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Multihypothesis Sequential Probability Ratio
Tests—Part II: Accurate Asymptotic Expansions

for the Expected Sample Size
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Abstract—In a companion paper [13], we proved that two
specific constructions of multihypothesis sequential tests, which
we refer to as Multihypothesis Sequential Probability Ratio Tests
(MSPRT’s), are asymptotically optimal as the decision risks (or
error probabilities) go to zero. The MSPRT’s asymptotically
minimize not only the expected sample size but also any positive
moment of the stopping time distribution, under very general
statistical models for the observations. In this paper, based on
nonlinear renewal theory we find accurate asymptotic approxi-
mations (up to a vanishing term) for the expected sample size that
take into account the “overshoot” over the boundaries of decision
statistics. The approximations are derived for the scenario where
the hypotheses are simple, the observations are independent and
identically distributed (i.i.d.) according to one of the underlying
distributions, and the decision risks go to zero. Simulation results
for practical examples show that these approximations are fairly
accurate not only for large but also for moderate sample sizes. The
asymptotic results given here complete the analysis initiated in
[4], where first-order asymptotics were obtained for the expected
sample size under a specific restriction on the Kullback–Leibler
distances between the hypotheses.

Index Terms—Expected sample size, multihypothesis sequential
probability ratio tests, nonlinear renewal theory, one-sided SPRT.

I. INTRODUCTION

T HE problem of sequential testing of more than two hy-
potheses is considerably more difficult than that of testing

two hypotheses. Optimal solutions are, in general, intractable.
Hence, research in sequential multihypothesis testing has been
directed toward the study of practical, suboptimal sequential
tests and the evaluation of their asymptotic performance. At
the same time multihypothesis testing problems are of consid-
erable practical importance, and they arise naturally in many
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areas of science and engineering. Examples include: target de-
tection/recognition in multiple-resolution radar [2], [6], [24],
[26] and electrooptic/infrared systems [14], [30], signal acqui-
sition in direct-sequence code-division multiple-access systems
[37], statistical pattern recognition [17], clinical trials [19], [39],
and others [15], [29], [32].

Simple generalizations of the Wald’s binary sequential
probability ratio test (SPRT), such as a parallel implementation
of a set of simple SPRT’s, may be far from optimum in
multihypothesis problems (see [13, Remark 4.4] for details).
Nontrivial extensions of the SPRT are needed to approach op-
timum performance asymptotically. In a companion paper [13],
we introduced two such extensions, which we referred to as
Multihypothesis Sequential Probability Ratio Tests (MSPRT’s).
The first test, which is motivated by a Bayesian framework,
was considered by Baum and Veeravalli [4], [36], Golubev and
Khas’minskii [18], Fishman [16], Tartakovsky [31], [32] in
various contexts. The second test which is formed by a specific
combination of one-sided SPRT’s was suggested by Armitage
[1], and studied further in [9]–[11], [25], [29]–[38]. A compar-
ison of the pros and cons of the two tests was given by us in
[13] and is also summarized in Section II. We showed in [13]
that both MSPRT’s are asymptotically optimal as the decision
risks (or the probabilities of error) go to zero. The MSPRT’s
asymptotically minimize not only the expected sample size but
also any positive moment of the stopping time distribution,
under very general statistical models for the observations. The
asymptotic optimality of the MSPRT’s makes them attractive
candidates for various practical applications as indicated in
[13]. It is hence of great interest to analyze the asymptotic
performance of the MSPRT’s.

A particularly effective way to analyze the asymptotic
performance of sequential tests (for simple hypotheses and
independent and identically distributed (i.i.d.) observations) is
through the application of renewal theory. For the binary SPRT,
it is well known that renewal theory is useful in obtaining
asymptotically exact expressions for expected sample sizes and
error probabilities (see, e.g., [28]). An approach to applying
renewal theory techniques to sequential multihypothesis tests
was recently given by Baum and Veeravalli [4] in which they
studied the quasi-Bayesian MSPRT. This MSPRT was shown to
be amenable to an asymptotic analysis usingnonlinearrenewal
theory [40], and asymptotic expressions for the expected
sample size and error probabilities were obtained in [4]. While
the work in [4] provided a starting point for the asymptotic per-
formance analysis of MSPRT’s, two important open problems
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remained. First, the asymptotic analysis in [4] was restricted
to the “asymmetric” situation, where for each hypothesis, the
hypothesis with minimum Kullback–Leibler distance among
the remaining hypotheses is unique. Second, only first-order
asymptotic expressions were obtained for the expected sample
size. These first-order asymptotics were shown to be quite
inaccurate for moderate sample sizes, particularly in the case
of symmetric hypotheses.

In the present paper, we complete the asymptotic analysis
initiated in [4] by addressing both open problems discussed
above. The asymptotic expansions for the expected sample
size are obtained using nonlinear renewal theory (see, e.g.,
Lai and Siegmund [21], [22], Siegmund [28], Woodroofe [40],
and Zhang [41]). We consider the asymmetric case first, and
derive an asymptotically exact expression for the expected
sample size under the assumption that the second moments
of the log-likelihood ratios between the hypotheses are finite.
Then, we go on to tackle the general case where the hypothesis
with minimum Kullback–Leibler distance to the hypothesis
under consideration is not necessarily unique. In the general
case, a much stronger Cramér-type condition is required on
the log-likelihood functions of the observations. Finally, we
present simulation results for practical examples to show that
these approximations for the expected sample size are fairly
accurate not only for large but also for moderate sample sizes.

II. PRELIMINARIES

Let be a sequence of independent
and identically distributed (i.i.d.) random variables (generally
vector-valued, ), and let
be their common probability distribution with the density
with respect to some sigma-finite measure. Our goal is to test
sequentially the hypotheses

where are given probability densities.
A sequential test is a pair , where is a Markov

(stopping) time and is a terminal decision
function taking values in the set . That is,

implies that the decision is in favor of hypothesis

accepts

For each , assume that the consequence
of deciding when is the true hypothesis is given by the
loss function . Also, without loss of generality,
set the losses due to correct decisions to zero .
Then the risk associated with making the decision is given
by

where is the prior probability of the hypothesis
, and is the probability of deciding

conditioned on being the true hypothesis. The Bayes risk
associated with the testis the sum .

Note that for the special case of azero–oneloss function,
where for , the risk is the same as the
frequentisterror probability , which is defined to be the prob-
ability of deciding incorrectly. That is, for the zero–one loss
function

As in [13], we use to denote the log-likelihood functions
and ratios corresponding to individual observations, i.e.,

and (2.1)

Furthermore, we use to denote the log-likelihood functions
and ratios corresponding to sequence of observations up to a
given time , i.e.,

and (2.2)

Also, for convenience, define the parameters by

(2.3)

We now introduce the two constructions of multihypothesis
sequential tests, which we refer to as MSPRT’s, whose asymp-
totic performance we study in this paper.

Test : Introduce the Markov times

(2.4)

where are positive thresholds . Then the test
procedure has stopping time and terminal de-
cision that are given by

if

This test is motivated by a Bayesian framework, and was consid-
ered earlier by Golubev and Khas’minskii [18], Fishman [16],
Sosulin and Fishman [29], Tartakovsky [31], [32], Baum and
Veeravalli [4], [36]. Indeed, for the zero–one loss function, the
stopping times may be rewritten as

where

and where
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is thea posterioriprobability of the hypothesis . Note also
that if (does not depend on), the stopping time of the
test is defined by

where

i.e., we stop as soon as the largest posterior probability exceeds
a threshold.

Test : Let

(2.5)
be the Markov “accepting” time for the hypothesis, where
are positive thresholds . The test
is defined as follows:

if

This test represents a modification of the matrix SPRT (the
combination of one-sided SPRT’s) that was suggested by
Lorden [25]. It was considered earlier by Armitage [1], Lorden
[25], Dragalin [9]–[11], Verdenskaya and Tartakovskii [38],
Tartakovsky [32]–[34]. For the zero–one loss function, the
stopping times may be rewritten as

where

i.e., is the generalized weighted likelihood ratio between
and the remaining hypotheses.

It is easy to see that both tests coincide with the Wald’s SPRT
in the binary case where . If the distributions of the obser-
vations come from exponential families, which are good models
for many applications, then has an advantage over in that
it does not require exponential transformations of the observa-
tions. This fact makes it more convenient for practical realiza-
tion and simulation. Furthermore, may easily be modified to
meet constraints on conditional risks (see [9]–[11], [32]–[34])
that may be more relevant in some practical applications. How-
ever, as we shall see in the following section,has the advan-
tage that it is easier to design the thresholds to precisely
meet constraints on the risks .

In [13], we established that if

(2.6)

then both tests and asymptotically minimize any positive
moment of the stopping time distribution in the class of tests

(sequential and nonsequential) for which
as . Here is a predefined bound on the
risk of choosing hypothesis . Furthermore, it follows from
[13, Lemma 2.1 and Theorem 4.1] that if ,

, the ratios are bounded

away from zero and infinity, and the condition (2.6) holds, then
for

as (2.7)

where is the minimum Kullback–
Leibler distance between and other hypotheses. Here and
in what follows the notation as means that

.
Also regardless of the class , if the condition (2.6) holds

and , , then the following first-
order approximations for the expected sample size hold [13]:

(2.8)

These asymptotic formulas describe the behavior only of the
first term of the expansion for the average sample size (ASS).
The behavior of the second term remains to be determined.
Simulation results given in Section IV show that the first-order
approximations are usually inaccurate for moderate values of
thresholds which are of main interest in practice. In this paper,
we derive higher order approximations to the ASS up to a van-
ishing term. As we shall see, in a specific asymmetric case the
second term is of the order of (i.e., a constant), but in gen-
eral it goes to infinity as the square root of the threshold.

It is worth mentioning that one can construct many other “rea-
sonable” tests that are asymptotically optimal in the sense (2.7)
and, hence, are competitive with the proposed tests. One inter-
esting example is therejectingsequential test considered in [34].
However, not all reasonable tests are asymptotically optimal.
For example, a maximum-likelihood test, which is a direct gen-
eralization of the binary SPRT, is not optimum even asymptot-
ically if (see [13, Remark 4.4]). At the same time this
test also coincides with SPRT, and is hence an optimal test, when

.

III. A CCURATEASYMPTOTICAPPROXIMATION FOR THEASS

In this section, we obtain asymptotic expansions for the ASS
of the tests up to a vanishing term using nonlinear renewal
theory. See, e.g., Lai and Siegmund [21], [22], Siegmund [28],
Woodroofe [40], Zhang [41], for detailed discussions of the
nonlinear renewal theory results used in this paper.

A. The Asymmetric Case

First we consider the asymmetric case studied in [4] and
[36], where the hypothesis for which the Kull-
back–Leibler distance, , attains its minimum
(over ) is unique. (The reader is reminded of the definition
of and given in (2.1) and (2.2).) Specifically,
throughout Section III-A we assume that the following condi-
tion holds:

is unique for any

(3.1)
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In order to apply relevant results from nonlinear renewal
theory, we rewrite the stopping times of (2.4) and (2.5) in the
form of a random walk crossing a constant boundary plus a
nonlinear term that is “slowly changing” in the sense defined
in Definition 3.1. By subtracting from both sides of the
inequalities in (2.4) and (2.5), we see that

(3.2)

and

(3.3)

where and are defined by

(3.4)

(3.5)

Definition 3.1: The process is said to beslowly
changingif the following two conditions hold:

i) as

in probability (3.6)

ii) for every and some

(3.7)

i.e., is uniformly continuous in probability [40].

Lemma 3.1:Let the condition (3.1) be fulfilled and
for all and . Then the processes

and are slowly changing under

Proof: It is easy to see that

We denote this difference by . We can then rewrite of
(3.4) as

where

is a zero-mean random walk with respect to. By the strong
law of large numbers —a.s. and

w.p. 1 as (3.8)

which implies (3.6) and (3.7). Evidently,

and hence, by a standard sandwich argument, the process
is also slowly changing.

An important consequence of the slowly changing property
is that limiting distributions of the overshoot of a random walk
(with positive mean) over a fixed threshold are unchanged by the
addition of a slowly changing nonlinear term (see Woodroofe
[40, Theorem 4.1]). In particular, suppose we define the stop-
ping time

which corresponds to the one-sided SPRT which tests the hy-
pothesis against the closest one . Now let

denote the overshoot at the stopping time. Furthermore, let

denote the limiting distribution of the overshoot.
Now, let be a slowly changing process and consider the

stopping time

Then, by [40, Theorem 4.1], the overshoot at the stopping time

has the same limiting distribution as , i.e.,

Now note that from (3.2)

on (3.9)

where is the overshoot of the process over
the level at time . Taking the expectations in both sides of
this last equality and applying the Wald identity [28], we obtain

(3.10)

A similar equality is true for the Markov time . Indeed, from
(3.3)

on (3.11)

where is the overshoot of the process over
the level at time . Applying Wald’s identity, we get

(3.12)

We are now in a position to understand the role of Lemma 3.1.
The key point is that since the sequences and
are slowly changing, the overshoots and have the same
limiting distributions as (when , , and tend to in-
finity). Furthermore, both and converge to the con-
stant as . Thus for large and , the ASS’s

and should be approximately equal to

and
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respectively, where

is the expected limiting overshoot. The following theorem is a
formal statement of this result and is proved in the Appendix.

Theorem 3.1:Suppose that the condition (3.1) holds and
are bounded away from zero and infinity, i.e., as

and

where (3.13)

In addition, assume that and the are
-nonarithmetic.1 Then

as

(3.14)

as

(3.15)

Remark 3.1:The condition that are -nonarithmetic
is imposed due to the necessity of considering certain discrete
cases separately in the renewal theorem (see, e.g., Woodroofe
[40, Section 2.1]). If are -arithmetic with span ,
the results of Theorem 3.1 (as well as of Theorem 3.3 below)
hold true as and through multi-
ples of (i.e., ) and with respective modifica-
tion of definition of .

We note that in the definitions of and of (2.4) and
(2.5), and in Theorem 3.1 above, the numbers may be
assumed to be arbitrary positive constants not necessarily equal
to as we defined them before in (2.3). However,
by setting as specified in (2.3), we can precisely control the
risks corresponding to the tests and . Now let

Recall that is the limiting distribution of the overshoot
in the one-sided SPRT as (under the measure ).

The following theorem provides asymptotic expressions for the
risks in terms of . Its proof is given in the Appendix.

Theorem 3.2:Let

be the risk of deciding . If we set ,
then under the same conditions as in Theorem 3.1

as (3.16)

as (3.17)

1A random variableX is called arithmetic (has arithmetic distribution with
spand) if d�X is integer-valued for some nonzero constantd. A typical example
is the Bernoulli sequence. Otherwise,X is called nonarithmetic (or nonlattice),
i.e.,P (X = dm for somem) < 1.

As a consequence of Theorem 3.1 and Theorem 3.2 we have
the following important result.

Corollary 3.1: If

and

then as

(3.18)

(3.19)

(3.20)

It is important to emphasize that the testperforms better
than the test . Indeed, according to (3.19) and (3.20) the differ-
ence between and is equal to
if we take . For large the differ-
ence may appear to be substantial. However, for the procedure
we guarantee only the inequality while for the pro-
cedure the corresponding equality holds. Thus the real differ-
ence between the two tests would be less than
if the thresholds can be chosen so that
as . In that case, the difference between and
can be made negligible. For the symmetric case with respect to
decision risks, where for all

as (3.21)

the fact that may be implicitly derived
from the results of Lorden [25]. More specifically, if

and (3.21) is fulfilled, then

as (3.22)

We suspect that the same result is true as long asare arbi-
trary numbers bounded away fromand . We do not have a
rigorous proof for this case; however, simulation results given
in Section IV agree with this conjecture.

B. The General Case

Thus far we have assumed that the minimum distance
is achieved uniquely (see the condition (3.1)). We

now relax this condition. For fixed, let

be the ordered values of . Through-
out the rest of this section we assume that

for some

(3.23)

Note that condition (3.23) includes the fully symmetric situation

for all (3.24)
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when , and “ ” denotes exclusion of “” from the
set. Note also that the previous asymmetric case is covered by
setting .

The derivation of the asymptotics for the general case is more
complicated than in the asymmetric case. The reason is that if
we write the Markov times and in the form given in (3.2)
and (3.3), the sequences corresponding to and
are not necessarily slowly changing in the general case. A dif-
ferent approach and stronger conditions (see the Cramér-type
condition (3.31) below) are required to tackle this general case.

Recall that is the log-likelihood
function of the observations up to time. Now, let

denote the corresponding mean value of the increment of the
log-likelihood function under .

Let be the ordered values of
, with denoting the index of the ordered values,

i.e.,

if (3.25)

with an arbitrary index assignment in case of ties.
Now, under assumption (3.23), there arevalues that achieve

the minimum distance . Since , we must
have values that achieve the maximum of , i.e.,

Next, define an-dimensional vector
with components

Obviously, is zero-mean. Let denote its
covariance matrix with respect to .

Now let

be the density of a multivariate normal distribution function with
covariance matrix .

The asymptotic expansions in the general case are derived
using normal approximations (see Bhattacharya and Rao [5]). In
this context, we introduce the variables and . The vari-
able is the expected value of the maximum ofzero-mean
normal random variables with the density function , i.e.,

(3.26)

and is given by

(3.27)
where

(3.28)

and where is a polynomial in of degree whose
coefficients involve and the -cumulants of up to order

and is given explicitly by Bhattacharya and Rao in [5, formula
(7.19) ]. Due to the lengthiness of this formula we have not in-
cluded it here. Computing the constant for a given appli-
cation is relatively straightforward, since the integral in (3.26)
involves only the covariance matrix of the vector; further
simplification results in the case where is diagonal. Com-
puting the constant is, in general, quite difficult due to the
fact that the polynomial is a complicated function of the
cumulants of . However, in the symmetric situation (which is
usually of interest), where is of the form (with being
the identity matrix), and , for , a con-
siderable simplification is possible (see Section III-C2 below).
Note that the application of the normal approximations requires
a Cramér-type condition on the joint characteristic function of
the vector given in (3.31) below.

We now present a “heuristic” outline of our approach to
finding asymptotics in the general case. We focus on the second
test , since our approach works more naturally for this test.
As we shall see in the proof of Theorem 3.3, the asymptotic
ASS results for the follow from those for .

The Markov time of (2.5) may be written in the form

(3.29)

where

is a random walk with increments having positive mean
, and

It is established in the proof of Theorem 3.3 that is a
slowly changing sequence that converges in distribution to a
random variable , and that

as

where is defined in (3.27). In comparing with the corre-
sponding equation for the asymmetric case given in (3.3), we
see that is written in terms of the log-likelihood function
of the observations under as opposed to the log-likelihood
ratios. Defining in this fashion is required for the corre-
sponding sequence to be slowly changing in the general
case. Also note that in addition to the slowly changing term there
is a nonlinear deterministic term that is added to the threshold
in (3.29).

Now note that from (3.29)

on (3.30)

where is the overshoot of the process
over the level at time . In the limit as , we expect

to approximately satisfy the equation

where is the limiting overshoot. Solving this equation for
gives
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Finally, using uniform integrability arguments, we expect that

where is the expected limiting overshoot, and is expec-
tation of the limit of the slowly changing sequence . The
following theorem formalizes this result, and the detailed proof
based on the renewal theory of Zhang [41] is given in the Ap-
pendix. We write and for brevity.

Theorem 3.3:Suppose that is -nonarithmetic, the
covariance matrix of the vector is positive-definite,

, the condition (3.13) holds, and the Cramér
condition

(3.31)

on the joint characteristic function of is satisfied. Then

as (3.32)

as (3.33)

where is a constant which does not depend
on , and is the expectation of the limiting overshoot in the
one-sided SPRT based on the log-likelihood ratio

Remark 3.2:Numerical results given in Section IV indicate
that setting in (3.33) consistently produces the best
match with simulated ASS values for test.

Remark 3.3:We note that in the general case we have not
been able to obtain the counterpart of Theorem 3.2. Thus we
need to rely on weaker Wald-type inequalities for the risks in
order to set the thresholds to meet risk constraints. In particular,
as we established in [13, Lemma 2.1]

(3.34)

C. Some Special Cases

In the following we address the issue of computing the con-
stants and appearing in asymptotic expansions for the
ASS given in Theorem 3.3.

1) Case 1: In the asymmetric case (3.1), , and it is
easily shown that . Also, as shown in [5, eq. (7.21)],

in this case. Now, since for the stan-
dard Gaussian random variable , we see from
(3.27) that . Thus the resulting expression for
the ASS is consistent with the result of Theorem 3.1.

2) Case 2: Consider the symmetric case where
are identically distributed (but not necessarily inde-

pendent), and where is of the form (with being

TABLE I
EXPECTED VALUES OF STANDARD NORMAL ORDER STATISTICS

THE COMPUTATIONS WERE DONE ON AN HP COMPUTERUSING MAPLE V
THE FIRST FOUR VALUES COINCIDE WITH KNOWN “EXACT” V ALUES

the identity matrix), and , for . This case
often arises in practice (see examples in Section IV).

First suppose that . In this special case, it is easy
to see from (3.26) that

(3.35)

where is the expected value of the standard normal order
statistic. (See Table I for computed values of.) Furthermore,
we may use the results in [11] to get the following relatively
simple expression for . (Note that the second term inside
the integral in (3.27) is zero since .)

(3.36)

where

(3.37)

and where and are standard normal density and
distribution functions, respectively. (See Table II for computed
values of .)

We now remove the restriction that (still assuming
). Note that for to be positive-definite, we require that

. Since is zero mean with covariance
under , we may write

where

(3.38)

is zero-mean with covariance ,
and
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TABLE II
VALUES OF THE ABSOLUTE CONSTANTS C FOR THE CASE ��� = 000; VVV =

THE COMPUTATIONSWEREDONE ON AN HP COMPUTERUSING MAPLE V

Thus for , the slowly changing term in (A.15) in
the proof of Theorem 3.3 simply gets modified, relative to the
case , by the addition of the term . It is easy to see
that the addition of does not affect the conditions needed on

given in (A.16)–(A.21). Furthermore, implies
that is also unaffected. Thus using (3.36), we can see that

is given by

(3.39)

for all allowable , i.e., . It is also easily shown
that is given by (3.35) for all . Indeed, if

with such , then

where , and
is zero-mean.

Consider the case . In this case, we simply subtract
from and add it to in (3.29). Then the modified

is identical to that obtained in the case , and hence its
limiting value is given by of (3.36).

To summarize, for and

(3.40)

where

(3.41)

A similar expression holds for with replaced by and
added to in (3.40).

IV. A PPLICATIONS AND RESULTS OFSIMULATION

In this section, we consider examples which are meaningful
in the applications described in Section I. Simulation results are

provided for these examples that verify the accuracy of the ap-
proximations obtained in the previous section. In addition, the
performance of the MSPRT’s is compared with that of nonse-
quential (fixed sample size) tests.

A. Example 1: Testing the Mean of an i.i.d. Gaussian Sequence

Suppose the observations are given by

where, under , , and is Gaussian noise.
The log-likelihood ratios of the observations are easily com-
puted as

and the Kullback–Leibler distances are given by

Consider the case of three hypotheses where

Then is achieved for only one, and

where we denoted , .
Also, suppose that the prior distribution is uniform, ,

and the loss function is zero–one (i.e., for all
). As noted earlier, for the zero-one loss function,

represent frequentist error probabilities. Suppose we are given
risk constraints . Then, if we set and

, we can apply the results of Corollary 3.1 to
get

where , , , and are calculated using techniques de-
scribed in [40] and are given below

(4.1)

(4.2)

(4.3)

(4.4)
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TABLE III
RESULTS FOR EXAMPLE 1 WITH DISTINCT

DISTANCES BETWEEN HYPOTHESES
THE PARAMETER VALUES ARE � = �0:5; � = 0:0, � = 1:0, AND

� = 1:0; THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10

THE BEST FIXED SAMPLE SIZE TEST THAT MEETS THECONSTRAINT ON THE

BAYES RISK R TAKES 111 SAMPLES

The performance of the tests and for two different test
cases is given in Table III. In the table, and are the es-
timates of the risks and ASS obtained by Monte Carlo tech-
niques. Note that the second-order asymptotics are consider-
ably more accurate than the first-order asymptotics. Also for
the designed values of the thresholds, the expected sample size
for is slightly larger than that for . This is consistent with
the result of Corollary 3.1. As we noted in the discussion fol-
lowing Corollary 3.1, the difference between the two tests will
be negligible if can be designed to meet the risk constraints

more tightly. Experimentation indicates that is better ap-
proximated by setting using the lower bound in (3.17), i.e.,

(we do not have a theoretical explanation for this fact).
These results are also shown in Table III. The number of Monte
Carlo trials used in all simulations (Table III and all following
tables) was chosen so that a 1% accuracy was guaranteed for
estimation of risks (probabilities of error) and ASS.

If , we have , and, therefore, the
above approximations for and are no longer valid. In
that case, Theorem 3.3 needs to be used for. It is interesting
to note that has the form considered in Section III-C2
with , , and . Thus
(3.40) may be applied to calculate accurate approximations for
the ASS in this case. Note that a further simplification results
in this case since (see Table II). Typical results for this
symmetric case are given in Table IV.

The performance of the sequential tests may also be com-
pared with fixed sample size (FSS) tests. It is not easy to de-
sign an FSS test that meets the individual risk constraints.

TABLE IV
RESULTS FOR EXAMPLE 1 WITH NONDISTINCT

DISTANCES BETWEEN HYPOTHESES
THE PARAMETER VALUES ARE � = �0:5, � = 0:0, � = 0:5, AND

� = 1:0; THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10

THE FIXED SAMPLE SIZE TEST THAT MEETS THECONSTRAINT ON THE

BAYES RISK R TAKES 131 SAMPLES

However, the FSS test that meets the corresponding constraint
on the total Bayes risk is easily shown to be of the

form

choose if
choose if
choose otherwise

where , and is the (fixed) number of
observations. It can be shown that the Bayes risk for this test
is given by

Using this equation, the value ofthat meets the constraint
can be found. Comparing, , and

in Tables III and IV, we see that the sequential tests
are two to three times faster than the corresponding FSS tests.

B. Example 2: The Slippage Problem

As a second application of the above results, we consider
the problem of detecting a single target in a multichannel (mul-
tiresolution) system which is essentially a multisample slippage
problem [13]. Suppose there arechannels. In theth channel
one observes the process and all components may be ob-
served simultaneously, i.e., .
There may be no useful signal at all (hypothesis) or a signal
may be present in one of the channels, in theth, say (hy-
pothesis ). Thus the number of hypotheses . The
goal is to detect a signal as soon as possible and to indicate the
number of the channel where the signal is located.

Under hypothesis , are mutually inde-
pendent and distributed with common density which
describes the distribution of noise, and, under, all are
mutually independent, ,
are distributed with common density and has
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density . The latter describes the distribution of a mixture
of signal and noise.

Assume, for simplicity, that .
In other words, the statistical properties of the observed data do
not depend on the number of the channel where the signal is
located. Then

(4.5)

Therefore, the log-likelihood ratios are given by

By the symmetry of the problem, the distances
(say) are the same for , and so are (say)
where

and (4.6)

Also the distances between the nonnull hypotheses are given
by , . Hence , ,

. This means that for hypothesis , we have the
fully symmetric case with

; while for any other hypothesis , , the
asymmetric condition (3.1) holds with .

Further, we assume that the conditional prior distribution of
the signal location is uniform, i.e.,

is incorrect

In other words, if is the prior probability of signal
absence, then

Finally, given the symmetry of the problem, the following
three-valued loss function is appropriate:

for
for
for
otherwise

That is, we assume that the losses associated with false alarms,
missing the signal and choosing the wrong signal are, respec-
tively, given by , , and . The decision risks are then
given by

Under these assumptions, it is clear that we require to specify
only two thresholds for each sequential test, and

. Then, by symmetry, the conditional
error probabilities for both tests satisfy the following properties:

s.t.

and

Thus we have

To meet constraints , we set

and

for

Then, by Corollary 3.1, we get

(4.7)
For hypothesis , we may use the bounds given in (3.34) to
set and and thus guar-
antee that the risk constraint is met. However, as we see
in numerical results, setting , ,

, and result in tests that ap-
proximate more accurately (of course, without the guarantee
of being below ).

To compute the expected sample sizes, for , we apply
Theorem 3.1 to get

(4.8)

where

To compute the ASS under , we need to use Theorem 3.3.
By the symmetry of the problem, in this case. In order to
compute the constants and , it is convenient to use the
measure

as the dominating measure for defining densities. Then the like-
lihood functions of (4.5) get modified to
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With these likelihood functions, the vector has components
given by

It is easy to show that the covariance matrix has the form
, considered in Section III–C2, where

with being the variance relative to the density function
, and where

Furthermore,

Thus (3.40) may be applied to get

(4.9)

(4.10)

where , and is as defined in (3.41).

Special Case: Signal Always Present
We now consider the situation where the null hypothesisis

excluded from consideration, i.e., we are certain that the signal
is present in the system and only its location is to be determined.
In this case, we have a fully symmetric set ofhypotheses.

It is easy to see that the distances between the hypotheses are
for all , where and

are as defined in (4.6).
Due to the symmetry, one may set , ,

for , and assume a zero–one loss function. The
risks are then all equal

where is the probability of
signal mixing. In order to meet a risk constraint, we use
the bounds given in (3.34) to set and

. This will guarantee that the con-
straint is met. However, as seen in numerical results, setting

and (where )
results in tests that approximatemore accurately.

To compute the ASS under any of the hypotheses, say, we
first note that we have a situation covered under Theorem 3.3
with . In order to compute the required constants, it
is convenient to use the measure as the
dominating measure for defining densities. Then the likelihood
functions are given by

The components of the vector are obviously i.i.d. in this
case, with variance given by

where denotes the variance relative to the density func-
tion . Thus . Furthermore, by symmetry,

. Applying (3.40), we get, for all

(4.11)

(4.12)

Here , and is as defined
in (3.41).

1) Detection of Deterministic Signals in White Gaussian
Noise: Consider the problem of detection of a deterministic
pulse signal in an -channel radar in the presence of additive
white Gaussian noise. The pre-processing scheme consists of a
matched filter, matched to the pulse. Then the hypotheses are

for

for

where are i.i.d. Gaussian variables (bothand
are assumed to be known). Note that

Let denote the signal-to-noise ratio (SNR). Then
it is easy to show that and of (4.6) are both equal to.
The constants and are obtained by substi-
tuting in (4.1) and (4.3), respectively. The vector
is Gaussian and zero mean. From (3.38), it is clear thatis
Gaussian and zero-mean as well. Hence . The con-
stant can be shown to equal . Using these constants, we
can compute the ASS for both tests for any given costs, priors,
and risk constraints. Sample results are given in Table V. Note
that the second-order asymptotics are considerably more accu-
rate than the first-order asymptotics, particularly for hypothesis

.
In the completely symmetric case (signal is always present

but its location is unknown), the required constants are given by
, , , and and are obtained

by substituting in (4.1) and (4.3), respectively.
For the completely symmetric case, the best FSS test chooses
if , where

and is the (fixed) number of observations. It can be shown
that the risk for this test is given by

Using this equation, the value of that meets the constraint
can be found. Comparing, , and in Table VI, we see
that the sequential tests are usually about two times faster than
the FSS test.

2) Detection of Fluctuating Signals:Now suppose that one
wants to detect a fluctuating signal in additive white Gaussian
noise from data at the output of a pre-processing scheme which



DRAGALIN et al.: MULTIHYPOTHESIS SEQUENTIAL PROBABILITY RATIO TESTS—PART II 1377

TABLE V
RESULTS FOR EXAMPLE 2 WITH GAUSSIAN

OBSERVATIONS AND H PRESENT
THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10 AND 10 FOR

�R VALUES OF 0.01AND 0.001, RESPECTIVELY

consists of a match filter and square-law detector [2]. Under
the assumption that the signal has slow Gaussian fluctuations
within pulses and fast fluctuations between pulses (the Swerling
II model), the observed data is exponentially distributed and in-
dependent. After appropriate normalization

where is an indicator of the set , i.e.,
if and otherwise.

It is easy to show that and of (4.6) are given by

and

TABLE VI
RESULTS FOR EXAMPLE 2 WITH GAUSSIAN OBSERVATIONS AND H ABSENT
THE NUMBER OFTRIALS USED IN THESIMULATIONS WAS 10 AND 10 FOR �R

VALUES OF0:01 AND 0:001, RESPECTIVELY

and that

Since under the distribution of has an exponential
right tail

(4.13)

the distribution of the overshoot is expo-
nential for all [35], [40]

Thus

and it remains to compute the constantsand . From Port
[27], the density of the overshoot under

may be written in the form

Introduce the stopping time

for
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Obviously,

where . It follows from (4.13) that for any

and hence

Using this last expression we finally obtain

The constant is given by

It is easy to show that

Now, starting with the definition of given in (3.38), a series
of straightforward calculations leads to

Using these constants, we can compute the ASS for both tests
for any given costs, priors, and risk constraints. Sample results
are given in Table VII.

For the completely symmetric case (we do not test the hy-
pothesis )

After some simple algebra, we obtain

TABLE VII
RESULTS FOR EXAMPLE 2 WITH EXPONENTIAL

OBSERVATIONS AND H PRESENT
THE PARAMETER VALUES AREN = 4, � = 0:5, AND � = 0:5; THE

NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10 AND 10 FOR �R
VALUES OF 0.01AND 0.001, RESPECTIVELY

Hence again the distribution has an exponential right tail and
the overshoot has the exponential distribution with the
parameter . Thus

The constant obviously equals , and is easily seen
to be given by

Sample results for this case are given in Table VIII.

V. CONCLUSION

We studied two constructions of sequential tests for multiple
hypotheses. The MSPRT has the advantage that it is easier to
implement, while, as shown in Sections III and IV,is easier to
design to meet given risk requirements. We established in [13]
that both MSPRT’s asymptotically minimize any positive mo-
ment of the stopping time distribution, under general statistical
models for the observations. This makes the MSPRT’s attractive
candidates for practical applications, and it is hence of interest to
obtain analytical approximations for the expected sample sizes
of these tests.

Simulation results for several examples and various condi-
tions show that while the first-order approximations to the ex-
pected sample size are fairly inaccurate in most cases, the de-
rived higher order approximations (up to a vanishing term) are
accurate not only for large but also for moderate sample sizes,
which are typical for many applications. This is especially true
in cases where the set consists of more
than a single point . But even in the asymmetric situation
when is unique, the higher order approximations are sub-
stantially more accurate compared to the first-order ones.
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TABLE VIII
RESULTS FOR EXAMPLE 2 WITH

EXPONENTIAL OBSERVATIONS AND H ABSENT
THE PARAMETER VALUES AREN = 4 AND � = 0:3; THE NUMBER OFTRIALS

USED IN THE SIMULATIONS WAS 10 AND 10 FOR �R VALUES OF0:01
AND 0:001, RESPECTIVELY

For the test , the risk constraints are sharply met by setting
the thresholds as specified in Corollary 3.1. This is true not just
in the asymmetric case (as may be expected from Corollary 3.1)
but also in the general case. For, on the other hand, it is more
difficult to meet the risk constraints. But if the thresholds for

are chosen (by trial and error) to meet the constraints tightly,
then the average sample sizes are the same as those for.

The results presented in this paper complete the asymptotic
analysis initiated in [4] for the case of i.i.d. observations. Since
the MSPRT’s studied in this paper are asymptotically optimal
under more general statistical models for observations, it would
be of interest to analyze the performance of the MSPRT’s under
these models. We leave this as an open problem for future re-
search.

APPENDIX

Proof of Theorem 3.1:Consider the test . We first show
that

as

(A.1)
The above result follows from (3.10), (3.8), and an application
of Theorem 4.5 of [40]. However, before we can apply Theorem
4.5 of [40], the validity of the following four conditions has to
be checked:

converges in distribution to a random variable (A.2)

for some (A.3)

for some

as (A.4)

are uniformly integrable (A.5)

By (3.8), the condition (A.2) is true with . Con-
dition (A.3) holds since . Obviously,

and hence

(A.6)

It is easily checked that the process , , is
a -submartingale for any . Applying Doob’s inequality
for submartingales [23] to the last term in (A.6), we obtain

where

for

Taking , we finally obtain

(A.7)

Choosing sufficiently small, , one may see that
is bounded by , , and hence

the condition (A.4) holds true.
Thus it remains to check the condition (A.5) (uniform inte-

grability) which is a straightforward but tedious task (see, e.g.,
[4]).

Therefore, all conditions of Theorem 4.5 in [40] are satisfied.
The use of this theorem yields (A.1) for large. To prove the
assertion of the theorem for the test procedure, it remains to
prove that

as (A.8)

To this end, we first observe that

Using Schwarz’s inequality, we get

By Lemma 2.1 in [13]

which implies

for all

In turn, the latter inequality yields

Now by Theorem 4.1 in [13]. Thus

as

and the theorem follows for the MSPRT.
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For the test the argument is quite similar. In just the same
way as above one can prove that the conditions (A.2)–(A.5) hold
for the process , . Then using (3.3)–(3.12) and [40,
Theorem 4.5], we obtain

as

The rest of the argument is essentially the same.

Proof of Theorem 3.2:For the zero–one loss function, the
asymptotic equality (3.16) follows from Baum and Veeravalli
[4, Theorem 6.1]. To prove this equality for an arbitrary loss
function we observe first that the risk can be written in
the form

(A.9)

Indeed,

(A.10)

from which (A.9) follows in an obvious manner. Now, since by
(3.9)

on

we obtain

Due to the fact that is slowly changing,
(see [40, Theorem 4.1]). Furthermore, as

. Hence the value of converges
to which along with the previous equality implies (3.16).

Consider the second test. Obviously, the equality (A.10) is
true for if and are replaced with and , respec-
tively. In turn, this equality implies

where

(A.11)

Next, by (3.11)

on

where is the overshoot of the process over
the level at time instant , and hence

Note that by considering the difference of (3.4) and (3.5),
of (A.11) can be shown to satisfy

on

which implies the inequalities

Now, as , and by Woodroofe [40,
Theorem 4.1], , due to the fact that
is slowly changing. Thus converges to

. This fact together with the previous inequalities yields (3.17)
and the theorem follows.

Proof of Theorem 3.3:Consider the test procedure. Ar-
guments identical to those used in the proof of Theorem 3.1 may
be used to establish that it is sufficient to prove (3.32) only for.

Now recall from (3.29) that

(A.12)

where is a random walk with
increments having positive mean ,

, and

(A.13)
It is desirable to replace the maximization over in

(A.13) by a maximization over only thosecorresponding to
the nearest hypotheses. To this end, let

where is as defined in (3.25).
Due to assumption (3.23), we have

for some

for some
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where

Since is a random walk with mean zero and finite
second moment, , by the Baum–Katz rate of
convergence in the law of large numbers [3]2

for all

which along with the above inequality yields

Hence, for we can write of (A.13) as

(A.14)

with

(A.15)

where is defined in (3.28). The proof of (3.32) for runs
almost parallel to that of Dragalin [11, Lemma 1 ] and is based
on Zhang [41, Theorem 3]. In order to apply this theorem, the
following conditions need to be checked:

as for some

(A.16)

as (A.17)

for some (A.18)

is uniformly integrable (A.19)

for any

(A.20)

converges in distribution to an integrable

random variable (A.21)

Then, by Zhang [41, Theorem 3]

as (A.22)

where

(A.23)

To prove (A.16) we rewrite in the following form:

2See also Chow and Lai [8] for a one-sided versions that may be applied in
the case considered.

where with

which is a zero-mean random walk. Let
and

(In what follows we omit the indexin , , , etc., for
brevity.) Then

(A.24)

By the submartingale inequality, the first probability in (A.24)
can be estimated above

Since , we have that
as . Then, by the uniform integrability of

and hence

Using the same arguments, it may be shown that the second
probability in (A.24)

The proof of (A.16) is complete.
Let . The proof of (A.17) is a direct appli-

cation of a submartingale inequality and uniform integrability
of

Similar to the proof of (A.4) we have that



1382 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

as . Now, the uniform integrability of yields

which proves (A.17).
Verification of (A.18) is similar to, but simpler than, that pre-

sented in the proof of (A.17) and is omitted.
Conditions (3.6) and (3.7) (slowly changing) and conditions

(A.19)–(A.21) are used in [41, proof of Theorem 3] to obtain the
uniform integrability of the overshoot
and to prove that as . The former follows
from [10, Lemma 4.2] which states that is bounded above by
a uniformly integrable random variable. The latter convergence
is proved in the next paragraph.

Using Theorem 20.1 of Bhattacharya and Rao [5] with
and , we have (under the

assumption of our theorem)

(A.25)

where . On the other hand,
transformation of variables and first-order Taylor expansion for

in the first integral yield (as )

(A.26)

By denote the second integral in (A.25). Obviously we have
the following estimates for :

which show that

as (A.27)

The relations (A.14) and (A.25)–(A.27) give

as

Substituting the above limiting value for in (A.22), the re-
quired asymptotic result (3.32) follows.

Now, consider the MSPRT . It follows from [13, eq. (2.2)]
that if , , then

Thus may be obtained to within a constant factor,
, by replacing with in (3.32).
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