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Multihypothesis Sequential Probability Ratio
Tests—Part Il: Accurate Asymptotic Expansions
for the Expected Sample Size

Vladimir P. Dragalin, Alexander G. Tartakovsky, and Venugopal V. Veera@dinior Member, IEEE

Abstract—In a companion paper [13], we proved that two areas of science and engineering. Examples include: target de-
specific constructions of multihypothesis sequential tests, which tection/recognition in multiple-resolution radar [2], [6], [24],
we refer to as Multihypothesis Sequential Probability Ratio Tests [26] and electrooptic/infrared systems [14], [30], signal acqui-

(MSPRT'’s), are asymptotically optimal as the decision risks (or ~ ..~ ~. ° . .
error probabilities) go to zero. The MSPRT's asymptotically sition in direct-sequence code-division multiple-access systems

minimize not only the expected sample size but also any positive [37], statistical pattern recognition [17], clinical trials [19], [39],
moment of the stopping time distribution, under very general and others [15], [29], [32].
statistical models for the observations. In this paper, based on  Simple generalizations of the Wald’s binary sequential

Pnoeg:?fsaguﬁ?f‘g%:i‘seﬁ%‘;";r;')”?O:"t‘;]ce“;ffsei‘fgg‘sp;‘gﬁaeagggoﬁq';t probability ratio test (SPRT), such as a parallel implementation
take into account the “overshoot” over the boundaries of decision of a set of simple SPRT's, may be far from optimum in

statistics. The approximations are derived for the scenario where Multinypothesis problems (see [13, Remark 4.4] for details).
the hypotheses are simple, the observations are independent andNontrivial extensions of the SPRT are needed to approach op-

identically distributed (i.i.d.) according to one of the underlying  timum performance asymptotically. In a companion paper [13],
distributions, and the decision risks go to zero. Simulation results \\,o introduced two such extensions. which we referred to as
for practical examples show that these approximations are fairly . . . .y . ,
accurate not only for large but also for moderate sample sizes. The Multlhypothe3|s quugnual Probablllty Ratio Te.Sts (MSPRT’s).
asymptotic results given here complete the analysis initiated in The first test, which is motivated by a Bayesian framework,
[4], where first-order asymptotics were obtained for the expected was considered by Baum and Veeravalli [4], [36], Golubev and
sample size under a specific restriction on the Kullback-Leibler Khas'minskii [18], Fishman [16], Tartakovsky [31], [32] in
distances between the hypotheses. various contexts. The second test which is formed by a specific

Index Terms—Expected sample size, multihypothesis sequential combination of one-sided SPRT’s was suggested by Armitage
probability ratio tests, nonlinear renewal theory, one-sided SPRT. [1], and studied further in [9]-[11], [25], [29]-[38]. A compar-
ison of the pros and cons of the two tests was given by us in
[13] and is also summarized in Section 1l. We showed in [13]
] ] that both MSPRT’s are asymptotically optimal as the decision
T HE problem of sequential testing of more than two hyrisks (or the probabilities of error) go to zero. The MSPRT’s

potheses is considerably more difficult than that of testingsy mptotically minimize not only the expected sample size but
two hypotheses. th|mal so_lunons_are, in ge_neral,_mtractab;g\qSO any positive moment of the stopping time distribution,
Hence, research in sequential multihypothesis testing has bggRer very general statistical models for the observations. The
directed toward the study of practical, suboptimal sequentigdymptotic optimality of the MSPRT’s makes them attractive
tests and the evaluation of their asymptotic performance. fdndidates for various practical applications as indicated in
the same time multihypothesis testing problems are of cons[idL3]. It is hence of great interest to analyze the asymptotic
erable practical importance, and they arise naturally in MaB¥rformance of the MSPRT's.
A particularly effective way to analyze the asymptotic
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remained. First, the asymptotic analysis in [4] was restrictedNote that for the special case ofzaro—oneloss function,
to the “asymmetric” situation, where for each hypothesis, thehereW (5,4) = 1 for j # 4, the riskR; is the same as the
hypothesis with minimum Kullback—Leibler distance amonfrequentiserror probabilityc;, which is defined to be the prob-
the remaining hypotheses is unique. Second, only first-ordaility of decidingH; incorrectly. That is, for the zero—one loss
asymptotic expressions were obtained for the expected sanfpiection
size. These first-order asymptotics were shown to be quite

M-1
inaccurate for moderate sample sizes, particularly in the case
\ P P y Ri(8) = i (8) = Y miejil®).
of symmetric hypotheses. g
In the present paper, we complete the asymptotic analysis i

initiated in [4] by addressing both open problems discussedA
above. The asymptotic expansions for the expected samg’,ﬁj
size are obtained using nonlinear renewal theory (see, e.g.,
Lai and Siegmund [21], [22], Siegmund [28], Woodroofe [40], fi(X,)

and Zhang [41]). We consider the asymmetric case first, and>Zi() = 10g fi(X7) and AZ;;(n) = log (X (2.1)
derive an asymptotically exact expression for the expected e

sample size under the assumption that the second moméntgthermore, we us& to denote the log-likelihood functions

of the log-likelihood ratios between the hypotheses are finitend ratios corresponding to sequence of observations up to a
Then, we go on to tackle the general case where the hypothegi®en timen, i.e.,

with minimum Kullback-Leibler distance to the hypothesis .

under consideration is not necessarily unique. In the gene?kn) _ ZAZ(t)

case, a much stronger Cramér-type condition is required oh — !

the log-likelihood functions of the observations. Finally, we n

present simulation results for practical examples to show that and Z;;(n) = ZAZU(t) =Zi(n) — Z;(n). (2.2)
these approximations for the expected sample size are fairly t=1

accurate not only for large but also for moderate sample sizes, ) )
Also, for convenience, define the parameters by

sin [13], we useA Z to denote the log-likelihood functions
ratios corresponding to individual observations, i.e.,

Il. PRELIMINARIES .
wj; = m;W(j,i)/m;. (2.3)

Let X = {X;,X,,---} be a sequence of independent
and identically distributed (i.i.d.) random variables (generally We now introduce the two constructions of multihypothesis
vector-valuedX,, = (X1 ,,---,X;,) € R\, 1> 1),and letP  sequential tests, which we refer to as MSPRT'’s, whose asymp-
be their common probability distribution with the densjty:) totic performance we study in this paper.
with respect to some sigma-finite measure. Our goal is to teSLresté,,

! o he Markov ti
sequentially thél/ hypotheses ntroduce the Markov times

Hi:f@) = fi@) VeeR, i=01--M-1 il o1 z(n)2a+log (Zwﬁ exp[Zj(nﬂ)
where f;(x) are given probability densities. e

A sequential test is a palf = (7, d), wherer is a Markov
(stopping) time and = d(X;,---, X, ) is a terminal decision
function taking values in the sé0,1,---, M — 1}. That is,
d = j implies that the decision is in favor of hypotheis

(2.4)

whereq; are positive threshold$nf{<} = o). Then the test
procedures, = (7,,d,) has stopping time, and terminal de-
cisiond, that are given by

{d=j} = {7 < 00,6 acceptsH,}. ] .

T, = min 73, do =1 if 1 = 75.

For eachi,j = 0,1,---, M — 1, assume that the consequence OShSM=L
of decidingd = i whenH; is the true hypothesis is given by theThis test is motivated by a Bayesian framework, and was consid-
loss functionV (4, ¢) € [0, o0). Also, without loss of generality, ered earlier by Golubev and Khas’minskii [18], Fishman [16],
set the losses due to correct decisions to 2&¥di,:) = 0). Sosulin and Fishman [29], Tartakovsky [31], [32], Baum and
Then the risk associated with making the decigiea ¢ is given  Veeravalli [4], [36]. Indeed, for the zero—one loss function, the

by stopping times; may be rewritten as

= . , exp(a;)

R(8) = 3 mW (i i)as0) mi=inf{n 2 1:1L(n) 2 A}, whered; = =0 2o
i
and where
wherer; = Pr(H;) is the prior probability of the hypothesis
H;,anda;; = P;(d = i) is the probability of deciding = ¢ ILi(n) = 7 exp[Zi(n)] =P(H =H;| X7
M—1 v

conditioned onH; being the true hypothesis. The Bayes risk

i Z;
associated with the testis the sumd "~ R;(6). E= exp[Z;(n)]
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is thea posterioriprobability of the hypothesi#/;. Note also away from zero and infinity, and the condition (2.6) holds, then
that if A; = A (does not depend af), the stopping time of the for m > 1
inf  E;r™ ~o E;m™ ~o B ~ <|1°g Ri') ,
exp(a) SCA(R) D;

test is defined by
= ] > . d i > 5 = —
Ta 1nf{n 21 max LLi(n) = A} whereA 1+exp(a) as max R — 0 (2.7)

i.e., we stop as soon as the largest posterior probability exceggls, .« p  — i E[Z,;(1)] is the minimum Kullback—
a threshold. ¢ g#i Lilaiy

Leibler distance betweeH,; and other hypotheses. Here and
Testé,: Let in what follows the notation:, ~ y, asy — - means that
Uy, (24/yy) = 1. _
. Also regardless of the clags(R), if the condition (2.6) holds
v; = inf {” 21:Zi(n) 2 bi + nagx [log wj; + ZJ(”)]; andminy a;, — oo, ming b — oo, then the following first-
2.5) order approximations for the expected sample size hold [13]:
be the Markov “accepting” time for the hypothedis, whereb;
are positive thresholddnf{<Z} = o0). The test, = (1, dp) Eiry ~ i By ~ ﬂ (2.8)
is defined as follows: D; D;

_ o These asymptotic formulas describe the behavior only of the
= it e dy =1 1t 1 =1 first term of the expansion for the average sample size (ASS).
The behavior of the second term remains to be determined.

This test represents a modification of the matrix SPRT (tf&@mulation results given in Section IV show that the first-order
combination of one-sided SPRT'’s) that was suggested approximations are usually inaccurate for moderate values of
Lorden [25]. It was considered earlier by Armitage [1], Lordethresholds which are of main interest in practice. In this paper,
[25], Dragalin [9]-[11], Verdenskaya and Tartakovskii [38]we derive higher order approximations to the ASS up to a van-
Tartakovsky [32]-[34]. For the zero—one loss function, thishing term. As we shall see, in a specific asymmetric case the

stopping times,; may be rewritten as second term is of the order 6f(1) (i.e., a constant), butin gen-
eral it goes to infinity as the square root of the threshold.
vi = inf{n > 1: Li(n) > exp(b;)}, Itis worth mentioning that one can construct many other “rea-
7 exp[Zi(n)] sonable” tests that are a;ymptptlcally optimal in the sense (2.7)
wherel;(n) = 7 and, hence, are competitive with the proposed tests. One inter-
okt K explZx(n)] esting example is thejjectingsequential test considered in [34].

e However, not all reasonable tests are asymptotically optimal.

i.e., L;(n) is the generalized weighted likelihood ratio betweehor example, a maximum-likelihood test, which is a direct gen-
H; and the remaining hypotheses. eralization of the binary SPRT, is not optimum even asymptot-

Itis easy to see that both tests coincide with the Wald’s SPEeglly if A > 2 (see [13, Remark 4.4]). At the same time this
inthe binary case wher® = 2. If the distributions of the obser- test also coincides with SPRT, and is hence an optimal test, when
vations come from exponential families, which are good modeld = 2.
for many applications, thef) has an advantage ové&y in that
it does not require exponential transformations of the observdHl. A CCURATE ASYMPTOTIC APPROXIMATION FOR THEASS

tions. This fact makes it more convenient for practical realiza- |, ihis section. we obtain asymptotic expansions for the ASS
tion and simulation. Furthermoré, may easily be modified 10 ¢ the tests up to a vanishing term using nonlinear renewal
meet constraints on conditional risks (see [9]-[11], [32]_[341)1eory. See, e.g., Lai and Siegmund [21], [22], Siegmund [28],

that may be more relevant in some practical applications. Ho\ooqroofe [40], Zhang [41], for detailed discussions of the
ever, as we shall see in the following secti6nhas the advan- | jniinear renewal theory results used in this paper.

tage that it is easier to design the threshdlds} to precisely
meet constraints on the riskge; }.

i 3 A. The Asymmetric Case
In [13], we established that if

First we consider the asymmetric case studied in [4] and
[36], where the hypothesig® = j*(i) for which the Kull-
back—Leibler distancel;; = E;Z;;(1), attains its minimum
(overj # i) is unique. (The reader is reminded of the definition

f AZ;;(t) and Z;;(n) given in (2.1) and (2.2).) Specifically,
roughout Section IlI-A we assume that the following condi-
tion holds:

0< EZZ“(].) < o0 (26)

then both tests, andé, asymptotically minimize any positive
moment of the stopping time distribution in the class of tes
A(R) (sequential and nonsequential) for whigh(6) < R;
asmaxy R, — 0. HereR; > 0 is a predefined bound on the
risk of choosing hypothesi#/;. Furthermore, it follows from ()
[13, Lemma 2.1 and Theorem 4.1] thatdf = log(w;/R;),

b; = log((M —1)m;/R;), the ratiodog R;/ log R; are bounded (3.1)

= argln;iénDij is unique for any € {0,1,---, M —1}.
JF
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In order to apply relevant results from nonlinear renewal An important consequence of the slowly changing property
theory, we rewrite the stopping times of (2.4) and (2.5) in the that limiting distributions of the overshoot of a random walk
form of a random walk crossing a constant boundary plus(aith positive mean) over a fixed threshold are unchanged by the
nonlinear term that is “slowly changing” in the sense definealddition of a slowly changing nonlinear term (see Woodroofe
in Definition 3.1. By subtracting;- (n) from both sides of the [40, Theorem 4.1]). In particular, suppose we define the stop-

inequalities in (2.4) and (2.5), we see that

7 =inf{n>1:Z;(n) > a; + &(n)} (3.2)
and

v =inf{n > 1: Z;«(n) > b; + Yi(n)} (3.3)

where¢;(n) andY;(n) are defined by

&(n) =log (zujZ + Z Wy exp{—Zjﬁj(n)}> (3.4)

i
¥i(m) =log (maxfu i, s exp{-Zy5()) @9

Definition 3.1: The process ¢, }»>1 is said to beslowly
changingif the following two conditions hold:

i) asn —
—1 . -
n lxgtagn |¢:] — 0in probability; (3.6)
i) for everye > 0 and some\x > 0

P(,

i.e.,{¢,} is uniformly continuous in probability [40].

ra . — >1: .
max |Gtk — Cal > 6) <e  Vnzl;  (3.7)

Lemma 3.1:Let the condition (3.1) be fulfiled and
E;|Z;;(1)] < oo foralliandy, ¢ # j. Then the processes
{&(n),n > 1} and{Y;(n),n > 1} are slowly changing under
P;.

Proof: It is easy to see that

We denote this difference h;;. We can then rewrité;(n) of
(3.4) as

&i(n) = log (wj*i‘i‘ Z wi; eXP{_”[Aij+n_lMij(”)]}>

i
where
Mij(n) =Y [AZj-j(t) — O]
t=1

is a zero-mean random walk with respect®o By the strong
law of large numbers—lMij(n) — 0 P,—a.s. and

&i(n) — logwj+; wp.las n— o (3.8)
which implies (3.6) and (3.7). Evidently,

log w;-; < Yi(n) < &(n)

ping time
Tign (C) = 1nf{n >1: Z“¢ (7’L) > C}, c>0

which corresponds to the one-sided SPRT which tests the hy-
pothesisH; against the closest orf¢;-. Now let

pi(€) = Zij(7ij») — ¢
denote the overshoot at the stopping time. Furthermore, let
Gi(y) = lim Fi{pi(c) <y}

denote the limiting distribution of the overshoot.
Now, let{(,.} be a slowly changing process and consider the
stopping time

tij-(c) =inf{n > 1: Z;;+(n) > c+ (o}, c>0.

Then, by [40, Theorem 4.1], the overshoot at the stopping time
ri(c) = Zij-(tize) — ¢ — G,
has the same limiting distribution as(c), i.e.,
Jim P {ri(c) <y} = Gi(y).
Now note that from (3.2)

Zij+(1i) = a; + &(1i) + xi on{r; < oo} (3.9)

wherey; is the overshoot of the process;-(n) — & (n) over
the levelq, at timer;. Taking the expectations in both sides of
this last equality and applying the Wald identity [28], we obtain

D,E;1y = a; + E;6(1) + Eixi- (3.10)

A similar equality is true for the Markov time;. Indeed, from
3.3)
Zije(vi) = by +Yi(vi) + X

on{y; < oo} (3.12)

wherey; is the overshoot of the proce£s;- (n) — Y;(n) over
the levelb; at timer;. Applying Wald’s identity, we get

We are now in a position to understand the role of Lemma 3.1.
The key point is that since the sequen¢égn)} and{Y;(n)}
are slowly changing, the overshog{s and x; have the same
limiting distributions asp;(c¢) (whenc, a;, andb; tend to in-
finity). Furthermore, botlg;(n) andY;(n) converge to the con-
stantlogw;-; asn — oo. Thus for largez, andb;, the ASS’s
E;7, and E;v, should be approximately equal to

Di_l(ai +logw;«; + ;)

and hence, by a standard sandwich argument, the proc%@g

{Y:(n)} is also slowly changing. O

Di,_l(bi +1ngj*i + ”i)
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respectively, where As a consequence of Theorem 3.1 and Theorem 3.2 we have
.00 the following important result.
;= dG;
& /0 ydGiy) Corollary 3.1: If
is the expected limiting overshoot. The following theorem is a a; = log(m;v:/R;)

formal statement of this result and is proved in the Appendix.and

Theorem 3.1:Suppose that the condition (3.1) holds and b; = log((M — D)y /Ry)
a;/a;, b;/b; are bounded away from zero and infinity, i.e., as
miny, a;, — oo andming b, — oo then asmaxy, Ry, — 0

R;i(8,) =R; + o(R;)
R;/(M — 1)+ o(R;) < Ri(6,) < R; + o(R;)
(3.18)

ai/ajrvcij b‘/b'NC,
where0 < ¢;; < o0, O<c < oo. (3.13)

In addition, assume that;|Z;;(1)|* < oo and theZ;;(1) are 1 e Wi G
Yimg W™,
F;-nonarithmetic! Then Eir, =5 [10 : <’T()> +u;| +o(1) (3.19)
1 \ : 1 e o W (5%,4)
Eir, :E(ai +logw;«; + ;) + o(1) asminay — oo B =5 [log < j = ) ) +log(M — 1) + %Z}
(3.14) +o(1). (3.20)

1
E :ﬁ(bi +logw;«; + ;) + 0(1) as Irgn by, — oo.

T

It is important to emphasize that the téstperforms better
(3.15) thanthe test,. Indeed, according to (3.19) and (3.20) the differ-
ence betweet;1;, andE; 7, is equal taD; ! log(M —1)+o(1)
Remark 3.1: The condition thaZ; ;(1) are P;-nonarithmetic if we takeb; = log((M — 1)miyi/R;). For largeM the differ-
is imposed due to the necessity of considering certain discr&fece may appear to be substantial. However, for the procégure
cases separately in the renewal theorem (see, e.g., Woodrd¥geduarantee only the inequaliig;(6,) < R; while for the pro-
[40, Section 2.1]). ItZ;;(1) are P;-arithmetic with spanl > 0, cedured, the corresponding equality holds. Thus the real differ-
the results of Theorem 3.1 (as well as of Theorem 3.3 belo#ce between the two tests would be less thar log(M — 1)
hold true asning a;, — oo andming bx — oo through multi- if the thresholds; can be chosen so th& (6,) = R; + o(&;)
ples ofd (i.e.,a; = kd, k — oc) and with respective modifica- 85/ — 0. In that case, the difference betweBp, andE;7,

tion of definition of ;. can be made negligible. For the symmetric case with respect to
We note that in the definitions of, and »; of (2.4) and decision risks, where for all j,i # j

(2.5), and in Theorem 3.1 above, the numbets may be 10gR _

assumed to be arbitrary positive constants not necessarily equal %= g B ~1 asmaxh; —0 (3.21)

to 7, W(4,%)/m; as we defined them before in (2.3). However,

by settingw;; as specified in (2.3), we can precisely control thihe fact thatk;, = Ejr, + o(1) may be implicitly derived
risks R; corresponding to the tesfs ands,. Now let from the results of Lorden [25]. More specifically, &; (6,) =
R; + o(R;) and (3.21) is fulfilled, then

Vi = / exp(—y) dGi(y). Ejy — inf E;7=o0(1) asmax R — 0. (3.22)
0 SEA(R) k
Recall thatG;(y) is the limiting distribution of the overshoot we suspect that the same result is true as long jagre arbi-
pi(c) in the one-sided SPRT as— oo (under the measute;).  trary numbers bounded away fradrandoc. We do not have a
The following theorem provides asymptotic expressions for thgjorous proof for this case; however, simulation results given
risks R; in terms of~;. Its proof is given in the Appendix. in Section IV agree with this conjecture.

Theorem 3.2:Let B. The General Case

Z W (j, )i (0) Thus far we have assumed that the minimum distance-
J#i min;; D;; is achieved unigquely (see the condition (3.1)). We
be the risk of decidingl = i. If we setw;; = ;W (j,4)/x;, NOW relax this condition. For fixed let
then under the same conditions as in Theorem 3.1 Dipyy € Dipa) < -+ < Dy
Ri(ba) = mimie™" (1 +o(1)) asminax — oo (3.16)  be the ordered values @;;, j # i (Dija = +o0). Through-
mive ™ (1 + 0(1)) < Ry(6) <(M — Dymsyse™" (1 + o(1)) out the rest of this section we assume that
as Iriin b — oo. (3.17) Dipy=--=Dj < Djpry1y, forsomere{l,---, M —1}.
(3.23)

1A random variableX is called arithmetic (has arithmetic distribution with
spand) if d- X isinteger-valued for some nonzero constarh typical example  Note that condition (3.23) includes the fully symmetric situation
is the Bernoulli sequence. Otherwisg,is called nonarithmetic (or nonlattice),
i.e., P(X = dm for somem) < 1. Dij =D, forall j € {0, 1. M- 1} \L (3.24)
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whenr = M — 1, and “\¢" denotes exclusion ofi” from the 3 and is given explicitly by Bhattacharya and Rao in [5, formula
set. Note also that the previous asymmetric case is covered(ByL9) ]. Due to the lengthiness of this formula we have not in-
settingr = 1. cluded it here. Computing the constdnt; for a given appli-
The derivation of the asymptatics for the general case is maration is relatively straightforward, since the integral in (3.26)
complicated than in the asymmetric case. The reason is thaifolves only the covariance matrix of the vectis; further
we write the Markov times; andy; in the form given in (3.2) simplification results in the case whelg is diagonal. Com-
and (3.3), the sequences correspondinffion)} and{Y;(n)} puting the constant’,.; is, in general, quite difficult due to the
are not necessarily slowly changing in the general case. A dict that the polynomiaP;(«) is a complicated function of the
ferent approach and stronger conditions (see the Cramér-tgpenulants of”;. However, in the symmetric situation (which is
condition (3.31) below) are required to tackle this general casssually of interest), wher¥; is of the formu?1+¢ (with I being
Recall thatZ;(n) = >"}_; log f;(X.) is the log-likelihood the identity matrix), and\,; = X;, fork = 1,---,», a con-
function of the observations up to tinme Now, let siderable simplification is possible (see Section I1I-C2 below).
) . Note that the application of the normal approximations requires
pig = EiZi(1),  j€01, M—1}\i a Cramér-type condition on the joint characteristic function of
denote the corresponding mean value of the increment of thée vectorY’; given in (3.31) below.
log-likelihood function unded;. We now present a “heuristic” outline of our approach to
Let yuip < puig) < -+ < pipr—1) be the ordered values offinding asymptotics in the general case. We focus on the second
pijs 3 # 1, with (5) denoting the index of the ordered valuedtesté,, since our approach works more naturally for this test.

ie., As we shall see in the proof of Theorem 3.3, the asymptotic
. . ASS results for thé,, follow from those fors,.
Uy==k, if gy = pik (3.25)  The Markov timez; of (2.5) may be written in the form
with an arbitrary index assignment in case of ties. vi =inf{n : S;(n) > b; + &(n) + hyiv/n} (3.29)

Now, under assumption (3.23), there analues that achieve

the minimum distanc®;. SinceD;; = E;Z;(1) — u,;, we must where

haver values that achieve the maximum{gf;;, j # i}, i.e., Si(n) = Zi(n) — npuipni—1]

PilM—1—+] < Hi[M—r] = * 10 = Hi[M—1] (hi) = =) . is a random walk with increments having positive mean
Next, define an-dimensional vectdY; = (V1 ;, Y24, -+, Y;.4) E;Zi(1) = pipm—1) = Di, and
with components §(n) = IEQX [logwy; + Zi(n) — npipa—11] = heiv/n.

Yei = Zina -1y (1) = pipys -1 It is established in the proof of Theorem 3.3 tHatn)} is a

= Zm—1-r4k) (1) — pripp—1y, k=1 slowly changing sequence that converges in distribution to a
Obviously,Y; is zero-mean. Le¥V; = Cov,(Y;) denote its random variable, and that
covariance matrix with respect 8. E&(n) — E;£ =C,; asn — oo
Now let ’

1 whereC,.; is defined in (3.27). In comparing with the corre-
do.v, (&) = [(20)" V3|72 exp {——xV{le} sponding equation for the asymmetric case given in (3.3), we
2 see thatS;(n) is written in terms of the log-likelihood function
be the density of a multivariate normal distribution function witlof the observations undéf; as opposed to the log-likelihood
covariance matri¥;. ratios. DefiningS;(n) in this fashion is required for the corre-
The asymptotic expansions in the general case are derigpnding{¢(n)} sequence to be slowly changing in the general
using normal approximations (see Bhattacharya and Rao [5]) dase. Also note that in addition to the slowly changing term there
this context, we introduce the variables; andC,. ;. The vari- is a nonlinear deterministic term that is added to the threshold
ableh,.; is the expected value of the maximunotero-mean in (3.29).
normal random variables with the density functiny, (), i.e., Now note that from (3.29)

i = / : <max m) bov @z (326) S0 =i &) Fheaitxi on{r < oo} (3.30)

N

o tsksr wherey; is the overshoot of the proceSg(n) — &(n) — h,. /0
andC,.; is given by over the leveb; at timey;. In the limit ash; — oo, we expect
- v; to approximately satisfy the equation
where ' wherey is the limiting overshoot. Solving this equation far
gives
A = (At Ani) Ak =logwr 1 riry  (3.28) , .

. - . 1 he b; h:,

and whereP;(x) is a polynomial ine € R" of degree3 whose s — | b AU k] — et
(x) is a poly € g vim g |t g e Di+4D§+X+£

coefficients involveV; and theF;-cumulants ofY"; up to order
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Finally, using uniform integrability arguments, we expect that TABLE |
EXPECTED VALUES OF STANDARD NORMAL ORDER STATISTICS
1 2 b ]7,2 . THE COMPUTATIONS WERE DONE ON AN HP COMPUTER USING MAPLE V
By ~— |b+ LA Bs IR (IR w4+ C, THE FIRST FOUR VALUES COINCIDE WITH KNOWN “EXACT” V ALUES
D; 2D; “\'D;  4D? ’
r hy r hy r hy
wh'erezi is th_e gxpected limiting ove'rshoot, any ; is expec- 2| 0.56418 95835 || 14 | 1.70338 1555 | 80 | 2.42677 4421
tat|on_of the limit of the slpwly changlng sequer E{E{”)}_' The 3| 0.84628 43753 || 15 | 1.73591 3445 | 90 | 2.46970 0479
following theorem formalizes this result, and the detailed proof
based on the renewal theory of Zhang [41] is given in the Ap- 41102987 5378 | 16| 176599 1393 ) 100 | 2.50759 3639
pendix. We writes = miny, aj, andb = miny, by, for brevity. 5(1.16206 4473 || 17| 1.79394 1981 | 200 | 2.74604 2451
. . . 6 | 1.26720 6361 || 18 | 1.82003 1880 || 300 | 2.87776 6853
Theorem 3.3:Suppose tha¥;(1) is F;-nonarithmetic, the
covariance matrix¥’; of the vectorY; is positive-definite, 7| 1.35217 8376 | 19 | 184448 1512 || 400 | 2.96817 8187
E|IY;||® < oo, the condition (3.13) holds, and the Cramér 8 | 1.42360 0306 || 20 | 1.86747 5060 | 500 | 3.03669 9351
condition 9 | 1.48501 3162 |[ 30 | 2.04276 0846 || 600 | 3.09170 2266
) 10 | 1.53875 2731 | 40 | 2.16077 7180 || 700 | 3.13754 7901
limsup F;exp{y-(¢,Y;)} <1 (3.31)
l[t]l— o0 ' ' 11 {1.58643 6352 | 50 | 2.24907 3631 || 800 | 3.17679 1412
on the joint characteristic function &f; is satisfied. Then 1211.62922 7640 ) 60 | 2.31927 8210 ) 900 § 3.21105 5097
_ 13 | 1.66799 0177 | 70 | 2.37735 9241 || 1000 | 3.24143 5777
1 b hi, b,
FEuv=— |bi+h, | —+—=+—"+ux5+C,;
g’ D7 i () D7 4DZQ 2D7 @ % . . . .
L the identity matrix), and ; = A;, fork = 1,---,r. This case
+o(1) asb—oo (3.32) often arises in practice (see examples in Section 1V).
1 [ o h2. h2. First suppose that = A; = 0. In this special case, it is easy
Ero=— |+ host| — 20 ™ L O+ K to see from (3.26) that
1la Dz ) 7,1 Dz 4D72 2Dz 7 T,
L hvi = v;hy. (3.35)
+o(1) asa—oo (3.33)

h ) . hich where#} is the expected value of the standard normal order
where0 < K < log(M—1)is aconstantwhich does notdepend,igtic. (See Table | for computed valuegidf) Furthermore,

ona;, andx; is the expectation of the limiting overshoot in they e may use the results in [11] to get the following relatively
one-sided SPRT based on the log-likelihood ratio simple expression fo€,.,. (Note that the second term inside

Zivi—1y(n) = Zi(n) — Zipr—1y(n). the integral in (3.27) is zero sinde= 0.)
cr
Remark 3.2: Numerical results given in Section IV indicate Cri = (E;Y7;) 602 (3.36)

that settingK’ = 0 in (3.33) consistently produces the best
match with simulated ASS values for tesst where

Remark 3.3:We note that in the general case we have nét; =r zp(z)®(x) 2
been able to obtain the counterpart of Theorem 3.2. Thus we - y 5
need to rely on weaker Wald-type inequalities for the risks in [((r = De(z)(1 — 2%) + (2° — 32)®(x)] dz  (3.37)

order to set the thresholds to meet risk constraints. In particulghy wherey(z) and ®(x) are standard normal density and
as we established in [13, Lemma 2.1] distribution functions, respectively. (See Table Il for computed

Ri(6,) < miexp(—a;)  Ri(6) < (M — )m;exp(—b;).  values ofC.)
(3.34) We now remove the restriction that= 0 (still assuming
A; = 0). Note that folV; to be positive-definite, we require that

C. Some Special Cases e > —v?/r.SinceY; is zero mean with covariandg;, = vZl+e
In the following we address the issue of computing the coHnderH;, we may write
stantsh,.; andC,.; appearing in asymptotic expansions for the Vi = Yei+0Y

ASS given in Theorem 3.3.
1) Case 1:In the asymmetric case (3.1),= 1, and itis Where

easily shown thak; ; = 0. Also, as shown in [5, eq. (7.21)], } 1
Pi(x) = E;Y?,(z*—3z) /6 inthis case. Now, since for the stan- Yii=Yi;— 1L <f Z YM> (3.38)
dard Gaussian random variabl&X* = 3EX?, we see from T\" =

(8.27) thatC ; = logw;~;. Thus the resulting expression for. . . oor o P
the ASS is consistent with the result of Theorem 3.1. is zero-mean with covariandé; = v;1,Y = (1/r) 325 _; Yi.i,

2) Case 2: Consider the symmetric case wheig, ;,k = and

1,---,r} are identically distributed (but not necessarily inde- — 14 1y er
pendent), and wher¥’; is of the formv?1 + ¢ (with 1 being = v}
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TABLE I provided for these examples that verify the accuracy of the ap-
VALUES OF THE ABSOLUTE CONSTANTS C' FORTHE CASEA =0, V =1 hrgyimations obtained in the previous section. In addition, the
THE COMPUTATIONS WERE DONE ON AN HP COMPUTERUSING MAPLE V s .
performance of the MSPRT's is compared with that of nonse-
r| r| C* r| Cr quential (fixed sample size) tests.
2|00 14 |2.20024 | 80 | 5.08274 AE e 1: Testing the M faniid G ans
. Exam : in nofani.i.d. ian n
3|0.27566 || 15 [ 2.31444 | 90 | 5.28802 ample 1: Testing the Mean of a aussian sequence
al0s5133 | 16 | 2.41374 | 100 | 5.47243 Suppose the observations are given by
50.80002 || 17 | 2.50776 || 200 | 6.70147 X, =0+¢,, n=12,---
6| 1.02174 || 18 | 2.59705 || 300 | 7.43096 . . .
where, unde#;, § = 6;, ands,, ~ A(0,¢?) is Gaussian noise.
7 1.22030 || 19 1 2.68205 || 400 | 7.95237 The log-likelihood ratios of the observations are easily com-
8|1.39953 || 20 | 2.76316 || 500 | 8.35874 puted as
9 1.56262 § 30 | 3.41871 || 600 | 8.69193 5
0i—6,, 06—
10 | 1.71210 | 40 | 3.89695 || 700 | 8.97438 AZ;(n) = 5= Xn — 5
o 20
11| 1.85003 || 50 | 4.27404 || 800 | 9.21958 . i ,
and the Kullback—Leibler distances are given by
12 [ 1.97802 | 60 | 4.58561 || 900 | 9.43625
13 | 2.09740 || 70 | 4.85120 || 1000 | 9.63036 D = (6; — 6,)?/20°.

Consider the case of three hypothe&kt = 3) where
Thus fore # 0, the slowly 'changing temj@) in (A.1'5) in 0< b —0=Ag < 0y — 0, = A,
the proof of Theorem 3.3 simply gets modified, relative to the
cases = 0, by the addition of the teriyY". It is easy to see Thenmin;; D;; is achieved for only ong, and
that the addition of)Y” does not affect the conditions needed on _ oy _ _
&(n) given in (A.16)—(A.21). Furthermorez;Y = 0 implies Do=Do=Di=Dww=po  D2=p
that E;¢ is also unaffected. Thus using (3.36), we can see thahere we denotedy = AZ%/202, p; = A2/202.

C.; is given by Also, suppose that the prior distribution is uniform,= 1/3,
o and the loss function is zero—one (i.&V,(j,7) = 1 for all
Chi= (E Y] z) 607 (3.39) j #1). As noted earlier, for the zero-one loss functiR, (6)}

represent frequentist error probabilities. Suppose we are given

for all allowablee, i.e., e > —v2/r. It is also easily shown risk constraints{R;}. Then, if we sets; = log(v;/3R;) and
that h,.; is given by (3.35) for alle > —v2/r. Indeed, if bi = log(2vi/3R;), we can apply the results of Corollary 3.1 to

(X1, -+, X,.) ~N(0, Vo) with such¥Vy, then get
Emax{Xy, -, X,} = Emax{X; +nX, -, X, +nX} R;i(6a) = R; R;i/2 < Ri(6y) <R
= Fmax{X,, --,X,} +nEX, EiTa%Di {10g< ’% )4‘%}
. . _ - . i 3h;
where(Xy, -, X;) ~ N(0,%1), andX = (1/r) 325 _; Xk 1 %
is zero-mean. By, = D log 3R, + 3, i=0,1,2

Consider the casg; # 0. In this case, we simply subtract _ _
A; from ¢(n) and add it tab; in (3.29). Then the modifieg(n) Whereyo, 71, o, and», are calculated using techniques de-
is identical to that obtained in the cade = 0, and hence its scribed in [40] and are given below

limiting value is given byC'. ; of (3.36). 1 > 4
To summarize, foe > —v7/r and\; € IR Yo=Y =— €exp {_2 Z Eq) <_ %k> } (4.1)
Po
1 . k=1
Eivy = o= [Fy (bi+ A Diyui, BT, + | +o(1) (3.40) . |
i pp=—expl—25" 2 (—/ Pk (4.2)
k 2
where P1 1
Po
h Z(h)? C* mo=m =1+
Fi(z,q,u,9) =z +uhy ti) +u(2q’) +96u;. 2
1 Po . Po . oo,
iy V| e (V) e (5]
k=1
A similar expression holds faF; 7, with b; replaced by:; and (4.3)
K added tox; in (3.40). %2:1+%

=71
IV. APPLICATIONS AND RESULTS OFSIMULATION _\/ﬂz {ﬁ‘p < /%k> 3 %k@ <_ %kﬂ .
k=1

In this section, we consider examples which are meaningful
in the applications described in Section I. Simulation results are (4.4)
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TABLE I
RESULTS FOR EXAMPLE 1 WITH DISTINCT
DISTANCES BETWEEN HYPOTHESES
THE PARAMETER VALUES AREfy = —0.5, 6; = 0.0,602 = 1.0, AND
o2 = 1.0; THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10°
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TABLE IV
RESULTS FOR EXAMPLE 1 WITH NONDISTINCT
DISTANCES BETWEEN HYPOTHESES
THE PARAMETER VALUES ARE 6y = —0.5,60; = 0.0,65 = 0.5, AND
o2 = 1.0; THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10°

THE FIXED SAMPLE SIZE TEST THAT MEETS THE CONSTRAINT ON THE
BAYES RIsK } . R; TAKES 131 S\MPLES

THE BESTFIXED SAMPLE SiZE TEST THAT MEETS THECONSTRAINT ON THE
BAYES RisK } . R; TAKES 111 S\MPLES

Results for Test 4,
Risks & Thresholds

Results for Test &,

Risks & Thresholds Expected Sample Size Expected Sample Size

R | a R Bira | (Bira)gy | 0% | (Bita)go | €50 % R | a R; Bira | (Bitadgo | €00% | (BiTa)go | €s0 %
Hy | 0.001 | 552 |1.0x107% 4648 | 44.15 | 5.02 | 46.73 | 0.55 Hy [0.001 | 552 |1.0x 1073 | 46,59 44.15 | 5.24 | 46.74 | 0.32
Hy [0.001|5.52]|1.0x 1073 | 48.39 | 44.15 | 8.77 | 46.73 | 3.42 H, |0.001|552|1.1x107%|69.43 | 44.15 |36.41| 73.64 | 6.07
H, [0.001|5.23|1.0x 1073 |11.90| 10.46 |12.10| 11.89 | 0.03 Hy | 0.001 552 |1.0%x107% |46.60 | 44.15 | 527 | 46.74 | 0.29

Results for Test & (using b; = log(27;/3R;)) Results for Test 6, (using by = ag, by = ag, by = log(v1/2R,))

R, | b B | B | B | €% | (Bit)g, | €50 % R | b R; By | (Eb)g | €60% | (Bith)o | 650 %
Hy | 0.001 | 6.21 | 4.9 x 10~%|52.12 | 49.69 | 4.66 | 52.28 | 0.31 Hy | 0.001 552 |1.0x 1073 |46.61 | 44.15 | 5.29 | 46.74 | 0.26
H; | 0.001 | 6.21 | 5.6 x 10~ | 53.60 | 49.69 | 7.27 | 52.28 | 2.44 H, |0.001|5.92|8.0x107%|71.67 | 47.39 |33.88 | 77.63 8.31
H; |[0.001 | 592 (5.4 x10"%{13.28 | 11.84 |10.79 | 13.28 | 0.01 Hy |0.001|523|1.0x1073|46.64 | 44.15 | 533 | 46.73 0.22
Results for Test &, (using b; = a;)
Ri | & R, By | (Bith)g | €20% | (Bith)go | €s0 %

However, the FSS test that meets the corresponding constraint

3 = . . .
Ho |0.001]552 | 1.0x 107" | 4647 | 44.15 | 501 | 46.73 | 057 Rp on the total Bayes risk_; R; is easily shown to be of the
Hy |0.001 552 [1.1x10-% | 48.03 | 44.15 | 8.10 | 46.73 | 2.70 form
Hy [0.001 | 5.23 1.0 x 1073 | 11.89 | 10.46 |12.01 | 11.89 | 0.07 chooseH,,  if Xy < (6o +61)/2
chooseHo, if Xp > (61 +62)/2
chooseH, otherwise

The performance of the tesis andé, for two different test _ T . .
cases is given in Table IIl. In the tabl&; and £;+ are the es- WhereXr = >, X,,/T, andT is the (fixed) number of
timates of the risks and ASS obtained by Monte Carlo tecﬁbs_ervatlons. It can be shown that the Bayes risk for this test
niques. Note that the second-order asymptotics are considerdiven by
ably more accurate than the first-order asymptotics. Also for 2
the designed values of the thresholds, the expected sample sf#e = 5[2 — O(VI(61 — 60)/20) — B(VT (62 — 61)/20)].
for ¢, is slightly larger than that fof,,. This is consistent with ~
the result of Corollary 3.1. As we noted in the discussion folJsing this equation, the value fthat meets the constraifts
lowing Corollary 3.1, the difference between the two tests wilan be found. Comparing, Et, = >, mE;7,, andEy, =
be negligible if&, can be designed to meet the risk constraings,; 7; E;1, in Tables Il and IV, we see that the sequential tests
R; more tightly. Experimentation indicates that is better ap- are two to three times faster than the corresponding FSS tests.
proximated by settingb; } using the lower bound in (3.17), i.e.,
b; = a; (we do not have a theoretical explanation for this fact. Example 2: The Slippage Problem
These results are also shown in Table Ill. The number of Monteas a second application of the above results, we consider
Carlo trials used in all simulations (Ta.ble Il and all fO”OWingthe prob|em of detecting a Sing|e target in a multichannel (mu|_
tables) was chosen so that a 1% accuracy was guaranteedif@solution) system which is essentially a multisample slippage
estimation of risks (probabilities of error) and ASS. problem [13]. Suppose there abechannels. In théth channel

If Ag = A; = A, we haveD,q = Dy, and, therefore, the one observes the proceds ,, and all components may be ob-
above approximations fdt; 7, andE; v, are no longer valid. In served simultaneously, i.eX,, = (X1 ., -, Xy ), n > 1.
that case, Theorem 3.3 needs to be usedffarit is interesting There may be no useful signal at all (hypothdgig or a signal
to note tha¥ ; has the form?1+¢ considered in Section 11I-C2 may be present in one of th¥ channels, in théth, say (hy-
with v? = 4p, ¢ = 1/2 — 2p, and A1 = A1 = 0. Thus pothesis;). Thus the number of hypothesés = ¥V + 1. The
(3.40) may be applied to calculate accurate approximations fywal is to detect a signal as soon as possible and to indicate the
the ASS in this case. Note that a further simplification resultsumber of the channel where the signal is located.
in this case sinc€’; = 0 (see Table I1). Typical results for this  Under hypothesisiy, X1, -, X~ are mutually inde-
symmetric case are given in Table IV. pendent and distributed with common densigy(z) which

The performance of the sequential tests may also be codescribes the distribution of noise, and, undgr all X; ,, are
pared with fixed sample size (FSS) tests. It is not easy to deutually independentX; ,,, -+, Xi—1 n, Xitin, > Xnn
sign an FSS test that meets the individual risk constrdifty. are distributed with common density,(z) and X;,, has
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densityg;(x). The latter describes the distribution of a mixture Under these assumptions, it is clear that we require to specify

of signal and noise. only two thresholds for each sequential tegt,a; = a; and
Assume, for simplicity, thag;(z) = g1(z), ¢ = 1,---,N. bo,b; = b (¢ =1,---,N). Then, by symmetry, the conditional

In other words, the statistical properties of the observed dataelwor probabilities for both tests satisfy the following properties:

not depend on the number of the channel where the signal is

located. Then ajo=aw Vj#0,
N aji=ap Vi#0, jAO0Sti#j
folxn) = [ [ 90@r.n); and ag; = agr Vj # 0.
= N Thus we have

fi@) = gu@in) [[o0(@rn).  i=1 NAS) poo gy A= m)Wa(N - 1)

aq2 + moWoaoy,

[t N
. . . . I[: = 17 U ? N
Therefore, the log-likelihood ratios are given by Ro(8) = (1 — 10)Wicuo.
Xi n . . =
AZo(n) = —AZyi(n) = log %, t=1,--- N To meet constraint§R; }, we set
0 7,m
AZ“(TL) = AZZ()(TL) + AZoj(n), t 75 75 t,g 75 0. a; = 10g[’71(1 - Wo)/NRZ]
By the symmetry of the problem, the distandey = ¢; and B
(say) are the same for= 1, - - -, N, and so ardDy; = o (say) bi =log[v(1 —mo)/Rs],  fori=1,--- N.
where Then, by Corollary 3.1, we get
91(35)} 5
= [ log d _ . _
o / ® Lm(w) i) de R~ R S SR(B)SR,  i=1.- N
go() (4.7)
dg = [ log dz. (4.6 . . .
and go / 8 [gl(a:)} go(x)dr. (4.6) For hypothesigd,, we may use the bounds given in (3.34) to

S&lao = log (m0/Ro) andby = log (No/Ro) and thus guar-
antee that the risk constraifit, is met. However, as we see
in numerical results, settin = a;,¢ = 1,---,N, ap =
log(vomo/Ro), andby = log(2yomo/Ro) result in tests that ap-
proximatelz, more accurately (of course, without the guarantee

Also the distances between the nonnull hypotheses are gi
by Dij = q1 + qo, Vi,j # 0. HenceDy = g0, D; = q1,
+=1,.--, N. This means that for hypothest,, we have the
fully symmetric case withDy = min;2q Do; = Do = qo,
¢t = 1,---, N; while for any other hypothesi#;, i # 0, the . _
;symr’netr’ic condition (3.1)yholds wi)g/he(i) = 0./ 7 of_::_)emg belc:wﬁ?). ted le sizes.ifef 0 |
Further, we assume that the conditional prior distribution q_fh 0 comgulet € texpec ed sample sizesfef 0, we apply
the signal location is uniform, i.e., eorem 5.1 1o ge

1
Pr (H; | Ho is incorrec} = 1/N. Eiry &~ a(al + A1+ )
In other words, ifro = Pr(Hy) is the prior probability of signal By ~ i(bl AL+ ) (4.8)
absence, then 1
M= Pr(H) = (1—m9)/N, =1, N. where
Finally, given the symmetry of the problem, the following A1 = log woi = log[WomoN/(1 — mo)].

three-valued loss function is appropriate: To compute the ASS undéf,, we need to use Theorem 3.3.

Wo, foryj=0, i=1,---\N By the symmetry of the problem,= N in this case. In order to
W(j,i) = Wi, forj=1,--- N, ¢=0 compute the constants.; andC,. ;, it is convenient to use the
St = Wa, forj=1,---,N, i=1,---,N, j#4¢ measure
0, otherwise n
That is, we assume that the losses associated with false alarms, p(#n) = H 91(xxn)
k=1

missing the signal and choosing the wrong signal are, respec-
tively, given byW,, W1, andW>. The decision risks are thenas the dominating measure for defining densities. Then the like-

given by lihood functions of (4.5) get modified to
N N
(1—m0)W> ; 9o ,n)
R(6)=—"T7= o +moWoons, t=1,---,N folz,) = LSl LA
N %1: ! o) kl;[l gl(xk,n)
7 r7 N
(1—7T0)W1 N . — . go(xk?"’) i=1.---.N.
RO((S):T Zajo. fZ(wn) gl(xv,,n) 1:[1 gl(ka)a t ) ’

ji=1 kA
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With these likelihood functions, the vect®, has components whereVarg[-] denotes the variance relative to the density func-

given by tion go(x). ThusV = +21. Furthermore, by symmetryy, ; =
A1 = 0. Applying (3.40), we get, forall = 1,--- | N
1
Yio = Z 90 Z 90 By =~ P [FN_l (b, qo + ql,v,ElYl?jl) + %] (4.11)
- " Eira~ —— [F EY? K
It is easy to show that the covariance maf¥iy has the form "%~ 40+ 1 (=1 (000 + @10, E1YY,) + e+ K]
v2l + ¢, considered in Section 111-C2, where (4.12)
g1 (X) Here0 < K < log(N—1), % = s, andF.(-,-, -, ) isas defined
v = Varg {103 7ol X)} in (3.41),
with Varg[-] being the variance relative to the density function 1) Detection of Deterministic Signals in White Gaussian
go(x), and where Noise: Consider the problem of detection of a deterministic
) pulse signal in anV-channel radar in the presence of additive
e = (N —2)y;. white Gaussian noise. The pre-processing scheme consists of a

matched filter, matched to the pulse. Then the hypotheses are
Hy : Xy = S, fork=1,---,N
H;: Xin = Skn, fork#4; X;pn=0+6n
whereg, , ~ N(0,0?) are i.i.d. Gaussian variables (bdtland

Furthermore,
)\k,O = )\0 = Ingk70 = IOg[(l — 7T0)W1/N7T0].
Thus (3.40) may be applied to get

1 - 2

Egvy ~ - [FN (bo T o qO,vo,EoYf)jo) + %0} (4.9) o are assumed to be klnown). Note ;hat
0 x
1 . go(x) = —=expy—55

Eore = — [FN (ao + )‘07QO7U07EOYZL?’0> +x0+ K} (4.10) o) ov2r { 202}
o 7 1 xz—6)2

where0 < K <log N, andF,(-, -, -, ) is as defined in (3.41). g1(x) = gy eXP{—T‘Q} :

Special Case: Signal Always Present Let p = 62 /202 denote the signal-to-noise ratio (SNR). Then

We now consider the situation where the null hypothégjss it is easy to show thag, and¢; of (4.6) are both equal tp.
excluded from consideration, i.e., we are certain that the sigfidle constants; = 7o and»; = %y are obtained by substi-
is present in the system and only its location is to be determinéating po = p in (4.1) and (4.3), respectively. The vecty
In this case, we have a fully symmetric set/éfhypotheses. is Gaussian and zero mean. From (3.38), it is clear Yhais

Itis easy to see that the distances between the hypotheses&aasman and zero-mean as well. Helg' "o =0. The con-

Dij=q +qforalli,j =1,---,N,j # 4, whereg; andgy stantv3 can be shown to equap. Using these constants, we
are as defined in (4.6). can compute the ASS for both tests for any given costs, priors,
Due to the symmetry, one may sgt=«, b, = b, 7; = 1/N  and risk constraints. Sample results are given in Table V. Note
fori = 1,---, N, and assume a zero—one loss function. Thhat the second-order asymptotics are considerably more accu-
risks{ R;(6)} are then all equal rate than the first-order asymptotics, particularly for hypothesis
o o Ho.
i) = R(é) = (N = 1)ara/N In the completely symmetric case (signal is always present
whereayz = Pj(d = 4), Vj # 4 is the probability of putits location is unknown), the required constants are given by

signal mixing. In order to meet a risk constraiif we use go+ q1 = 2p, v = 2p, EgY;? , = 0, andy andx are obtained
the bounds glven in (3.34) to set = log[1/(NR)] and py substitutingoy = 2p in (4.1) and (4.3), respectively.

b = log[(N — 1)/(NR)]. This will guarantee that the con- For the completely symmetric case, the best FSS test chooses
straint R is met. However, as seen in numerical results, setting; if X; ; = max; X, 7, where

a = log[y/(NR)] andb = log[2v/(NR)] (wherey = ;)
results in tests that approximafemore accurately. Xir = Z X;n/T
To compute the ASS under any of the hypothesesfsayve
first note that we have a situation covered under Theorem ZRd 7 is the (fixed) number of observations. It can be shown
with » = N — 1. In order to compute the required constants, that the risk& for this test is given by

is convenient to use the measyi@:,,) = [T, _, go(zx,») asthe (x — VTO)?
dominating measure for defining densities. Then the likelihoo& = N / (2)]¥ "L exp [—2—2 dx.
functions are given by N\/ﬁ 7 )
91(zin) . Using this equation, the value @f that meets the constraint
fi(®n) = ——=, i=1,---,N. can be found. Comparingj, E7,, andEv, in Table VI, we see

90(in) that the sequential tests are usually about two times faster than
The components;, ; of the vectolY'; are obviouslyi.i.d.inthis {ne FSS test.

case, with variance given by 2) Detection of Fluctuating SignalsNow suppose that one
2y ) g1(X) wants to detect a fluctuating signal in additive white Gaussian
v Ve o8 X)) noise from data at the output of a pre-processing scheme which
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THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10® AND 10¢ FOR

TABLE V

OBSERVATIONS AND H, PRESENT

RESULTS FOR EXAMPLE 2 WITH GAUSSIAN

Ro VALUES OF0.01AND 0.001, RESPECTIVELY
() N=4,m=0560=05 02=1.

Results for Test d,

Risks & Thresholds

Expected Sample Size

R; a; R; Bira | (Bitag | €% | (Bita)so | €s0 %
Hy| 001 |3.62|1.0x1072|47.56| 28.97 [39.09| 48.31 1.57
Hy; | 0001 |4.54|1.0x1073|49.29 | 36.30 |26.36| 49.98 1.39
Hy| 0.001 |5.92|1.0x10-% 7237 | 47.39 |34.52| 73.58 1.67
Hy [0.0001 {6.84 | 1.0 x 104 | 68.81 | 54.72 |20.48 | 68.40 0.60

TABLE VI
RESULTS FOR EXAMPLE 2 WITH GAUSSIAN OBSERVATIONS AND H ABSENT
THE NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 10% AND 10¢ FOR R
VALUES OF (.01 AND 0.001, RESPECTIVELY

() N=4,0=02502=1

Results for Test §,

Risks & Thresholds Expected Sample Size

R |a R Bre | (Bra)s | €% | (ETa)gy | €0 % | T (FSS)

0.01 |3.01|9.8x 1073 | 80.64 | 48.20 |40.22 | 81.68 | 1.28 151

0.001 | 5.32 | 1.0 x 10~3 | 127.67 | 85.05 |33.38 | 126.07 | 1.25 287

Results for Test &, (using b = log(2y/(NR)))

R | b R Bvy | (Ew)g | €% | (Brp)g | €s0 % | T (FSS)
0.01 |3.71|7.5%107%| 87.07 | 59.30 |31.89 | 95.27 | 9.42 | 151

Results for Test d; (using by = log(

2yomo/Ry), and b = aj, i #0)

0.001 | 6.01| 7.3 x 107 | 134.54 | 96.14 |28.54 | 139.11 | 3.39 287

consists of a match filter and square-law detector [2]. Und
the assumption that the signal has slow Gaussian fluctuations
within pulses and fast fluctuations between pulses (the Swerling

R; b; R; Eil’b (EiVb)fo €507 (Ei’/b)so €0 Jo
() N=10,6=025 0=
Hy| 001 |431|7.8%x107% (5050 | 34.51 |31.66| 56.14 {11.18
Hy| 0001 |454]1.1x1073|48.87 | 3630 |25.73| 40.98 | 2.27 Results for Test 4,
Risks & Thresholds Expected Sample Size
Hy| 0.001 |6.61]7.3x10"%|75.99 | 52.93 |30.34| 80.86 | 6.41 - - -
R a R Era | (E7a)g | €% | (BTa)g | €0 %o | T (FSS)
Hy | 0.0001 | 6.84 1.0 x 10~% | 68.45 | 54.72 |20.05| 68.40 | 0.06
001 {210 |9.4x1073 | 9274 | 33.55 |63.83] 93.41 | 0.72 | 144
(ii) N = 10, 7o = 0.5, 6 = 0.5, 02 = 1. 0.001 | 4.40 | 1.0 x 1073 | 148.51 | 70.39 | 52.60 | 144.45 | 2.73 | 290
Results for Test 4, Results for Test &, (using b = log(2y/(NR)))
Risks & Thresholds Expected Sample Size R b R By (Bre)g | €00% | (Etn)g | €50 % | T (FSS)
R; a R Eire | (Bira)g | €% | (Bita)o | €s0 % 0.01 12.79 | 1.1 x 1072 | 89.26 | 44.64 | 49.99 | 109.26 | 22.41 | 144
Hy| 001 1362|1.1x102(5865| 28.97 |50.60| 59.62 | 1.65 0.001 | 5.00 | 9.7 x 107* | 150.15 | 81.48 |45.73 | 159.12 | 5.97 | 290
H;| 0.001 |3.62]1.0x10-%|49.98 | 28.97 |42.04| 49.98 | 0.00
Ho| 0001 [592|1.1x107%|87.10| 47.39 |45.50 | 88.66 | 1.79 and that
Hy |0.0001 | 5.92 | 1.0x 10~* | 69.30 | 47.39 |31.61| 68.40 | 1.29 AZ;o(n) = %XW —log(1+ p)
0
Results for Test d; (using by = log(2vomo/Ro), and b; = a;, 4 # 0) p
- - - - AZij(n) = 77— [Xin = Xjn]-
R | b B | By | Bindg | et0% | (Bitngy | €s0 % +r
Ho| 001 |431|1.0x1072|50.15| 3451 |41.65| 68.74 |1621| Since undei; the distribution ofAZ;o(n) has an exponential
Hy| 0.001 |3.62]1.2x1073|48.70 | 28.96 |40.51| 49.98 | 2.64 right tail
Ho | 0.001 |6.61]9.0x10-% |89.17| 52.93 |40.64| 9687 | 8.63 Pi{AZio(n) > 2}
1 1
_4 _
H, | 0.0001 | 592 |1.1x107*(68.59 | 47.39 |30.91| 68.40 | 0.28 = Wexp{—;z} L= tog(14p),0003 (7)  (4.13)

the distribution of the overshoet(c) = Z,0(7;0) — cis expo-
nential for allc > 0 [35], [40]

er
1
Pri(e) > 1} = exp {—;r} L0y ().

[ model), the observed data is exponentially distributed and iy 5

dependent. After appropriate normalization

wherel;x(x) is an indicator of the sek, i.e., 1;xy(z) = 1
if z € X and0 otherwise.

go(x) = exp(—x)1{[0,00)} (),

1

91(35) = T €Xp [_%p} 1{[0,00)}(35)

1+p

It is easy to show thajy andg; of (4.6) are given by

qo =log(1+ p) — p/(1+p)

and ¢ = p —log(1+ p)

m=p m=1/(1+p)

and it remains to compute the constamgsand ». From Port
[27], the density of the overshoeg(c) = Zy;(r9;) — ¢ under
Hy may be written in the form

po(y)= q—lopo {

Introduce the stopping time

I
n>1

1
min Zo;(n) >y} = q_PO{ZOi(n) >y,n>1}
0

7 (y) =inf{n > 1: Zp;(n) < y}, fory < In(1 + p).
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Obviously,
Po{ZOZ(TL) > y,n 2 1}
= Bo{r-(y) = o0} =1 - Po{r—(y) < o0}

=1- / exp{Zoi(7_ )} dP; =1 — ! E;e™ )
{7 <oo}

wherex_ (y) = y+ Zjo(7_). It follows from (4.13) that for any

y < In(1+p)

Pix_(y) > 1} = exp{—%t} 10,003 ()

Eie X = (1+ p)*l

and hence
)= [1- e 1 ®
= — —_ c n .
Poly % 1+p {[0,In(1+p)3\¥
Using this last expression we finally obtain
_a — 1 oe 2 _
To=m =g [log(1+ p)]” — 1.

The constant is given by
2

e a—
(1+4p)?
It is easy to show that
P
Yio= s m:1(1 Xinn)-
m#k

Now, starting with the definition of’m givenin (3.38), a series

of straightforward calculations leads to

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

TABLE VII
RESULTS FOR EXAMPLE 2 WITH EXPONENTIAL
OBSERVATIONS AND H, PRESENT
THE PARAMETER VALUES AREN = 4, 19 = 0.5, AND p = 0.5; THE
NUMBER OF TRIALS USED IN THE SIMULATIONS WAS 105 AND 106 FOR Rq
VALUES OF0.01AND 0.001, RESPECTIVELY

Results for Test &,
Risks & Thresholds

Expected Sample Size

R; aj R’L EiTa (EiTa)fo Efo% (EiTa)so €so(%’
Hy| 0.01 |3.78(9.1x107%| 77.48 52.36 |32.41| 75.81 2.15

H; | 0.001 |4.4219.0x107*| 66.78 | 46.78 [29.93| 66.74 | 0.06

Hp | 0.001 |6.08]7.8x107%|118.92| 84.28 |[29.13| 118.10 | 0.68

H,|0.0001 |6.72 9.4 x 1075} 92.01 | 71.14 |22.68| 92.02 | 1.00

Results for Test &, (using by = log(2yemo/Ro), and b; = a;, i # 0)

R; b; B By | Bun)g | % | (Bith)g, | €50 %
Hy| 0.01 [447[7.0x107%| 81.64 61.97 |24.09| 88.89 8.88

Hy | 0.001 [442|1.1x1073| 65.83 | 46.78 [28.93| 66.74 | 1.38

Hy | 0.001 |6.77 | 5.7 x 10=% | 124.41 | 93.89 |24.53 | 130.35 | 4.76

H; |0.0001 |6.72 | 1.0x 107* | 91.28 | 71.14 |22.06{ 91.10 | 0.21

—_-

Hence again the distribution has an exponential right tail and
the overshoot;;(c) has the exponential distribution with the
parameted /p. Thus

wi=p  vi=1/(1+p).
The constant? obviously equalsg, andF; Y7, is easily seen

- 20° 4 6 to be given by
EY2 = —— 14+ — — —
N )
Using these constants, we can compute the ASS for both tests EY}); = ﬁ.

for any given costs, priors, and risk constraints. Sample results

are given in Table VII.

Sample results for this case are given in Table VIII.

For the completely symmetric case (we do not test the hy-

pothesisH)
.PZ{AZ“(TL) > Z}

1
p

o0 1
:/ Pi{Xi> +pz+x}6_”"da:
0 P

= / 110,000} () L {[(14) /p,00)} (%)

com{- (e i) e
ex — | =z X [ XL
P p o 1+p

+/ 110,000} () L (00,2 (140) /1y (2)e* dax

After some simple algebra, we obtain

1+p 1+p
P{AZ;;(n) > 2z} = [1 + T, exp{2 +pz}

14
- eXP{ sz L (—o0,001 (%)

; I exp{—%z} 1{[0700)}(2).

V. CONCLUSION

We studied two constructions of sequential tests for multiple
hypotheses. The MSPRYJ has the advantage that it is easier to
implement, while, as shown in Sections Ill and 8V,is easier to
design to meet given risk requirements. We established in [13]
that both MSPRT’s asymptotically minimize any positive mo-
ment of the stopping time distribution, under general statistical
models for the observations. This makes the MSPRT's attractive
candidates for practical applications, and itis hence of interest to
obtain analytical approximations for the expected sample sizes
of these tests.

Simulation results for several examples and various condi-
tions show that while the first-order approximations to the ex-
pected sample size are fairly inaccurate in most cases, the de-
rived higher order approximations (up to a vanishing term) are
accurate not only for large but also for moderate sample sizes,
which are typical for many applications. This is especially true
in cases where the sk = {j : D;; = D;} consists of more
than a single poini*(7). But even in the asymmetric situation
whenj* (i) is unique, the higher order approximations are sub-
stantially more accurate compared to the first-order ones.
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TABLE Vi and hence
RESULTS FOR EXAMPLE 2 WITH
EXPONENTIAL OBSERVATIONS AND H, ABSENT P‘(T‘ < m) < P. (t< < m) =P {lmaxZ. . (n) > a4
THE PARAMETER VALUES ARE N = 4 AND p = 0.3; THE NUMBER OF TRIALS = - = ¢ n<m I -

USED IN THE SIMULATIONS WAS 10® AND 10° FOR R; VALUES OF (.01

AND 0.001, RESPECTIVELY =P {gﬁ% exp[)\Zij*(n)] > eXp()\di)} , A>0.
Results for Test &, (A.6)
l_iiSkS & ThreSh‘ilds i Bxpected Sample Size It is easily checked that the procesp[AZ;;(n)], n > 1, is
R | a R Ere | (BTa)gy | €% | (ETa)gy | €50 % a P;-submartingale for any > 0. Applying Doob’s inequality
001 |2.96]9.4x10-3| 71.20 | 42.70 | 40.02 | 70.18 | 1.43 for submartingales [23] to the last term in (A.6), we obtain
0.001 | 5.26 | 9.4 x 1073 | 112.40 | 75.96 | 32.42 | 109.49 | 2.60 Pi(1; < m) < exp(—Aa;)E; exp[AZ;;- (m)]
Results for Test &, (using b = log(2v/(N&))) = exp (—Aa;) exp[mp;(\)]
R | b R Evy | (Bl | 0% | (Evh)go | €50 % where
0.01 |3.65|7.6x1073 | 75.95 | 52.71 |30.58 | 82.20 | 8.23 fi(X1) 1+A
0.001 | 5.95 | 6.8 x 10~4 | 117.95 | 85.98 |27.10 | 121.05 | 2.63 pi(A) = log <E’ |:fj* (Xl)} ) >0 forA>0.

Takingm = ea;/D;, we finally obtain

For the tesb,, the risk constraints are sharply met by setting ~ £i(7i < €ai/Di) < exp[—ai(A —epi(A)/Dy)]. (A7)

the thresholds as specified in Corollary 3.1. This is true not jushoosing: sufficiently smalle < AD;/p;()), one may see that

in the asymmetric case (as may be expected from Corollary 31%Xn < ea;/D;) is bounded byxp (—Ca;), C > 0, and hence
but also in the general case. Rr on the other hand, it is more the condition (A.4) holds true.

difficult to meet the risk constraints. But if the thresholds for Thus it remains to check the condition (A.5) (uniform inte-

6, are chosen (by trial and error) to meet the constraints tightitability) which is a straightforward but tedious task (see, e.g.,
then the average sample sizes are the same as thage for  [4]).

The results presented in this paper complete the asymptotiérherefore’ gll cond|t|0ns_ of Theorem 4.5 in [40] are satisfied.
analysis initiated in [4] for the case of i.i.d. observations. Sincd'e use of this theorem yields (A.1) for large To prove the
the MSPRT's studied in this paper are asymptotically optimapsertion of the theorem for the test procedurat remains to
under more general statistical models for observations, it woll§PVe that

be of interest to analyze the performance of the MSPRT’s under E,(r; — 174) = 0(1) asmina; — co. (A.8)
these models. We leave this as an open problem for future re- ) g
search. To this end, we first observe that

APPENDIX Ei(1i = 7a) = Ei{(1i = 7)1 (7, 2r } < 2E{mid (201 }-

Proof of Theorem 3.1:Consider the test,. We first show Using Schwarz’s inequality, we get

Ei(1; — 70) < 20/ E;m3N/ P, # 7i).
Eir = %(ai +logwj«; + )+ o(1) as Irgnak — 00. By Lemma 2.1 in [13]
' (A1) S wW (i k)P(da = k) < mee
The above result follows from (3.10), (3.8), and an application ik
of Theorem 4.5 of [40]. However, before we can apply Theorewnich implies

4.5 of [40], the validity of the following four conditions has to
be checked: Pi(d, = k) <wjle ™, forall k # i.

that

In turn, the latter inequality yields

Pira #7i) =Pida #1) = > _ Pi(da = k)

&;(n) converges in distribution to a random varialfe (A.2)

ZPi{&(n)S—en}<oo, for some0<e<D; (A.3) Py
n=1 < -1 —ay,
Py(7; < ea;/D;)=0(1/a;), forsomel<e<1 - ;w”‘ exp(—ax)
asa;— oo (A.4)

‘ . . < — exp<— min ak> .

Jnax |&(n+k)|,n>1, are uniformly integrable  (A.5) ming; wik i
- . . Now E;7? ~ a?/D? by Theorem 4.1 in [13]. Thus
By (3.8), the condition (A.2) is true with = log w;~;. Con- 1
dition (A.3) holds since;(n) > logw;~;. Obviously, Ei(r; — 75) < Cay exp<_5 H%n ak) — 0 as mk@n ay — oo

7 >t =inf{n >1: Z;;-(n) > a;}, a; = a; + logw,+; and the theorem follows for the MSPRY.
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For the test, the argument is quite similar. In just the samevherey; is the overshoot of the proce&s;- (n) — Y;(n) over
way as above one can prove that the conditions (A.2)—(A.5) hdlik levelb; at time instani/;, and hence

for the proces¥;(n), n > 1. Then using (3.3)—(3.12) and [40, RS = 7 WV E, e B
Theorem 4.5], we obtain i(8) = mi exp(=bi) B {expl=%: = Ai0i) A=y } -
1 ) . Note that by considering the difference of (3.4) and (3.5),
Eivi = E(bi +logw;; + i) +o(1) asminby — oc. B;(v;) of (A.11) can be shown to satisfy
The rest of the argument is essentially the same. O —log(M — 1) < Bi(;) <0 on{y; < oo}
Proof of Theorem 3.2:For the zero—one loss function, theyhich implies the inequalities

asymptotic equality (3.16) follows from Baum and Veeravalli 5
[4, Theorem 6.1]. To prove this equality for an arbitrary los&¢ i {e M vy}

function we observe first that the rigk;(8,) can be written in S Ri(6) < (M - Dme ™" B {e ¥ 1m0y |-
the form Now, Pi(1, = ;) — 1 asb; — oo, and by Woodroofe [40,
Ri(6q) = mi Ei{exp[—Zij- (i) + &(7)[ {7z, =y ). (A.9)  Theorem 4.1],F; exp (—x:) — 7i, due to the fact that;(n)
Indeed is slowly changing. Thug; {exp(—x:)1(,,=.,} } converges to
Z _ (12 = 1) ~;. This fact together with the previous inequalities yields (3.17)
J a — Iz
o and the theorem follows. O
_ [ o ‘ Proof of Theorem 3.3:Consider the test procedufg Ar-
o ; W) /Ta_ﬂ explZ;i(ri)] P guments identical to those used in the proof of Theorem 3.1 may
! be used to establish thatitis sufficient to prove (3.32) onlyfor
Now recall from (3.29) that
1, =y Z ;W (4, 4) exp[Z;i(7i)] .
i v; =inf{n : S;(n) > &(n) + A(n, b))} (A.12)
where S;(n) = Zi(n) — nu;p—1 is @ random walk with
=m; B; § expl—Zij« (7i)|1(r, =r} increments having positive mead Z;(1) — pijp—1 = Di,
A(TL, bz) =0, + hrﬂ‘\/ﬁ, and
&(n) = max [log wri 4+ Z(n) — npipnr—1]] — heiv/n-
x Z wj; exp[—Zj-;(74)] (A.13)
e It is desirable to replace the maximization over# i in
(A.13) by a maximization over only thogecorresponding to
=m; B § exp[—Zij+ (7)) Vr,=r.} ther nearest hypotheses. To this end, let
L =sup {n : j:]\llr}*??i]\l—l (logweyy; + Zjy(n))
X |wieit Y wyiexp[=Zje(mi)]
G gt <  max (logwmi + Z¢j) (n))}
(A 10) j=1,--- M—r—1
from which (A.9) follows in an obvious manner. Now, since b}\//vhere( J)is as def!ned in (3.25).
(3.9) Due to assumption (3.23), we have
P(L > n)
Zij (1) —&i(m) =a;i+xi onrm < oo
=P { max (10gw< hit 2y >(k))
we obtain jEM—r=1
Ri(6,) = 7; exp(—a;)E; {exp(_Xi)]l{m:ﬂ-}} . > j>§\r41(}§71 (10gw<j>i+Z<j>(k)) for somekzn}

Due to the fact thaf;(n) is slowly changing£; exp (—x;) — .
~; (see [40, Theorem 4.1]). Furthermot&(r, = r,) — 1 as <p { A <10gW<j>i +Zj(/€)>
a; — oo. Hence the value oF; {exp(—x;) 1., =~} } converges =71 ) jeMor—1 k k
to -y, which along with the previous equality implies (3.16).

Consider the second test Obviously, the equality (A.10) is > ¢ for somek > n}
true for R;(&;) if 7, andr; are replaced withy, and;, respec-

tively. In turn, this equality implies Z»(k)

) i ANAYA
R;(6y)=m; E; {eXP (Zij=(vi)— (’/i)+/3i(’/i))]]l{ub=w}} <k {i‘i{,’ <j§?4k1)5—1 k )
where B

S e MaxX;<pf—r—1 log w<J>Z
Gi(vi) =Yi(i) — &(v). (A.11) n
1 -
Next, by (3.11) ’ < Z P {sup <E|Zj(k)|> >51}
Zij+ () = Yi(vi) = b+ % ony; < oo <M —r—1 k>n



DRAGALIN et al: MULTIHYPOTHESIS SEQUENTIAL PROBABILITY RATIO TESTS—PART Il 1381

where wherey(n) = —maxi<;<,(S2 + ;) with
€ = phi[M—1] — MiM—r—1] >0 57{ = Z(M—r—1+j> (n) — TG M —r—144]
e=e— = jgﬁg‘ﬁ_llogwﬁﬁ \;vrr:(;ch is a zero-mean random walk. L&t = [(1 — €)b;/D;]
Zj(k) = Zj) (k) = k) = Zina-1y (k) + kit —1y- A = max(Si(1) — D;, S;(2) — 2D;, -+, Si(K) — KD;).

Since Z;(k) is a random walk with mean zero and finitg(In what follows we omit the indexin A,.;, A, Si(n), etc., for
second momentEZ|Z (1)]? < oo, by the Baum—Katz rate of brevity.) Then

convergence in the law of large numbers?[3]
R < K) = P, { () 4 2(0) 2 s

Z; n
ZP <sup| i(F)] >51> < 00, foralle; >0 =K
n>1 kzn < P {I%XS( Y2 (1- 6/2)51}
which along with the above inequality yields
E;L = Z Fi(L>n) < oo. + B {maxw( ) > ebi/2} . (A29)
nzl By the submartingale inequality, the first probability in (A.24)
Hence, forn > L we can write¢(n) of (A.13) as can be estimated above
&(n) = Vnl¢(n) — hy] (A.14) P, {m<al)g S(n) > (1- 5/2)bi}
i n<K
with , < Py(A > eD;K/2)
= — max [+ Zoy_r i~ 2
Cny= 7% max P + Zo iy (7) = ity ) < < 2 ) / (S(K) — KD;)?dP,.
(A.15) eDiK ) JiazepiK/2)

; ’ - SinceVar (S(K)) = Ko3, we have thaf;(A > D, K/2) —
where); ; is defined in (3.28). The proof of (3.32) fof runs 0.asb; — ~o. Then, by the uniform integrability ofS(%) —

almost parallel to that of Dragalin [11, Lemma 1] and is base D; JE

on Zhang [41, Theorem 3]. In order to apply this theorem, t )/ooV K

following conditions need to be checked: / <S(K) — KD,
(A>eD; K/2)}

P{v; <(1—€)b;/D;} =0 (b;*) asb; — oo for somed <e<1 ooVEK
(A.16) and hence

Pifmax $(n) > (1= e/2)bi} = o(1/K).

2
) dP; — 0,

nH{max £(n+L)>En}—>O asn—oo, ¥e>0 (A.17)

0<i<n
Using the same arguments, it may be shown that the second

> P{é(n)<—wn}<oo for somed<w<D; (A.18) probability in (A.24)
- P {max*y(n) > sbi/Q}

<K

{llgax |§(n+L)|,n>1} is uniformly integrable  (A.19)
<P {malx( Sh— A1) > eD;K/2(1 - E)} =o(1/K).

n—oo

lim F; {max [E(n+i)—&(n) 25} =0 foranye>0
isvn The proof of (A.16) is complete.
(A.20) Let N = en — h,v/2n. The proof of (A.17) is a direct appli-

£(n) converges in distribution to an integrable cation of a submartingale inequality and uniform integrability
random variablg. (A.21) Of S3./v2n
Then, by Zhang [41, Theorem 3] P, {maxg(n +k)> sn}
k<n
El/z_b+DZ(%Z+E£)+O( ) asb; — oo (A.22) <P{HéaX§( )>5n}
where '
J .
b= by, =sup{t>1:A(t,b;) > Dit} =5 {iré%f m}n( Sk~ )") = N}
by he b h? h? 1
_ Y i < P, { max (=S} — >
=5t 5\ D 257 (A.23) _Pz{ggg( Sk — A1) _N}

),
L —
- (N+)‘1)2 {maxg<on(—S;—A)>N}
Similar to the proof of (A.4) we have that

2See also C_how and Lai [8] for a one-sided versions that may be applied in Pi{max(—S,% _ /\1) > N} 0
the case considered. -3 =

To prove (A.16) we rewrite; in the following form: (S%n) dP;.

v, =1inf{n : S;(n) +v(n) > b;}
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asb; — oc. Now, the uniform integrability ob3 /v/2n yields
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Substituting the above limiting value fd&;¢ in (A.22), the re-

quired asymptotic result (3.32) follows.

P{maxé(n+ k) 2 en} = o(1/n)

which proves (A.17).
Verification of (A.18) is similar to, but simpler than, that pre-
sented in the proof of (A.17) and is omitted.

Conditions (3.6) and (3.7) (slowly changing) and condition& < M — 1, by replacing; with a; in (3.32).

(A.19)—(A.21) are used in [41, proof of Theorem 3] to obtain the
uniform integrability of the overshogk, = S;(v;) +~v(v;)—b;
andto prove thak;é(n) — E;£ asn — oc. The former follows
from [10, Lemma 4.2] which states that is bounded above by

a uniformly integrable random variable. The latter convergenceyy,
is proved in the next paragraph.

Using Theorem 20.1 of Bhattacharya and Rao [5] with
f(=) maxi<p<-{zr} ands 3, we have (under the
assumption of our theorem)

Ak
)

D /R,ﬂ L {“ *
P(x)do,v(x) de + o(n
wheres = (s, -+,) ~ N.(0,V). On the other hand,

transformation of variables and first-order Taylor expansion for
¢o,v () in the first integral yield (as — o)

(1

(3]
(4]

o) = ppx {at .

(6]
(71
(8]

Ak
7
—1/2y  (A.25)

9]

E Jmax {§k + c%} = /RT max {yk + T} dov(y)dy 0]
N /R jpx {oddoy (@ =N vmde

_ /R T 1131?)( {21} boy () de [12)

+ % /m 1213%(7,{“})“/_1@1— [13]

X gov(x)dz +o(n™t/?). (A26) .

By .J, denote the second integral in (A.25). Obviously we have

the following estimates fovs: [15]
[16]
Elmkm {/\k}/ P(x)po,v(x) dz
Pz dz < J 17l
+ NG /m HE, {z1 }P(2)do,v (2) dz < J> 281
1
< o [ {w)P(@)doy (@) d ”
1
+ lglggr{)\k} /RT P(z)do,v(x) dz

[20]
which show that 21]

_ 1 —1/2
Jy = T e 2, {1} P(2)do,v (2) d2 + o(n™"/7) [22]
asn — oo. (A.27) [23]
The relations (A.14) and (A.25)—(A.27) give [24]
[25]

E&(n) =Cr; +0(1) asn — oo.

Now, consider the MSPRY,,.
thatifb;, = a;, i = 0,1,---,

It follows from [13, eq. (2.2)]
M — 1, then

Eivy < Bito < Eilyqiog(M—1)-

ThusE;7, may be obtained to within a constant fackr 0 <

O
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