possible channel resource
and power allocations.

A. Scenario I: Fixed § = 1/2

In this subsection, we study Scenario I, where the two or-
thogonal channels share the channel resource equally, i.e., the
channel resource allocation parameter § = 1/2. We use this
scenario to demonstrate the three basic structures of the optimal
power allocation, which take simple forms. The optimal power
allocation can be implemented in a distributed manner at the
source and relay nodes, because each node needs to know only
the channel state information of the links over which it trans-
mits.

In the following, we first give an achievable rate for this
channel, and then find an optimal power allocation that maxi-
mizes this achievable rate.

Proposition 2: An achievable rate for the fading half-duplex
relay channel Scenario I is given by

max
(P(h),Pr(h))€g

min {E[C(2P(ﬁ)p1|h1|2) + C(2Pr(h)pa|ha)?)],

low —

EA[cmP@pgmsP)]+EAc[c<2P<mp1|h1|2>]} 78)

Proposition 2 follows easily by using steps that are similar to
the achievability proof for Theorems 2 and 3 and by using the
channel definition (77).

The optimal power allocation that maximizes Cioy in (78)
can be derived by applying Proposition 1, and are given in the
following three cases. The details of the proof are relegated to
Appendix I.

Optimal power allocation that maximizes the lower
bound (78):

Case 1: If Pr > Pp,(P), the optimal (P (k), P (b)) is
given by

+
1 1 1 :
5(,\1n2_p3|h3|2) ifheA

11 1\
2 \XIn2 ~ p1]hi]?

where A is chosen to satisfy the power constraint E[P(h)] = P.

PO (h) = (79)

ifhe A°

1 1 1
P (h) = ( (80)

+
2 \(puln2 Pz|h2|2)

where (1 is chosen to satisfy the power constraint E[Pr(h)] =
Pr.
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The threshold Pg ., (P) as a function of the source power P
can be solved using the following equation:

E [C (2P§20)(ﬁ)/)2|h2|2)}

= BA[C(2PO (h)ps|hs|*) — (2P (h)p1|he[*)].  (81)

Case 2: If P < Pg(P), the optimal (P (h), PS (b)) is
given by

1/ 1 1 \"
gy (L
Prh) 2()\1112 Pl|h1|2) ®2
+
Wy Lt 1
O ) &

where A and p are chosen to satisfy the power constraints
E[P(h)] = P and E[Pg(h)] = Pr.

The threshold Pg (P) can be solved using the following
equation:

B[e (208 wpslhal?)]
= EA[C2PW (k) ps|hsl”) — C(2PM (h)p1|ha|*)]. (84)

Case 3: If {DR,I(P) < Pr < Pg.(P), the optimal
(P (h), Py (h)) is given by

P ()
positive root x of (86) if it exists, otherwise 0, ifh € A
= + . .
(st~ i) ifh e A
(85)
where the root z is determined by the following equation:
a* 1 1—a* 1 \_
2In2 —Zpl\lhlP +x 2In2 Tl T
(86)
. 1[ o 1 \"
P Yy = 2 (& - 87
(B = (um p2|h2|2> ®n

The parameters A and p are chosen to satisfy the power con-
straints given in (63). The parameter o is determined by the
following condition:

B [P (Wil f?) +C2PE (B)palhal?)]

= E4[C(2P) (h)p3|hs]?)]

+ Bac[C2PC (R)pr [ [*)]. (88)

It can be seen that in all cases the optimal power allocation
Pg(h) for the relay node depends only on the fading gain hs of
the relay-to-destination link and it is always a water-filling solu-
tion. However, the optimal power allocation P (k) for the source
node in general depends on the fading gains h; and hg cor-
responding to two links (source-to-destination and source-to-
relay), and it is not a water-filling solution in general. Only in
cases where Pg is large or small compared to P, i.e., where
Pr > Pgy(P) or Pr < Pg,(P), the optimal P(h) depends
only on the fading gain of one link and it reduces to a water-
filling solution. This is intuitive because when Pg is small com-
pared to P, we should make the multiple-access transmission
from the source and relay nodes to the destination node as strong
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Fig. 6. Optimal achievable rates in Scenario I.

as possible, and hence the power allocation at the source node
should be based on the fading gain h; of the source-to-destina-
tion link. When Pg, is large compared to P, we should transmit
as much information as possible from the source node to the
relay node, and hence, the power allocation at the source node
should be based on the fading gain h3 of the source-to-relay link.

We now provide numerical results for a Rayleigh-fading
half-duplex relay channel. We assume that the fading coeffi-
cients hy, hs, and h3 are independent, zero-mean, unit variance,
proper complex Gaussian random variables (i.e., the amplitudes
|hi], |h2], and |hs| have a Rayleigh distribution). We further
assume p1 = 0.1, po = 0.1, and p3 = 1. We assume the power
constraint at the source node is P = 3 dB. This corresponds
to the practical environment where the relay node is close to
the source node. In Fig. 6, we plot the achievable rates for
Scenario I optimized over power allocation (P(h), Pr(h)).
We also indicate the corresponding max-min optimization
cases to achieve these rates. It can be seen that the achievable
rate increases as the relay power increases in Cases 2 and 3,
and saturates when the relay power falls into Case 1. This is
because in Case 1 the relay power is large enough to forward
all the information decoded at the relay node to the destination
node, and the achievable rate is limited by the capacity of the
source-to-relay link.

In Fig. 7, we plot the ranges of the source and relay powers
with their corresponding max-min optimization cases. The solid
line in the graph divides Cases 1 and 3, and corresponds to the
threshold function Pg ., (P). The dashed line divides Cases 2
and 3, and corresponds to the threshold function Pg ;(P). It is
clear from the graph that when the relay power is small com-
pared to the source power, the optimal power allocation falls
into Case 2, and when the relay power is large compared to
the source power, the optimal power allocation falls into Case
1. Since the achievable rate (based on the decode-and-forward
scheme) saturates in Case 1, it is not useful to increase the relay

power beyond the solid line in Fig. 7 if the decode-and-forward
scheme is adopted. Hence, the solid line Pg ,, defines the relay
powers that provide the best decode-and-forward rates under
Scenario I for the corresponding source powers.

B. Scenario II: Same 0 for All Channel States

In Scenario I, 6 is fixed at 1/2; i.e., the channel resource of
time and bandwidth is equally allocated for the two orthogonal
channels. Such equal channel resource allocation may not be op-
timal, and therefore we consider Scenario II, where the channel
resource allocation parameter 6 needs to be optimized jointly
with power allocation. We also assume that 6 is the same for all
channel states to make the system design simple. As in Scenario
I, the optimal solution of Scenario II can also be implemented
in a distributed manner at the source and relay nodes. This is be-
cause the optimal # depends only on the channel statistics, not
on the channel state realizations. The power allocation at each
node depends only on the channel state of the links over which
the node transmits.

We first give an achievable rate (lower bound on the capacity)
and a cut-set upper bound on the capacity. We then study the
joint channel resource and power allocations that optimize these
bounds. We also characterize the condition when the two bounds
match and establish the capacity.

Proposition 3: An achievable rate for the fading half-duplex
relay channel Scenario II is given by

Cliow = max
<1 (P(h) PR(h))Gg

() ()
(5 (22

(89)
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where § = 1 — 6. An upper bound on the capacity is given by

Coyp = max
0<6<1,(P(h),Pr(h))EG

min {E [290 (;P@”;"“P) +20¢C <4PR( )52|h2|2>] ,

B [20C (P(h)(03|h3|; +p1|h1|2)ﬂ }

We provide the optimal channel resource and power allo-
cations (0, P(h), Pr(h)) that solve (89) in the following. The
proof of optimality is relegated to Appendix II

(90)

Optimal resource allocation that maximizes the lower
bound (89):

Case 1: This case is included in Case 3 with the parameter a
being allowed to take the value of 0.

Case 2: The optimal (8, P((h), P{" (1)) can be obtained
by the following iterative algorithm. For a given 6, the power
allocation (P(h), Pr(h)) are given by

P(h) =4 BRI N 1)
= Aln2 p1|h1|2
/1 1 +
Pph) =0 — — ——— 92
n(h) <uln2 p2|h2|2> e

where A and p are chosen to satisfy the power constraints. For
agiven (P(h), Pr(h)), the value of § is given by the root of the
following equation:

o {C <P(h)/;1|h1|2> e <PR( )g2|h2|2>]

_ LE[ P(h)pm|h>  Pr(h)p2|hal?
2 [0+ P(b)pr|ha> 0+ Pr(h)palhal?

} . (93)

The resource allocation (6, P(h), Pr(h)) obtained itera-
tively from (91), (92), and (93) converges to the optimal
(0D, PO (n), PY) (h)).

This case happens if the following condition is satisfied:

PY) (1) pa|ho?

P (h)pslhs|” PO (R)pr | |?
(1) h)psih3 _ h)piing
L G B

7

(94)

Case 3: The optimal ("), P (), PI(:*)(Q)) can be ob-
tained by the following iterative algorithm. For a given 6, the
power allocation (P(h), Pr(h)) is given by

P(h) =
positive root x of (96) if it exists, otherwise 0, ifh € A
+ . .
0 (s — so) ifh € A°
95)

where the root = is determined by the following equation:

ol el L s e
n o lh E +x n oaThal? +x

Pr(h) =0 o 1 " (97)
PE T\ w2 polhof?)

The parameters A and p are chosen to satisfy the power
constraints.
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For a given (P(h), Pr(h)), the value of 6 is the root of the
following equation:

. P(h)p1|h1]? o P(h)p1|h1]?
20754 [C< 7 w254 | T PRy ]

o le PR(Q),?2|h2|2 +oz_*E _ Pr(h)paha|?
[ In2 0+ PR(ﬁ)p2|h2|2

+ 2E 4c [C <%1|h1|2>} _ﬁE‘“ {%}
+2(1-a")E4 {C <W>}

1-—a*
In2

P(h)p3|hs|? } _ (98)

4 {9+P<h>ps|hs|2

The resource allocation (6, P(h), Pr(h)) obtained itera-
tively from (95), (92), and (98) converges to the optimal
(67, PC)(h), PR (h).

?

Finally, the parameter a* is determined by the condition

. (™) 2
E {g(a )C (P ;(ﬁjﬂ)ﬂhﬂ )

+é(a*)c <P]<2a )(h)02|h2|2)]
ge*) ’

. (") 2
=E4 [g(a e <P é(ﬁ3£3|h3| )}

. (™) 2

o (99)

The optimization for the upper bound (90) can be performed
in a similar manner, and is not presented in this paper. In general,

the lower bound (89) and the upper bound (90) do not match.
In the following theorem, we characterize the condition under
which the two bounds match and hence yield the capacity of this
channel.

Theorem 6: For the fading half-duplex relay channel Sce-
nario I, if the channel statistics and the power constraints satisfy
the condition (94), then the capacity is given by

P(l)(h)p |hy|?
— W (L A\Z/PLEL
C=E [29 C < 6] >

(1) 2
+20M¢ (M)] (100)

where  the  capacity-achieving  resource  allocation
(6D, PO(h), PY(R)) can be obtained iteratively

from (91), (92), and (93).

The proof of Theorem 6 is similar to the proof of Theorem 5,
and is hence omitted.

Remark 5: The capacity in Theorem 6 refers to the largest
rate under Scenario II that can be achieved over all possible
channel resource allocation parameters 6 and over all possible
power allocation rules (P(h), Pr(h)).

The condition given in Theorem 6 tends to be satisfied either
when the relay power P is small compared to the source power
P, or when the relay is much closer to the source than to the
destination.

In Fig. 8, we plot the lower and upper bounds on the capacity
of Scenario II for the same Rayleigh-fading relay channel as
in Fig. 6. Both bounds are optimized over (0, P(h), Pr(h)). It
can be seen from Fig. 8 that when the relay power is less than
a threshold (4 dB), the two bounds match and determine the
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capacity of Scenario II. This demonstrates our capacity result in
Theorem 6 and the condition when the lower and upper bounds
match. Fig. 8 also shows that the gap between the lower and
upper bounds is small even when the relay power is large.

In Fig. 9, we plot the ranges of the source and relay powers
with their corresponding max-min optimization cases. The
dashed line in the graph divides Cases 2 and 3. Similar to
Fig. 7, the optimal power allocation falls into Case 2 when the
relay power is small compared to the source power. However,
we see that Fig. 9 deviates from Fig. 7 in that Case 1 (where
the achievable rate saturates) is missing in Scenario II. This
explains why the achievable rate under Scenario II continues
to increase beyond the point where the rate under Scenario I
saturates (see Fig. 11 in Section V-C).

In Fig. 10, we plot the optimal value of ¢ as a function of
the relay power, and observe that it is not a monotonic function.
When the relay power is small, as the relay power increases,
the optimal 6 decreases so that more of the channel resource
is assigned to the relay-to-destination link to make more use
of the relay node. When the relay power is large, as the relay
power increases, the optimal 6 increases. This is because the
relay power is now large enough to forward all the information
decoded at the relay node to the destination node even with a
small amount of the channel resource, and hence more of the
channel resource is needed for the source node to transmit more
information to the relay node. This behavior of the optimal 6 is
similar to that of the Gaussian half-duplex relay channel studied
in [37].
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C. Scenario IlI: § Changes with Channel States

In Scenario I1, the parameter € is required to be the same for all
channel states, and only the power allocations are dynami-cally
adjusted according to the instantaneous channel state. In this sub-
section, we study Scenario III, where f is also allowed to change
with the channel state realizations, and #(h) is optimized jointly
with power allocation (P(h), Pr(h)). However, for the source
and relay nodes to decide 6(h) for each channel state, each node
needs to know the channel realizations on all transmission links.
This makes the system design more complex, and not as practical
as Scenario II. We include the analysis of the resource allocation
for this scenario mainly for the sake of completeness.

Proposition 4: An achievable rate for the fading half-duplex
relay channel Scenario III is given by:

Clow = max min
0<o(R)<1,

(P(h),Pr(h))€g

S ]
[9 e (Talmbat'))

o (P

+ Ea- [29(@)0 (%)]} (101)

max min

An upper bound on the capacity is given by
0<o(n)<1,
(P(h),Pr(Rh))EG

("2
e ().

B [ o(h)C <P(ﬁ)(93|h93(|2)+ pilha|? ))} }

(102)
The optimal resource allocation (6(h), P(h), Pr(h)) that

achieves the maximum of the lower bound (101) is given in the
following. The proof of optimality is relegated to Appendix III.

Optimal resource allocation that maximizes the lower
bound (101):

Case 1: The optimal resource allocation
h is given
8O (n), PO (h), P (h)) is given by
! ifhe A
— s n e
PO (R) i ) ' (103)

)+7 ifh e A°

1 \hl I

PP (b Tl

+
) iPO®m) =0
if PO)(h) >0
where A and 4 are chosen to satisfy the power constraint given

in (63).

(104)

i
(e

if PO)(h) >0

if PO (h) = 0. (105)

wow={
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For Case 1 to happen, (6(*)(h), P(9)(h), PI%O)(Q)) needs to sat-
isfy the following condition:

E [C (P;zo)(ﬁ)/)2|h2|2)}

> B [¢ (PO B)palhal?) = € (PO woalhi]?)] -
(106)

Case 2: The optimal (§(") (h), P (h), Pl(zl)(@)) can be de-
termined by the following iterative algorithm. For a given 6(h),
the power allocation (P(h), Pr(h)) is given by

1 1 \"
P(ﬁ) N H(h) (m - P1|h1|2>

Path) =) (- - — L)'
A= 2 p2|ha|?

where A and p are chosen to satisfy the power constraints given
in (63). For a given (P(h), Pr(h)), the channel resource allo-
cation 6(h) is the root of the following equation:

P(h)p1|hi|? Pr(h)ps|ho|?
2o (L) -2 (M)
1 Pl
In20(h) + P(h)p1|ha[?
0 Pl
2 608) + Palb)palfal?

(107)

(108)

(109)

For Case 2 to happen, (#®)(h), P()(h), P}(;)(Q)) needs to sat-
isfy the following condition:

- Py () palha)?
E | 6¢ )(h)c (%T

(1) 2

(110)

Case 3: The optimal ((*")(h), P(>")(R), Péax)(h)) can be
obtained by the following iterative algorithm. For a given 6(h),
the power allocation (P(h), Pr(h)) is given by

P(h) =
positive root x of (112) if it exists, otherwise 0, ifh € A
+
0(h) (A11r12_p1|}111|2> ; ifh € A°
(111)

where the root x is determined by the following equation:

a*f(h) 1 (1—a")f(h) 1
2 @ m2 w0
E +z p3lhs]? tz
(112)
Pr(h) = 8(h) (0‘— - L>+ (113)
PETTE 2 pofhof?

where the parameters A and y are chosen to satisfy the power
constraints (63).
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Fig. 11. Comparison of achievable rates with optimal resource allocations for Scenarios I, II, and III.

For a given (P(h), Pr(h)), the channel resource allocation
6(h) is determined by
Ifh € A,

gorc (P@erlm?Y o Ph)plhaf?
0(h) In2 6(h) + P(h)p1]h1]?
oyc ((PrB)palhal?
0(h)
Lo Prpa|hol®
In2 (h) + Pr(h)p2|ho|?
wvq [ P(R)ps|hs]?
+2(1-a*)C (W
_1—a*  P(h)pslhs|?
In2 6(h) + P(h)ps|hs|?

=0. (114)

Ifh € A°
—90*C (PR(h)P2|h2|2> Lo Prpelhsl®

In26(h) + Pr(h)p2|hs|?
2
+26<£@ML@L) !

1L Ph)pi|m _
2 0(h) + P(h)p:1|hi|?

The parameter o* is determined by the condition

E [9@*)(@0 (%Wﬂ

i PE) (h)polhs?

) (h)C (W !
o P () ps|hsl?

= b s e (2]

* P(a*)(ﬁ)p1|h1|2
(") I S L I
+ E4e [9 (h)C< T )} . (115)

+E

The optimization for the upper bound (102) can be per-
formed using steps that are similar to those for the lower bound.
In general, the lower bound (101) and the upper bound (102)
do not match. However, we show that if the channel statistics
and the power constraints satisfy the following condition, the
two bounds match and hence we obtain the capacity for this
channel.

Theorem 7: For the fading half-duplex relay channel Sce-
nario III, if the channel statistics and the power constraints sat-
isfy the condition (110), then the capacity is given by

C—E [29(1)@0 (P(”(ﬁ)mlhllzﬂ

oD ()
5 Py ()palhal”
E [20W(h)C | BT 116
where the capacity achieving resource allocation

(6D (h), PO (), P (h)) can be obtained iteratively
from (107), (108), and (109).

The proof of Theorem 7 is similar to that of Theorem 5, and
is omitted.

Remark 6: The capacity in Theorem 7 refers to the largest rate
under Scenario III that can be achieved over all possible channel
resource allocation #(h) and power allocation (P(h), Pr(h)).

The condition given in Theorem 7 is similar to that in The-
orem 6 for Scenario II, and these conditions tend to be satisfied
either when the relay power Pg is small compared to the source
power P, or when the relay node is much closer to the source
node than to the destination node.

In Fig. 11, we plot the achievable rates under Scenario III op-
timized over (6(h),P(h), Pr(h)) for the same Rayleigh-
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fading relay channel as in Figs. 6 and 8. We compare
these rates with the achievable rates under Scenario I opti-
mized over (P(h),Pr(h)) and Scenario II optimized over
(0, P(h), Pr(h)), and with the capacity of the direct link from
the source node to the destination node. It is clear from the
graph that employing the relay node greatly improves the per-
formance of the source-to-destination channel. Fig. 11 shows
that the achievable rate under Scenario II is larger than the
achievable rate under Scenario I, particularly when the relay
power is large and the achievable rate under Scenario I saturates.
This demonstrates that using a jointly optimal channel resource
allocation parameter 6 helps to improve the achievable rate. As
we have commented for Fig. 9, Scenario II does not have Case
1, and hence the achievable rate under Scenario II continues to
increase when the achievable rate under Scenario I saturates in
Case 1. Furthermore, Scenario III has larger achievable rates
than Scenario II because #(h) can be dynamically changed
based on the instantaneous channel state information.

We note that finding an optimal resource allocation for
Rayleigh-fading relay channels is a high-dimensional op-
timization problem, particularly in Scenario III, where the
optimization is jointly over (6(h), P(h), Pr(h)). Although
the problem is convex, the standard convex programming
techniques may converge slowly. However, since we have
obtained the analytical structures of the optimal solutions, our
numerical algorithm converges extremely fast and takes only a
few iterations.

VI. CONCLUDING REMARKS

In this paper, we have studied capacity bounds for the parallel
relay channel and its special case of the fading relay channel.
We have established capacity theorems for several classes of
channels including the parallel relay channel with degraded
subchannels and its Gaussian case, the full-duplex relay channel
that satisfies certain conditions in asynchronized case, and the
half-duplex relay channel that satisfies certain conditions.

We have also studied resource allocation for the Gaussian par-
allel relay channel with degraded subchannels and the fading
relay channel under both full-duplex and half-duplex models.
Our study of resource allocation is different from previous work
on this topic in that we make the more practical assumption
that the source and relay nodes are subject to separate power
constraints rather than a total power constraint. We have shown
that optimal resource allocation under this assumption may take
three different forms depending on the channel statistics and
values of the power constraints.

Finally, we note that the resource allocation problem we have
considered falls under a class of max-min problems and we
have provided a technique for solving such max-min problems.
It is known that the achievable rates of relay channels when
relay nodes use the decode-and-forward scheme are usually ex-
pressed by max-min forms. Our technique certainly applies to
optimization problems arising in these contexts. In particular,
our technique has been applied to study orthogonal relay broad-
cast channels in [40], and can be used to study more general
classes of relay networks with fading links.
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APPENDIX 1
PROOF OF RESOURCE ALLOCATION THAT MAXIMIZES (15 (78)
FOR SCENARIO |

We first let Ry (P(h), Pr(h)), and R2(P(h), Pr(h)) denote
the two terms over which the minimization in (78) is taken. We
can then express (78) in the following compact form:

low — max
(P(h),Pr(h))€G

min{ Ry (P(h), Pr(h)), Ra(P(h), Pr(h))}.

We apply Proposition 1 to derive the optimal power allocation
rule, which falls into the following three cases.

Case 1: o* = 0, and (P9 (h), Péo)(@)) is an optimal power
allocation, which needs to satisfy the condition

(117)

R (P<° (h), P °>(h>) > R, (P<°>(@>,P,g°>@)). (118)
By definition, (P (h), P(O)( h)) maximizes
R(0, P(h), Pa(k)) = Ra(P(k), Pa()).  (119)

The optimal P(®)(R) given in (79) follows easily from the KKT
condition. For Case 1 to happen, (P (h), PI%O)(Q)) needs to
satisfy the condition (118). It is clear that Ro(P(h), Pr(h))
depends only on P(h). The term R;(P(h), Pr(h)) depends
on both P(h) and Pg(h). To characterize the most general
condition for Case 1 to happen, Pr(h) needs to maximize
Ri(P(h), Pr(h)). Such P}(%O)(Q) can be obtained by the KKT
condition and is given in (80). The condition (81) follows from
equality of condition (118).

Case 2: o* = 1,and (P (h), Pg)(ﬁ)) is an optimal power
allocation, which needs to satisfy the condition

Ry (PO (w), P (1) < Ry (PO0), PP() . (120)
The optimal (P (h), P}(%l) (h)) that maximizes
R(1, P(h), Pr(h)) = R1(P(k), Pr(h))  (121)

can be easily obtained by the KKT condition, and are given in
(82) and (83). The condition (84) follows from equality of con-
dition (120).

Case 3: 0 < o < 1, and (P (h), P (h)) is an op-
timal power allocation, where o™ is determmed by the following
condition:

Ry (PCO(), PV (1)) = By (P (), P ()
(122)
We need to derive (P(*)(h), P(a )( h)) that maximizes
R(a”, P(h), Pr(h)) = o Ry(P(h), Pr(h))
+(1 = ") Ro(P(h), Pr(h)). (123)
The Lagrangian can be written as
L=a"Ea[C(2P(h)p1]h1]?)]
+ o*E [C (2Pr(h)p2|ha|?)]
+Bae [C(2P(R)p1|ha]?)]
+ (1= a®)E4 [C(2P(h)ps|hs|?)]
— A(E[P(R)] = P) = p(E[Pr(h)]

where A and p are Lagrange multipliers.

— Pr) (124)
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For h € A, the KKT condition is given by

oc ao” 1
OP(h) 2In2 W—FP(Q)
1—a* 1
. <\,
+ 21n2 '

1 r —
2p3lh3|? + P(h)
with equality if P(h) > 0 (125)
It is easy to check that P(*")(h) for h € A givenin (85) satisfies
the preceding KKT condition. The ple’ )(h) for h € A°in (85)
and PI({O‘ )(Q) in (87) also follow from the KKT condition.

APPENDIX II
PROOF OF RESOURCE ALLOCATION THAT MAXIMIZES C',; (89)
FOR SCENARIO II

We let Ry (6, P(h), Pr(h)), and Ro(6, P(h), Pr(h)) denote
the two terms over which the minimization in (89) is taken. We
can then express (89) in the following compact form:
Ciow = max

0<0<1,(P(h),Pr(h))€G

win{ R (8, P(h), Pr(h)), Ra(6, P(h), Pa(h))}. (126)

The max-min problem in (126) can be solved by using Propo-
sition 1. The main step is to obtain (#(*), P(*) (p), P<a)( h)) that
maximizes

R(a,0, P(h), Pr(h)) := aRi(6, P(h), Pr(h))

+ (1 = a)Ra(0, P(h), Pr(h))
for a given a. The following lemma states that maximizing
the function R(a, 8, P(h), Pr(h)) over (6, P(h), Pr(h)) is a
convex programming problem and hence can be solved by stan-
dard convex programming algorithms.

Lemma 2: For a fixed «, R(«,0, P(h), Pr(h)) is a con-
cave function over (6, P(h), Pr(h)), where 0 < 6 < 1 and
(P(h), Pr(h)) € G.

Lemma 2 can be verified by computing the Hessian of the
function R(«, 0, P(h), Pr(h)) (for a fixed «) and showing that
it is negative semidefinite.

We now apply Proposition 1 to study the max-min problem
in (126) by considering the following three cases.

Case 1: o = 0, and (6@, P(O)(h), P(O)( h)) is an optimal
resource allocation, which needs to satisfy the condition

Ry (69, PO (h), PR (1))
(128)

127)

Ry (00, PO (n), PR (1)) >

We first derive (), P()(h), P{”’(h)) that maximizes

R(0,6, P(b), Pr(k)) = Ra(6, P(k), Pr(k)).  (129)

It is easy to see that the optimal #(®) = 1 from the expression
of Ro(6, P(h), Pr(h)), and this results in

Ry (g(o) p(O)(h) 0)(h)) < Ry (9(0)7]3(0)(@)7131(%0)(&)) .
(130)
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Comparing (128) and (130), it is clear that only equality can
be satisfied in (128). Hence, this case can be included in the
following Case 3 with o* being allowed to take the value of 0.
Case 2: o* = 1, and (6, P (h), P (R)) is an optimal
resource allocation, which needs to satisfy the condition

Ry (60, PO (n), PRO(0)) < Rz (60, PO(), P (1))
(131)
We first derive (), P(D(h), P(l)( h)) that maximizes

The Lagrangian can be written as

[ — 9%E {C <P(ﬁ)f;1|h1|2ﬂ + 20E [C (PR(h)g2|h2|2ﬂ

— ME[P(R)] = P) — p(E[Pr(h)] — Pr). (133)
It is easy to check that the KKT condition implies
1 1 \"
Ph)=0| — - —— 134
(_) ()\1112 p1|h1|2> ( )
(1 1 \"
Prh) =0 — - ——— 135
(&) </tlﬂ2 p2|h2|2> (139

The KKT condition also implies that the optimal #(1) needs to
satisfy the following condition:

gg _op [C (P(b)991|h1|2>] _sE [C <PR( )g2|h2|2>]

_ [ P(h)pr|h|? ]
In2 0+P( )p1|h1|2

+ LE[ Pr(h)p2|ho|® :|
In2 0+ PR( )p2|h2|2
<0, if6=0 (does not happen)

{:0, ifo0<f<1 (136)
>0, ifgd=1 (does not happen).

where the first and third cases do not happen because g—§ — 00

as  — 0, and ¢ aﬁ — —oo as f — 1. It can also be shown that
gg is monotomcally decreasing for 0 < # < 1. Hence, gg has
at most one root for 0 < ¢ < 1.

The iterative algorithm described in (91)—(93) converges to
the solution of the KKT condition given in (134)—(136). Since
the function R1(6, P(h), Pr(h)) is concave, the solution of the
KKT condition achieves the optimum. Condition (94) follows
from condition (131). i

Case 3: 0 < o* < 1,and (6", P)(h) PS (b)) is
an optimal resource allocation, where o* is determined by the
following condition:

Ry (97, PO (), P ()
— R2 (0(04 ) P(a )( ) P(a )( )) . (137)

We first derive (8(>"), P(*")(h), Péa*) (h)) that maximizes

R(a®,0, P(h), Pr(h)) = a* Ry (0, P(h), Pr(h))

+(1—a”)Ry(6, P(h), Pr(h)) (138)
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for given a*. The Lagrangian can be written as

L=20"0F, [c <7P@”91|h1|2ﬂ

e )

+ 20E 4 [c (—P(h)?'hﬂzﬂ

+2(1— a*)8E, [c (M)]
~ AE[P(W)] = P) = p(E[Pr(L)] = Pr).

For a given 6, The optimal (P(h), Pr(h)) given in (95) and
(97) follows from the KKT condition. The KKT condition also
implies that the optimal 6 for a given (P(h), Pr(h)) needs to
satisfy the following condition:

gg — 20E, {C (P(h)/;1|h1|2>]

o P(h)pi|hi]®
m2 6+ P(h)p1|hi|?
2
— 9'E C<PR( )g2|h2| )}
Lo E[ Pr(h)p2|ha|* ]
0 + Pr(h)p2|hs|?

(255

0
1 [ P(h)p1]hi]? ]
C Fg. | Al

0+ P(h)p1|hi|?

(139)

+ 2E 4

In2

ratt - oy [ (I

- P(h)ps|hsl®
2 [0+ P(h)ps|hs]?

<0, if6=0 (does not happen)
{:07 ifo<f<1 (140)
>0, ifd=1 (does not happen).

where the first and third cases do not happen because g—g — 0

as0—>0,andg—§ — —ooasf — 1.

Therefore, the iterative algorithm described in (95)—(98) con-
verges to the solution of the KKT condition. Since the function
R(a,8, P(h), Pr(h)) is concave for a given a, the solution of
the KKT condition achieves the optimum. Condition (99) fol-
lows from condition (137).

APPENDIX III
PROOF OF RESOURCE ALLOCATION THAT MAXIMIZES C'oy
(101) FOR SCENARIO III

We let R1(6(h), P(h), Pr(h)) and Ry(6(h), P(h), Pr(h))
denote the two terms over which the minimization in (101) is
taken. We can then express (101) in the following compact form:

low — max
0<6(h)<1,Vh,(P(k),Pr(h))€G

min { Ry(6(1), P(h), Pr(h)), Ra(6(h), P(h), Pr(h))}
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As in Scenario II, one main step to solve the max-min
problem in (141) is to obtain (§(*) (h), P(*)(h), P<a)( h)) that
maximizes
R(a,0(h), P(h), Pr(h)) := aRi(6(h), P(h), Pr(h))

+ (1 - (142)

for a given «. The following lemma states that maximizing
R(«a,8(h), P(h), Pr(h)) over (§(h), P(h), Pr(h)) is a convex
programming and hence can be solved by standard convex pro-
gramming algorithms.

Lemma 3: For a fixed a, R(a,(h), P(h), Pr(h)) is a con-
cave function over (6(h), P(h), Pr(h)), where 0 < §(h) < 1
for all b and (P(h), Pr(h)) € G.

Lemma 3 can be verified by computing the Hessian of the
function R(«, 0(h), P(h), Pr(h)) (for a fixed «) and showing
that it is negative semidefinite.

As for Scenarios I and II, we apply Proposition 1 to study the
max-min problem in (141) by considering the following three
cases.

Case 1: o* = 0, and (*)(h), PO (h), P}(zo)(ﬁ)) is an op-
timal resource allocation, which needs to satisfy the condition

Ry (600, PO (B). P (1)
> Ry (90 (h), PO(h), P () . (143)

We first derive (8(9 (h), P(O)(h), P(O)( h)) that maximizes

R(0,6(h), P(h), Pr(h)) = R2(6(h), P(h), Pr(h)). (144)

It is clear that #(°)(h) given in (105) is optimal from the
expression of Ro(6(h), P(h), Pr(h)). The power allocation
P©)(h) given in (103) then easily follows from the KKT
condition.

For Case 1 to happen, condition (143) needs to be satisfied.
To characterize the most general condition for Case 1 to happen,
for the given §(°)(h) and P(®)(h), Pr(h) needs to maximize
R1(6©)(h), P©)(h), Pr(h)), which has the following form:

By (60(1), PO (1), Pa(h))

= 2B (1.p0)(n)=0y [C (Pr(h)p2lh2|?)]  (145)
The optimal PI(%O) (h) given in (104) then follows from the KKT
condition. Finally, condition (106) follows from condition
(143).

The proofs for Cases 2 and 3 are similar to those for Scenario
II given in Appendix II, and are omitted.
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