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To Code or Not to Code Across Time: Space-Time
Coding with Feedback

Che Lin, Vasanthan Raghavan, and Venugopal V. Veeravalli

Abstract—Space-time codes leverage the availability of multi-
ple antennas to enhance the reliability of communication over
wireless channels. While space-time codes have initially been
designed with a focus on open-loop systems, recent technological
advances have enabled the possibility of low-rate feedback from
the receiver to the transmitter. The focus of this paper is on
the implications of this feedback in a single-user multi-antenna
system with a general model for spatial correlation. We assume
a limited feedback model, that is, a coherent receiver and
statistical knowledge at both the ends, along with B bits of
error-free quantized channel information at the transmitter. We
study space-time coding with a family of linear dispersion (LD)
codes that meet an additional orthogonality constraint so as to
ensure low-complexity decoding. Our results show that, when
the number of bits of feedback (B) is small, a space-time coding
scheme that is equivalent to beamforming and does not code
across time is optimal in a weak sense in that it maximizes
the average received SNR. As B increases, this weak optimality
transitions to optimality in a strong sense that is characterized
by the maximization of average mutual information. Thus,
from a system designer’s perspective, our work suggests that
beamforming may not only be attractive from a low-complexity
viewpoint, but also from an information-theoretic viewpoint.

Index Terms—Adaptive coding, diversity methods, fading
channels, feedback communications, MIMO systems, multiplex-
ing, quantization.

I. INTRODUCTION

THE LOW-COMPLEXITY beamforming scheme has at-
tracted significant theoretical attention in multi-input

multi-output (MIMO) applications and has been studied with
perfect channel state information (CSI) at the transmitter [1],
as well as with partial channel knowledge at the transmit-
ter [2]–[5]. The broad family of space-time codes generalize
beamforming to modulation across space and time. Initial
works on space-time codes assume no CSI at the transmitter
and study the reliability of information transmission with
uncoded inputs, that is, with the input symbols being indepen-
dent from one coherence block to another. Reliability can be
improved by using certain delay diversity techniques [6] and
these schemes can be extended to the more general framework
of space-time trellis codes [7]. Although space-time trellis
codes are near-optimal in the MIMO setting, they suffer from
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decoding complexity that is exponential in the rate or the
number of transmit antennas. To overcome these difficulties,
orthogonal space-time block codes (OSTBC) [8], [9] that
achieve the full diversity order1 of multi-antenna systems and
offer the additional advantage of low decoding complexity
have been proposed.
Maximizing the diversity order, while being a useful design

criterion, is only applicable for uncoded transmissions. In
practice, a space-time code is used as an inner code in
concatenation with an error correction code that is used as an
outer code, and is designed2 to achieve maximum possible rate
for a given SNR. A good inner code should be such that it does
not destroy any degrees of freedom that the outer code can
exploit to obtain diversity. In this setting, since the outer code
helps the concatenated transmitter in approaching capacity, the
mutual information is a meaningful design metric for the inner
space-time block codes if soft decisions are allowed at the
space-time decoder.
In the no CSI case, it has been established that [11], [12]

OSTBC are also optimal from a mutual information viewpoint.
The assumption of no CSI at the transmitter is too pessimistic
and does not capture reality, where either statistical or partial
channel knowledge [13] at the transmitter may be available. In
this context, when only the statistics are available at the trans-
mitter, it is known that OSTBC are no longer optimal within
the class of linear space-time codes [14], [15]. In practice, in
addition to the statistical information, there is usually a viable
low rate feedback link from the receiver to the transmitter.
Thus recent attention, in both theory and practice, has shifted
towards understanding the implications of partial CSI at the
transmitter (most notably, in the form of limited or quantized
feedback [13]) on the performance of communication systems.
In the more practical limited feedback case, there have been
some recent works [14], [16]–[20] on the design of space-time
codes with CSI feedback. However, much of this body of work
ignores spatial correlation and focuses on weighted OSTBC,
which implicitly imposes an additional assumption on the
maximum rank of the inner space-time codes. As witnessed in
the statistical case [14], [15], spatial correlation can potentially
lead to significant changes in code design criterion and optimal
signaling. Thus, our goal in this work is to address optimal
signaling with partial channel knowledge at the transmitter
and more generally, whether coding across time is necessary
in partial CSI systems.

1The diversity order of a code is defined as the exponent of the rate at
which error probability decays with SNR.
2For example, recent work on low-density parity check codes (see,

e.g., [10]) have shown that it is possible to construct outer codes that come
close to achieving the mutual information between the input and the output
of the inner space-time code.
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The general framework of linear dispersion (LD) codes,
introduced in [21], subsumes all linear space-time codes
and hence provides a natural framework for studying both
beamforming as well as space-time code design in a unified
way, given that partial CSI is available at the transmitter. In
an LD code, each symbol that is transmitted over the channel
is some linear combination of the inputs and their complex
conjugates, and the codes are designed to maximize the mutual
information between the input and the output of the space-
time code. While the generality of the LD framework leads
to some complications in code design, recent work [22]–[24]
shows that systematic LD code constructions are still possible.
In this work, we impose an additional Generalized Orthog-

onal Constraint (GOC) [9], [15] on the LD codes so that they
enjoy the same low-complexity of decoding3 as OSTBC. That
is, we consider the set of orthogonal LD codes. The search for
the optimal orthogonal LD codes provides significant insights
on whether coding across time is necessary or not.
Contributions:

• We first show that when there is perfect CSI at the trans-
mitter, the optimal power allocation across the different
input symbols is uniform. Furthermore, the rank of the
optimal LD code is one and since rank-one LD codes
are equivalent to beamforming, the optimal perfect CSI
scheme does not code across time.

• When only statistical information is available at the trans-
mitter, we establish that uniform symbol power allocation
is still optimal. It is also known from [15] that the
rank of the optimal linear space-time code is in general
dependent on SNR and channel correlation. Thus the
optimal statistical scheme codes across time, in general.

• In the partial CSI case, we first show the optimality of
uniform symbol power allocation, irrespective of the level
of channel knowledge at the transmitter. On the question
of the rank of the optimal scheme, it is natural to expect
a smooth transition as the quality of channel information
at the transmitter gets successively refined (that is, as the
number of bits of feedback B increases). Surprisingly,
we show that there exists a feedback threshold, above
which rank-one schemes enjoy strong optimality proper-
ties. That is, when B is sufficiently large (for example,
B � log(Nt) with Nt denoting the transmit antenna
dimension), we show that rank-one schemes maximize
the average mutual information. In contrast, when B
is small, we show a slightly weaker result: Rank-one
schemes maximize the average received SNR. While the
problem of transition from weak to strong optimality (as a
function of B) is not addressed here, our study suggests
that for most scenarios of interest, the optimal scheme
under the orthogonal LD code framework and quantized
feedback corresponds to not coding across time.

• The optimality of rank-one schemes (beamforming) im-
plies that the low-complexity advantage of scalar coding
is justified from an information theoretic sense.

Notations: We use X(i, j) and X(i) to denote the i, j-th and

3Satisfaction of the GOC ensures that the joint maximum-likelihood (ML)
decoding of the vector input reduces to individual ML decoding of the scalar
inputs.

i-th diagonal entries of a matrix X. The conjugate transpose
and regular transpose are denoted by (·)† and (·)T while E[·]
and Tr(·) stand for the expectation and the trace operators,
respectively. We say that a singular value decomposition of
a matrix is in its standard ordering if the singular values
are arranged in non-increasing order. Further, if the matrix
is Hermitian, λmax(·) denotes the largest eigenvalue.

II. SYSTEM SETUP

We consider a single-user MIMO communication system
with Nt transmit and Nr receive antennas. The multi-antenna
channel matrix experiences fading in time, frequency, and
space. In this paper, we assume a narrowband, block fading
model for the channel. That is, the channel is frequency flat
and remains constant across a block of length Nc symbols
and fades ergodically from block to block. With these simple
models for the evolution of the channel across time and
frequency, the main focus is on the spatial aspect.
To overcome the impediments of fading, we will consider

the design of space-time codes and view the channel across
the block length Nc as corresponding to one channel use. The
discrete-time, complex baseband model under this setting is
given by

Y =
√

ρ

Nt
HX + W (1)

where X ∈ CNt×Nc is the transmitted signal matrix, Y ∈
CNr×Nc is the received signal matrix, H ∈ CNr×Nt corre-
sponds to the channel matrix, and W ∈ C

Nr×Nc denotes
the complex additive white Gaussian noise with i.i.d. entries,
W(i, j) ∼ CN (0, 1). We assume an average power constraint
on X given by E

[
Tr
(
XX†)] ≤ NtNc, which results in a

transmit power constraint ρ over each symbol duration.

A. Spatial Correlation

We now describe the spatial fading framework used in this
work. It has been well-documented that the assumption of
zero-mean Rayleigh fading is an accurate model for H in a
non line-of-sight setting. Thus the complete channel statistics
are described by the second-order moments. Rich scattering
environments are accurately modeled by the commonly used
i.i.d. model where the channel entries are i.i.d. CN (0, 1).
However, the i.i.d. model is not accurate in describing realistic
propagation environments. Various statistical models have
been proposed to overcome the deficiencies associated with
the i.i.d. model.
The most general, mathematically tractable spatial correla-

tion model is based on a decomposition of the channel onto its
canonical coordinates: the eigen-bases of the transmit and the
receive covariance matrices [25]–[27]. The canonical model
assumes that the auto- and the cross-covariance matrices of all
the columns of H have a common eigen-basis (this common
eigen-matrix is denoted by Ur). Further, it also assumes
that the eigen-matrices of the auto- and the cross-covariance
matrices of all the rows of H are identical (this common
eigen-matrix is denoted by Ut). The above redundancies are
exploited to decompose H as

H = Ur Hind U†
t (2)
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where Hind has independent, but not necessarily identically
distributed entries. The columns of Ur and Ut also serve as
eigenvectors for the receive and the transmit covariance matri-
ces, which are defined as Σr = E[HH†] and Σt = E[H†H],
respectively. It can be checked that [25] the model in (2)
reduces to some well-known models such as the separable
correlation model or the virtual representation [28]–[30].

B. Signaling Scheme - Linear Dispersion Codes

As mentioned in the introduction, the coding problem for
the MIMO channel H can be separated into the design of an
inner space-time block code and an outer code. Accordingly,
input data x[t] is demultiplexed into K data-streams denoted
by x1[t], · · · ,xK [t] for the space-time encoder at a given sym-
bol time t. We make the following simplifying assumptions
on the input symbols in this work.
Assumption 1:

• The data-streams corresponding to xk[t] are i.i.d. zero
mean across time for all k and they are drawn from some
real constellation with marginal distribution p(xk).

• For any t and all i, j such that i �= j, xi[t] and xj [t] are
independent.

The second assumption can be justified if x1[t], · · · , xK [t] are
produced as outputs of independent scalar outer encoders as
in the V-BLAST signaling scheme. Applications involving the
use of bit-interleaved codes at the outer encoder also justify
the second assumption. Furthermore, both assumptions can be
justified if the data coming from the encoder is fed through
a random interleaver, a very practical assumption. Since xk[t]
are i.i.d. across time, we will drop the time index t in the
ensuing discussion.
While arbitrarily structured space-time coding schemes can

be considered for signaling, in this work, we will focus on
a specific LD code-based signaling [21]. The definition of an
LD code involves a set of dispersion matrices {Ak}K

k=1 ∈
C

Nt×Nc , such that the space-time code X is

X =
K∑

k=1

Ak xk (3)

where the symbols {xk}K
k=1 satisfy Assumption 1. That is,

at a given symbol time, the outer encoder produces a set of
independent symbols {xk}, which are then spread across the
spatial and temporal dimensions through {Ak}.
It is important to note that LD codes encompass all possible

linear space-time codes. In addition, we assume that the class
of LD codes satisfy the Generalized Orthogonal Constraint
(GOC), that is, AkA

†
j + AjA

†
k = 0 for all k, j, k �= j. It has

been shown in [9], [11] that the GOC is equivalent to the
condition p(x1, . . . ,xK |Y, Hind) =

∏K
k=1 p(xk|Y, Hind).

That is, the likelihood function factors and the complexity of
the LD decoder is greatly reduced since the joint ML decoding
reduces to individual ML decoding for each symbol. In other
words, the channel decouples into K parallel sub-channels. It
is important to note that the decoding complexity for this class
of LD codes, labeled henceforth as orthogonal LD codes, is
the same as that necessary for OSTBC.
After normalizing xk such that E

[
x2

k

]
= 1, the power

constraint is applied to Ak, resulting in
∑K

k=1 Tr(AkA
†
k) ≤

NtNc. The power allocated to the k-th symbol is Tr(AkA
†
k).

We say that the symbol power allocation is uniform if
Tr(AkA

†
k) is the same for all k.

III. OPTIMAL SIGNALING SCHEMES

In this section, we study the problem of optimal LD code
construction under different assumptions on the available CSI
at the transmitter. There are four relevant cases of CSI at the
transmitter: 1) An extreme case of no CSI at the transmitter,
2) The other extreme of perfect CSI, 3) A setting where only
statistical information is available, and 4) The case where
partial CSI in the form of limited feedback is available at
the transmitter. The first three cases are the subject of this
section; the last case is addressed in more detail in Sec. IV.

A. No CSI at the Transmitter

When no channel information is available at the transmitter,
it is well-known that the optimal scheme is to assume that the
channel is i.i.d. Thus, any space-time code tailored to the i.i.d.
case can be used. In particular, Hassibi and Hochwald [21]
have applied the mutual information criterion to design opti-
mal codes (within the class of LD codes) with i.i.d. Gaussian
inputs. Jiang [11] has studied the design of optimal LD
codes for i.i.d. channels with binary inputs and conjectured
that the optimal code is the generalized orthogonal design
introduced in [9]. Bresler and Hajek [12] proved the above
conjecture and extended the work to arbitrary real inputs. The
following sections demonstrate how channel information can
help improve performance.

B. Statistical Information at the Transmitter

We now study the structure of the optimal LD codes when
only statistical information is available at the transmitter. We
build on the recent work in [15] where optimal LD codes are
constructed by maximizing the average mutual information
between the input and the output of the inner code. If channel
correlation is modeled with the canonical framework as in (2),
we obtain the following equivalent channel model:

Ỹ =
√

ρ

Nt

K∑
k=1

Hind Ãk xk + W̃ (4)

where Ãk = U†
tAk, Ỹ = U†

rY, and W̃ = U†
rW.

The GOC is equivalent to ÃkÃ
†
j + ÃjÃ

†
k = 0 for all

k, j, k �= j and the original power constraint is equivalent to∑K
k=1 Tr

(
ÃkÃ

†
k

) ≤ NtNc. We have the following theorem
characterizing the structure of optimal LD codes.
Theorem 1: Let X̃ = U†

tX be an LD code as in (3)
with K symbols and let the corresponding dispersion ma-
trices be {Ãk, k = 1, · · · , K}. Also, let the input symbols
x1, · · · ,xK satisfy Assumption 1 and the dispersion matrices
satisfy the GOC. Suppose there exists an LD code satisfying
the spatial power allocation: ÃkÃ

†
k = Λstat for all k,

then such a code maximizes the average mutual information
E [I(X;Y|H = H)] and achieves the ergodic capacity. Here,
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Λstat is a positive semidefinite diagonal matrix with

Λstat = argmax
Λ

E
[
ϕ

(
ρ

Nt
Tr
(
HindΛH†

ind

))]
s.t. Tr (Λ) =

NtNc

K
, (5)

where ϕ(a) = h(
√

ax + n|H = H), h(·) denotes the
differential entropy, and n is a real zero-mean Gaussian of
variance 1/2.

Proof: See Appendix A.
Theorem 1 states that uniform symbol power allocation

across the data-streams is optimal from an average mutual
information viewpoint, i.e., ÃkÃ

†
k is the same for all k. The

optimal spatial power allocation is given by Λstat, and in
general, Λstat excites the multiple modes non-uniformly. We
now elaborate on the structure of {Ãk}. Given that r denotes
the number of spatial modes excited by the optimal statistical
scheme, it can be seen that

Ãk =

{ [√
Λstat 0Nt×Nc−Nt

]
Y†

k if Nc ≥ Nt[√
Λstat

]
prin

Y†
k if r ≤ Nc < Nt

(6)

where Yk is an arbitrary Nc × Nc unitary matrix and[√
Λstat

]
prin

is the Nt × Nc principal sub-matrix of
√

Λstat.

With the above structure for Ãk and with Ỹk denoting the
Nc × r principal sub-matrix of Yk, we need

Ỹ†
kỸj + Ỹ†

jỸk = 0 for all k �= j (7)

to meet the GOC. If rK ≤ Nc, (7) can be met by letting
{Ỹk} to be a set of r distinct columns of a random Nc ×Nc

unitary matrix. In fact, this choice leads to a stronger condition
where Ỹ†

kỸj = 0 for any k �= j. Initial studies suggest that
rK ≤ 2Nc is both necessary and sufficient for a feasible
construction that meets (7). These results and their connections
to constructions via generalized orthogonal designs [9] will be
reported elsewhere.

C. Perfect CSI at the Transmitter

Recall that the system equation can be written as

Y =
√

ρ

Nt

K∑
k=1

HAk xk + W (8)

with power constraint
∑K

k=1 Tr
(
AkA

†
k

) ≤ NtNc. Follow-
ing [11], [15], it can be shown that we have the following
upper bound for the mutual information when perfect CSI is
available at both the ends:

I(X;Y|H = H) = I(x1, . . . ,xK ;Y|H = H)

≤
K∑

k=1

I

(
xk;
√

ρ

Nt
HAk xk + W |H = H

)
.︸ ︷︷ ︸

Ik

Equality in (9) holds if and only if the GOC is satisfied.
From [11], [15], we also have

Ik = ϕ

(
ρ

Nt
Tr
(
HQkH†))− h(n) (9)

where Qk = AkA
†
k. The structure of the optimal LD code is

as follows.
Theorem 2: LetX be an LD code as in (3) withK symbols

and let the corresponding dispersion matrices be {Ak}K
k=1.

Also, let the input symbols x1, · · · ,xK satisfy Assumption 1.
The instantaneous mutual information can be upper bounded
as

I(X;Y|H = H) ≤ K

[
ϕ

(
ρNc

K
λmax(H†H)

)
− h(n)

]
(10)

with equality if and only if {Ak} satisfy the GOC and
AkA

†
k = Qk = Q for all k where Q = UHΛHU†

H. The
matrix UH is an eigenvector matrix of H†H (in the standard
order) and the only non-zero entry in ΛH is the leading
diagonal element whose value is NtNc

K .

Proof: See Appendix B.
The above result shows that the optimal choice of {Qk} is

independent of k, that is, uniform symbol power allocation is
still optimal. Furthermore, this scheme excites only the dom-
inant spatial mode. A generic singular value decomposition

for Ak shows that it has to satisfy Ak =
√

NtNc

K UH[1]vk,
where UH[1] is Nt × 1 and is the first column of UH, and vk

is an 1 × Nc vector of unit norm. With this structure, it can
also be checked that the GOC can be met if and only if the
K × Nc matrix V defined as

V =
[

vT
1 vT

2 · · · vT
K

]T
(11)

satisfies VV† = IK + iX where X is real skew-symmetric4.
Based on this decomposition, we can completely characterize
the structure of the dispersion matrices {Ak}, and can estab-
lish the existence of an LD code if and only if K ≤ 2Nc. The
following proposition states this result.
Proposition 1: There exists a K × Nc matrix V such that

VV† = IK + iX where X is real skew-symmetric if and only
if K ≤ 2Nc.
Due to space constraints, the proof of the claim and the

explicit construction of the dispersion matrices are not re-
ported here. However, we provide simple illustrations of these
constructions now. When K ≤ Nc, any set of K rows of an
arbitrary Nc × Nc unitary matrix works for V. Since {vk}
are pairwise orthogonal, the GOC is naturally met. In fact,
it is to be noted that a stronger condition (than the GOC)
holds: AkA

†
j = 0 for all k �= j in this case. Under the same

conditions as above, further explicit constructions to meet
the GOC are proposed in [9]. However, these conditions are
only sufficient, but not necessary as the statement of Prop. 1
illustrates.
The surprising5 claim of Prop. 1 is that the GOC can be

met and the data-streams separated temporally, as long as
K ≤ 2Nc. The two-fold gain in the maximum possible choice
of K (which is 2Nc) over the ‘naturally’ expected limit of
K = Nc stems primarily from the weaker condition that
2Re(AkA

†
j) = AkA

†
j + AjA

†
k = 0 for all k �= j, instead of

the more stringent condition that AkA
†
j = 0 for all k �= j.

4An n×n matrix X is said to be real skew-symmetric if it has real entries
and satisfies XT = −X.
5In retrospect, this claim is not all that surprising since the use of real

input symbols means that R bits can be transmitted per complex-dimension
if a 2R-ary constellation is used for signaling.
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For example, when K = 2Nc, the condition in Prop. 1 can be
satisfied by choosing

vk =

⎧⎪⎪⎨⎪⎪⎩
[ 0 · · · 0 1︸︷︷︸

k1

0 · · · 0 ]
if k ∈ A[ 0 · · · 0 i︸︷︷︸

k2

0 · · · 0 ]
if k ∈ B

(12)

The set A corresponds to k is odd, k1 = k+1
2 and the set B

corresponds to k is even, k2 = k
2 .

We are now prepared to state the main result of this section.
Theorem 3: Consider the family of orthogonal LD codes

whose decoding complexity is comparable with OSTBC. The
mutual information achievable with such codes is a non-
decreasing function of K which implies that K = 2Nc

is necessary for optimal signaling. Furthermore, the optimal
signaling scheme reduces to beamforming along UH[1], the
dominant right singular vector of H. More simply stated, not
coding across time is optimal from an information theoretic
perspective.

Proof: First, note that the GOC has to be met for the case
of orthogonal LD codes. From Prop. 1, we see that K = 2Nc

is the largest value of K such that this is possible. With K =
2Nc and vk as in (12), the average mutual information can
be expressed as

I(x1, . . . ,xK ;Y|H = H) = Kϕ

(
Z

K

)
− Kh(n)(13)

where Z = ρNcλmax(H†H). Letting K to be a continuous
parameter in the previous expression, we observe that the
derivative of the mutual information with respect to K is
positive. For this, note that for any Z ≥ 0, we have

ϕ

(
Z

K

)
− h(n) =

∫ Z
K

0

ϕ′(y)dy ≥ Z

K
ϕ′
(

Z

K

)
(14)

since ϕ(·) is a differentiable function with ϕ(0) − h(n) = 0
and dϕ(a)

da = 1
2 mse(a), and hence monotonically decreasing

in a; see App. B for details. In this setting, we have

Y =

√
ρNc

K
HUH[1]x + W (15)

= HUH[1]xtrans + W,xtrans =
√

ρ

2
x, (16)

x = [x1 + ix2 , x3 + ix4 , · · · , x2Nc−1 + ix2Nc ]

for the system equation. In other words, the optimal sig-
naling scheme reduces to beamforming the complex symbol
(x2k−1 + ix2k) /

√
2 along the fixed transmit direction UH[1]

in the k-th symbol period of the coherence block with a
transmit energy of ρ. This completes our proof.

IV. QUANTIZED CSI AT THE TRANSMITTER

We now study the quantized CSI case where an error-free,
negligible-delay link, that allowsB bits of channel information
to the transmitter, is available. In addition, we assume that the
statistics of the channel are known perfectly at the transmitter.
From the previous section, we see that rank-one signaling
(beamforming) is optimal in the perfect CSI case, while in the
statistical case, the rank of the optimal scheme could be greater
than one, in general. It is natural to expect a smooth transition

in the rank as the quality of CSI gets refined with increasing
B. In this section, we show that a rank-one scheme satisfies
certain strong optimality properties. This observation is based
on the following two results: 1) When B is sufficiently large
(to be characterized more precisely soon), a rank-one scheme
maximizes the average mutual information, 2) In the small B
regime, we can show that a rank-one scheme maximizes the
average received SNR.
We first make precise the notion of a B-bit limited feedback

scheme in the context of LD codes. We assume the knowledge
of a codebook (of 2B codewords) at the transmitter and the
receiver, where each codeword is a set of K dispersion matri-
ces satisfying a total power constraint. That is, the codebook
C is

C =

{
C� = (A�

1, · · · ,A�
K) :

K∑
k=1

Tr(A�
kA

�
k

†
) ≤ NtNc,

}
� = 1, · · · , 2B. (17)

If the �-th codeword is used in signaling, the system model is
described by

Y =
√

ρ

Nt

K∑
k=1

HA�
k xk + W. (18)

Recall from the previous section that

I(x1, . . . ,xK ;Y|H = H)

≤
K∑

k=1

I

(
xk;
√

ρ

Nt
HA�

k xk + W |H = H

)

=
K∑

k=1

ϕ

(
ρ

Nt
Tr
(
HQ�

kH†))− Kh(n)

where the upper bound is met if {A�
k}K

k=1 satisfies the GOC,
Q�

k = A�
kAk

�†, and h(n) is defined in Theorem 1. Thus,
the mutual information is completely characterized by the set
of covariance matrices (Q�

1, · · · ,Q�
K). Over each coherence

block, the receiver feeds back ��, the index of the optimal
codeword that maximizes the instantaneous mutual informa-
tion to the transmitter. The transmitter communicates over the
remaining symbols in the coherence block according to (3)
with dispersion matrices {A��

k }. We now show that uniform
symbol power allocation is optimal even in the partial CSI
case.
Proposition 2: Let the B-bit quantized feedback system

be described as in (18). For any choice of B, the average
mutual information is maximized by a codebook that allocates
uniform power to input symbols. In fact, for any codeword
index �, we have Q�

k = Q� for all k.
Proof: See Appendix C.

Thus, from the above theorem, we only need to quantize
Q�. The most natural quantization for a covariance matrix is
based on an eigen-decomposition of Q�. For this, we let N1

and N2 be such that N1N2 = 2B , and quantize Q� as

Q� = Q(i−1)N2+j = UiΛjU
†
i � Qi, j ,

i = 1, · · · , N1 and j = 1, · · · , N2. (19)

Here, {Ui}N1
i=1 are unitary and {Λj}N2

j=1 are positive semi-
definite diagonal with Tr(Λj) ≤ NtNc/K for all j. While the
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above quantization seems natural, it is unclear how to allocate
B into N1 and N2 optimally. In the ensuing discussion,
we consider two cases and study the optimality of rank-one
codebooks.

A. Strong Optimality of Rank-One Codebooks when N2 ≥ Nt

Since the rank of Qi, j is that of Λj , we fix {Ui}i=1, ··· , N1

to be a known family and optimize over all possible {Λj}
to find the rank of the optimal codebook. This results in the
following optimization:

Λj�

= max
{Λj : Tr(Λj)≤ NtNc

K }
E
[
max

i,j
ϕ

(
ρ

Nt
Tr(HUiΛjU

†
iH

†)
)]

.

We say that rank-one codebooks are strongly optimal if
a codebook of rank-one power allocations is sufficient to
maximize the average mutual information for any choice of
{Ui}.
Theorem 4: If N2 ≥ Nt, a rank-one codebook is strongly

optimal.
Proof: For each realization of the channel H = H, we

seek to maximize the instantaneous mutual information by
choosing the optimal codeword at the receiver and feed back
the index (i�, j�) to the transmitter through the feedback link.
For this, note that for any fixed {Ui},

max
i,j

ϕ

(
ρ

Nt
Tr(HQi, jH†)

)
(a)
= max

i,j
ϕ

(
ρ

Nt
Tr(SiΛjS

†
i )
)

(b)
= max

i,j
ϕ

(
ρ

Nt

Nt∑
m=1

Λj(m)‖sim‖2

)
(c)
= max

i,j
ϕ

(
ρNc

K

Nt∑
m=1

αjmsim

)
(d)

≤ ϕ

(
ρNc

K
si�m�

)

where (a) follows by defining Si = Λ1/2
H U†

HUi and H†H =
UHΛHU†

H, (b) and (c) follow by denoting the m-th col-
umn of Si by sim, its norm by sim, αjm = Λj(m) K

NtNc

and
∑

m αjm ≤ 1, and (d) follows by letting (i�, m�) =
arg max1≤ i ≤N1, 1≤ m≤ Nt sim. If N2 ≥ Nt, we can con-
sider a distinct set of Nt rank-one power allocations each of
which excites only one mode. Using this set in the above
framework allows us to meet the upper bound.
Note that the condition N2 ≥ Nt implies that 2B =

N1N2 ≥ Nt. But this inequality does not impose any
constraint on N1. Nevertheless, we can say that if B is
sufficiently large (B � log(Nt)) so that at least log(Nt) bits
can be allocated to quantize the power allocation component
of Q�, rank-one codebooks are always optimal irrespective
of the constellation of input symbols, SNR, and channel
correlation. This optimality is not completely surprising since
the quantized feedback system closely approximates a perfect
feedback system when B � log(Nt). That is, allocating more
than log(Nt) bits into quantizing {Λj} is clearly sub-optimal.
Other than this fact, the optimal allocation of B bits into N1

and N2 is still unclear.

B. Weak Optimality of Rank-One Codebooks when N2 < Nt

From the notation of Theorem 4, when N2 < Nt we can
rewrite the optimization defining Λj∗ as

max
{αjm :

PNt
m=1 αjm ≤ 1 for all j}

E

[
max

i,j
ϕ

(
ρNc

K

Nt∑
m=1

αjmsim

)]
.

(20)

Direct optimization of (20) requires the exact distribution
function of sim, which is a complicated function of the spatial
correlation, thus rendering the above problem intractable. We
now consider an alternate formulation of the above problem
wherein the objective function is the minimization of ΔI with

ΔI = E
[
ϕ

(
ρNc

K
λmax(H†H)

)
−max

i,j
ϕ

(
ρNc

K

Nt∑
m=1

αjmsim

)]
. (21)

That is, the objective is to minimize the difference in av-
erage mutual information between the perfect CSI benchmark
and a quantized feedback scheme. We now propose an upper
bound for ΔI that makes the study of optimal signaling
tractable in a weak sense.
Lemma 1: The quantity ΔI can be upper bounded by

ΔSNR, the difference in average received SNR, defined as
ΔSNR � ρNc

K · EH

[
λmax(HHH) −∑Nt

m=1 αjmsim

]
.

Proof: See Appendix D.
Thus, in a weak sense, the optimization in (20) is equivalent
to maximizing the average received SNR of the quantized
feedback scheme:

max
{αjm :

PNt
m=1 αjm ≤ 1 for all j}

E

[
ρNc

K
max

i,j

Nt∑
m=1

αjmsim

]
.

(22)
With this new metric, we now establish the optimality of rank-
one codebooks.
Theorem 5: Let the B-bit quantized feedback system and

the corresponding N1 and N2 be described as before. The
average SNR at the receiver is maximized by a rank-one
codebook.

Proof: See Appendix E.
While Theorem 5 is true for all values of N1 and N2, it

is of relevance only when N2 < Nt. It is important to note
that the optimality of a rank-one codebook in terms of the
new metric does not necessarily imply the optimality of rank-
one codebooks in terms of the average mutual information.
In fact, a signaling design that is based on maximizing the
average SNR may destroy the degrees of freedom that are
needed to achieve full diversity [31]. Nevertheless, for any
choice of correlation and SNR, we expect a natural transition
from weak optimality to strong optimality as B increases.
Numerical studies suggest that for most reasonable correlation
values, rank-one codebooks are still optimal from a practical
viewpoint. This will be the focus of our future work. Fur-
thermore, following the approach in Theorem 3, the system
equation for the optimal coding scheme reduces to

Y = HUi� [j�]xtrans + W (23)
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Fig. 2. A magnified view of the performance of rank-one and rank-two
codebooks in the 2 × 2 i.i.d. case.

where xtrans is as in (16) and for any given realizationH = H,
Qi�,j�

= Ui�Λj�U†
i� with Λj� = NtNc

K diag(ej�) and ej� is
the j�-th standard basis vector of RNt .
It is critical to note the difference between a beamforming

scheme in the classical sense and the system equation in (23).
In the classical sense, the beamforming direction is fixed
and independent of the channel state, but perhaps dependent
on the channel statistics, which evolves over slower time
scales. In (23), the beamforming direction is dependent on
the channel state and is based on the feedback information.
Despite the adaptation of this direction in response to the
reverse link feedback, the low-complexity gain associated with
beamforming (in the classical sense) can be accrued because
we still need only a single radio link chain to implement this
scheme. The need to adapt the beamforming direction at the
transmitter at a fast rate6 may impose additional constraints
on the hardware, but these are expected to be sub-dominant
in comparison with the performance improvement obtained by
utilizing the feedback information.
To summarize, the main conclusion of this work is: Coding

6The rate has to be slightly faster than the rate at which the channel evolves.

0.9 1 1.1 1.2 1.3

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

SNR (dB)

M
ut

ua
l I

nf
or

m
at

io
n 

(b
ps

/H
z)

 

 
Rank−one codebook: N

1
 = 4, N

2
 = 1

Rank−one codebook: N
1
 = 2, N

2
 = 2

Rank−two codebook: N
1
 = 4, N

2
 = 1

Rank−two codebook: N
1
 = 2, N

2
 = 2

Fig. 3. A magnified view of the performance of rank-one and rank-two
codebooks in the 4 × 4 i.i.d. case.

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

2.3

2.305

2.31

2.315

2.32

2.325

2.33

SNR (dB)

M
ut

ua
l I

nf
or

m
at

io
n 

(b
ps

/H
z)

 

 
Rank−one codebook: N

1
 = 4, N

2
 = 1

Rank−one codebook: N
1
 = 2, N

2
 = 2

Rank−two codebook: N
1
 = 4, N

2
 = 1

Rank−two codebook: N
1
 = 2, N

2
 = 2

Fig. 4. A magnified view of the performance of rank-one and rank-two
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across time is not necessary to maximize the average mutual
information if the quality of CSI feedback is sufficiently good.
The same conclusion holds with a low quality of CSI feedback
if the objective is relaxed to that of maximizing the average
received SNR.

V. SIMULATION RESULTS

We now present numerical studies to demonstrate that the
rank-one codebook is a reasonable choice for most practical
scenarios of interest. We study three settings here: 1) a 2 × 2
i.i.d. channel, 2) a 4×4 i.i.d. channel, and 3) a 4×4 correlated
channel with variance of channel entries given by

V4 =
16
2.6

⎡⎢⎢⎣
0.1 0 0.4 0
0 0.1 0.4 0
0 0 0.4 0.4
0 0 0.4 0.4

⎤⎥⎥⎦ . (24)

In all the cases, the channel power E[Tr(HH†)] is normalized

to NtNr. Furthermore, we compare the mutual information
between the best rank-one and best rank-two codebooks. The
cases studied are: a) B = 2, N1 = 4, N2 = 1, and b) B = 2,
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N1 = 2, N2 = 2. We now elaborate on how to obtain the best
rank-one and rank-two codebooks.
From (19), the structure for each codeword is Qi, j =

UiΛjU
†
i . Fixing {Ui}, the different rank-one codebooks

are characterized by different choices of rank-one {Λj}. For
example, with Nr = Nt = 4, N1 = 4 and N2 = 1, there are
four choices of rank-one codebooks: Λi = diag(ei) where ei

is the i-th standard basis vector of R4. Similarly, there are six
possible rank-one choices for Nr = Nt = 4, N1 = 2 and
N2 = 2. The best rank-one codebook is the one that maxi-
mizes the average mutual information. The above procedure
is difficult to extend for rank-two codebooks. This is because
even though there are only finite choices for the positions of
the modes that can be excited, the power allocations between
these two excited modes can run through a continuum. For
example, with Nr = Nt = 4, N1 = 4 and N2 = 1,
Λ1 = diag(1/2, 1/2, 0, 0), Λ1 = diag(1/3, 2/3, 0, 0), or
Λ1 = diag(0, 2/3, 0, 1/3) are all feasible choices for rank-
two codebooks. This difficulty forces us to study this case by
randomly generating 50 different sets of {Λj} and picking the
‘best’ rank-two codebook from this random set. Further, since
there is no proper distance metric to pack unitary matrices,
a random family of {Ui} are generated via random vector
quantization (RVQ). Numerical studies show that there is
roughly very similar performance with different choices of
{Ui} and hence, only one such choice is highlighted.
In the simulations, the choice of K used is Nc. This is

because while rank-one codebooks meeting the GOC exist for
up to K = 2Nc, the study in Sec. III-B suggests that rank-two
codebooks that meet the GOC may not exist. We illustrate our
results with Gaussian inputs, but numerical studies show that
input constellation plays a minimal role in the trends.
Fig. 1 plots the mutual information with the best rank-

one and rank-two codebooks for N1 = 4, N2 = 1, and
for N1 = 2, N2 = 2. Benchmark plots of the perfect CSI
(upper bound), only statistical information (lower bound), and
statistical beamforming (lower bound) are also presented. We
observe a 3 dB reduction in transmit power with two bits of
feedback at a rate of 1 bps/Hz. A magnified view of this plot in
Fig. 2 shows that the best rank-one codebook outperforms all
other rank-two codebooks. In all subsequent plots, we focus
only on a magnified view of the comparison between rank-
one and rank-two codebooks since all plots show very similar
trends for the mutual information, and the main focus is on our
conjecture that a rank-one scheme leads to good performance
in practice. Fig. 3 and Fig. 4 both verify that a rank-one
codebook outperforms rank-two codebooks in the 4 × 4 i.i.d.
and 4 × 4 correlated channels, respectively, thus suggesting
that in most practical scenarios of interest, beamforming is a
good candidate for optimal signaling.

VI. CONCLUSION

In this work, we have studied the cases of coding across
space and across space-time in a unified fashion by con-
sidering a family of linear dispersion codes that satisfy an
orthogonality constraint. Our results show that there is no
need to code across time either when the channel information
at the transmitter is perfect or when the channel information

is of a sufficiently good quality. On the other hand, even
when the channel information is not of a good quality, the
low-complexity beamforming scheme possesses some attrac-
tive optimality properties; namely, it maximizes the average
received SNR. From a design viewpoint, beamforming is
particularly attractive due to the low-complexity of its design
augmented with the low-cost ensured by using a single radio
link chain.

Note that the orthogonal LD codes are of a complexity
comparable to the OSTBC which are commonly used in
standardization efforts. However, even in the case of rank-one
signaling, one may be able to send K > 2Nc data-streams
with dispersion matrices that do not meet the orthogonality
constraint. The obvious disadvantage of this strategy is that
the data-streams may have to be separated at the receiver
with more complex decoding architectures. More so, the
objective of maximizing the average mutual information of the
inner space-time code can be met by precoding schemes that
multiplex more than one data-stream, albeit at the cost of some
decoding complexity. Related work in [31] suggests that relax-
ing the orthogonality condition could result in a different set
of results. Thus, the orthogonality/low-complexity assumption
of this work is critical to our conclusion and the trade-off
between mutual information and decoding complexity is not
clear. This is an interesting research topic that we would
like to explore in the future. Furthermore, our work provides
a good justification as to why there has been significant
recent attention on limited feedback precoding/beamforming
schemes [3], [4], [32]–[38] rather than on limited feedback
space-time coding schemes.

Much work needs to be done to understand how these
results translate to more practical scenarios of interest where
the channel information at the receiver or the statistical
information at the transmitter may not be perfect, and the
channel is not block fading or wideband. It should also be
noted that the results in this work critically depend on the
error-free nature of the reverse link. Extension to more realistic
scenarios where the reverse link suffers from delay and error
are of interest. Construction of dispersion matrices that satisfy
desired low-complexity properties is another area of interest.
It is also important to note that we have only scratched the
surface on understanding the trade-off between reliability and
throughput with constraints on the complexity of the encoder-
decoder pair. While reliability is an important design metric
in certain situations, throughput is probably a more important
aspect in the design of high data-rate wireless systems. In such
settings, it is of interest to understand how and when low-
complexity, adaptive signaling techniques can be leveraged to
achieve near-optimal performance.

APPENDIX

A. Proof of Theorem 1

Denote ÃkÃ
†
k by Q̃k and 1

K

∑K
k=1 Q̃k by Q̂, and observe

that Q̂ is a positive semi-definite matrix with trace constrained
by NtNc

K . With γ � E [I(X;Y|H = H)] + K E [h(n)], we
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have

γ
(a)

≤ E

[
K∑

k=1

Ik

]
+ K E [h(n)]

= E

[∑
k

ϕ

(
ρ

Nt
Tr
(
Q̃kH†H

))]
(b)

≤ K ·E
[
ϕ

(
ρ

NtK

∑
k

Tr
(
Q̃kH†H

))]

= K · E
[
ϕ

(
ρ

Nt
Tr
(
Q̂H†H

))]
where equality holds in (a) if the GOC condition is satisfied
and (b) follows from the concavity of ϕ(·). Optimizing over
the choice of Q̂ in the above equation results in an upper
bound for E [I(X;Y|H = H)]. Denote by Qopt the solution
to the following optimization problem:

Qopt = arg max
Tr(Q) =

NtNc
K

E
[
ϕ

(
ρ

Nt
Tr
(
HQH†))] (25)

where Q = ÃÃ†. A choice of dispersion matrices {Ãk} that
satisfies ÃkÃ

†
k = Qk = Qopt for all k and that meets the

GOC condition would result in an equality in the upper bound
and hence achieves the ergodic capacity. The fact that Qopt in
(25) is diagonal follows from [15].

B. Proof of Theorem 2

The connection between minimum mean squared er-
ror (MMSE) estimation and mutual information established
in [39] implies that dϕ(a)

da = 1
2 mse(a) where mse(a) is the

mean squared error for the channel under consideration at an
SNR of a. The positivity and the monotonous decrease of the
mse(·) function implies that ϕ(·) (and hence Ik(·)) is concave
and non-decreasing. We first upper bound Ik and this leads to
an upper bound on I(X;Y|H = H). For this, note that

Ik + h(n) = ϕ

(
ρ

Nt
Tr
(
QkH†H

))
= ϕ

(
ρ

Nt

Nt∑
i=1

λi(QkH†H)

)
(a)

≤ ϕ

(
ρ

Nt
λ1(H†H)Tr(Qk)

)
where (a) follows from the fact that λi(QkH†H) ≤
λi(Qk)λ1(H†H) and the monotonicity of ϕ(·). The concavity
of ϕ implies that η =

∑K
k=1 Ik + Kh(n) satisfies

η ≤
K∑

k=1

ϕ

(
ρ

Nt
λ1(H†H)Tr(Qk)

)
≤ K ϕ

(
ρ

Nt

NtNc

K
λ1(H†H)

)
= ϕ

(
ρNc

K
λ1(H†H)

)
.

We now show that the upper bound is in fact achievable.
Consider the maximization of

∑
k Ik over the set Q ={

Qk = Q for all k, Q 
 0 and Tr(Q) = NtNc

K

}
. We then

have ω = ϕ
(

ρ
Nt

Tr
(
HQH†)) satisfying

ω = ϕ

(
ρ

Nt
Tr
(
QH†H

))
= ϕ

(
ρ

Nt

Nt∑
i=1

λi(QH†H)

)
(a)

≤ ϕ

(
ρ

Nt

Nt∑
i=1

λi(Q)λi(H†H)

)
(b)

≤ ϕ

(
ρ

Nt
· NtNc

K
λ1(H†H)

)
= ϕ

(
ρNc

K
λ1(H†H)

)
where (a) follows from the monotonicity of ϕ(·) and the fact
that if A and B are n×n positive semi-definite matrices, then∑n

i=1 λi(AB) ≤ ∑n
i=1 λi(A)λi(B) and (b) follows from

trivially upper bounding λi(H†H) with λ1(H†H). Also note
that the upper bound is achieved by beamforming along the
dominant eigen-direction of H†H. Thus, we have

I(X;Y|H = H) ≤
K∑

k=1

Ik = Kϕ

(
ρNc

K
λ1(H†H)

)
− Kh(n)

with equality if and only if Q is as above and the GOC
conditions are satisfied.

C. Proof of Theorem 2

First, note that any (generic) codebook can be written as

C =
{
c�, � = 1, · · · , 2B

}
where c� � (Q�

1, · · · ,Q�
K)

s.t.
K∑

k=1

Tr(Q�
k) ≤ NtNc.

Further, define a codebook D as

D =
{
d�, � = 1, · · · , 2B

}
where d� � (Q�, · · · ,Q�)

s.t. Tr(Q�) ≤ NtNc

K
.

Denoting the families of codebooks of the type C and D by
C and D, respectively, we have D ⊂ C. With a codebook C
from C, the average mutual information is

EH

[
max

i

K∑
k=1

ϕ

(
ρ

Nt
Tr(HQi

kH†)
)]

(a)

≤ EH

[
max

i
Kϕ

(
ρ

Nt
Tr(HQ̂iH†)

)]
where Q̂i = 1

K

∑K
k=1 Qi

k satisfies Tr(Q̂i) ≤ NtNc

K and (a)
follows from the concavity of ϕ(·). Thus, the average mutual
information with a codebook C can be upper bounded by an
appropriately generated codebook from D. Since D ⊂ C, the
upper bound is tight.

D. Proof of Lemma 1

From the fundamental theorem of calculus and the MMSE
connection in App. B, we have

ΔI = EH

[∫ B

A

mse(x)dx

]
(30)

where A = ρNc

K

∑Nt

m=1 αjmsim, B = ρNc

K λmax(H†H), and
mse(·) is the MSE function. Note that A ≤ B. Since a
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Gaussian input maximizes the mse(·) function [39], an upper
bound to ΔI can be achieved by replacing the entropy
function ϕ(x) with that corresponding to a Gaussian input,
(or equivalently, log(1 + x)). Thus, we have

ΔI ≤ EH [log(1 + B) − log(1 + A)]

= EH

[
log
(

1 +
B − A

1 + A

)]
(a)

≤ ρNc

K
· EH

[
λmax(HHH) −∑Nt

m=1 αjmsim

1 + A

]
(b)

≤ ρNc

K
· EH

[
λmax(HHH) −

Nt∑
m=1

αjmsim

]
where (a) follows from log-inequality and (b) trivially.

E. Proof of Theorem 5

We need the following proposition towards proving the
theorem.
Proposition 3: For any {aj, k, j = 1, · · · , M} such that∑N
k=1 aj,k = 1, we have

max
j=1, ··· , M

N∑
k=1

aj, kyj, k

≤
N∑

k1=1

a1, k1 · · ·
N∑

kM=1

aM, kM max{y1, k1 , · · · , yM, kM }.

Proof: Note that max {yi, z} ≥ yi and max{yi, z} ≥ z
for any set of real numbers {yi}i=1, ··· , N and z. Thus, we
have the inequality

max

{
N∑

i=1

βiyi, z

}
≤

N∑
i=1

βi max{yi, z} (31)

where
∑N

i=1 βi = 1.
We now prove the proposition by induction. With M = 1,

equality holds and the statement is trivially valid. If the
proposition holds for some M , we then have the set of
equations as in the bottom of the page, where (a) follows by
applying (31) on the first term in the max and the hypothesis
in Prop. 3 on the second term, and (b) by applying (31) on
the second term in the max.

Proof of Theorem 5: To prove the theorem, we upper bound
the average SNR at the receiver

E

[
ρNc

K
max

i,j

Nt∑
m=1

αjmsim

]
(a)

≤ E

[
ρNc

K
max

j

Nt∑
m=1

αjm max
i

sim

]
(b)

≤ E

⎡⎣ρNc

K

Nt∑
m1=1

α1, m1 · · ·
Nt∑

mN2=1

αN2, mN2

max
{

max
i

sim1 , · · · , max
i

simN2

}]
(c)

≤ E
[
ρNc

K
max

{
max

i
sim�

1
, · · · , max

i
sim�

N2

}]
where (a) and (b) follow from Prop. 3, and (c) follows by
letting

(m�
1, · · · , m�

N2
) = arg max

{(m1, ··· , mN2): 1≤ mj ≤Nt for all j=1, ··· , N2}

E
[
max

j

{
max

i
simj

}]
.

The upper bound can be achieved by letting α�
jm = δm�

j m

which again does not depend on the channel realization. That
is, the optimal codebook is of rank-one.
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