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MultihypothesisSequentialProbabilityRatio
Tests—PartI: Asymptotic Optimality

Vladimir
�

P. Dragalin,AlexanderG. Tartakovsky,andVenugopalV. Veeravalli,Senior
�

Member,IEEE

Abstract
�

— The
�

problem of sequential testing of multiple hy-
potheses� is considered, and two candidate sequential test proce-
dur
�

esare studied. Both testsare multihypothesis versionsof the
binary
�

sequentialprobability ratio test (SPRT), and are referred
to
�

asMSPRT’s. The first test is motivated by Bayesianoptimality
arguments,� while the secondcorrespondsto a generalizedlikeli-
hood ratio test. It is shownthat both MSPRT’s are asymptotically
optimal	 relative not only to the expectedsample size but also
to
�

any positive moment of the stopping time distribution, when
the
�

error probabilities or, more generally, risks associatedwith
incorr ect decisions are small. The results are first derived for
the
�

discrete-time caseof independentand identically distributed
(i.i.d.)



observations and simple hypotheses.They are then ex-
tended
�

to general, possibly continuous-time, statistical models
that
�

may include correlated and nonhomogeneousobservation
pr� ocesses.It also demonstrated that the results can be extended
to
�

hypothesistesting problemswith nuisanceparameters, where
the
�

composite hypotheses,due to nuisance parameters, can be
reducedto simple onesby using the principle of invariance. These
r� esults provide a complete generalization of the results given
in [36], where it was shown that the quasi-BayesianMSPRT is
asymptotically� efficient with respectto the expectedsample size
for
�

i.i.d. observations.In a companion paper [12], basedon the
nonlinear renewal theory we find higher order approximations,
up to a vanishing term, for the expectedsamplesizethat take into
account� the overshootover the boundaries of decisionstatistics.

Index Terms— Asymptotic optimality, invariant sequential
tests,
�

multialternative sequential tests,one-sidedSPRT, renewal
theory,
�

slippage problems.

I. INTRODUCTION
�

T HE goal of statistical hypothesistesting is to classify
a� sequenceof observationsinto one of

possible� hypothesisbasedon someknowledgeof statistical
distributions
�

of theobservationsundereachof thehypotheses.
For sequentialtesting problems,the numberof observations
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used� (samplesize) is allowed to be variable,i.e., the sample
size� is a function of the observations.A sequentialtestpicks
a� stoppingtime and a final decisionrule to effect a tradeoff
between
�

samplesize and decisionaccuracy.
Themajorityof researchin sequentialhypothesistestinghas

been
�

restrictedto two hypotheses.However,thereareseveral
situations,� particularly in engineeringapplications,where it
is
�

natural to considermore than two hypotheses.Examples
include, among a multitude of others, target detection in
multiple-resolutionradar[26] andinfraredsystems[13], signal
acquisition� in direct sequencecode-divisionmultiple access
systems� [37], and statistical pattern recognition [16]. It is
thus
�

of interestto study sequentialtestingof more than two
hypotheses.
�

It
�

is well knownthatfor binaryhypothesestesting , 
W
!

ald’s sequentialprobability ratio test (SPRT) is optimal, in
the
�

sensethatit simultaneouslyminimizesbothexpectationsof
the
�

samplesizeamongall tests(sequentialandnonsequential)
for which the probabilitiesof error do not exceedpredefined
values" (see,e.g.,Wald andWolfowitz [40], Chernoff [6], and
Lehmann
#

[22]). Unfortunately, if , it is not clear if
there
�

evenexistsa testthatminimizestheexpectedsamplesize
for all hypotheses.Moreover,existing researchindicatesthat
even$ if sucha testexists,it would be very difficult to find its
structure.� For this reasona substantialpartof thedevelopment
of% sequentialmultihypothesistestinghasbeendirectedtoward
the
�

study of practical, suboptimal sequentialtests and the
evaluation$ of their asymptoticperformance,see[3], [5]–[11],
[21], [25], [30]–[38], andmanyothers.A model for studying
such� asymptoticswasfirst introducedby Chernoff [5], wherein
he
�

studiedthe independentand identically distributed(i.i.d.)
case& and assumeda cost per observationthat was allowed
to
�

go to zero. Generalizationto non-i.i.d. cases(where log-
likelihood ratiosfail to be randomwalks) havebeenmadeby
Golubev
'

and Khas’minskii [18], Lai [23], Tartakovsky[31],
[32], [34], [35], aswell asVerdenskayaandTartakovskii[38].

For
(

the binary SPRT, it is well known that renewal the-
ory% is useful in obtaining asymptoticallyexact expressions
for expectedsamplesizesand error probabilities (see,e.g.,
[29], and [41]). An approachto applying renewal theory
techniques
�

to sequentialmultihypothesistests was recently
elucidated$ by Baum and Veeravalli [3], whereinthey studied
a� generalization1 of% the SPRT to more than two hypotheses
that
�

is motivatedby a Bayesiansetting.This quasi-Bayesian

1This
)

generalizationalsoappearsin otherpapers[18], [30]–[32] in various
contexts.
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multihypothesis+ SPRT (or MSPRT) wasshownto beamenable
to
�

an asymptotic analysis using nonlinear renewal theory
[41], andasymptoticexpressionsfor the expectedsamplesize
and� error probabilitieswere obtainedin [3]. Furthermore,it
was, establishedin [36] that the quasi-BayesianMSPRT is
asymptotically� efficient with respectto expectedsamplesize,
for
-

the i.i.d. observationcase.
In
�

this paper, we continue to investigatethe asymptotic
behavior
�

of the quasi-BayesianMSPRT, as well as a related
test
�

that correspondsto a generalizedlikelihood ratio test.
The latter testwassuggestedby Armitage[1], andstudiedin
[8]–[10], [25], and[30]–[38] in variouscontexts.We provide
a� completegeneralizationof previousresults,including that
obtained% in [36], in the following directions:i) we showthat
both
�

MSPRT’s areasymptoticallyoptimal relativenot only to
the
�

expectedsamplesize but also to any positive moment
of% the stopping time distribution; and ii) we extend these
resultsto general,possiblycontinuous-time,statisticalmodels
that
�

may includecorrelatedandnonhomogeneousobservation
processes.� We alsodemonstratethat our resultsareapplicable
to
�

hypothesistestingproblemswith nuisanceparameters.This
complete& generalizationjustifies the use of the MSPRT’s in
a� variety of applications,someof which arediscussedin the
paper.�

The
.

remainderof the paper is organized as follows. In
Section
/

II, we formulate the problem,presenta motivation,
and� describethe structureof sequentialtest procedures.In
Section
/

III, we derivelower boundsfor the finite momentsof
the
�

stoppingtime distribution undervery generalconditions,
which, then are used in proving asymptotic optimality. In
Section
/

IV, first we consider the discrete-timei.i.d. case
and� prove that, under certain natural conditions, both tests
minimize not only the expectedsample size but also any
positive� moment of the stopping time distribution as error
probabilities� (or, moregenerally,decisionrisks) tendto zero.
Then the asymptoticoptimality resultsareshownto be valid
for generalstatisticalmodelsthat involve correlatedandnon-
homogeneous
�

observationprocesses.This generalizationto
non-i.i.d. casesis done in the spirit of the work in [23]
and� [35], and we borrow many auxiliary results from this
work., SectionV dealswith a specificclassof multipopulation
problems—the� so-called “slippage” problems. It is shown
that
�

slippageproblemsare relatedto problemsthat arise in
tar
�

getdetectionin multiresolutionor multichannelsystems.In
Section
/

VI, we illustratethe generalresultsthroughexamples
related0 to detectingsignalsin multichannelsystems,including
composite& testingsituationswith nuisanceparameters.Finally,
in SectionVII we give someconcludingremarks.

Higher
1

order approximationsfor the expectedsamplesize
up� to a vanishingterm will be given in the companionpaper
[12]. Theseapproximationstake into accountthe overshoot
over% the boundariesof decisionstatistics,andtheir derivation
is basedon nonlinearrenewaltheory.In thecompanionpaper,
we, also presentsimulation results which confirm that the
obtained% approximationsarehighly accuratenot only for small
but
�

alsofor moderateerror probabilitieswhich aretypical for
many applications.

II.
�

PROBLEM
� F

(
ORMULATION AND T

.
EST
2 P

3
ROCEDURES
�

A.
4

BasicNotation

Throughoutthe paper P is a probability spaceon
which, everythingis defined, is

�
a randomprocess

(defined
5

on ),
6

which is observedeither in discrete
or% continuous time.

�
By

will, be denoteda sub- -algebraof generated7
by
�

observed% up to time .
W
!

e first considerthe problem of sequentialtesting of
simple� hypotheses“ P P ”
where, and� P are� completelyknown distinct proba-
bility
�

measures.An examplewhere the measuresP are� not
completely& known (belongto somefamilies of distributions)
will, be consideredin SectionVI.

A
8

pair is
�

said to be a sequentialhypothesistest
if is a Markov stopping time with respectto the family

(i.e.,
5

),
6

and is
�

an -
measurable+ function (terminal decisionfunction) with values
in the set . Therefore, is identified
with, acceptingthe hypothesis .

Next,
9

let be
�

the prior distribution of hy-
potheses,� , and let the consequenceof
deciding
�

when, thehypothesis is truebeevaluatedby
the
�

loss function .
Suppose,
/

without loss of generality, that the lossesdue to
correct& decisions are zero (i.e., ).

6
The risk

associated� with makingthe decision is thengiven by

where, for , P is the probability of
accepting� the hypothesis when, is

�
true (the conditional

probability� of error). Note that is the risk associated
with, wrong decisions;their sum constitutesthe averagerisk
which, doesnot include the observationor experimentcost.
In the particular caseof the zer: o–one loss function, where

for , therisk is thesameasfr
;

equentist
error$ probability , which is probability of accepting
incorrectly.
�

That is, for the zero–oneloss function

W
!

e now introducethe following classof tests

(2.1)
5

where, is
�

a vectorof positivefinite
numbers.< In otherwords,the class consists& of the tests
for
-

which the risks do not exceedthe predefinednumbers
.

In
�

what follows, E will, denotetheexpectationwith respect
to
�

themeasureP . A reasonableformulationof theproblemof
optimizing% sequentialtestsundergivenprior informationis to
find a test that minimizesthe averageobservationtime, E

E
=

, amongall testsbelongingto the class
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The
.

structure of such a test has been determinedin [31]
and� [32] (seealso [3]). Specifically, if time is discrete,i.e.,

and� the observationsare i.i.d., the optimal
stopping� time is given by , where is the
first
>

time , , for which . Here
is
�

the posteriorprobability of the th
�

hypothesisbasedon the first observations,% is the
vector" of posteriorprobabilitieswith th

�
componentexcluded,

and� is
�

a nonlinearfunctiondependingon thedistribution
of% observations.Thustheoptimaltestinvolvesacomparisonof
posterior� probabilitieswith randomthresholdswhich mustbe
determined
�

for eachmodel.In general,it is nearlyimpossible
to
�

find the form of the functions
(for
5

somespecialcasessee[31], [32], and[3]). Furthermore,
even$ if one is able to find the boundariesof the optimal test,
it
�

would be difficult to implementthis procedurein practice.
In addition,while in thecaseof two hypothesesWald’s SPRT
minimizesnot only the averageobservationtime E but

�
also

both
�

expectationsE and� E , it is unclear if such a test
exists$ for (i.e.,

5
the test which minimizesE for all

).
6

However, in an asymptotic
setting� when the risks (error probabilities) are sufficiently
small,� such testsmay be found.

B. SequentialTestProcedures

In
�

the following, we simplify the structureof the optimal
test
�

by replacingthe nonlinearrandomthresholdswith simple
functions(constantsin thecaseof thezero–onelossfunction).
Specifically,
/

we considerthe two following multialternative
sequential� testswhichwill becalledmultihypothesis? sequential
pr@ obability ratio tests(MSPR

5
T’s).2 The time parameter may

be
�

eitherdiscreteor continuous.Let P be
�

the restrictionof
the
�

measureP to
�

the -algebra and� let

P

Q
A

denote
�

the log-likelihood ratio (LLR) processeswith respect
to
�

a dominatingmeasureQ . If Q P , the corresponding
LLR
#

processwill be denoted .
1) Test :B Introducethe Markov times

(2.2)
5

where, and� are� positivethresholds.The
test
�

procedure is definedas follows:

if

That is, we stopassoonasthe thresholdin (2.2) is exceeded
for some , and decide that this is the true hypothesis.
This
.

test is motivated by a Bayesianframework and was
considered& earlierby Fishman[15], GolubevandKhas’minskii
[18], SosulinandFishman[30], Tartakovsky[31], [32], aswell

2This generalizationalsoappearsin otherpapers[18], [30], [31], and[32]
in
C

variouscontexts.

as� Baum and Veeravalli [3], [36]. Indeed,in the specialcase
of% zero–onelossesthe stoppingtimes may be rewrittenas

where,

and� where

is the posteriorprobability of the hypothesis . Note also
that
�

if (does
5

not dependon ),
6

the stoppingtime of
the
�

test is definedby

where,

i.e.,
�

westopassoonasthelargestposteriorprobabilityexceeds
a� threshold.

2) Test :B Let and�

(2.3)
5

be
�

the Markov “accepting” time for the hypothesis . The
test
�

is definedas follows:

if

This
.

test representsa modification of the matrix SPRT
(the
5

combinationof one-sidedSPRT’s) that wassuggestedby
Lorden[25]. It wasconsideredearlierby Armitage[1], Lorden
[25], Dragalin[8]–[10], Tartakovsky[32], [34], [35], aswell as
V
D

erdenskayaandTartakovskii[38]. Note also that if
and� the loss function is zero–one,then and� the
Markov
E

time may+ be representedin the form

where,

i.e.,
�

is
�

the generalizedlikelihood ratio between and�
the
�

remaininghypotheses.
Suppose
/

the distributions of the observationscome from
exponential$ families, which are good models for many ap-
plications.� Then the test (as

5
defined in (2.3)) has an

advantage� over the first test in that it doesnot require ex-
ponential� transformationsof theobservations.This fact makes
it
�

more convenientfor practical realization and simulation.
Furthermore, mayeasilybemodifiedto meetconstraintson
conditional& risks (see[8]–[10], [32], [34], and[35]) that may
be
�

more relevantin somepracticalapplications.However,as
we, shall seein [12], has

�
the advantagethat it is easierto

design
�

thethresholds to
�

preciselymeetconstraintson the
risks0 .

W
!

e begin our analysisby deriving boundson the risks in
terms
�

of thethresholds.Thisallowsusto choosethethresholds
in sucha way asto guaranteethat the testsbelongto theclass

defined
�

in (2.1). We emphasizethat the boundshold
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under� generalassumptions,and requireneitherindependence
nor homogeneityof the observeddata.The proof is given in
the
�

Appendix(seealso[1], [3], [11], [32], [34], [35], and[38]
for relatedresults).

Lemma2.1: Let be
�

an arbitrary random
process� observedeither in discreteor continuoustime. For
all�

Corollary 2.1: Let

(2.4)
5

Then both testsbelongto the class .

It shouldbepointedout thatthefollowing implicationholds:

(2.5)
5

To show (2.5) we rewrite and� as�

and�

Then,
.

inequality (2.5) follows from the fact that

A
8

consequenceof (2.5) is that if the thresholdsare chosen
according� to (2.4), then .

III.
�

LOWER B
F

OUNDS FOR M
E

OMENTS

OF THE S
/

TOPPING TIME DISTRIBUTION

The
.

following theoremis of fundamentalimportancefor
proving� asymptotic optimality. It establishesthe potential
asymptotic� performanceof any sequentialor nonsequential
multihypothesistestin theclass as� the risksgo to zero.
For convenience,we write . Also
the
�

standardabbreviationP-a.s.is used for the almost sure
conver& genceunder the measureP.

Theor
G

em3.1: Assume
8

there exists an increasingnonneg-
ative� function and� positive finite constants

such� that3
H

-

as� (3.1)
5

In addition,assumethat for all

P
3

(3.2)
5

Then for all and�

E
=

as� (3.3)
5

where, is
�

theinversefunctionof , andwhere
as� .

Proof: Let denote
�

the classof testsfor which
P , , and let .
It
�

follows from Tartakovsky [35, Lemma 2.1] that under
conditions& (3.1) and (3.2)

P
3

for
-

every

Since
/

for any , it follows
that
�

P

for every (3.4)
5

where, .
Denoting

and� applying the Chebyshevinequality,we obtain

E
=

P
3

for
-

any and�

where, by (3.4)

P for every

Thus

E
=

for
-

all

and� (3.3) follows.

IV. ASYMPTOTIC O
I

PTIMALITY OF THE MSPRT’S

A. TheCaseof i.i.d. Observations

So
/

far we consideredquite a generalcaseimposing only
minor+ restrictionson the structureof the observedprocess.In
this
�

subsectionwe considerthe discrete-timecase
and� assumethat, underhypothesis , the random

3
J
Note
�

that (3.l) is nothing but the StrongLaw of Large Numbersfor the
normalizedLLR’s KML NPORQTSVUXWZYR[]\ . The function ^Z_R`]a characterizesthe degree
of nonhomogeneityof the LLR’s.
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variables" are� i.i.d. with a density (relative
5

to
�

somesigma-finitemeasure)and that the densities and�
are� distinct for all . In other words, thesedensities

do
�

not coincidewith probabilityone(w.p. 1) in the sensethat
P for all and� all .

In general,the ’s will represent-valuedrandomvectors,
i.e.,
�

. Let us define to
�

be
the
�

log-likelihood ratio of the individual observation , i.e.,

and�

Further, we define

E
=

Note
9

that the are� the Kullback–Leibler (KL) informa-
tion
�

numbers(“distances”), and is a minimal distance
between
�

the hypothesis and� other hypotheses.Due to the
aforementioned� condition of distinctnessof measures,these
KL
b

distancesare strictly positive. We shall also assumethat
.

In what follows, we will considera general,asymmetric
case& (with respectto risk constraints)whereit is assumedthat
the
�

numbers approach� zero in sucha way that for all

(4.1)
5

That is, we assumethat the ratios (or
5

more
generally7 and� )

6
are boundedaway from and�

. This guaranteesthat any does
�

not go to zero at an
exponentially$ faster(slower)ratethananyother . Note that
we, do not requirethat the ’s go to zeroat thesamerate—if
this
�

werethe caseall the ’s would equal . The reasonfor
allowing� ’s other than is

�
that thereare many interesting

problems� for which the risks for the varioushypothesesmay
be
�

ordersof magnitudedifferent.
The
.

following lemma establishesthe asymptotic lower
bounds
�

for the momentsof the stopping time in the i.i.d.
case.& It is then used to prove the asymptoticoptimality of
the
�

analyzedtestsin the class(2.1) as .

Lemma4.1: If are� i.i.d. randomvectors
and� , thenfor any and�

E as�

(4.2)
5

Proof: In the i.i.d. casethe condition E
is sufficient for conditions(3.1) and(3.2) to be satisfiedwith

and� . Thus the lemma follows directly
from Theorem3.1.

Now
9

in orderto provefirst-orderasymptoticoptimality we
haveonly to showthatthelower bounds(4.2)areachievedfor
the
�

consideredtests.The detailsof the proof aregiven in the
Appendix.Thefollowing theoremsummarizesthemainresults
on% the asymptoticperformanceandthe asymptoticoptimality

of% the MSPRT’s with respectto any positive momentof the
stopping� time distribution. Everywherebelow as�

means+ that .

Theorem4.1: Let .

i) For all and�

E
=

as�

E as� (4.3)
5

where, and� .

ii)
�

If the thresholdsaredeterminedby (2.4), then

E E E

as� for
-

all (4.4)
5

For , the asymptoticformulasof (4.3) describethe
behavior
�

of the first term of expansionof the meansample
size.� Thebehaviorof thesecondtermremainsunclear—itmay
tend
�

to infinity or may be of the order of a constant.In the
companion& paper[12], we derivehigherorderapproximations
to
�

the expectedsamplesizeup to a vanishingterm.Theseap-
proximations� requirefurtherconditionson thehighermoments
of% theLLR’s. As shownin [12], in a specialasymmetriccase,
the
�

secondterm is of theorderof (a
5

constant)whenever
the
�

secondmomentof LLR’s is finite. In general,however,
the
�

secondterm is shownto tend to infinity as a squareroot
of% the threshold.

Remark4.1: Theorem (4.1) remains valid in the
continuous-time& casewherethe LLR’s are randomprocesses
with, independentand stationaryincrementswith finite first
absolute� moment.

Remark4.2: W
!

e emphasize that the tests considered
asymptotically� minimize all positive moments of the ob-
servation� time, underonly the condition of positivenessand
finitenessof the KL distances—finitenessof higher order
moments+ is not required. The required condition holds in
most practicalproblems.In particular, in problemsof signal
detection,
�

all that is requiredis that the signal-to-noiseratio
(SNR)
5

be finite and positive.

Remark
c

4.3: In
�

the“symmetric” case(with respectto risks)
where,

for
-

all as� (4.5)
5

(cf.
5

(4.1)), a much stronger(near optimality) result is true
for the expectedobservationtime. More specifically, if the
thresholds
�

arechosensothat and� (4.5) is fulfilled,
then
�

E E as� (4.6)
5

and� thesameis, of course,truefor thetest . This factmaybe
derived
�

by usingtheresultsof Lorden[25]. We conjecturethat
(4.6)
5

is alsotrue for the moregeneralcasegiven in (4.1). We
do
�

not havea rigorousproof, but simulationresultspresented
in
�

[12] supportour conjecture.
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Remark
c

4.4: Since
/

the two proposedMSPRT’s have dis-
tinctly
�

different structures,and are both asymptoticallyopti-
mal,+ it is naturalto askif this asymptoticoptimality is shared
by
�

a hostof othertests.Clearly,sincewe only havefirst-order
optimality,% simple modificationsof the proposedMSPRT’s
(such
5

as adding a constantdelay) preservethe optimality
property.� However, it is interesting to see if some other
seemingly� reasonabletest with a very different structurewill
also� havethisproperty.As anexample,considerthefollowing.
For
(

simplicity, let for
-

all and� let
be
�

themaximum-likelihoodtestprocedure
of% the form

if

where, the threshold is chosenso that . Note
that
�

this testis anaturalextensionof theoptimumfixedsample
size� test undera constrainton the Bayesrisk . Now,
using� the resultsof SosulinandFishman[30, pp. 179–182]it
can& be provedthat in a symmetrici.i.d. Gaussiancase

E
=

E
as�

That is, the seeminglyreasonablemaximum-likelihoodtest is
not asymptoticallyoptimum.

B.
d

TheNon-i.i.d. Case

Many resultsin sequentialanalysis,including the onesthat
we, obtainedabove,are basedon the randomwalk structure
of% LLR’s. In this subsectionwe study the situation where
the
�

LLR’s lose this nice property,and are general,possibly
continuous-time,& processes.The motivation for this study is
as� follows. The randomwalk structureis not valid in many
practical� applicationswhereobservationsarenonhomogeneous
and/or� correlated.In addition, there is an important class
of% problemswith nuisanceparametersthat admit invariant
solutions.� Invariant LLR’s are not randomwalks evenin the
simplest� caseswherethe modelsgeneratei.i.d. observations.

Note
9

that the derivation of lower bounds for E in
Theorem
.

3.1(see(3.3)) requiredonly theStrongLaw of Large
Numbers
9

w.p., 1 as

with, someincreasingfunction where, play� the role
of% KL distancesin this case.However, except in the i.i.d.
case,& this condition does not even guaranteefinitenessof
the
�

momentsof the stoppingtime. To obtain the asymptotics
for momentsof the stoppingtimes and� in the general
non-i.i.d.< case,we henceneedto strengthenthe convergence
condition.&

Let be
�

arandomprocess,andlet . Further,
let

(4.7)
5

denote
�

the last entry time of in the set
. The Strong Law “ P-a.s.

3
as ”

can& be expressedin termsof as� P for
-

all� positive . In other words, w.p., 1 if and only if
P
3

for
-

all positive .
The following is thestrengtheningof theStrongLaw to the

so-called� -quick version(see,e.g., Lai [23] in the discrete-
time
�

case).

Definition:
e

Let
#

be
�

a randomprocess,and let
be
�

asdefinedin (4.7). For , is said to converf ge
-quicklyg under� measureP to if

�
and only if

E for all

where, E denotesexpectationwith respectto P. If the corre-
sponding� -quickconvergenceconditionholdsfor anypositive
, we saythat theprocess conver& gesstrh onglycompletely4

i

to
�

.
Let be

�
an increasingnonnegativefunction with

being
�

the inverse function. In many practical applications
(see,
5

e.g.,examplesin SectionVI). We now
strengthen� thea.s.convergencecondition(3.1) in Theorem3.1
into the following -quick convergencefor somepositive :

- -

(4.8)
5

Thefollowing theoremestablishestheasymptoticoptimality
resultfor generalstatisticalmodels(without the i.i.d. assump-
tion)
�

whenthe -quick convergencecondition(4.8) holds.

Theorem4.2: Let the condition(4.8) hold for some .
Then the following threeassertionsare true.

i)
�

E , E , , for any
finite and� .

ii) In addition, if the condition (3.2) holds, then for all
and�

E as� (4.9)
5

E as� (4.10)
5

where, , , and
.

iii) If , , andthe
condition& (4.11) holds, then both testsbelong to the
class& , andfor all and�

E E E

as� (4.11)
5

In
�

particular,if with, , then

E E E

(4.12)
5

4This definition of strong completeconvergenceshould not be confused
with that of completeconvergence(which is equivalentto j -quick conver-
gence)given in Hsu andRobbins[20].
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Note
9

that in [35], Tartakovskyestablisheda resultsimilar to
(4.11)
5

for theMSPRT but
�

for thesituationwhereconstraints
are� imposedon the conditionalerror probabilitiesP .
The asymptotics(4.9) and (4.10) are new and perhapsthe
most useful,sincethey allow us to obtain asymptoticsunder
a� variety of constraints.

The
.

rigorousproofof Theorem4.2is givenin theAppendix.
Herewepresentaheuristicargumentthatleadsto this theorem.
W
!

e focus our attentionon the test , since,as is clear from
(2.5),
5

the correspondingasymptoticsfor follow
-

from those
for .

Introducethe following notation:

Note
9

thatthecondition(4.8) impliesin particularthatthemean
value" of theLLR is asymptoticallyequalto , a s

. Thuswe may expectthat for the large

where, is the stochasticpart of .
Now,
9

if fluctuationsof are� not too large, which is
expressed$ in termsof P - -quick convergence
, then it may be expectedthat the stochasticpart is

�

substantially� lessthan (in
5

average).Therefore,

which, for large and� gives7

E
=

Since
/

, we also expect

E
=

On
I

theotherhand,if we choosethenumbers as� in (2.4),
the
�

right-handside of the latter inequality is the first term of
expansion$ in the lower boundfor E in the corresponding
class& (see Theorem3.1). Thus we expect that the tests
and� are� asymptoticallyoptimalwhentheerrorprobabilities
approach� zero.

Corollary 4.1: If the normalizedLLR’s con-&
ver" gestronglycompletelyto under� P , thentheasymptotic
relationships(4.9)–(4.11)hold for all , and hencethe
test
�

procedures and� minimize+ any positive momentof
the
�

stoppingtime distribution.

It shouldbe pointedout that since is not a Markov
time,
�

it is usuallynot easyto checkthe -quick convergence
condition& (4.8). The following condition implies (4.8) and is
sometimes� useful. If, for any

P
3

(4.13)
5

then
�

(4.8) is true.Theintegralin (4.13)is replacedby a sumin
the
�

discrete-timecase.(SeeChowandLai [7] for somerelated
inequalitiesandconditionsin the i.i.d. case,andTartakovsky
[35] for the generalcase.)This condition will be checkedin
a� numberof examplesin SectionVI.

Remark4.5: In thei.i.d. case,theconditionE
is
�

necessaryandsufficient for the -quick convergenceof
(see
5

(4.13) and [7]). Therefore,Theorem
4.2
k

implies the asymptotic formulas (4.4) in Theorem 4.1
for
-

under� conditions E . Since
Theorem4.1 holdsfor any under� theweakercondition
E , this showsthat Theorem4.1 doesnot follow
from
-

Theorem4.2.

V.
D

SLIPPAGE PROBLEMS

In
�

this section we apply the general results obtained
above� to a specific multiple decision problem called the
slippageh problem (see

5
Ferguson [14], Mosteller [27]).

Suppose
/

thereare populations� whosedistributionfunctions
are� identical exceptpossiblyfor

dif
�

ferent shifts . On the basis of samplesfrom
the
�

populations� we wish to decide whether or not the
populations� areequalor oneof thesepopulationshasslipped
to
�

the right of the rest and, if so, which one (e.g., which
is
�

the “odd” one). In other words, we may ask whetheror
not< for some , we have . In the
languageof hypothesis testing we want to test the null
hypothesis“ ” against
alternatives� “ ,” , where .
Thus
.

in this case . The slippageproblem is of
considerable& practical importanceand closely related to the
so-called� rankingandselectionproblemin which the goal of
an� experimenteris to selectthe bestpopulation[4], [17].

A problemof this kind wasfirst discussedby Mosteller[27]
in a nonsequentialsetting for the nonparametriccasewhen
both
�

theform of distributionfunction , andvaluesof and�
are� unknown.Ferguson[14] generalizedthis result for the

case& of arbitrary (but known) distributions and�
(not
5

necessarilyjust with different means),i.e., when, under
hypothesis , all populations� havethe samedistribution

and,� under , the th
�

representativehassomedifferent
distribution
�

. Tartakovsky[33] consideredthe caseof
possibly� different(andunknown)distributionfunctions

in a minimax (againnonsequential)setting.As
a� result, the minimax-invariantsolution to this problem has
been
�

obtained.
Another interestingapplicationof this model is in signal

(tar
5

get) detectionin a multichannel(multiresolution)system.
There
.

may be no useful signal at all (hypothesis ) o
6

r a
signal� may be presentin one of the channels,& in the th,

�
say� (hypothesis ).

6
It is necessaryto detect a signal as

soon� as possibleand to indicate the numberof the channel
where, the signal is located.This importantpracticalproblem
will, be emphasizedin the subsequentexamples.Moreover,
we, will considera more generalcaseof possibly correlated
and� nonidenticallydistributedobservationsin eachpopulation
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while, populationswill beassumedstatisticallyindependentof
each$ other.

T
.
o be specific,let be

�
an

-componentprocessobservedeither in discreteor continu-
ous% time. Thecomponent corresponds& to theobservation
in the th

�
channel.It is assumedthat all componentsmay

be
�

observedsimultaneouslyand may have a fairly general
structure.� We alsosupposethat theyaremutually independent.
For the problem under consideration,the following three-
valued" loss function is appropriate:

for
-

for
for
-

otherwise.%
(5.1)
5

That
.

is, we assumethat the losses associatedwith false
alarms,� missingthesignal,andchoosingthewrongsignalare,
respectively,given by , , and . The decisionrisks
are� then given by

(5.2)
5

(5.3)
5

where, P , , arethe correspondingerror
probabilities.�

Consider
l

a commonlyusedadditive model [2], [30], [32]
where, anobservedprocessin the th

�
channelrepresentseither

the
�

additive mixture of a useful signal with, a noise
or% only noise

if
if

(5.4)
5

where, thesuperscript meansthattheprocess is regarded
under� , i.e., whena signal is presentin the th

�
channel.In

general,7 thesignal could& berandomandits structuremay
be
�

different for the variouschannels.
Since
/

and�

P

P
3

P

P
3

the
�

LLR depends
�

ontheobservationprocess through
�

only% the components and� .
In order to apply generalresultsof SectionIV, we haveto

check& thevalidity of therequiredconditions.This will bedone
in the next sectionfor severalspecificexamples.

VI.
D

EXAMPLES

In this section we consider exampleswhich are mean-
ingful for many applications including target detection in
multiple-resolutionradar[26] andinfraredsystems[13], signal
acquisition� in direct sequencecode-divisionmultiple-access

systems� [37], andstatisticalpatternrecognition[16]. The first
is
�

a discrete-timebut non-i.i.d. example, the second is a
continuous-time& example,andthethird includesnonparametric
models+ and invariantsequentialtests.The main goal in these
examples$ is to showthattheconditionsrequiredfor our results,
particularly� in the non-i.i.d. cases,are reasonableand are
usually� met in practice. Detailed numerical and simulation
resultsfor the i.i.d. casearepresentedin thecompanionpaper
[12].

Example1: Discrete-timedetection/identificationof a de-
terministicm signal in thepresenceof correlatednoisein a mul-
tichannelm system.Assumethat the functions
in
�

(5.4) are deterministicand the noiseprocesses
are� stablefirst-order autoregressiveGaussianpro-

cesses,& i.e.,

where, are� i.i.d. Gaussianvariableswith zero
meanand variance (

5
and� are� independent),and

. It is easyto showthat the LLR’s areof the form

and� henceunder

Herethe “tilde values”are for
and� , and similarly for .

W
!

e denotethe accumulatedSNR for channel up� to time
by
�

Assumethat

for some (6.1)
5

where, are� finite positivenumbers.Now we
will, establishthat

P
3

-stronglycompletely

To establishthis it is sufficient to showthat (see(4.13))

P

for some and� all (6.2)
5

where, . Since is a weighted
Gaussian
'

samplesum with meanzero and variance



2456 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

(for
5

large ),
6

it is easyto showthat thereis a number
such� that

P
3

and� hence(6.2) is fulfilled. Thusby Theorem4.2, the asymp-
totic
�

equalities(4.11) hold with , ;
, , , andthe tests and�

are� asymptoticallyoptimal.
It shouldbenotedthat in theapplicationto signaldetection,

the
�

quantity is
�

a constrainton the risk associatedwith
missing the signal when it is actually presenton one of the
channels& (see(5.2)). Similarly, is

�
a constrainton

the
�

risk associatedwith decidingthat the signal is presenton
channel& , which is a weightedsumof falsealarmprobability
and� the probability of incorrect classification (see (5.3)).
Symmetry
/

assumptionsgenerally yield for
-

. Now, sincetypically theaccumulatedSNR in
�

the
�

th
�

channeldoesnot dependon thenumberof thechannel,
i.e.,
�

is
�

samefor all and� equal to (say),
5

the asymptotic
formulas become

E
=

E
=

(6.3)
5

E
=

E
=

(6.4)
5

In
�

particular,if , then it is easyto seethat
works, in (6.1), aswell as in (6.3) and(6.4). It is alsoeasyto
see� that the correspondingSNR is .
In
�

this case,the expectedstoppingtimes are proportionalto
the
�

risk constraintsandinverselyproportionalto the SNR .
Now,
9

from the analysisof SectionIV-B, it is not clear if
condition& (4.8) is necessaryto guaranteethe corresponding
optimality% of the tests.In the following, we showthat if (4.8)
is not fulfilled, thesequentialtestsconsideredmayhaveinfinite
moments.At thesametime thebestfixed samplesizetesthas
a� finite samplesize.

Insteadof (6.1),which postulatesthegrowthof theSNRas
a� power of for sufficiently large , supposethe following
condition& holds:

as� (6.5)
5

i.e.,
�

theSNRgrowsas for
-

sufficiently large . Sincethis
“law” is too slow, one may expectthat -quick convergence
does
�

not hold. Indeed,it is easyto seethat

-

but
�

not -quickly (for any ),
6

sincefor sufficiently small

E
=

P
3

where,, as abovein (6.2)

and� for
-

, andwhere is
�

the
standard� normal distribution function. Thus E
and� Theorem 4.2 cannot be applied. In fact, in this case
E
=

for
-

sufficiently small (actually
5

for , 
see,� e.g.,Golubevand Khas’minskii [18]).

Example2: Slippageproblemfor nonhomogeneousPoisson
pr@ ocess.In

�
applicationsinvolving infraredandopticalwarning

systems,� an appropriatemodel for noiseandclutter is a point
randomprocess.Below we considera multichannelsystemin
which, thenoiseprocessis a nonhomogeneousPoissonprocess
and� targetappearanceleadsto a changein the intensityof this
process.� Specifically,underhypothesis (tar

5
get absent),let

the
�

observedprocess be
�

a
vector" nonstationaryPoissonrandomprocesswith independent
components& eachof which hasintensity while,, under
(tar
5

get is locatedin the th
�

channel),the th
�

componenthas
the
�

intensity . Then

E
=

where,

Note
9

thattheLLR’s are� processeswith independentbut
(generally)
5

nonstationaryincrements

Now
9

assumethat is
�

apowerfunction, , 
where, and� . Then

E
=

and� the increments are� boundedas

Thus
.

conver& gesP - -quickly for all positive (i.e.,
5

P -strongly completely)to the numbers

(6.6)
5
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By
F

Theorem4.2, theMSPRT’s areasymptoticallyoptimalrel-
ative� to anypositivemomentof thestoppingtime distribution.
Note
9

that in
�

this caseandhence(4.12) applies.
If and� for all , then using

(6.6),
5

we obtain

and�

Thus from (4.12)

E
=

E
=

E
=

E
=

Example3: Nonparametricdetectionof a target in a mul-
tichannelm systemwhen training clutter data is available. So

/

far we consideredthe caseof simple hypothesesassuming
that
�

themeasuresP P P were, completelyknown.
However, in many practical applications, the models are
known
n

only partially (parametricuncertainty)or they may
even$ be unknown (nonparametricuncertainty). The above
ideas,particularlyTheorem4.2,maybeusedto proveasymp-
totic
�

optimality of invariant multihypothesissequentialtests
for compositehypotheses“ P ,” .
Here are� families of distributions, either parametricor
nonparametric,and it is assumedthat they canbe reducedto
simple� onesby using the principle of invariance(for further
details
�

relatedto theinvarianceprinciplein testinghypotheses,
see,� e.g.,Ferguson[14] and Lehmann[22]).5

o

In
�

fact, Theorem4.2 and Corollary 4.1 remain true if we
use� the LLR’s constructed& for a maximal invariant
and� if the class includes only invariant tests with
the
�

constraints(2.1). In particular, if conver& ges
strongly� completelyto , then the correspondinginvariant
MSPRT’s minimizeall positivemomentsof thestoppingtime
distribution
�

in the classof invariant sequentialtestswith the
corresponding& constraintsimposedon risks.

To illustratethis point,we applyTheorem4.2to an -
sample� nonparametricproblem with Lehmann
hypotheses
�

(or proportionalhazards,if we replaceP by P
3

below)
�

andshowthat theextendedmultialternativeversionof
the
�

Savagesequentialtest is asymptoticallyoptimal with re-
spect� to anypositivemomentof thestoppingtime distribution.

Let , where are�
i.i.d. with a continuousdistributionfunction P , andindepen-
dent
�

of , which are i.i.d. either with P or% one of
them
�

(say, the th
�

one) has the distribution P , where
are� specifiedpositiveconstants, , andP is completely
unknown.� In other words, the hypothesesare

P P for all
5
p
Anotherpossibleapproachis to useadaptiveteststhat employestimates

of the unknownnuisanceparameters.

and�

P for and� P P

An interestingapplicationof this problemis in targetdetec-
tion
�

in the -channelsystemin the presenceof clutter with
unknown� continuousdistributionP , basedonunclassifieddata

when, a classifiedtraining sequence is
also� available.That is, it is known in advancethat the clutter
only% generatesthe data .

A maximal invariant with respectto the group

where, is any continuousincreasingfunction, is the vector
of% ranksof among� . Let

P
3

be
�

the empiricaldistributionfunctionswhere . For
the
�

sakeof simplicity consider . Then the LLR of the
maximal+ invariant is [28]

P
3

P
3

P
3

P
3

Define

P P

P
3

P
3

P P P P

P P

By [28, Lemma2], for any there
�

existsa number
such� that

P
3

which, obviously implies the strongcompleteconvergenceof
to
�

under� P .
Thus basedon Theorem4.2, one may concludethat Sav-

age’s� nonparametricsequentialrank-ordertestasymptotically
minimizesall themomentsof thestoppingtime distributionin
the
�

classof invarianttestswhentherisks and� approach�
zero.A similar resultis valid for themoregeneralcase
when, .

VII.
D

CONCLUSIONS

Most
E

of the researchon sequentialhypothesistestingover
the
�

last fifty years,startingwith the classicalworks of Wald
[39] andWald andWolfowitz [40], hasdealtwith the caseof
i.i.d. observationsandtheoptimality (or asymptoticoptimality)
of% sequentialtestsrelative to the expectedsamplesize.How-
ever,$ in manypracticalapplicationsthe i.i.d. assumptiondoes
not< hold. Furthermore,the behaviorof higherordermoments
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may+ be of interest.The resultspresentedin this papershow
that
�

the proposedMSPRT’s areasymptoticallyoptimal under
fairly
-

general conditions that cover nonhomogeneousand
correlated& stochasticprocessesobservedeither in discreteor
continuous& time, stochasticmodelswith nuisanceparameters,
and� even nonparametricmodels. In addition, the tests are
shown� to be asymptoticallyoptimal not only with respectto
the
�

expectedsamplesizebut alsowith respectto anymoment
of% the stoppingtime distribution.This justifies the useof the
MSPR
E

T’s in a variety of applications,someof which have
been
�

describedin this paper.
Throughout the analysis of the paper we assumedthat

the
�

hypotheseswere simple with respectto the informative
parameters.� If the hypothesesarecomposite,thenan adaptive
approach� may be applied (see,e.g., Dragalin and Novikov
[11]) to find asymptoticallyoptimal solutions.However,we
have
�

reasonsto believe that in spite of their asymptotic
optimality,% the correspondingadaptivetestswill not perform
well, in practice. (The asymptoticconvergence is generally
too
�

slow for such tests.)Thus a reasonablepartitioning of
composite& hypothesesinto a number of simple ones and
subsequent� applicationof the MSPRT’s may be beneficialin
practice.�

The resultspresentedabovedo not coveran importantcase
for many applications,namely,one wherethereis an “indif-
ference”
-

zone. This important extensionwill be considered
elsewhere.$

APPENDIX

Proof of Lemma2.1: Obviously,
I

P
3

E

E

where, is
�

the indicator of the event . Here we used
the
�

Fubini theoremand the definition of the stoppingtime
according� to which

on%

Consider
l

thesecondtest.For theMarkov times , we have
the
�

equivalentrepresentation

which, implies the inequality

for all on%

Next,
9

by Wald’s likelihood ratio identity [29], [39], [41]

E

Combining
l

the last two relationships,we get

P
3

for
-

all

Since
/

the event implies
�

the
event$ , it follows that

P
3

and� the proof is complete.

Proof of Theorem4.1: To provethe theoremwe shall need
the
�

following result,which may be of independentinterest.

LemmaA.1: Let be
�

i.i.d., and suppose
for all . Then

i) thestoppingtimes and� are� exponentiallybounded
and� henceE , E for

-
any positive

finite
>

, , and ;
ii) the families

and�

are� uniformly integrable with respect to P for all
.

Proof: Note
9

first that both stoppingtimes and� do
�

not< exceedthe stoppingtime

if

and�

for
-

tests and� , respectively.Thusto provei) it is sufficient
to
�

provethat is
�

exponentiallyboundedfor . To
prove� ii) we haveonly to prove the uniform integrability of

.
i) Obviously,

P
3

P
3

P
3

Applying Markov’s inequality

P
3

E
=

we, obtain that for any

P
3

E
=

E

where,

E
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Evidently,
=

for
-

any when,
(in
5

fact, P as� ).
6

Thus
.

there is a finite positive constant and� a number , 
, such that P

and� hencethe Markov time is exponentiallyboundedfor
all� finite positive , which implies the assertioni).

ii)
�

For , definethe randomvariables

Since
/

and�

It follows from the constructionthat are� i.i.d. and
exponentially$ boundedandthat are� i.i.d. positive
randomvariables(underP ).

6
Further,definethestoppingtime

It
�

is easyto seethat is
�

asumof i.i.d.
�

andexponentially
bounded
�

randomvariables

By TheoremI.6.1 of Gut [19], thefamily is
uniformly� integrablewhenever is uniformly
integrable.Thus to prove the desired result we have only
to
�

show the uniform integrability of the latter family for all
.

Since
/

the incrementsof the random walks
are� positive

where,

W
!

e apply [19, Theorem III.7.1] to show that
is
�

uniformly integrableunderP for
-

all and�
hencethe family is uniformly integrable
too
�

(for all ).
6

This completesthe proof of ii).

Proof of i) in Theorem4.1: Consider
l

the MSPRT , and
let . By Gut [19, TheoremA.1.1], the follow-
ing
�

convergenceof moments

E
=

as�

holds
�

whenever

(C1)
5

E for
-

all , 

(C2)
5

the family is
�

P -uniformly
integrable,

(C3)
5

P
3

-a.s.as .

By LemmaA.1, Conditions(C1) and (C2) are satisfied.The
a.s.� convergence(C3) follows from Baum and Veeravalli [3,
Theorem5.1].

For
(

the MSPRT Conditions
l

(C1) and (C2) follow from
Lemma
#

A.1. The convergence

-
as�

where, , is proved in essentiallythe same
way, as (C3).

Proof of ii) in Theorem4.1: To prove (4.4) it suffices to
show� that the lower bound(4.2) is achievedfor the tests
and� . This follows immediatelyby substitutionof

and�

in
�

(4.3). This completesthe proof.

Proof of Theorem4.2: Theorem4.2will beprovedonly for
the
�

MSPRT . For the MSPRT the
�

proof is essentiallythe
same� andis omitted.In fact, mostof the results,including the
asymptotic� optimality of , follow immediatelyfrom (2.5).

Proof of i) and ii). Write

Let and� . By the
definition
�

of the stoppingtime

and� by condition (4.8)

on% the set

These
.

two inequalitiesshow that

on%

Hencefor any

(A.1)
5

where, is
�

the indicator of the set .
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Since
/

, andsinceby theassumptionsof the theorem

E
=

E
=

it follows from (A.1) that E for any positive set of
thresholds
�

. Thus assertioni) holds.
Furthermore,(A.1) implies

E

for
-

all as�

where, . Letting , we obtain the
following
-

upper estimate:

E as�

(A.2)
5

To prove ii) for the MSPRT (the
5

relation4.10)) it suffices
to
�

show that the right-handside of (A.2) is also the lower
estimate$ for E . To this end, we first show that (similarly
to
�

(3.4))

P

as� for
-

every (A.3)
5

W
!

rite . Obviously,for any
and�

P
3

E
=

E

P
3

P P

Since
/

P P P

P P

and� sinceby Theorem2.1 of Tartakovsky[35]

P

we, obtain

P

P (A.4)
5

Now,
9

set with, . Then

P

P

P

P
3

P

By the condition (3.2), for any there
�

is a finite w.p. 1
random0 variable such� that

(in
5

fact, onemay take )
6

andhence

P

P

By the conditions(4.8) and (3.2), the right-handside of the
latter
q

inequality approacheszero when and�
. Thus

P for every

Now,
9

setting with, and�
using� (A.4) and (A.5), we obtain that for all

P

P
3

as�

which, proves(A.3).
Finally, by Chebyshev’sinequality

E P

for any

where, by (A.3) the probability in the right-handside tends
to
�

as� for
-

every . This showsthat

E
=

for
-

any

which, along with (A.2) proves(4.10).
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Pr
r

oof of iii): T
.
o prove (4.11) it remains to set

, and to useCorollary 2.1, Theorem3.1,
and� (4.10).This completesthe proof.

A
8
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