2448

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

MultihypothesisSequentialProbability Ratio
Tests—Pari: Asymptotic Optimality
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Abstract— The problem of sequential testing of multiple hy-
pothesesis considered, and two candidate sequential test proce-
duresare studied. Both testsare multihypothesis versions of the
binary sequentialprobability ratio test (SPRT), and are referred
to asMSPRT's. The first testis motivated by Bayesianoptimality
arguments, while the secondcorrespondsto a generalizedlikeli-
hoodratio test. It is shownthat both MSPRT’s are asymptotically
optimal relative not only to the expected sample size but also
to any positive moment of the stopping time distribution, when
the error probabilities or, more generally, risks associatedwith
incorr ect decisionsare small. The results are first derived for
the discrete-time caseof independentand identically distributed
(i.i.d.) observations and simple hypotheses.They are then ex-
tended to general, possibly continuous-time, statistical models
that may include correlated and nonhomogeneousobservation
processeslt also demonstratedthat the results can be extended
to hypothesistesting problemswith nuisanceparameters, where
the composite hypotheses,due to nuisance parameters, can be
reducedto simple onesby using the principle of invariance. These
results provide a complete generalization of the results given
in [36], where it was shown that the quasi-BayesianMSPRT is
asymptotically efficient with respectto the expectedsample size
for i.i.d. observations.In a companion paper [12], basedon the
nonlinear renewal theory we find higher order approximations,
up to a vanishingterm, for the expectedsamplesizethat take into
accountthe overshootover the boundaries of decision statistics.

Index Terms— Asymptotic optimality, invariant sequential
tests, multialternative sequential tests, one-sidedSPRT, renewal
theory, slippage problems.

|. INTRODUCTION

HE goal of statistical hypothesistesting is to classify

a sequenceof observationsinto one of M (M > 2)
possiblehypothesisbasedon some knowledgeof statistical
distributionsof the observationsindereachof the hypotheses.
For sequentialtesting problems,the numberof observations
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used(samplesize)is allowedto be variable,i.e., the sample
sizeis a function of the observationsA sequentiakest picks
a stoppingtime and a final decisionrule to effect a tradeof

betweensamplesize and decisionaccuracy.

Themajority of researchn sequentiahypothesidgestinghas
beenrestrictedto two hypothesesHowever,thereare several
situations, particularly in engineeringapplications,where it
is naturalto considermore than two hypothesesExamples
include, among a multitude of others, target detectionin
multiple-resolutiorradar[26] andinfraredsystemg13], signal
acquisitionin direct sequencecode-divisionmultiple access
systems[37], and statistical pattern recognition [16]. It is
thus of interestto study sequentiattesting of more than two
hypotheses.

It is well knownthatfor binaryhypothesesesting(M = 2),
Wald's sequentialprobability ratio test (SPRI) is optimal, in
thesensdhatit simultaneouslyninimizesbothexpectation®f
the samplesizeamongall tests(sequentiabndnonsequential)
for which the probabilitiesof error do not exceedpredefined
values(see,e.g.,Wald and Wolfowitz [40], Chernof [6], and
Lehmann[22]). Unfortunately,if M > 3, it is not clear if
thereevenexistsatestthatminimizestheexpectedsamplesize
for all hypothesesMoreover,existing researchindicatesthat
evenif sucha testexists,it would be very difficult to find its
structure For this reasora substantiapart of the development
of sequentiamultihypothesidestinghasbeendirectedtoward
the study of practical, suboptimal sequentialtests and the
evaluationof their asymptoticperformancesee[3], [5]-[11],
[21], [25], [30]-[38], and many others.A modelfor studying
suchasymptoticsvasfirst introducedoy Chernof [5], wherein
he studiedthe independentand identically distributed(i.i.d.)
caseand assumeda cost per observationthat was allowed
to go to zero. Generalizationto non-i.i.d. cases(where log-
likelihood ratiosfail to be randomwalks) havebeenmadeby
Golubevand Khas’minskii [18], Lai [23], Tartakovsky[31],
[32], [34], [35], aswell asVerdenskayand Tartakovskii[38].

For the binary SPH, it is well known that renewalthe-
ory is useful in obtaining asymptotically exact expressions
for expectedsamplesizesand error probabilities (see, e.g.,
[29], and [41]). An approachto applying renewal theory
techniquesto sequentialmultihypothesistests was recently
elucidatedby Baum and Veeravalli[3], whereinthey studied
a generalizatioh of the SPR to more than two hypotheses
that is motivatedby a Bayesiansetting. This quasi-Bayesian

1This generalizatioralsoappearsn otherpaperg18], [30]-[32] in various
contexts.
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multihypothesisSPR (or MSPRT) wasshownto beamenable

to an asymptotic analysis using nonlinear renewal theory
[41], andasymptoticexpressiondor the expectedsamplesize
and error probabilitieswere obtainedin [3]. Furthermore,it
was establishedin [36] that the quasi-BayesiarMSPRT is
asymptoticallyefficient with respectto expectedsamplesize,
for the i.i.d. observationcase.

In this paper,we continueto investigatethe asymptotic
behaviorof the quasi-BayesiatMSPRI, aswell as a related
test that correspondsto a generalizedlikelihood ratio test.
The latter testwas suggestedy Armitage[1], and studiedin
[8]-[10], [25], and[30]-[38] in variouscontexts.We provide
a completegeneralizationof previousresults,including that
obtainedin [36], in the following directions:i) we showthat
both MSPRI’s areasymptoticallyoptimal relative not only to
the expectedsample size but also to any positive moment
of the stopping time distribution; and ii) we extend these
resultsto general possiblycontinuous-timestatisticalmodels
that may include correlatedand nonhomogeneousbservation
processesWe alsodemonstratehat our resultsare applicable
to hypothesidestingproblemswith nuisanceparametersThis
completegeneralizationustifies the use of the MSPRT’s in
a variety of applicationssomeof which are discussedn the
paper.

The remainderof the paperis organizedas follows. In
Sectionll, we formulate the problem, presenta motivation,
and describethe structureof sequentialtest procedureslin
Sectionlll, we derivelower boundsfor the finite momentsof
the stoppingtime distribution undervery generalconditions,
which then are used in proving asymptotic optimality. In
Section IV, first we consider the discrete-timei.i.d. case
and prove that, under certain natural conditions, both tests
minimize not only the expectedsample size but also any
positive moment of the stoppingtime distribution as error
probabilities(or, more generally,decisionrisks) tendto zero.
Thenthe asymptoticoptimality resultsare shownto be valid
for generalstatisticalmodelsthat involve correlatedand non-
homogeneousbservationprocessesThis generalizationto
non-i.i.d. casesis done in the spirit of the work in [23]
and [35], and we borrow many auxiliary results from this
work. SectionV dealswith a specificclassof multipopulation
problems—theso-called “slippage” problems. It is shown
that slippageproblemsare relatedto problemsthat arise in
targetdetectionin multiresolutionor multichannelsystemsin
SectionVI, we illustrate the generalresultsthroughexamples
relatedto detectingsignalsin multichannelsystemsincluding
compositeestingsituationswith nuisanceparameters-inally,
in SectionVIl we give someconcludingremarks.

Higher order approximationsfor the expectedsamplesize
up to a vanishingterm will be givenin the companionpaper
[12]. Theseapproximationstake into accountthe overshoot
over the boundarief decisionstatistics,andtheir derivation
is basedon nonlinearrenewaltheory.In the companiorpaper,
we also presentsimulation results which confirm that the
obtainedapproximationsrehighly accuratenot only for small
but alsofor moderateerror probabilitieswhich are typical for
many applications.
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Il. PROBLEM FORMULATION AND TEST PROCEDURES

A. Basic Notation

Throughoutthe paper(2, 7, P) is a probability spaceon
which everythingis defined { X;, t € R} is arandomprocess
(defined on (2, F)), which is observedeither in discrete
(R = {1, 2, ---}) or continuous(R = [0, >)) time. By
Fr = o(X") will be denoteda subw-algebraof F generated
by X* = {X,, 0 < < t} observedup to time ¢.

We first considerthe problem of sequentialtesting of A
simple hypotheses'H; : P = P;,;" ¢ = 0,1, ---, M — 1,
where M > 2 and P; are completelyknown distinct proba-
bility measuresAn examplewherethe measured?; are not
completelyknown (belongto somefamilies of distributions)
will be consideredn SectionVI.

A pair § = (7, d) is saidto be a sequentiahypothesistest
if + is a Markov stoppingtime with respectto the family
{F} (e, {r <t} € F), andd = d(X7) is an F,-
measurabldunction (terminal decisionfunction) with values
in the set{0, 1, ---, M — 1}. Therefore,d = ¢ is identified
with acceptingthe hypothesisH;.

Next, let (o, - -, mas—1) be the prior distribution of hy-
potheses;r;, = Pr(H,;) > 0, and let the consequencef
decidingd = i whenthe hypothesisf; is true be evaluatedy
the loss function Wy, ¢) € [0, ), 4, =0,1, ---, M — 1.
Suppose,without loss of generality, that the lossesdue to
correct decisions are zero (i.e., W(i, i) = 0). The risk
associatedvith makingthe decisiond = ¢ is thengiven by

M-1

> Wi, i)y (6)

=0
37

R;(8) =

wherefor j # i, a;;(6) = P;(d = 4) is the probability of
acceptingthe hypothesisH; when H; is true (the conditional
probability of error). Note that R; is the risk associated
with wrong decisions;their sum constitutesthe averagerisk
which doesnot include the observationor experimentcost.
In the particular caseof the zewo—oneloss function, where
W (4, ) = 1for j # 4, therisk R;(6) is thesameasfrequentist
error probability «; (6), which is probability of acceptingH;
incorrectly. That s, for the zero—ondoss function

M-1
Ri(8) = ci(8) = Y 7 aji(8).
=
We now introducethe following classof tests

AR ={6:R()<R;, i=0,1,---,M—1} (2.1)

whereR = (R, R, ---, Ra_1) is avectorof positivefinite
numbersin otherwords, the classA(R) consistsof the tests
for which the risks do not exceedthe predefinechumbersk;,
i=0,1---, M—1.

In whatfollows, E; will denotethe expectatiorwith respect
to themeasureP;. A reasonabléormulationof the problemof
optimizing sequentiatestsundergiven prior informationis to
find a testthat minimizesthe averageobservatiortime, Er =

S Mt riE;7, amongall testsbelongingto the class A(R).
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The structure of such a test has been determinedin [31]
and [32] (seealso[3]). Specifically,if time is discrete,i.e.,
t=n=1,2, -, andthe observationsarei.i.d., the optimal
stoppingtime is given by 7., = min; 7, wherer? is the
first ime n, n > 1, for which IL;(n) > A;(Il;(n)). Here
II,(n) = Pr(H;|X™) is the posteriorprobability of the ith

hypothesisbasedon the first n observationsIi;(n) is the
vectorof posteriorprobabilitieswith ith componenexcluded,
and A;(-) is anonlinearfunctiondependingn the distribution
of observationsThusthe optimaltestinvolvesa comparisorof

posteriorprobabilitieswith randomthresholdswvhich mustbe
determinedor eachmodel.In general,t is nearlyimpossible
to find the form of the functions 4;(-), ¢ =0,1, ---, M — 1

(for somespecialcasessee[31], [32], and[3]). Furthermore,
evenif oneis ableto find the boundariesf the optimal test,
it would be difficult to implementthis procedurein practice.
In addition,while in the caseof two hypothesesVald's SPRT

minimizesnot only the averageobservatiortime Er but also
both expectationsEqy7 and E; 7, it is unclearif sucha test
existsfor M > 2 (i.e., the testwhich minimizesE;r for all

1=0,1,---, M — 1, M > 3). However,in an asymptotic
setting when the risks (error probabilities) are sufficiently

small, suchtestsmay be found.

B. SequentiallestProcedues

In the following, we simplify the structureof the optimal
testby replacingthe nonlinearrandomthresholdswith simple
functions(constantsn the caseof the zero—ondossfunction).
Specifically, we considerthe two following multialternative
sequentiatestswhichwill becalledmultihypothesisequential
probability ratio tests(MSPRI’s).? The time parametet may
be eitherdiscreteor continuousLet P(-) bethe restrictionof
the measureP; to the ¢-algebraF; and let

14
P xn,
dQ
denotethe log-likelihood ratio (LLR) processesvith respect
to a dominatingmeasureQ’. If Q" = P}, the corresponding
LLR processwill be denotedZ;;(¢).

1) Testé,: Introducethe Markov times

Z;i(t) = log 1=0,1,---, M -1

7, =1nf < t: Z;(t) > a; + log Z wy; exp [Z;(t)]
i
(2.2)

wherew;; = ;W (4, 4)/m; anda; arepositivethresholdsThe
testprocedured, = (7., d,) is definedasfollows:

min d, =1 if 7, =7;.

0<k<M—1

Ta = Tk
Thatis, we stopassoonasthe thresholdin (2.2) is exceeded
for some 4, and decide that this ¢ is the true hypothesis.
This test is motivated by a Bayesianframework and was
considereckarlierby Fishman15], GolubevandKhas’minskii
[18], SosulinandFishman30], Tartakovsky31], [32], aswell

2This generalizatioralsoappearsn otherpapers[18], [30], [31], and[32]
in variouscontexts.
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as Baumand Veeravalli[3], [36]. Indeed,in the specialcase
of zero—ondossesthe stoppingtimes r; may be rewrittenas

T = inf {t: Hz(t) > Az}; whereAi = LT_L(GE))
exp (a;
and where
7; exp [ Z;(t
L = [Zi(2)]
ZO mjexp [Z;(1)]
=

is the posteriorprobability of the hypothesisH;. Note also
thatif A, = A (doesnot dependon %), the stoppingtime of
the testis definedby

exp (a)
1+exp(a)
i.e.,we stopassoonasthelargestposteriomprobabilityexceeds

a threshold.
2) Testé,: Let b;; > 0 and

T, = Inf {t: max 11;(t) > A}, where A =

v; = inf {t: Zi(t) > m;xx[bij + log wy; + Zj(t)]} (2.3)
j#i

be the Markov “accepting” time for the hypothesisH;. The
testé, = (w, dp) is definedas follows:

min dy =1 if 1, = 1.

0<i<M—1

Yy = Vi

This test representsa modification of the matrix SPR
(the combinationof one-sidedSPR’'s) thatwas suggestedby
Lorden[25]. It wasconsidereatarlierby Armitage[1], Lorden
[25], Dragalin[8]—-[10], Tartakovsky[32], [34], [35], aswell as
Verdenskayand Tartakovskii[38]. Note alsothatif b;; = b;
andthe lossfunction is zero—onethenw;; = =;/m; andthe
Markov time »; may be representedn the form

v, = inf{t: Lz(t) > eX}’)(bi)}
where
T eXp [Zvi (t)]

Li(t) = 75 exp [Zi(1)]

max
0<k<M-—1
ki
i.e., L;(n) is the generalizedikelihood ratio betweenH,; and
the remaininghypotheses.

Supposethe distributions of the observationscome from
exponentialfamilies, which are good models for many ap-
plications. Then the test 6, (as definedin (2.3)) has an
advantageover the first testin that it does not require ex-
ponentialtransformation®f the observationsThis fact makes
it more convenientfor practical realization and simulation.
Furthermoreg, may easilybe modifiedto meetconstraintson
conditionalrisks (see[8]-[10], [32], [34], and[35]) that may
be morerelevantin somepracticalapplications However,as
we shall seein [12], §, hasthe advantagehat it is easierto
designthethresholds{«,} to preciselymeetconstraintson the
risks {R;}.

We begin our analysisby deriving boundson the risks in
termsof thethresholdsThis allowsusto chooseghethresholds
in sucha way asto guaranteahatthe testsbelongto the class
A(R) definedin (2.1). We emphasizethat the boundshold



DRAGALIN etal.: MULTIHYPOTHESISSEQUENTIAL PROBABILITY RATIO TESTS-RART |

undergeneralassumptionsand require neitherindependence

nor homogeneityof the observeddata. The proof is givenin
the Appendix(seealso[1], [3], [11], [32], [34], [35], and[38]
for relatedresults).

Lemma2.1: Let {X;, ¢ € R} be an arbitrary random
processobservedeither in discreteor continuoustime. For
alli =0,1,---, M —1

M-1

Rz(éb) S T Z exp(—bij).

i

Ri(bq) < m; exp (—a;)

Corollary 2.1: Let

a; = IOg(WZ/RZ) b“ = bz = IOg [(M — 1)7rz/Rz] (24)

Then both testsbelongto the classA(R).

It shouldbe pointedoutthatthefollowing implicationholds:
bi =a; +log (M — 1) = Vy_1og(mi—1) < Ta < 1. (2.5)

To show (2.5) we rewrite 1; and 7; as
v; = inf {t: m;ién[Zij (t) —log wy;] = a; +log (M — 1)}
JFr
and

7, = inf < t: m;ién[Zij(t) — log wy;]
JFi

> a; +log | Y wje”
i

— log(max wy;e”1®)
i

Then, inequality (2.5) follows from the fact that
<max wjiezj (ﬂ)
JFi

A consequencef (2.5) is that if the thresholdsare chosen
accordingto (2.4), then7, < v,.

0 <log Z wjiezj(t) — log
i
< log(M —1).

Ill. LOWER BOUNDS FOR MOMENTS
OF THE STOPPING TIME DISTRIBUTION

The following theoremis of fundamentalimportancefor
proving asymptotic optimality. It establishesthe potential
asymptotic performanceof any sequentialor nonsequential

multihypothesigestin the classA (&) astherisksgo to zero.
For conveniencewe write R,y = maxo<i<m—1 £;. Also
the standardabbreviationP-a.s.is usedfor the almost sure

convegenceunderthe measureP.
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Theoem3.1: Assumethere exists an increasingnonneg-
ative function f(t) and positive finite constantsg;;, ¢ # j,
i,j=0,1,---, M — 1, suchthaf

1 P;-a.s.

0] Zij(t) —— aij.

ast » oo, i£7j,4,5=01 -, M—1 (3.1)

In addition, assumethat for all Z > 0

P; <sup Zx(t) < oo) =1.
t<L

(3.2)

Thenfor all m > 0andi =0,1, ---, M — 1

Jﬁ@ﬂf@wm,

inf -
M2 Gij

. Eﬂ'm Z |:F<
SEA (R)
as Rmax —0 (33)

whereF'(-) istheinversefunctionof f(¢), andwhereo(1) — 0
as R — O.

Proof: Let A(]|«;]|) denotethe classof testsfor which
Pz(d = J) < Qg5 0< Qi < 1, andlet . = max; j Cj-
It follows from Tartakovsky[35, Lemma 2.1] that under
conditions(3.1) and (3.2)

|log %‘I)} _1,
dij

Pi{'r > yF <max
for every0 < v < 1.

J#i
Since ;i (8) < R;/m;W(j, i) for any § € A(R), it follows
that

lim inf
Amax—0 §CA(]|lai; )

_lim inf  P;{r >~F(|log Ri|/q:)} =1,
Rpax—0 §CA(R)

for every0 < v <1 (3.4)
where ¢; = minj»; ¢;;.
Denoting

B = s )

and applying the Chebyshevnequality, we obtain
E,[Y;(R)]" 2" Pi{Yi(R) >},
where by (3.4)

for anym >0 and~v >0

Clim inf P{Yi(R)>~}=1,  forevery0<~y<1.
Rpax—0 §CA(R)
Thus
lim inf E[Y;(R)]™>1, forallm>0

Ronar—0 SCA(R)
and (3.3) follows.

IV. AsYMPTOTIC OPTIMALITY OF THE MSPRI’s

A. The Caseof i.i.d. Observations

So far we consideredquite a generalcaseimposing only
minor restrictionson the structureof the observedprocessin
this subsectionwe considerthe discrete-timecase(t = n =
1, 2, - --) and assumethat, underhypothesisH;, the random

3Note that (3.) is nothing but the Strong Law of Large Numbersfor the

normalizedLLR’s Z;;(t)/f(t). The function f(¢) characterizeshe degree
of nonhomogeneitpf the LLR’s.
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variablesX, X, --- arei.i.d. with a density f;(z) (relative
to somesigma-finite measure)and that the densitiesf;, and
f; aredistinctfor all & # j. In other words, thesedensities
do not coincidewith probability one (w.p. 1) in the sensethat
P;(Z;;(1) = 0) < 1 for all  andall j # 4.

In generalthe X’s will represent-valuedrandomvectors,
ie, X, = (X1, ---, X »). Let usdefineAZ;;(n) to be
the log-likelihood ratio of the individual observationX,,, i.e.,

X
S (X

Further, we define

AZ“ (71) =1lo

k=1

D, = ljn;lélzl Dy;.
Note that the D;; are the Kullback—Leibler (KL) informa-
tion numbers(“distances”), and D, is a minimal distance
betweenthe hypothesisH; and other hypothesesDue to the
aforementionedcondition of distinctnessof measuresthese
KL distancesare strictly positive. We shall also assumethat
Dij < 0.

In what follows, we will considera general,asymmetric
case(with respecto risk constraintswhereit is assumedhat
the numbersR;, approachzeroin sucha way that for all i, j

log R;
log R;

0 < ¢y <oo. (4.2)

= Cij,
That is, we assumethat the ratios log R;/log R; (or more
generallyd;; /bys and a;/a;) are boundedaway from 0 and
oo. This guaranteeshat any R; doesnot go to zero at an
exponentiallyfaster(slower)ratethanany other ;. Note that
we do not requirethatthe R;'s go to zeroat the samerate—if
this werethe caseall the ¢;;’s would equall. The reasonfor
allowing ¢;;'s otherthan1 is that thereare many interesting
problemsfor which the risks for the varioushypothesesnay
be ordersof magnitudedifferent.

The following lemma establishesthe asymptotic lower
boundsfor the momentsof the stoppingtime in the i.i.d.
case.lt is then usedto prove the asymptoticoptimality of
the analyzedtestsin the class(2.1) as Ry,ax — O.

Lemmad.1l: If X,,, n =1, 2, --- arei.i.d. randomvectors
and0 < D;; < oo, thenforanym > 0and¢ =0,1,---,M—1

) (1+0(1)), as Ryax — O.

(4.2)

|log R;|

T

inf B> <

scA(R)

Proof: In the i.i.d. casethe condition E;|Z;;(1)] < oo
is sufficient for conditions(3.1) and (3.2) to be satisfiedwith
f(n) = n and ¢;; = D,;. Thusthe lemmafollows directly
from Theorem3.1. |

Now in orderto provefirst-orderasymptoticoptimality we
haveonly to showthatthe lower bounds(4.2) areachievedor
the consideredests.The detailsof the proof are givenin the
Appendix.Thefollowing theoremsummarizeshe mainresults
on the asymptoticperformanceand the asymptoticoptimality
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of the MSPRI’s with respectto any positive momentof the
stopping time distribution. Everywherebelow z., ~ y. as
v — 7o meansthat lim, ., (z,/y,) = 1.

Theoem4.1: Let 0 < D;; < oo.
i) Forallm>1and:=0,1,---M —1
Ei7." ~(ai/D)™,

Eirg" ~ max(bi;/Dij)"™,
J#i

as ami, — 0

aSbyin — o (4.3)

wherea;, =
i) If the thresholdsare determinedby (2.4), then

mini a; and bmin = Inini:j b“

1 - FZ m
mgawNaﬁ~am~<BiJ>,
SEA(R) D;

asRy.x — 0 forallm >1. (4.4)

For m = 1, the asymptoticformulasof (4.3) describethe
behaviorof the first term of expansionof the meansample
size.Thebehaviorof the secondermremainsunclear—itmay
tend to infinity or may be of the order of a constant.In the
companiorpaper[12], we derive higherorderapproximations
to the expectedsamplesize up to a vanishingterm. Theseap-
proximationsrequirefurtherconditionson the highermoments
of the LLR’s. As shownin [12], in a specialasymmetriccase,
the secondtermis of the orderof O(1) (a constantwhenever
the secondmomentof LLR’s is finite. In general,however,
the secondterm is shownto tendto infinity asa squareroot
of the threshold.

Remark4.1: Theorem (4.1) remains valid in the
continuous-timecasewherethe LLR'’s arerandomprocesses
with independentand stationaryincrementswith finite first
absolutemoment.

Remark4.2: We emphasize that the tests considered
asymptotically minimize all positive moments of the ob-
servationtime, underonly the condition of positivenessand
finitenessof the KL distances—finitenessf higher order
momentsis not required. The required condition holds in
most practical problems.In particular,in problemsof signal
detection,all that is requiredis that the signal-to-noiseratio
(SNR) be finite and positive.

Remark4.3: In the“symmetric” case(with respecto risks)
where
10g Fz
log R;
(cf. (4.1)), a much stronger (near optimality) result is true
for the expectedobservationtime. More specifically, if the

thresholdsarechosersothat R;(6,) ~ R; and(4.5)is fulfilled,
then

~1, for all 4, j; i # 4, @S Ruax — 0

(4.5)

inf as Ry — 0

scA(R)

E;vy = E,7 + 0(1)7 (46)
andthe sameis, of coursetruefor thetests,. Thisfactmaybe
derivedby usingtheresultsof Lorden[25]. We conjecturethat
(4.6) is alsotrue for the more generalcasegivenin (4.1). We
do not havea rigorousproof, but simulationresultspresented

in [12] supportour conjecture.
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Remark4.4: Sincethe two proposedMSPRI’s have dis-
tinctly different structures,and are both asymptoticallyopti-
mal, it is naturalto askif this asymptoticoptimality is shared
by a hostof othertests.Clearly, sincewe only havefirst-order
optimality, simple modificationsof the proposedMSPRI’s
(such as adding a constantdelay) preservethe optimality
property. However, it is interestingto see if some other
seeminglyreasonabldestwith a very different structurewill
alsohavethis property.As anexample considetthefollowing.
For simplicity, let R; = Rforalli =0, 1, ---, M —1 andlet
omr = (TvL, dyr) bethemaximum-likelihoodtestprocedure
of the form

max
0<k<M-—1

if

TML = inf{t: Zk(t) 2 CR}

dur, =1, max  Zx(rwr) = Z;(wr.)

0<k<M—1
wherethe thresholdcy, is chosensothat R;(6yr.) < R. Note
thatthis testis a naturalextensiorof the optimumfixed sample
size testunder a constrainton the Bayesrisk >, R;. Now,
usingthe resultsof Sosulinand Fishman[30, pp. 179-182]it
canbe provedthatin a symmetrici.i.d. Gaussiarcase

E;mvL

~ 2, asRkR — 0.

inféCA(I_t) Eir
Thatis, the seeminglyreasonablenaximume-likelihoodtestis
not asymptoticallyoptimum.

B. The Non-i.i.d. Case

Many resultsin sequentiabnalysis,including the onesthat
we obtainedabove,are basedon the randomwalk structure
of LLR’s. In this subsectionwe study the situation where
the LLR’s lose this nice property, and are general,possibly
continuous-time processesThe motivation for this study is
as follows. The randomwalk structureis not valid in many
practicalapplicationsvhereobservationsrenonhomogeneous
and/or correlated.In addition, there is an important class
of problemswith nuisanceparametershat admit invariant
solutions.InvariantLLR’s are not randomwalks evenin the
simplestcaseswherethe modelsgenerats.i.d. observations.

Note that the derivation of lower bounds for E;7™ in
Theorem3.1 (see(3.3)) requiredonly the StrongLaw of Large
Numbers

1
f#)
with someincreasingfunction f(¢) where g;; play the role
of KL distancesin this case.However, exceptin the i.i.d.
case, this condition does not even guaranteefiniteness of
the momentsof the stoppingtime. To obtainthe asymptotics
for momentsof the stoppingtimes 7, and v, in the general
non-i.i.d. case,we henceneedto strengtherthe convegence
condition.

Let{¢;, t € R} bearandomprocessandlet /. > 0. Further,

let

Zij(t) — qij,  W.p.last— oo

T(h) =sup{t e R: |& —q| > h} 4.7)

denotethe last entry time of & in the set(—o0, ¢ — A] U
[¢g + h, +o0). The StrongLaw “¢, — ¢ P-a.s.ast — oo”
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canbe expressedn termsof T'(h) asP(T(h) < o) = 1 for
all positive . In otherwords, ¢, — ¢ w.p. 1 if and only if
P(T(h) < oo) = 1 for all positive h.

The following is the strengtheningf the StrongLaw to the
so-calledr-quick version(see,e.g.,Lai [23] in the discrete-
time case).

Definition: Let {&;, t € R} be a randomprocessand let
T(h) be asdefinedin (4.7). For r > 0, &; is saidto convege
r-guickly undermeasureP to ¢ if andonly if

E[T(h)]" < o0, forall h >0

where E denotesexpectationwith respectto P. If the corre-
spondingr-quick convegenceconditionholdsfor any positive
7, we saythatthe process{¢; } convegesstrongly completel§
to gq.

Let f(¢) be an increasingnonnegativefunction with F(¢)
being the inverse function. In many practical applications
f(t) =t X > 0 (see,e.g.,.examplesn SectionVI). We now
strengtherthea.s.convegencecondition(3.1)in Theorem3.1
into the following r-quick convegencefor somepositive r:

1 P;=r-quickly
— Zii(t) ———— q;,,
f(t) J( ) J

t#£4,4,j=01,---, M —1. (4.8)

Thefollowing theoremestablishetheasymptoticoptimality

resultfor generalstatisticalmodels(without thei.i.d. assump-

tion) whenthe r-quick convegencecondition (4.8) holds.

Theoem4.2: Let the condition (4.8) hold for somer > 0.
Thenthe following threeassertionsre true.

i) Eir) <oo, B <o00,4=0,1,---, M — 1, for any
finite {a;} and {b;;}.

i) In addition, if the condition (3.2) holds, then for all
1=0,1,---, M—1andm < r
E, 7" ~ [F(ﬁﬂ , aSamin — © (4.9)
i
m i\ "
E;v," ~ | F| max — , asby, — o (4.10)
J#i Gy
whereg; = minj; gij, Gmin = ming a;, and by, =
IniniJ’ b“
III) If a; = 10g (WZ/FZ), b“ = 10g[(M— 1)7TZ/FZ], andthe

condition (4.11) holds, then both testsbelongto the

classA(R), andfor all m<r andi=0,1,---, M — 1
1 RZ m
inf E7" ~E7) ~Ey" ~ [F<M>} )
SCA(R) @
aSEmax — 0. (411)
In particular,if f(t) = t* with A > 0, then
- m/A
log R;
inf Er" ~ Bt~ B <@> ,
§CA(R) ¢
'I;:O7 ]_7 e M —1. (412)

4This definition of strong completeconvegenceshould not be confused
with that of completeconvegence(which is equivalentto 1-quick conver-
gence)given in Hsu and Robbins[20].
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Notethatin [35], Tartakovskyestablished resultsimilar to
(4.11)for the MSPRY 6, butfor thesituationwhereconstraints
are imposedon the conditionalerror probabilitiesP;(d # ).
The asymptotics(4.9) and (4.10) are new and perhapsthe
most useful, sincethey allow us to obtain asymptoticsunder
a variety of constraints.

Therigorousproof of Theorend.2is givenin the Appendix.
Herewe present heuristicagumentthatleadsto thistheorem.
We focus our attentionon the test é,, since,asis clear from
(2.5), the correspondingsymptoticdor &, follow from those
for 6.

Introducethe following notation:

bij = q;; [bij +log wyil;  Yij(t) = ;" Zij (1)

; = inf {t € R: min Y;;(t) > max 5“}
il

JF
Notethatthecondition(4.8)impliesin particularthatthemean
valueof theLLR Z;;(t) is asymptoticallyequalto g;; f(t), as
t — oo. Thuswe may expectthat for the large b;;

in[f () + Lij(%)] ~ max by;
minf(7) + Lij(7%)] ~ max bi;
whereL;;(¢) = Y;;(¢) — f(¢) is the stochastigoart of Y;;(¢).
Now, if fluctuationsof Z;;(t) are not too large, which is
expressedn termsof P;-r-quick convegenceL;;(t)/f(t) —
0, thenit may be expectedthat the stochasticpart L;,(7;) is
substantiallylessthan f(7;) (in average)Therefore,

f() = max bij

which for large b;; andr > 0 gives

F<max 5”> .
C i Y]

Sincey, < 1;, we also expect

F<max 5”> .
AT

Onthe otherhand,if we choosethe numbersh;; asin (2.4),
the right-handside of the latter inequality is the first term of
expansionin the lower boundfor E;; in the corresponding
class (see Theorem3.1). Thus we expectthat the tests é,
andé, areasymptoticallyoptimal whenthe error probabilities
approachzero.

Corollary 4.1: If the normalizedLLR’s Z;;(t)/f(t) con-
verge stronglycompletelyto g;; underP;, thenthe asymptotic
relationships(4.9)—(4.11)hold for all m > 0, and hencethe
test proceduresd, and é, minimize any positive momentof
the stoppingtime distribution.

~
~

~
Ei 1

<<

~
~

Ei vy

It shouldbe pointedoutthatsinceTi(f)(h) is not a Markov
time, it is usually not easyto checkthe r-quick convegence
condition (4.8). The following conditionimplies (4.8) andis
sometimesuseful. If, for anye > 0

[
0

sup [Zi;(u) — qiy f(w)]

0<u<t

> Ef(t)} dt < oo
(4.13)
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then(4.8)is true. Theintegralin (4.13)is replacedby a sumin
thediscrete-timecase (SeeChowandLai [7] for somerelated
inequalitiesand conditionsin thei.i.d. case,and Tartakovsky
[35] for the generalcase.)This conditionwill be checkedin
a numberof examplesin SectionVI.

Remark4.5: In thei.i.d. casetheconditionE; | Z;; (1) <
oo is necessarand sufficient for the »-quick convegenceof
t71Z;;(t) — D;; (see(4.13) and [7]). Therefore, Theorem
4.2 implies the asymptotic formulas (4.4) in Theorem4.1
for m < » under conditions E;| Z;;(1)|"t! < oo. Since
Theorem4.1 holdsfor anym > 1 underthe weakercondition
Ei|Z;;(1)| < oo, this showsthat Theorem4.1 doesnot follow
from Theorem4.2.

V. SLIPPAGE PROBLEMS

In this section we apply the general results obtained
above to a specific multiple decision problem called the
slippage problem (see Femuson [14], Mosteller [27]).
Supposdhereare N populationswhosedistributionfunctions
F(x—61), ---, (= — 8y) areidentical exceptpossibly for
different shifts 8, ---, 6. On the basis of samplesfrom
the N populationswe wish to decide whether or not the
populationsare equalor one of thesepopulationshasslipped
to the right of the rest and, if so, which one (e.g., which
is the “odd” one). In other words, we may ask whetheror
not for somei, we have 8, > 6, = 6,Vk # 4. In the
language of hypothesistesting we want to test the null
hypothesis“ Hy: 81 = 6 = --- = 85 = #" againstVv
alternatives'H;: 0, = 0+ A" i =1, ---, N, where A # 0.
Thusin this caseM = N + 1. The slippageproblemis of
considerablepractical importanceand closely relatedto the
so-calledranking and selectionproblemin which the goal of
an experimenteis to selectthe bestpopulation[4], [17].

A problemof this kind wasfirst discussedby Mosteller[27]
in a nonsequentiaketting for the nonparametriccasewhen
boththeform of distributionfunction (), andvaluesof ¢ and
A areunknown.Feguson[14] generalizedhis resultfor the
caseof arbitrary (but known) distributions £4(x) and Fi (z)
(not necessariljust with different means),i.e., when, under
hypothesisH,, all N populationshavethe samedistribution
Ly(-) and,underH;, the ith representativlhassomedifferent
distribution £7(-). Tartakovsky[33] consideredthe case of
possiblydifferent (and unknown)distribution functions £;(+),
i1 =1, ---, N, in aminimax (againnonsequentialyetting.As
a result, the minimax-invariantsolution to this problem has
beenobtained.

Another interestingapplication of this model is in signal
(target) detectionin a multichannel(multiresolution)system.
There may be no useful signal at all (hypothesisHy) or a
signal may be presentin one of the N channels,in the ith,
say (hypothesisH;). It is necessaryto detecta signal as
soon as possibleand to indicate the numberof the channel
wherethe signalis located.This importantpractical problem
will be emphasizedn the subsequenexamples.Moreover,
we will considera more generalcaseof possibly correlated
andnonidenticallydistributedobservationsn eachpopulation
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while populationswill be assumedtatisticallyindependenbf
each other.

To be specific,let X, = (X1 4, ---, Xn,1), N > 2, bean
N-componeniprocessobservedeitherin discreteor continu-
oustime. The componentX; ; correspondso the observation
in the jth channel.lt is assumedthat all componentsmay
be observedsimultaneouslyand may have a fairly general

structure We alsosupposéhattheyaremutuallyindependent.

For the problem under consideration,the following three-
valuedloss function is appropriate:

Wy, forj=0,i=1,---, N
Lo JWy, forj=1,..-,Ni=0
Wi, i) = W,, forj=1,---,N,i=1---,N,j#i

0, otherwise.
(5.1)

That is, we assumethat the lossesassociatedwith false
alarms,missingthe signal,andchoosingthe wrong signalare,
respectively,given by Wy, W1, and W5. The decisionrisks
are then given by

Ro(8) = Wi - > mja0(6) (5.2)
j=1

~
Ri(8) = W2+ > mjeji(6) + mWoagi(8),  i=1,--, N
j=1

i

(5.3)

wherea;;(6) = P;(d = i), j # 4, arethe correspondingerror
probabilities.

Considera commonly usedadditive model [2], [30], [32]
wherean observedprocessn the jth channelrepresentgither
the additive mixture of a useful signal S; ; with a noise¢; ;
or only noise

@ S, +£f t
X( ) _ J,t g, ts
i {@'J?

wherethe superscript meanghattheprocess; , is regarded
under H;, i.e., whena signalis presentin the ith channel.In
generalthe signalS; ; could berandomandits structuremay
be different for the various channels.

Since Z;;(t) = Z;(t) — Z;(¢) and

ifi=j j=1,--, N
if iz i=01, -, N ©O4

Py,
dpf) (Xé)
theLLR Z;;(t) depend®ntheobservatiorprocessX; through
only the componentsX; , and X ..

In orderto apply generalresultsof SectionlV, we haveto
checkthevalidity of therequiredconditions.This will bedone
in the next sectionfor severalspecificexamples.

dPt
Z(t) :=log ﬁf(Xt) =log
0

VI.

In this section we consider exampleswhich are mean-
ingful for many applicationsincluding tamet detectionin
multiple-resolutiorradar[26] andinfraredsystemg13], signal
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systemd37], andstatisticalpatternrecognition[16]. The first
is a discrete-timebut non-i.i.d. example,the secondis a
continuous-timeexample andthethird includesnonparametric
modelsandinvariant sequentiatests.The main goal in these
exampless to showthatthe conditionsrequiredfor ourresults,
particularly in the non-i.i.d. cases,are reasonableand are
usually met in practice. Detailed numerical and simulation
resultsfor thei.i.d. casearepresentedn the companionpaper
[12].

Examplel: Discrete-timedetection/identificatiorof a de-
terministicsignalin the presenceof correlatednoisein a mul-
tichannelsystem Assumethat the functions.S; ,, ---, Sy n
in (5.4) are deterministicand the noise processeg; ., n =
0, 1, ---, are stablefirst-order autoregressivesaussianpro-
cessesj.e.,

gi,n = ﬁgz, n—1 1 Ci,nv

where ¢; 1, ¢ 2, -+ are i.i.d. Gaussianvariableswith zero
meanand variances? (¢; ,, and ¢; ,, are independent)and
|3] < 1. 1t is easyto showthatthe LLR’s areof the form

71217 51‘70:0

I = 5 N
Z“(ﬂ)—pZSi,kXi,k—pZSj,kak
k=1 k=1
1
- T.Q Z[Sz,k Sj,k]?
k=1

(%) 1 ¢ &2 &2 1 &
Z;(n) = 3.2 Z [T 5 + 55 ] + e Z Si, kGi, k
k=1 k=1
1 = 7
T2 Z S, kG, k

Hereghe“tilde values"aref(m =Xin —BX; o1 fort>2
and X; ; = X; 1, andsimilarly for S; .

We denotethe accumulatedSNR for channel? up to time
n by

1 & =
pe(n) = — Z SZQk
k=1

a =
Assumethat
lim. n" M ue(n) = ge, for somel >0  (6.1)
wheregy, £ =1, ---, N, arefinite positivenumbers Now we

will establishthat
n=*Zij(n) — (g +q;)/2

To establishthis it is sufficient to showthat (see(4.13))

P;-strongly completely

Z n"IP(|We(n)| > en?) < o,
n=1
for somee > 0 andall » >0 (6.2)

where Wy(n) = S°r_, Se 1,1 SinceWe(n) is a weighted

acquisitionin direct sequencecode-divisionmultiple-access Gaussiansamplesum with mean zero and variance ~g,n*
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(for large n), it is easyto showthat thereis a numbery < 1
such that

P;(|[We(n)| > en?) < O(v")

andhence(6.2) is fulfilled. Thusby Theorem4.2, the asymp-
totic equalities(4.11) hold with ¢;; = (¢; + ¢;)/2, ¢, § # 0;
dio = ¢i/2, qoj = 4;/2,4, =1, ---, N, andthetestsé, and
6, are asymptoticallyoptimal.

It shouldbe notedthatin the applicationto signaldetection,
the quantity Ry is a constrainton the risk associatedwith
missingthe signal when it is actually presenton one of the
channels(see(5.2)). Similarly, R;, i # 0 is a constrainton
the risk associatedvith decidingthat the signalis presenton
channeli, which is a weightedsum of false alarm probability
and the probability of incorrect classification (see (5.3)).
Symmetry assumptionsgenerally yield R; = R for i =

-, N. Now, sincetypically theaccumulatedNR 1; (n) in
the ith channeldoesnot dependon the numberof the channel,
i.e., ¢; is samefor all + and equalto p (say),the asymptotic
formulas become

2 . m/A
cop o~ ()
P

i=1,---,N, m>0 (6.3)

2 mj/A
Eory" ~Eo7)" ~ <— |10g§0|> , m>0. (6.4)
p

In particular,if S; ; = 6, thenit is easyto seethat A =1
worksin (6.1),aswell asin (6.3) and(6.4). It is alsoeasyto
seethat the correspondingSNR is ¢; = p = 6%(1 — 3)?/o2.
In this case,the expectedstoppingtimes are proportionalto
the risk constraintsandinverselyproportionalto the SNR p.

Now, from the analysisof SectionlV-B, it is not clear if
condition (4.8) is necessanto guaranteethe corresponding
optimality of the tests.In the following, we showthatif (4.8)
is notfulfilled, thesequentiatestsconsiderednayhaveinfinite
moments At the sametime the bestfixed samplesizetesthas
a finite samplesize.

Insteadof (6.1), which postulateghe growth of the SNR as
a power of n for sufficiently large n, supposethe following
condition holds:

log(log n) *1ie(n) ~ qu, asn — oo (6.5)

i.e.,the SNRgrowsaslog n for sufiiciently largen. Sincethis
“law” is too slow, one may expectthat r-quick convegence
doesnot hold. Indeed.,it is easyto seethat

1 P;-a.s.
_ Z7 = i =
log(1+n) " () ij

but not-quickly (for anyr > 1), sincefor sufficiently smalle

(@i +q;)/2

EiT;]ﬁ(g) > /OO P {|Wi(t)| > eln(1 +¢)} dt

—4 /OOO (e = 1)B(—ev/Jam) dv =

where, as abovein (6.2)

n .
n) = Z ¢ 1:Gi, k
k=1
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andW,(t) = We(n) for n <t < n+1, andwhere®(y) is the
standardnormal distribution function. Thus EiTi(f)(h) =0
and Theorem 4.2 cannot be applied. In fact, in this case
E;v = oo for sufiiciently small R (actually for R < 0.305,
see,e.g., Golubevand Khas’minskii [18]).

Example2: Slippageproblemfor nonhomogeneou®oisson
processln applicationgnvolving infraredandopticalwarning
systemsan appropriatemodelfor noiseand clutteris a point
randomprocessBelow we considera multichannelsystemin
which the noiseprocesss anonhomogeneouBoissorprocess
andtargetappearanc&adsto a changein the intensityof this
process Specifically,underhypothesisH, (target absent) et
the observedprocessX;, = (X1 4, ---, Xn ), t > 0, bea
vectornonstationarpoissorrandomprocesaith independent
componentgachof which hasintensity~y(¢) while, underH;
(tamget is locatedin the i¢th channel),the ith componenthas
the intensity v;(t) # ~o(t). Then

()

Zi;(t)

where
2 = [ ) =)

NotethattheLLR’s Z;;(¢) areprocessesith independenbut
(generally)nonstationaryincrements

AZ“(t) = Z“(t) - h%rtl Z“(S)

Now assumehat-y;(t) is apowerfunction,,(t) = Q;+*1,
where A > 0 and @; > 0. Then
EZU( ) |:Qz log &_ OIOg&_(QZ_QJ)} t)\
Qo Qo

Qi

Qo ) +o{lon ) ]t

andthe incrementsAZ;;(t) are boundedas

Qi
Qo

Thust=*Z;,(t) convegesP;-r-quickly for all positiver (i.e.,
P;-strongly completely)to the numbers

Qi Qj

Qo Qo

Vari [ZU (t)] le <1Og

mam<m%+w

X Q; log Qo log —(Qi —Qy)|. (6.6)
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By Theorem4.2,the MSPRI’s areasymptoticallyoptimalrel-
ative to any positivemomentof the stoppingtime distribution.
Note that f(¢) = #* in this caseandhence(4.12) applies.

If Q; =Q, andR; = Rforall i =1,---, N, thenusing
(6.6), we obtain

@1 =qi0 = ; |:Q1 log % - +Q0}
and
qo =Qo1 = ; {Q1 Qo — Qo log gj

Thus from (4.12)

— rn/)\
Allog R| )
E)t ~E; 7" ~
! < 108 QI/QO) Q1+ Qo
=1,
Eqnr™ ~Eor™ < )‘| 1Og F0| )"l/)\
1/, ~ T ~
o 0%a Q1 — Qo — Qo log(Q1/Qo)

Example3: Nonparametricdetectionof a targetin a mul-
tichannel systemwhentraining clutter data is available. So
far we consideredthe caseof simple hypothesesassuming
thatthe measure®,, Py, - - -, Pys—1 werecompletelyknown.
However, in many practical applications, the models are
known only partially (parametricuncertainty)or they may
even be unknown (nonparametricuncertainty). The above
ideas,particularly Theorem4.2, may be usedto proveasymp-
totic optimality of invariant multihypothesissequentialtests
for compositehypothese§ H;: P P;," i =0, 1, ---, M —1.
Here P; are families of distributions, either parametricor
nonparametricandit is assumedhat they can be reducedto
simple oneshby using the principle of invariance(for further

detailsrelatedto theinvarianceprinciplein testinghypotheses,

see,e.g., Feguson[14] and Lehmann[22]).5

In fact, Theorem4.2 and Corollary 4.1 remaintrue if we
use the LLR’s Z;;(t) constructedfor a maximal invariant
and if the class A(R) includes only invariant tests with
the constraints(2.1). In particular,if Z;;(¢)/f(¢) conveges
strongly completelyto g;;, then the correspondingnvariant
MSPRI’s minimize all positive momentsof the stoppingtime
distributionin the classof invariant sequentiatestswith the
correspondingconstraintsimposedon risks.

To illustratethis point, we apply Theorem4.2to an (N +1)-
sample (N > 1) nonparametricproblem with Lehmann
hypothesegor proportionalhazardsjf we replaceP by 1 — P
below) andshowthatthe extendedmultialternativeversionof
the Savagesequentialtestis asymptoticallyoptimal with re-
spectto any positivemomentof the stoppingtime distribution.

Let X, = (Y., X1, ., -+, Xy n), Where {Y,},>1 are
i.i.d. with a continuousdistributionfunction Py, and indepen-
dentof {X; ,}.>1, which arei.i.d. eitherwith P, or one of
them (say, the kth one) hasthe distribution Pg"“, where Ay,
arespecifiedpositiveconstants A, # 1, andPy is completely
unknown.In otherwords, the hypothesesre

“Ho: P; = P, N?

5 Another possibleapproachis to useadaptiveteststhat employ estimates
of the unknownnuisanceparameters.

forall¢=1, - .-,
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and

“Hi: X; . ~Py, forj#i and X, ~Pi =P}

An interestingapplicationof this problemis in targetdetec-
tion in the N-channelsystemin the presenceof clutter with
unknowncontinuoudistributionPy, basednunclassifiedlata
(Xn, 1, --- X~ »n) whena classifiedtraining sequencey,, is
alsoavailable.Thatis, it is knownin advancethat the clutter
only generateghe datay,,.

A maximalinvariantwith respectto the group

Xn - (Z/)(Yn), z/}()(l,n)v T Z/}()(N,n))

where) is any continuousincreasingfunction, is the vector

of ranksof Y among(Y, X, ---, Xn). Let
P i(x)=n""> Lx ,<ap, i=0,1,--, N
k=1

be the empirical distributionfunctionswhere Xo x = Yx. For
the sakeof simplicity considerN = 1. Thenthe LLR of the
maximal invariant is [28]

n 1
Z(n) = log —Al (2n)!
n2

—Z log( 2 0(Ya) + APy 1 (Ya)]

P o(X1 k) + AP, 1 (X k)])
Define

qo( A1)
q1(Ar)

S(Al, PO, Pl) = 108(4A1) —2— / 108['30(.’1') + AlF’l(a:)]

=5(A;, Py, Pp) <0
=S5(A;, Py, P} >0

By [28, LemmaZ2], for anye > 0 thereexistsa numberp < 1
such that

P;([n"1Z(n) — ¢:(A1)| > ) < O(p™), 1=0,1
which obviously implies the strongcompleteconvegenceof
n~1Z(n) to ¢;(A1) underP;.

Thus basedon Theorem4.2, one may concludethat Sav-
age’snonparametricsequentiarank-ordertestasymptotically
minimizesall the momentsof the stoppingtime distributionin
the classof invarianttestswhentherisks R, and R, approach
zero.A similar resultis valid for the moregeneralkcaseN > 2
when R; — 0.

VII.

Most of the researchon sequentiahypothesistestingover
the last fifty years,startingwith the classicalworks of Wald
[39] and Wald and Wolfowitz [40], hasdealtwith the caseof
i.i.d. observationandtheoptimality (or asymptoticoptimality)
of sequentiatestsrelative to the expectedsamplesize. How-
ever,in many practicalapplicationsthei.i.d. assumptiordoes
not hold. Furthermorethe behaviorof higher order moments

CONCLUSIONS
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may be of interest.The resultspresentedn this papershow
that the proposedVISPRI’s are asymptoticallyoptimal under
fairly general conditions that cover nonhomogeneousnd
correlatedstochasticprocesse®bservedeither in discreteor
continuoustime, stochastianodelswith nuisanceparameters,
and even nonparametricmodels. In addition, the tests are
shownto be asymptoticallyoptimal not only with respectto
the expectedsamplesize but alsowith respecto any moment
of the stoppingtime distribution. This justifies the useof the
MSPRI’s in a variety of applications,some of which have
beendescribedin this paper.

Throughout the analysis of the paper we assumedthat
the hypotheseswvere simple with respectto the informative
parameterslf the hypothesesre compositethenan adaptive
approachmay be applied (see, e.g., Dragalin and Novikov
[11]) to find asymptoticallyoptimal solutions.However, we
have reasonsto believe that in spite of their asymptotic
optimality, the correspondingadaptivetestswill not perform
well in practice. (The asymptoticconvegenceis generally
too slow for such tests.) Thus a reasonablepartitioning of
composite hypothesesinto a number of simple ones and
subsequenapplicationof the MSPRI's may be beneficialin
practice.

Theresultspresentedcibovedo not coveranimportantcase
for many applications,namely,one wherethereis an “indif-
ference” zone. This important extensionwill be considered
elsewhere.

APPENDIX
Proof of Lemma2.1: Obviously,

Ri(éa) = Z WjW(jv [’) /

i {7a=7;, Ti<oo}

%5 () qp;

=mEi § 1z, =, r <00} Z w;ie?i ()
JFt
< Wie_ai Ei]l{‘ra:‘ri,‘ri<oo} < Wie_ai
where 1., is the indicator of the eventw. Here we used

the Fubini theoremand the definition of the stoppingtime 7;
accordingto which

> wiie? M e,
J#i
Considerthe secondest.For the Markov times;, we have
the equivalentrepresentation

on{r; < oo}.

v; = inf {t: min[Z;;(t) —
i

bij — log wy;] > 0}

which implies the inequality

eZii(vs) > wjiebfj ;

forall j #7 on{r; < oc}.

Next, by Wald’s likelihood ratio identity [29], [39], [41]
Ejl{, coope” ) = 1.

Combiningthe last two relationshipswe get

1 W (5, §)Pi(v; < o00) <mye” b, forall j #4.
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Sincethe event{d, = i} = {x, = v;, 1; < oo} implies the
event{r; < oo}, it follows that

S m W, i) Pi(dy =i) < m; »_ et

i i

andthe proof is complete. O

Proof of Theoem4.1: To provethe theoremwe shall need
the following result,which may be of independeninterest.

LemmaA.l: Let X,, n = 1,2, --- bei.i.d., and suppose
0 < D;; < oo foralli# j. Then

i) thestoppingtimesr, andy, areexponentiallypounded
and henceE; 7> < oo, Ejf* < oo for any positive
finite m, a;, and b;;;

i) the families
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T m m
{(E) ,az>0} and {<ﬁ> ,b”>0}

are uniformly integrable with respectto P; for all
m > 1.

Proof: Note first that both stoppingtimes 7, and, do
not exceedthe stoppingtime

T, = inf {n > 1 m#ln Zij(n) > c}
i

¢ = a; + log[(M — 1) max wj]
J#i
and
— 9 b 1 > 3
c 151;5( i+ Og(I?;LE( Wy;)
for testsé, andé,, respectivelyThusto provei) it is sufficient

to provethat 7, is exponentiallyboundedfor 0 < ¢ < oo. To
proveii) we haveonly to prove the uniform integrability of

{(Te/o)™, ¢ = 1}
i) Obviously,

P,(T, >n) <P; <max eZi(n) > ec>

J#L
< Z P; <ﬁ A7) > C_PC>.
i \t=1
Applying Markov’s inequality
P(|X| > y) <y 'E|X]|

we obtainthat for any p > 0

P,(T, > n) <Pt Z E;
i
— Pe Z (EiCpAZji(l))n
i

< (M — 1)eP® max p”
<( Jet max g

lﬁ PAZji (t)]

t=1

where
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Evidently, 0 < p;(p) < 1 for any 0 < p < 1 when
0 < D;; < oo (in fact, P;(Z;;(1) # 0) > 0 as D;; > 0).
Thus thereis a finite positive constantC' and a number p,
0 < p <1 suchthatP(T, > n) < Cp*, n=1,2---,
and hencethe Markov time 7. is exponentiallyboundedfor
all finite positive ¢, which implies the assertion).

ii) Fork =1, 2, ---, definethe randomvariables

M;, = inf {71>Mk_1: In#ln(Z“(TL)—Z“(Mk_l)) >O}7
FE

Mo=0

Ni=Mp— M, Yii(k)=2Z;;(My)—Z;;(My_1).

Since Z;;(0) = 0
Ny =M, =inf{n>1: ln;ié11Zij(n) >0} =1Tp
J#
andY;J(l) = Z“(Ml)

It follows from the constructionthat { ¥V, }+>1 arei.i.d. and
exponentiallypoundedandthat {Y;; (k) }»>1 arei.i.d. positive
randomvariables(underP;). Further,definethe stoppingtime

z": Yi(k) 2 C}-

7) =inf {n > 1: min
JFi P
It is easyto seethatl’. is asumof 7} i.i.d. andexponentially

boundedrandomvariablesVy,
T.=M =) N
k=1

By Theoreml.6.1 of Gut[19], thefamily {(T../c)™, ¢ > 1} is
uniformly integrablewheneverf (7 /¢)™, ¢ > 1} is uniformly
integrable. Thus to prove the desiredresult we have only
to show the uniform integrability of the latter family for all
m > 1.

Since the incrementsof the randomwalks >~/_, Y;;(k)
are positive

7* = max TV
JF

where

T :inf{n >1: ) Y > c}.

k=1

We apply [19, Theoremlil.7.1] to show that {(Tc(])/c)m,
¢ > 1} is uniformly integrableunderP; for all m > 1 and
hencethe family {(*/c)™, ¢ > 1} is uniformly integrable
too (for all m > 1). This completeshe proof of ii). O

Proof of i) in Theoem4.1: Considerthe MSPRT §,, and
let amin = min; a;. By Gut[19, TheoremA.1.1], the follow-
ing convegenceof moments

Ta m 1
Ef(@) ~ D

holds whenever
(Cl) Er < xforal 0 < a; < oo,

aSamin —
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(C2) the family {(7o/a;)™, a; > 0} is P;-uniformly
integrable,
(C3) (7a/a;) — Di_1 P;-a.s.aS ampin, — 00.

By LemmaA.1, Conditions(C1) and (C2) are satisfied.The
a.s.convegence(C3) follows from Baum and Veeravalli[3,
Theorem5.1].

For the MSPRT 6, Conditions(C1) and (C2) follow from
LemmaA.1l. The convegence

L) P;-a.s.
max[bij/Dij]
i

17 as bmin -

where by, = min; ; b;;, is provedin essentiallythe same
way as (C3).

Proof of ii) in Theoem4.1: To prove (4.4) it sufiices to
show that the lower bound (4.2) is achievedfor the testsé,
and é,. This follows immediatelyby substitutionof

a; = 10g (WZ/FZ)
and
bij = log [(M — 1)mi /R
in (4.3). This completeshe proof. O

Proof of Theoem4.2: Theoremd.2will beprovedonly for
the MSPRT §,. For the MSPRT 6, the proof is essentiallythe
sameandis omitted.In fact, mostof theresults,including the
asymptoticoptimality of §,, follow immediatelyfrom (2.5).

Proof of i) andii). Write

—1

bi = max [7;; (bij +log wy;)] Yii(t) = qz‘}lZij ()

7; = inf {t €R: m;én Yi(t) > Z)Z}
JFT
Let h € (0,1) and Ti(f)(h) = max,; Tfy?(h). By the
definition of the stoppingtime #;
min Y;; (& — 1) < b;
i
and by condition (4.8)

on the set
(5 > T (h) + 1}

Thesetwo inequalitiesshow that
b;
1-h

177;<1+F< ), on{f/i>Ti(f)(h)+1}.

Hencefor any h € (0, 1)

(i)

) 1{9i§1+:r}f>(h)}

H bi
< .
<1471 (h)+F<1_h>

where 1, is the indicator of the setw.

i

(A.1)
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Sincey, < 7;, andsinceby the assumption®f thetheorem

BT (0] < (M = 1) max BT ()] < o
JFi ’

it follows from (A.1) that E;»; < oo for any positive set of
thresholdsb;;. Thus assertioni) holds.
Furthermore,(A.1) implies

b\

(1+0(1)),

forall 0 < h <1 asby,, —
where by, = min; ; b;;. Letting & — 0, we obtain the
following upper estimate:

Eiv, <

Eiyy < [F(max bl)} (1+0(1)), aSbyi, — 00.
JFi Qg
(A.2)
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< Pf,<sup ZE®) + sup ZE(t) 2 CQijf(3)>

t<K K<t<s
< Pi{sup Z%(t) + f(s) sup <% Zh(t) - qw’)

t<K K<t<s

)

1 1
<P s sap 2000+ s |75 00 -
> (c— 1)%’)-

By the condition (3.2), for any ¢ > 0 thereis a finite w.p. 1
randomvariable K;;(¢) suchthat

Z%(Kij(€))

f(Ke) M| =F

To proveii) for the MSPRI ¢, (the relation4.10))it suffices (in fact, one may take K;;(¢) = Ti(f) (e) + 1) andhence

to show that the right-handside of (A.2) is also the lower
estimatefor E;»]. To this end, we first show that (similarly
to (3.4))

b;;
Pi{w, > ’yF(maX —J>} -1
J# iy
asbh,, — oo forevery0 < ~v < 1. (A.3)

Write €; , = {d, =i} N {1, < s}. Obviously,for any s > 0
andC > 0

P;(dy = i) =Ei{1{a,=iy exp[Z;i(1)]}
>EB{lia, ., z;()<cy exp[—Zij ()]}

> P, <Qi,57 sup Z;;(t) < C)
t<s
> GC{PZ‘ <Qi75) — Pi(sup Z“(t) > C) }
t<s
Since
Pi(Qi,s) > Pz(db = L) — Pi(l/b > S),
Pi(dy =d) =1—>_ Pi(dy = k)

ki
and sinceby Theorem2.1 of Tartakovsky[35]
Pi(dy = j) < exp(—bi; — log w;)
we obtain

Pi(ry >s) >1— Z w,:ile_bik — w;jle_
feti

- i<SuP Zij(t) > C).

t<s

byi+C

(A.9)
Now, setC = ¢g;; f(s) with ¢ > 1. Then

Pi(suwp 2500 2 ©)

t<s

= Z<§1ip Z“(t) > CQijf(3)>

P; <SUP Zi(t) > CQijf(5)>

t<s

1
<Pl — su Z;',thc—lix—s.
= <f(3) tﬁ[({?(é) J( ) ( )(.ZJ )
By the conditions(4.8) and (3.2), the right-handside of the
latter inequality approacheszero when s — oo and ¢ >
1+ €/g;. Thus

lim P; <Sup Z;(t) > cqijf(s)> =0, for everyc > 1.
<s

5—00 +

Now, settings = s, = F(vg;;'b;i) with 0 < y < 1/c and
using (A.4) and (A.5), we obtainthat for all j # i

Pi,{l/b > F(’}/q;lbﬂ)} >1— Z w’:ile—bik _ 6_(1—"/6)ij
ki
- Pi<sup Zii(t) > CQijf(Sb)> -1
t<sp

as bmin - 0

which proves(A.3).
Finally, by Chebyshev'snequality

Vy p

b
F<Inax i)
JF Qij

foranyr» >0,y >0

E; >R

b =
F<Inax i)
J#i Qi

where by (A.3) the probability in the right-hand side tends
to 1 asb,,;, — oo for every0 < + < 1. This showsthat

> 5

r
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b
F<Inax ﬁ)
J#i Qi

which along with (A.2) proves(4.10).

lim E;

bmin— 00

>1, for anyr > 0
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Proof ofiii): To prove (4.11) it remainsto set b;

log[(M — 1)7;/R;], andto use Corollary 2.1, Theorem3.1,

and (4.10). This completeshe proof.

O
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