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Abstract—The focus of this work is on the analysis of transmit
beamforming schemes with a low-rate feedback link in wireless
sensor/relay networks, where nodes in the network need to im-
plement beamforming in a distributed manner. Specifically, the
problem of distributed phase alignment is considered, where nei-
ther the transmitters nor the receiver has perfect channel state in-
formation, but there is a low-rate feedback link from the receiver
to the transmitters. In this setting, a framework is proposed for sys-
tematically analyzing the performance of distributed beamforming
schemes. To illustrate the advantage of this framework, a simple
adaptive distributed beamforming scheme that was recently pro-
posed by Mudambai et al. is studied. Two important properties
of the received signal magnitude function are derived. Using these
properties and the systematic framework, it is shown that the adap-
tive distributed beamforming scheme converges both in probability
and in mean. Furthermore, it is established that the time required
for the adaptive scheme to converge in mean scales linearly with
respect to the number of sensor/relay nodes.

Index Terms—Array signal processing, convergence of numer-
ical methods, detectors, distributed algorithms, feedback commu-
nication, networks, relays.

I. INTRODUCTION

T HE problem of distributed beamforming arises naturally
in wireless sensor/relay networks. In a sensor network,

sensors make estimates of a common observed phenomenon and
reach a consensus using a local message passing algorithm. In
a relay network, a source node intends to communicate with the
destination node by passing the message to all relay nodes. In
both settings, the sensor/relay nodes then serve as distributed
transmitters and seek to convey a common message to the in-
tended receiver. To preserve energy in this stage, transmit beam-
forming has emerged as a promising scheme due to its potential
array gain and low-complexity. However, perfect channel state
information (CSI) at the transmitter is required by conventional
transmit beamforming schemes to generate beamforming coef-
ficients and achieve phase alignment at the receiver end. This

Manuscript received July 02, 2008; revised December 08, 2009. Date of cur-
rent version November 19, 2010. This work was supported (in part) by the Na-
tional Science Foundation under awards CCF 0431088 and CNS 0831670, and
ITMANET DARPA under RK 2006-07284 through the University of Illinois,
and by a Vodafone Foundation Graduate Fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF or DARPA.

C. Lin is with the Institute of Communication Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (e-mail: clin@ee.nthu.edu.tw).

V. V. Veeravalli and S. P. Meyn are with the Coordinated Science Labora-
tory, University of Illinois, Urbana-Champaign, Urbana IL 61801 USA (e-mail:
vvv@illinois.edu; meyn@illinois.edu).

Communicated by A. J. Goldsmith, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2010.2080590

requirement and the distributed nature of wireless sensor/relay
networks make it difficult to implement transmit beamforming
schemes in practice. Although obtaining perfect CSI may be
too expensive from a practical point-of-view, partial CSI can be
made available via a low-rate feedback link from the receiver
to the transmitters. As a consequence, there has been increased
interest in designing efficient schemes that achieve distributed
phase alignment in the presence of a low-rate feedback link
[1]–[6]. In this work, our goal is to provide a framework for
systematically analyzing the performance of a general set of dis-
tributed beamforming schemes with such low-rate feedback.

To illustrate the advantages of our framework, we focus on the
analysis of a recently proposed training scheme for distributed
beamforming [1]–[3]. The proposed scheme is a simple adaptive
algorithm using one bit of feedback information, and is attrac-
tive in practice since it is simple to implement. Naturally, one
would expect a tradeoff in energy consumption due to possible
slow convergence of such a simple adaptive scheme, but surpris-
ingly, the scheme proposed in [1] converges rapidly and hence
utilizes energy efficiently. The scheme adjusts the phases for all
sensors simultaneously in each time slot to achieve phase align-
ment. This reduces the overhead significantly compared with di-
rect channel estimation between each source node and the desti-
nation node. In fact, the convergence time of the scheme scales
linearly with the number of nodes.

Although the scheme of [1] has many desirable features, the
fundamental reasons behind the effectiveness of the scheme are
unclear from previous work. In [2] and [3], the analyses of the
convergence and linear scalability of distributed beamforming
schemes have been based on model approximations, which may
be loose for some cases. Assuming the stepsize approaches zero,
stochastic approximation is used in [4] to show the convergence
of the one-bit scheme in distribution. Furthermore, the authors
proposed two more algorithms: the signed algorithm and the %
solution algorithm and proved the convergence of both algo-
rithms via the same technique. A discrete version of the problem
has been solved in [5], [6] by considering a simplified model
with a binary channel and binary signaling.

In this work, instead of focusing on the convergence of
a particular algorithm for a particular function, we seek a
fundamental understanding into the convergence of distributed
beamforming schemes more generally by studying them within
the framework of local random search algorithms. Through
this framework, we are able to provide a more comprehensive
analysis of the fast convergence and linear scalability of the
scheme proposed in [1]. In particular, our analysis does not
involve approximation of any sort and hence makes state-
ments on convergence and linear scalability in [2]–[4] more
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rigorous. Further, we show that due to the special structure of
the objective function considered in this problem, any adaptive
distributed beamforming scheme that can be reformulated as a
random search algorithm converges in probability.

We organize the paper as follows: In Section II, we introduce
the system model and the received signal magnitude function,
which is used as our metric to measure the beamforming array
gain throughout the paper. In Section III, we propose a frame-
work that allows for a systematic analysis of a general set of
adaptive distributed beamforming schemes. Specifically, we re-
formulate this set of adaptive distributed beamforming schemes
as random search algorithms via a general framework. This re-
formulation provides insights into the necessary condition for
the convergence of the scheme proposed in [1]. These insights
lead us to investigate the properties of the received signal mag-
nitude function in Section IV. We further use these properties to
prove the convergence of the local random search algorithm in
probability and in mean, and provide simulations to validate our
analysis. In Section V, we show that the time required for the al-
gorithm to converge in mean scales linearly with the number of
nodes. We also provide numerical results that validate our anal-
ysis. Finally, we conclude the paper in Section VI and suggest
directions for future research.

II. SYSTEM SETUP

We consider the problem of distributed beamforming, where
transmitters seek to beamform a common message to one

receiver in a distributed manner. We assume that each trans-
mitter and the receiver is equipped with one antenna, and that
the channels from the transmitters to the receiver experience fre-
quency-flat, slow fading. The discrete-time, complex baseband
system model over a coherence interval is given by

(1)

where is the transmitted common message, is
the received signal, and corresponds to the
additive white Gaussian noise. For transmitter , we denote the
channel fading gains by and beamforming
coefficients by . Note that

, and for all and
since they are the corresponding magnitudes and phases of
and , respectively. Moreover, and are considered to be
constant with time over the coherence interval due to the slow
fading assumption. We assume an average power constraint on

given by for all .
We assume a noncoherent communication model, where the

realization of the channel is unknown at both the transmitters
and receiver. There is, however, an error-free, zero-delay feed-
back link of finite capacity from the receiver to all transmitters
conveying low-rate partial CSI in each time step.

The goal of distributed beamforming is to pick the beam-
forming coefficients to maximize the
received . In a noncoherent setting and with a low-rate
feedback link, beamforming can only be achieved adaptively

through training. Without loss of generality, we assume that the
signal is constant during the training stage. Furthermore,
we make the following two simplifications. First, we assume
that each transmitter utilizes the same amount of energy for
each transmission, i.e., that for all and , i.e., we
do not optimize the beamforming gains, and we therefore set

. This assumption is justified for situations where
the transmitters rely on a limited energy source (battery), and
allowing them use different amounts of energy would cause
some nodes to use up their energy before others. Secondly,
we assume that the receiver can estimate the magnitude of the
signal component1 perfectly (without the noise term in
(1)). We therefore use the received signal magnitude as the
metric for optimizing the beamforming phases.

The received signal magnitude can be expressed as

(2)

where is the total received phase for sensor . It
is easy to see that is maximized when the phases
are aligned, i.e., they are equal to each other (modulo ). Our
goal is to study adaptive distributed beamforming schemes that
achieve this phase alignment through the use of a low-rate feed-
back link from the receiver.

III. A FRAMEWORK FOR ANALYZING ADAPTIVE DISTRIBUTED

BEAMFORMING SCHEMES

In this section, we introduce a framework for analyzing a gen-
eral class of adaptive distributed beamforming schemes that can
be reformulated as random search algorithms. Random search
algorithms are well studied in the literature [7]–[9] as methods
to maximize an unknown function via random sampling. Once
an adaptive distributed beamforming scheme can be success-
fully reformulated as a random search algorithm, a systematic
study of the convergence of such an adaptive scheme is possible.

A. Reformulation of Adaptive Distributed Beamforming
Schemes as Random Search Algorithms

Adaptive distributed beamforming algorithms introduced in
Section II seek to maximize given in (2) with the help
of a low-rate feedback link. At each step of the adaptation, the
signal magnitude at the receiver is a sample of the function

. Thus, from the receiver point of view, the problem of
distributed phase alignment can be considered under the setting
of the following problem:

Problem 1: Given a unknown function ,
where only samples of are available for arbitrary ,
find the global maxima of .

It is important to note that Problem 1 is a global maximiza-
tion problem in general if no special structure is assumed for
the objective function . To solve the maximization in Problem
1, one may be tempted to use gradient-based algorithms that are
well-developed in the literature. Since it is possible for to pos-
sess local maxima, conventional gradient-ascent methods would

1A good estimate of the received signal magnitude can be obtained directly
when the noise is small, or by averaging over several time slots when the noise
is not negligible.
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fail in general. Besides, acquiring the gradient of the function
may be infeasible especially when the function itself is un-

known. Hence, random search techniques [7]–[9] are more ap-
propriate in this setting and can be described as follows.

A Random Search Algorithm:

• Step zero: Initialize the algorithm by choosing
.

• Step one: Generate a random perturbation from a
probability measure that could be time-varying.

• Step two: Update the search point by
, where the map satisfies the

condition .

Clearly, for a random search algorithm, we require only func-
tion evaluations and control over the probability measure ,
which is used to sample the function. Any adaptive distributed
beamforming scheme can be reformulated as a random search
algorithm if each distributed transmitter initializes its phase as in
Step zero, generates a random perturbation of phase as in Step
one, and updates its new phase by the map as in Step two.
The low-rate feedback link is used to guarantee the condition

. Note that the unknown func-
tion can be any objective function that we find fit for the dis-
tributed transmitters to optimize. This suggests that our frame-
work can be used to analyze a more general function optimiza-
tion problem over distributed networks. Note further that the
probability measure for the sampling can be time-varying in
general. The time-varying nature of the probability measure can
be thought of as “adaptive stepsize” for distributed algorithms
in the most general sense. In this sense, our framework can be
used to analyze a large set of adaptive distributed algorithms.

B. One-Bit Adaptive Distributed Beamforming Scheme

To illustrate the advantage of our framework, we now an-
alyze a one-bit adaptive distributed beamforming scheme re-
cently proposed in [1]. Specifically, we reformulate this scheme
as a local random search algorithm, which allows for its sys-
tematic analysis. We begin by describing the one-bit adaptive
distributed beamforming scheme as follows:

A One-bit Adaptive Distributed Beamforming Scheme
[1]:

• Step zero: Referring to (2) and noting that the -th trans-
mitter controls its beamforming phase , the algorithm
is initialized by setting , and hence for
transmitter .

• Step one: In this step, a random perturbation is gen-
erated at each distributed transmitter such that
are i.i.d. uniform random variables in across time
and transmitters, where is a constant parameter. The
random perturbation is added to the total phase of each
transmitter. The distributed transmitters then use the per-
turbed total phases as their new total phases to transmit the
training symbol.

• Step two: After receiving the training symbols, the receiver
measures the received signal magnitude and compares it
with the signal magnitude received in the previous time

slot. If the newly received signal magnitude is larger, the re-
ceiver feeds back a “keep” beacon to the transmitters. Oth-
erwise, a “discard” beacon is sent to the transmitters. Note
that the beacon is a broadcast from the receiver to all trans-
mitters. Clearly, this feedback scheme only requires one
bit of feedback information per time step. When a “keep”
is received at the transmitters, each transmitter selects and
keeps its newly updated total phase. Otherwise, the old
phase is selected and the new phase discarded. This selec-
tion process is determined by whether the random pertur-
bation increases or decreases the array gain for the adaptive
distributed beamforming scheme. Specifically, the evolu-
tion of is given by

(3)

where
, and

.
Matching the steps of the above one-bit adaptive scheme and

those of a random search algorithm introduced in Section III-A,
it is clear that the one-bit adaptive distributed beamforming al-
gorithm can be regarded as a special case of the random search
algorithm by setting

(4)

(5)

(6)

(7)

(8)

where is the indicator function and is uniform on
, which is a -dimensional hypercube. Note that

(8) is the same as the evolution described by (3).
Since the probability measure is nonzero only within a hy-

percube, with sides of length and centered around ,
the one-bit adaptive distributed beamforming scheme can be
reformulated as a local random search algorithm. We empha-
size again that we can use this framework to study more general
adaptive distributed beamforming schemes. For example, the
signed algorithm proposed in [4] can be reformulated as a local
random search algorithm by simply replacing the indicator
function in (8) by the signed function. The framework can also
be used to study the case where the probability measure for
sampling may be time-varying and with a support that spans
the entire space . We can also study adaptive distributed
beamforming schemes with more than one bit of feedback
information.

It is also interesting to note the connection between this local
random search algorithm and simulated annealing [10]. Simu-
lated annealing is a generic probabilistic algorithm that approx-
imates the global optimal solution of a given function in a large
search space. The algorithm uses a parameter called the tem-
perature to control the acceptance probability, i.e., the proba-
bility that the current state of the algorithm transitions to a new
state. If we let and assume that the current state is only
allowed to move to neighboring states, the simulated annealing
procedure reduces to a local random search algorithm.
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A local random search algorithm, however, does not neces-
sarily converge in general. For example, if the unknown func-
tion possesses local maxima (that are not global maxima), the
sequence is likely to be trapped in a local maximum
if the local perturbation is not large enough. Thus, a neces-
sary condition for the convergence of local random search algo-
rithms for arbitrary is that there is no local maximum point
for . With these points in mind, two questions arise nat-
urally: a) does the reformulated local random search algorithm
converge? b) if it does, is there a fundamental reason behind
the convergence? In the following section, we investigate prop-
erties of the function towards the goal of addressing
these questions.

IV. CONVERGENCE OF THE DISTRIBUTED

BEAMFORMING SCHEME

A. Properties of Received Signal Magnitude Function

The properties of the received signal magnitude function
do not depend on the time evolution of its arguments.

We hence ignore the time dependence of in this section.
The following proposition states the first property of .

Proposition 1: For the received signal magnitude function
defined in (2), all local maxima are global maxima.

Proof: To facilitate analysis, we introduce a change of
variables

Equation (2) can be rewritten as

where for all . The maximization of
can be rewritten as

(9)

In the following, we will show that all local maxima of this
objective function correspond to complete phase alignment for
all transmitters. That is, all local maximum points are global
maximum points.

By relaxing the equality constraints to inequality constraints,
the optimization problem in (9) is equivalent to

(10)

This equivalence can be seen as follows: if is a local max-
imum with an inactive constraint , by fixing all other
variables , we obtain

where is a constant vector depending on .
Obviously, the above function can be improved by appropriately
perturbing according to the signs of and . This con-
tradicts the fact that is a maximum. Thus, all constraints are

active if is a maximum point. This shows that the optimiza-
tion problems (9) and (10) are equivalent.

Focusing on the optimization problem with relaxed con-
straints, the Lagrangian of (10) reads

where for all
, and . By the Lagrange Multiplier

Theorem, all local maxima satisfy

(11)

(12)

(13)

for all . Let be a local maximum and be
the corresponding Lagrange multipliers. If , (11) implies
that since2 . In this case, and this
contradicts the fact that is a local maximum, since we can
always improve by letting , and

for all . This leads to for all . We hence
have

(14)

(15)

The optimal solutions described by (14) and (15), however,
also satisfy

and hence are global maxima. This completes our proof.

Proposition 1 implies that the local random search algorithm
cannot be trapped in a suboptimal local maximum since all local
maxima are global maxima. Furthermore, it also suggests that
the necessary condition for the convergence of random search
algorithms is satisfied. While it is intuitively clear that the local
random search algorithm should converge according to Propo-
sition 1, it is to be noted that the condition is only necessary and
may not be sufficient. We will provide a rigorous proof of the
convergence of the local random search algorithm later. Now,
we explore an additional property of that explains the
efficiency of the algorithm.

Another interesting property of is that it is invariant
under a common phase shift to all transmitters. That is

where is a vector with all elements equal to one, and
is a common phase shift that can depend on . One pos-
sible choice for the common phase shift is to let

2Note that the case where � � � is not interesting since we can always
reduce the dimension of the problem by ignoring �
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be such that the imaginary part within the modulus function is
canceled, i.e.,

where . Note that in the shifted domain,
the global maxima occur only when or for all ,
where is any integer. The shift-invariant property results in
multiple global maxima for the function . In fact, all
global maxima form a one-dimensional “ridge” since if is a
global maximum, with is also a global max-
imum. This property leads to the rapid convergence of the local
random search algorithm since converging to any of these global
maximum points is adequate. We conclude this section by sum-
marizing these two important properties of as follows:

1) all local maxima are global maxima;
2) a common shift to its arguments does not change its value.

B. Proof of Convergence

Intuitively, Property 1 guarantees the convergence of any
local random search algorithm. To make this precise, we intro-
duce an -convergence region

(16)

where is the optimal total phase and satisfies
. We define the convergence of a random search

algorithm in probability as follows.

Definition 1: A sequence generated by a random
search algorithm is said to be convergent in probability if, given

In other words, converges to in probability.
For the proof of convergence, we further derive a proposition

stating that for any outside of , there is a nonzero probability
of improving by applying a local perturbation to .

Proposition 2: For any given and , there
correspond and such that

where is a random vector with i.i.d. elements uniformly dis-
tributed over .

Proof: From Proposition 1, all local maxima are global
maxima for the function . This implies that for all

and all , there exists a point and a constant
such that

(17)

where the set is a hypercube of length centered around
given by

The continuity of implies that there exists
such that for all , we have

(18)

Combining (17) and (18), we arrive at a lower bound

Referring to (4) for the definition of , the above lower bound
leads to

Note that is a function of , since is a function of . We
complete the proof of the proposition by letting

Note that the proof of this proposition can easily be gener-
alized for any local random perturbation . Since before the
sequence reaches the -convergence region, there is always a
nonzero probability of improving for each time step,
the convergence of the sequence is to be expected. A simple
deterministic analogue is the convergence of a monotonically
nondecreasing function.

The probabilistic nature of the algorithm complicates the
proof. This will become clear in the proof of our next theorem.

Theorem 1: For the function defined in (2), let
be a sequence generated by the local random search

algorithm described in (4)–(8). Then the resulting sequence
converges in probability, i.e., given

Proof: By Proposition 2, we know that given any time

where . Since is compact and
is continuous, there always exists a positive integer ,

such that
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Fig. 1. Evolutions of sequences generated by the adaptive distributed beamforming scheme.

The probability that the sequence lies in after time steps is
hence lower bounded by

since are independent across time. This leads to
and

for all . The lower bound is still valid if we let the
sequence progress time steps further, i.e.,

for all . We complete the proof
by letting . Note that by invoking the Borel–Cantelli
lemma [11], we can show that the sequence converges almost
surely as well.

Theorem 1 states that the local random search algorithm in
(4)–(8) converges in probability, and hence also provides a proof
of convergence for the one-bit adaptive distributed beamforming
scheme in (3). In particular, Theorem 1 implies the convergence
of the sequence in probability. Since the se-
quence is nonnegative and monotonically nondecreasing, we
can conclude that also converges in mean by
the Monotone Convergence Theorem [11]. Further, by prop-
erly generalizing Proposition 2, it is possible to show that any
adaptive distributed beamforming scheme that can be reformu-
lated a local random search algorithm and seeks to maximize
any objective function that satisfies Property 1 converges in
probability.

In Fig. 1, we illustrate the evolution of the sequences gener-
ated by the local random search algorithm from different initial
points. The initial points are generated randomly from a uniform
distribution over . Only three sample paths of the sequence are
included in the figure since similar behaviors can be observed
for other sample paths. For each iteration, the random perturba-

tion for the th transmitter is a uniform random variable over
, where . Note that we use the same channel

coefficients to generate these sequences since the focus here is
on the effect of different initial points. In particular, the channel
coefficients are randomly generated from i.i.d. in the
beginning of the simulation, and remain fixed afterwards.

From the figure, we observe the rapid convergence of the local
random search algorithm, irrespective of where it is initialized.
We emphasize again that the fast convergence results follow
from the two important properties for the function as
discussed in Section IV-A. Property 1 guarantees the conver-
gence of the local search algorithm; Property 2 results in mul-
tiple global maxima for the function and hence the fast
convergence of the algorithm. The simulations provide a partial
validation of our proof since we would expect the convergence
to fail from some initial points if there were nonoptimal local
maxima for . It is to be noted that the convergence of
the local random search algorithm does not guarantee that it is
the most efficient scheme in terms of the number of function
evaluations, and hence the most efficient scheme in terms of
energy. However, the algorithm does have a desirable scaling
property, i.e., the time required for the algorithm to converge in
mean scales linearly with the number of transmitters. This is the
topic of the following section.

V. SCALING LAW

Due to the probabilistic nature of the local random search al-
gorithm, we defined convergence in probability in Section IV-B
and showed that the local random search algorithm converges.
For the analysis of the scaling law, however, we can only show
convergence in mean, which is defined as follows:

Definition 2: A sequence generated by a random
search algorithm is said to converge in mean if for each

there exists such that
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Fig. 2. Hitting time for the adaptive distributed beamforming scheme with different values of �.

for all , where . That is,
converges to in mean.

In this section, our goal is to find the time required for the
local random search algorithm to converge in mean, starting
from any initial point. In other words, we are interested in
finding the hitting time3 of the random search algorithm, and
determining its behavior as a function of the number of trans-
mitters. Specifically, we derive an upper bound on the hitting
time of the local random search algorithm as a function of .
Note that the study of the hitting time makes sense only if the
sequence indeed converges in mean, which we established in
Section IV-B.

To facilitate analysis, we define the increment function of
at time as

(19)

where . We then rewrite the received signal
magnitude function at any given time as

(20)

where is a positive integer and .
From Proposition 2, we have that for any given such that

and any local random perturbation , there
correspond and such that

3The hitting time in this work is defined as the time required for the algorithm
to converge in mean.

Thus, we have

for any such that . Referring to (19)–(20), we
obtain

where the last inequality follows by choosing
. This implies that the hitting time for the

local random search algorithm is at most , from any initial
point. Hence, the hitting time for the algorithm scales linearly
with the number of transmitters.

In our simulations, we say that the sequence converges to the
fraction of the global maxima if .

We assume that channel coefficients are i.i.d. complex Gaussian
variables , and use the origin as our initial point. We
set for all our simulations. Fig. 2 demonstrates the
hitting time required for the adaptive distributed beamforming
scheme to converge in a relative sense when and

. It is clear that the hitting time increases as increases. The
scaling law for the hitting time with respect to , however, is the
same for all values of . Indeed, we observe linear scaling for all
values of . This observation confirms our theoretical analysis.
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Fig. 3. Average convergence time for the adaptive distributed beamforming scheme with different values of �.

Fig. 3 shows the average convergence time for the adaptive dis-
tributed beamforming scheme to within a fraction of the glob-
ally maximum value , for different values of . It is
important to note the difference between the hitting time and the
average convergence time. Since our algorithm is probabilistic
in nature, the convergence time is essentially a random variable
and each run of the algorithm provides a sample for this random
variable. Fixing the number of transmitters , we obtain the av-
erage convergence time by averaging over a hundred samples of
this random variable, while the hitting time is obtained by com-
paring with . From Fig. 3, we observe
the same linear scaling behavior for the average convergence
time. We expect this property for the average convergence time
can be shown in a similar manner.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have proposed a framework that allows
for a systematic analysis of adaptive distributed beamforming
schemes in sensor/relay networks. We used this framework to
study the convergence and scaling law of a recently proposed
one-bit adaptive distributed beamforming scheme [1]. We first
reformulated the one-bit adaptive scheme as a local random
search algorithm. This reformulation provided insights into
the convergence of the one-bit adaptive scheme, and led us to
investigate the fundamental properties of the received signal
magnitude function . We identified two important prop-
erties of the function that contribute to the rapid convergence of
the algorithm. First, all local maxima are global maxima. This
prevents any local random search algorithm from being trapped
in nonoptimal local maximum points. Secondly, the

function is invariant under a common shift to its arguments.
This property results in multiple global maximum points for

and hence the rapid convergence of the algorithm.
Based on these properties, we have shown the convergence
of the algorithm, both in probability and in mean. We further
provided an upper bound on the hitting time of the algorithm,
and demonstrated that the hitting time scales linearly with the
number of sensor/relay nodes. This linear scaling is desirable,
especially when the network is densely populated. We have
also provided simulations that validate our analysis.

It is important to note that the effectiveness of the one-bit
adaptive distributed beamforming scheme depends critically on
the properties of the function . Maximizing is
equivalent to maximizing the received if there is no error
in obtaining the common message, which is true in the training
stage since the common message is simply fixed and known to
the receiver. On the other hand, if adaptation is being performed
blindly (without training) it would be necessary to consider the
possibility of errors in common message. The corresponding ob-
jective function may then not possess the same desirable prop-
erties as , e.g., the objective function may possess local
maxima that are not global maxima. Much work needs to be
done to understand how our results can be applied in this more
complicated scenario. One thing that is clear, however, is that we
will need to develop new algorithms that exploit the global struc-
ture of the new objective function since local algorithms can be
trapped in local maxima. Our general framework for studying
adaptive beamforming algorithms is even more useful in this
context since it connects the problem to a well-studied field of
global optimization algorithms.
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