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Abstract—The problem of multiple hypothesis testing with ob-
servation control is considered in both fixed sample size and se-
quential settings. In the fixed sample size setting, for binary hy-
pothesis testing, the optimal exponent for the maximal error prob-
ability corresponds to the maximum Chernoff information over the
choice of controls, and a pure stationary open-loop control policy
is asymptotically optimal within the larger class of all causal con-
trol policies. For multihypothesis testing in the fixed sample size
setting, lower and upper bounds on the optimal error exponent are
derived. It is also shown through an example with three hypotheses
that the optimal causal control policy can be strictly better than the
optimal open-loop control policy. In the sequential setting, a test
based on earlier work by Chernoff for binary hypothesis testing,
is shown to be first-order asymptotically optimal for multihypoth-
esis testing in a strong sense, using the notion of decision making
risk in place of the overall probability of error. Another test is also
designed to meet hard risk constrains while retaining asymptotic
optimality. The role of past information and randomization in de-
signing optimal control policies is discussed.

Index Terms—Chernoff information, controlled sensing, design
of experiments, detection and estimation theory, error exponent,
hypothesis testing, Markov decision process.

I. INTRODUCTION

HE topic of controlled sensing for inference deals pri-
marily with adaptively managing and controlling multiple
degrees of freedom in an information-gathering system, ranging
from the sensing modality to the physical control of sensors, to
achieve a given inference task. Unlike in traditional control sys-
tems, where the control primarily affects the evolution of the
state, in controlled sensing, the control affects only the observa-
tions. The goal is for the decision-maker to infer the state accu-
rately by shaping the quality of observations.
Some applications of controlled sensing include, but are by
no means limited to, target detection, tracking and classification
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(see, e.g., [1], [2]). Controlled sensing policies were also devel-
oped for landmine and underwater mine classification in [3]. In
the domain of sequential clinical trials, controlled sensing has
been used to planning of medical trials under an ethical injunc-
tion against unnecessary continuance of inferior treatments [4].
Dynamic sensor selection and scheduling policies were also de-
veloped for tracking and target localization in [5], [6].

In this paper, we focus on the basic inference problem of hy-
pothesis testing, and our goal is to find an asymptotically op-
timal joint-design of a control policy and a decision rule (in
addition to a stopping rule for the sequential setting) to de-
cide among the various hypotheses [7]. In particular, we con-
sider a Markovian model for the simple hypothesis testing of
multiple hypotheses with observation control. Prior to making
a decision about the hypothesis, the decision-maker can choose
among different actions to shape the quality of the observations.
We consider both the fixed sample size and sequential settings
of this problem. In the latter setting, the controller can adap-
tively choose to stop taking observations, and the sequential test
is fully described by a control policy, a stopping rule and a final
decision rule.

A. Relationship to Prior Work

We begin by discussing prior work in the fixed sample size
setting. Tsitsiklis [8] considered the problem of quantizing in-
dependent observations at geographically separated sensors for
multiple hypothesis testing. The number of sensors, which is
taken to infinity in [8], can be considered to be equivalent to
the sample size in our controlled sensing problem. Therefore,
the quantization rules can be considered to be special cases of
control actions that can affect the observations at the output of
the various sensors. However, the control actions in the con-
trolled sensing problem are much more general. Furthermore,
the observation control policy in [8] is effectively an open-loop
control policy. In contrast, our main focus in this paper is on
temporal observation control in which the control at each time
can be influenced by the past observations.

In the fixed sample size setting, the block channel coding
problem with feedback and with a fixed number of messages
studied by Berlekamp [9] can also be considered to be a special
case of the controlled sensing problem. This is because, in the
coding problem, the controller (encoder) has access to the hy-
pothesis (message), whereas in our controlled sensing problem
the controller is not assumed to have access to the hypothesis
and is therefore more challenging.

The controlled sensing problem is also more general than
the multi-channel identification problem treated by Mitran and
Kav¢i¢ [10], in which there is a finite constraint on the number of
past channel outputs available to the input signal selector at each
time. In contrast, the causal control policies considered herein
can depend on the entire past observations, the number of which
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becomes unbounded as the horizon approaches infinity. In re-
lated work, Hayashi [11] considered the adaptive discrimination
of channels with unbounded memory, but for only two channels,
i.e., two hypotheses.

In Section III, we first present a characterization for the op-
timal error exponent for binary hypothesis testing with a fixed
sample size showing that a pure stationary open-loop control,
where the control value at each time is fixed and does not de-
pend on past measurements and past controls, achieves the op-
timal error exponent among the class of causal controls. In fact,
this result is in agreement with that of Hayashi on discrimina-
tion of two channels [11] (see also Footnote 2). Then, for general
multiple hypothesis testing with a fixed sample size, we derive
a characterization for the optimal error exponent achievable by
open-loop control. With more than two hypotheses, the charac-
terization for the optimal error exponent achievable by causal
control (which can be a function of past measurements and past
controls) is a more difficult problem. Nevertheless, we show
through a concrete example with only three hypotheses that the
optimal causal control policy can be strictly better than the op-
timal open-loop control policy. We also derive general lower
and upper bounds for the optimal error exponent achievable by
causal control.

We now discuss related work in the sequential setting. The
problem of sequential hypothesis testing without control was in-
troduced by Wald [12], [13] and studied in detail for the binary
hypothesis case. In this work, the optimal expected values of
the stopping time were characterized subject to constraints on
the probabilities of error under each hypothesis. It was shown
that the Sequential Probability Ratio Test (SPRT) is optimal,
i.e., among all tests with the same power, the SPRT requires
on average the fewest number of observations. An extension to
the multihypothesis case was considered in [14] where the au-
thors proposed a Multihypothesis SPRT (or MSPRT) which was
later shown to satisfy certain asymptotic optimality conditions
[15]-17].

The problem of sequential binary composite hypothesis
testing with observation control was considered by Chernoff
[18] and an asymptotically optimal sequential test was pre-
sented. While Wald’s SPRT is optimal in the sense that it
minimizes the expected values of the stopping time among
all tests for which the probabilities of error do not exceed
predefined thresholds [13], a weaker notion of optimality is
adopted in [18]. Specifically, the proposed test is shown to
achieve optimal expected values of the stopping time subject
to the constraints of vanishing probabilities of error under each
hypothesis. The sequential test with causal control proposed by
Chernoff can only be proven to be asymptotically optimal under
under a set of positivity constraints on the Kullback-Leibler
distances as defined in (12). Bessler [19] generalized Chernoff’s
work to general multiple hypothesis testing but also imposed
the same type of assumption on the model.!

Burnasev [20] considered the problem of sequential discrim-
ination of multiple hypotheses with control of observations
under a different information structure. It is important to note

'We would like to thank an anonymous reviewer for pointing us to the gen-
eralization of Chernoff’s test to the M > 2 case in Bessler’s dissertation.
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that the controlled sensing problem that we consider is fun-
damentally different from Burnasev’s problem. Unlike [20],
where the control actions are functions of the underlying hy-
pothesis, in [18] and the setting we consider herein the control
actions cannot be functions of the unknown hypothesis. In that
sense, the problem considered in [20] has a simpler structure
since the controller knows the underlying hypothesis. This
knowledge simplifies both the optimization of control policies
as well as their performance analysis. When the hypothesis is
unknown to the controller, as in the controlled sensing problem
considered herein, the controller has to base its control actions
on estimates of the unknown hypothesis.

A Bayesian version of this sequential problem (with observa-
tion control) was considered by the authors in [21] in the non-
asymptotic regime. Since the optimal policy is generally diffi-
cult to characterize, certain conditions (Blackwell ordering [22])
were identified under which the optimal control is an open-loop
control. The main focus of [21], [23]-[25] has been on trying to
solve the underlying dynamic program and finding the structure
of optimal solutions, a task that is only possible in some spe-
cial cases. In contrast, our work mostly focuses on performance
analysis and on establishing the asymptotic optimality of pro-
posed control policies.

In Section IV, we extend the results in [18], [19] in several
directions. First, we show that the sequential test in [18], [19]
is asymptotically optimal in a strong sense, using the notion of
frequentist risks in place of the probability of error. Second, we
dispense with the positivity assumption on the Kullback-Leibler
divergences used in [18], [19], by constructing a modification
to Chernoff’s test that does not require this assumption. Third,
we construct a further modification to the test that meets hard
constraints on the frequentist risks, while retaining asymptotic
optimality.

B. Paper Outline

The remainder of the paper is organized as follows. In
Section II, we specify the general notations and assumptions
that will be adopted throughout the paper. Our problem for-
mulations and results for the fixed sample size setting and the
sequential setting, together with a summary of our contributions
in each case, are given in Sections III and IV, respectively; An
example is provided in Section V. A discussion is provided in
Section VI, and conclusions are given in Section VII.

II. PRELIMINARIES

Throughout the paper, random variables are denoted by
capital letters and their realizations are denoted by the corre-
sponding lower-case letters.

Consider hypothesis testing with A hypotheses, with the set
of hypotheses denoted by M 2 {0,...,M — 1}. At each time
step, the observation takes values in } and the control takes
values in /. We assume that the control alphabet{ is finite. The
observation alphabet ) is a measurable space; it can be either
continuous, i.e., a finite-dimensional Euclidean space, or dis-
crete. Under each hypothesis ¢« € M, and at each time %, con-
ditioning on the event that the current control u; has value u,
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the current observation Y}, is assumed to be conditionally inde-

pendent of past observations and past controls (y* 1, u* 1) 2

((y1y -« Yr-1), (v1, ..., ur_1)). We refer to this (condition-
ally) memoryless assumption as the stationary Markovity as-
sumption.

The following technical assumptions are made throughout the
paper. First, for every v € U/, we assume that the distributions
of the observations under each hypothesis « € A are abso-
lutely continuous with respect to a common distribution 4+, on
Y. Consequently, for every . € U and every « € M, there ex-
ists a probability density function (pdf)/probability mass func-
tion (pmf) p} such that for every measurable set A C Y,

PU{Y € A} = / Pdpa(y). weld, (D)
A

where the notation P’} denotes the probability measure with re-
spect to the distribution p*. Second, we also assume that for
every u € U and every pair¢,j € M, i # 7,

2
(pi(Y)
E; (log (p;‘(Y) )) < 00, 2)

where the notation EY denotes an expectation with respect to
p;". Note that it follows from (2) that for every v € I/ and every
pairi,j € M, # j, pi is absolutely continuous with respect
to p¥. However, for u, v’ € U, u # v/, and i, 5 € M, p{* need

not be absolutely continuous with respect to pj . For a finite )/,
the combination of (2) and the first assumption is tantamount
to the condition that all pmfs in the collection {p;'},. ,, have
the same support. However, the support could be different for
different values of «.

III. FIXED SAMPLE SIZE SETTING

In this section, we first consider the setting wherein the
sample size is fixed a priori, i.e., it does not depend on specific
realizations of the observations and controls.

We consider two classes of control policies based on
two information patterns. The first is the open-loop control
policy where the (possibly randomized) control sequence
(Uy,...,U,) is assumed to be independent of the observations
(Y1,....Y,). The second is the causal control policy where
at each time %, the control Uy can be any (possibly random-
ized) function of past observations and past controls, i.e.,
Ue, K = 2,3,....n, is described by an arbitrary conditional
pmf qk(uk|yk‘1,uk‘l), and Uy is distributed according to
a pmf ¢y (uy). If all these (conditional) pmfs are point-mass
distributions, i.e., the current control is a deterministic func-
tion of past observations and past controls, then the resulting
policy is a pure control policy. Under the aforementioned sta-
tionary Markovity assumption, the joint probability distribution
function of (Y™,U™) under each hypothesis i, denoted by
pi(y™, u™), can be written as

T

n
n ,ny A e — .
piy™, ™) 2 qu(un) [T 2% (o) T awCowlg® =" w7, 3)
k=1 k=2
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k—1
)

u

-1} is (conditionally) in-

For open-loop control, g, (u|y
dependent of 4*~1; hence,

pily" ) =

(H P?k(yk)) <(I1(“1) H Qk(uk-,|uk—1)>

k=1 Pt

(H Pt (yk)> g(u™). @
k=1

After n observations, a decision is made about the hypothesis

according to the rule ¢ : V" x U™ — M with maximal error

probability: e({gx}y_,, {p} 155, 6) 2 maxP; {8 # i}. Note

that for a pure control policy, 4" is either a fixed sequence (pure
open-loop control) or a deterministic function of the observa-
tions y” (pure causal control). Consequently, when a pure con-
trol policy is adopted, it suffices to consider a decision rule that
is a function only of the observations, i.e., §(y™, u™) = §(y™).
The combination of a control policy and a decision rule will be
referred to as a test. The asymptotic quantities of interest will be
the largest exponent of the maximal error probability achievable
by open-loop control, denoted by S0, and by causal control,
denoted by ¢, respectively. In particular,

N 1 ’
Bor 2 Tim sup —— log (6 (‘I(Un)a {Pf}?eefz\lfl ’6)) ':
" osqun) T

sup

Siqp{ug)
{ap(uplyF—tub—1}0

_ %10g (e ({Qk}g:r/ {pi‘}:leeﬁ 5)) )

A
B¢ = lim
T

It follows immediately from these definitions that 8o < B¢,
as the information pattern associated with causal control is more
informative than that associated with open-loop control. We also
seek to characterize the optimal control policies that achieve the
optimal error exponents.

Note that because the number of hypotheses is fixed, we can
consider a Bayesian probability of error (with respect to any
prior probability distribution of the hypothesis) instead of the
maximal one in the definitions of the optimal error exponents
without changing their optimal values.

Before moving on to the technical part, we first summarize
our contributions in this section.

* We derive a characterization for the optimal error expo-
nent achievable by open-loop control for general multiple
hypothesis testing with a fixed sample size (see Remark 3
explaining the connection between this result and previous
work [10]).

* We propose a test for general multiple hypothesis testing
with a fixed sample size using a causal control policy that
chooses the control value based on a suitable Chernoff in-
formation. We also derive general lower and upper bounds
for the optimal error exponent achievable by causal con-
trol that holds for any number of hypotheses, and illustrate
through a canonical example with only three hypotheses
that causal control can outperform open-loop control.
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A. Case of Binary Hypothesis Testing (M = 2)

For p; and p, that are pdfs/pmfs on ) with respect to a
common distribution A, the Kullback-Leibler (KL) distance of
p1 and ps, denoted by D(p1||p2), is defined as

D(pillp2) = Q/m(y) log (ﬁ;gg;) dA(y).

Y

We start with the following characterizations for the largest
error exponents achievable by open-loop control and by causal
control in the case of binary hypothesis testing.

For any u € U and any s € [0,1], consider the following
pdf/pmf

ty)'

'—‘;:

" A u 1 k]
by & P (v)'p

m p— (&)
fypo(y)”p (l)l d:“/u( )
and also let
* A ‘ () s, U —5
s"(u) = argmax — log / 3 (9)° P (y)" *dpsa(y)
s€[0,1
€[0,1] ;
Proposition 1: For M = 2, it holds that?
Bor = e
_ a —1 Ul NS U 1de u 6
max max — log / po(9)° Py (y)" “duuly) | (6)
Yy
= max D (b llpf ) = max D (b llpt) . ()

Remark 1: For each fixed v € U, the quantity

) 2 max — log

C (pg, pt
(]0/27 5€[0,1]

/pa"(ym<y>1*5duu<y> ®)

Y

is called the “Chernoff information” of pj and pj. Conse-
quently, Proposition 1 (cf. (6)) states that the optimal error
exponent is the maximum Chernoff information over the
choice of controls.

Remark 2: 1t follows from Proposition 1 and the result on
the Chernoff information for i.i.d. observations that the above
optimal error exponent is achievable by a pure stationary open-
loop control sequence in which, forevery k = 1,...,n, u; =

, where »* is the maximizer associated with the right-side
of (6) (or, identically, with the two (maximizing) optimization
problems in (7)). In particular, information from the past and
randomization are superfluous for attaining the best error ex-
ponent for fixed sample size binary hypothesis testing.

B. Case of Multiple Hypothesis Testing (M > 2)

1) Open-Loop Control: Our first theorem pertains to the sit-
uation with open-loop control.

2Although this result is mathematically equivalent to [11, Theorem 1] on dis-
crimination of two channels, we point out here that the “discrimination” problem
is motivated by the channel coding problem (see [20]), in which the controller
can be considered to know the true hypothesis.
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Theorem 1: For M > 2, it holds that

Bor, = maximin max
q{u) i#j s€[0.1]

- q(u)log / PE )Py () dialy) | (9)

)

where the left-most maximization is over all pmfs ¢ on ¢/ and
the minimization is over all pairs of hypotheses i, j, i # 7. Fur-
thermore, Sor, is achievable by pure (non-randomized) control.

Remark 3: For finite observation alphabets, Sor, in (9) can
be shown to be equal to the alternative formula derived in [10,
Theorem 5]. However, our formula in (9) is simpler than that in
[10, Theorem 5] because it involves maximization over a single
real-valued spurious parameter s instead of minimization over
a conditional distribution as in [10, Theorem 5]. More impor-
tantly, our result applies also to general observation alphabets
not just the finite ones.

2) Causal Control: A natural question that arises now is
whether causal control can yield a larger error exponent than
open-loop control when M > 2. The answer will be shown to
be affirmative even for M = 3. To this end, we now propose a
test with pure causal control (we show in Theorem 2 below that
pure causal control does achieve the optimal error exponent).

Our test admits the following recursive description and is
based on the use of the posterior distribution of the hypothesis
as a sufficient statistic. Having obtained the first & observations
y*, we find the maximum likelihood (ML) estimate of the hy-
pothesis, denoted by iz (y*) = arg max;ea pi(y*).3 We adopt
a pure control policy wherein uy41 € Uf is selected as

U1 = Uk+1(%k) =argmax min C (p“ ,p’,’j‘) . (10)
weld  jeEM\{ir} R
where C(p¥ ? p}) is the Chernoff information of p! and p¥

defined in (8) Lastly, at the final time n, the decision rule is
specified as 8(y™, u™) = i,,. The proposed test follows the cel-
ebrated separation principle between estimation and control;
while estimating the ML hypothesis is carried out online, the
control is chosen based on a stationary deterministic mapping
from the space of posterior distributions to the control space,
and hence, the mapping can be fully specified offline. It will be
shown in Section V that for the special example with only three
hypotheses, this proposed test is superior to the best open-loop
control. In general, we still do not know the structure of the op-
timal causal control, and characterizing the optimal error ex-
ponent for causal control is a hard problem even for M = 3.
Nevertheless, we derive precise bounds on the optimal error ex-
ponent that are applicable for any M > 2. Note that the optimal
error exponent achievable by open-loop control as characterized
in Theorem 1 already serves as a lower bound for the optimal
error exponent achievable by causal control. We also derive a
new lower bound and an upper bound for the optimal error ex-
ponent for causal control. These bounds are stated in Theorem
2 for the fixed sample size setting with M > 2. Although the

3In case of ties, we pick, say, the hypothesis with the least numerical value.



NITINAWARAT et al.: CONTROLLED SENSING FOR MULTIHYPOTHESIS TESTING

lower bound of Theorem 2 for J¢ holds only for a finite obser-
vation alphabet ), the upper bound in Theorem 2 and all the
previous results are valid for an arbitrary Y (subject to assump-
tions (1) and (2) in Section II). As mentioned in Section II, for a
finite ), we assume that for every u € U/, the collection of pmfs
{P}'},c 1 have the same support.

For any pmf v on M, any « € U, let v o p*(-) denote the
pmf/pdf (on V) >, v(i)pi(y).

Theorem 2: For every finite Y and every M > 2, it holds that

[7 op™ (v)—p (/)]
(1—v(e ))

(bup IIllIl IIchX (Z [) 6 ) >
Y
(Zp ()°pf (y)* ) (1)

where the outer supremum for the argument of —log in the
lower bound is over pmfs v on M that are not point-mass distri-
butions and the outer minimization for the upper bound in (11)
is over all pairs of hypotheses i, j, ¢ # j. Furthermore, as for
Bot, the exponent ¢ is also achievable by pure control without
any randomization.

Remark 4: The optimization problem for the lower bound in
(11) can be handled off-line. In the example below, we show
that the value of this lower bound is strictly larger than Sor..

sup—log
n>0

<fc <minmax max —log
i#j  w  s€[0,1]

IV. SEQUENTIAL SETTING

In the previous section, we considered tests with a fixed
sample size. In this section, we consider a different setting
in which the controller can adaptively decide, based on the
realizations of past observations and past controls, whether to
continue collecting new observations, thereby deferring making
a final decision about the hypothesis until later time, or to stop
taking observations and make the final decision. In this setting,
the goal is to design a sequential test to achieve the optimal
tradeoff between reliability, in terms of probability of error,
and delay or cost, in terms of the expected sample size needed
for decision making. Unlike in the fixed sample size setting in
which the asymptotic analysis of tests with open-loop control
is easier than that of tests with causal control, in the sequential
setting, the contrary situation seems to hold. In particular, as
we show below, the adoption of randomized causal control in
the sequential setting enables the simultaneous minimization
of the expected sample sizes under the M hypotheses as the
error probability vanishes. In contrast, open-loop control does
not enable such simultaneous minimization, and therefore the
characterization of the associated tradeoff is more difficult and
remains open. This is why we only consider causal control in
the sequential setting.

We now summarize our contributions in this setting.

* The existing sequential test originally proposed by Cher-
noff [18] for binary composite hypothesis testing, and ex-
tended to the multihypothesis setting by Bessler [19], can
only be proved to be asymptotically optimal under a cer-
tain assumption on the distributions ((12) below). We first
show that under the same assumption this test, which we
refer to as the Chernofftest, is asymptotically optimal in a
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strong sense, using the notion of decision making risk in
place of the overall probability of error.

* We dispense with the aforementioned assumption by
using a modified version of the Chernoff test described in
Appendix B2, where we outline the achievability proof of
asymptotic optimality without (12).

*  We design another test to meet hard risk constraints while
retaining asymptotic optimality.

Let . denote the o-field generated by (Y*, U¥). A sequen-
tial test v = (¢, NV, 6) consists of a causal observation con-
trol policy ¢, an Fj,-stopping time /N representing the (random)
number of observations before the final decision, and the deci-
sion rule § = §(Y',U™). Akin to the paragraph containing
(3), the causal control policy ¢ is described by the pmfs g(u1),
{q(uk |yk717 L

) e
A. Chernoff Test

We first present the Chernoff test [18], [19] for sequential
design of experiments with multiple hypotheses. The proof of
asymptotic optimality of this test requires the following tech-
nical assumption which was also imposed in [18], [19]: For
everyu e U, 0 <1 <3< M -1,

(12)

The Chernoff test admits the following sequential descrip-
tion. Having fixed the control policy up to time k and obtained
the first & observations and control values y*, u*, if the con-
troller decides to continue taking more observatlons, then at
time & + 1, a randomized control policy is adopted wherein
Uk+1 € U is drawn from the following distribution

D (pt, )
(13)
where ¢;, = arg max;eaq p;(y*, u*), is the ML estimate of the

hypothesis at time k. The stopping rule is defined as the first
time n for which

D (p{llp}) > 0.

q(u) = q(uliy) = argmax  min Z@(u)
a(w)  JeEM\{in}

s (y™,u”
log [ =W N S e,
max p; (y™, u™)
JFin

(14)

where c¢ is a positive real-valued parameter that will be selected
to approach zero in order to drive the probabilities of error
to zero. At the stopping time 7, the decision rule is ML, i.e.,
b(y™,u™) = zT, Note that randomization is used in the causal
control policy. This facilitates the simultaneous minimization
of the expected stopping time under the M hypotheses as the
error probability goes to zero. Also similar to the test proposed
in the fixed sample size setting, this sequential test relies on
the separation principle between estimation and control, with
the distinction that the stationary mapping from the posterior
distribution of the hypothesis to the control value is now
randomized.

To dispense with (12), we propose a “modified Chernoff test”
with a control policy that is slightly different from (13). Specif-
ically, instead of using the policy (13) at all times, we will occa-
sionally sample from the uniform control independently of the
index of the ML hypothesis; the specific way in which this is
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done will be explained in Appendix B2. The stopping rule of
this modify test will still be as in (14) with the same ¢ therein.

B. Asymptotic Optimality

In order to present a formal statement establishing the strong
asymptotic optimality of the Chernoff test, we introduce the
concept of decision risks or frequentist error probabilities [16].
In particular, let 7(¢), ¢ € M, be a prior distribution of the hy-
pothesis with a full support. For each ¢« € M, the probability of
incorrectly deciding i or the risk of deciding @ is given by

B2 Y w8 =i).

jeM\{i}

(15)

Note that for each i € M,

Ri= 3 #()Pi{6=i} < maxPe{s £k}, (16)
jeM\{i}

Therefore, the condition max Pr{6 # k} — 0 implies that
1%}

max R, — 0.

kem
Theorem 3: The modified Chernoff test (as ¢ — 0) satisfies
li ax P, {§(Y N, UN il =0
lim max P; {o(yY, U™) # i} =0, (17)
and for each i € M,
—log (max Pr{6 # k}>
EilV] < s (1+0(1) (8)
i T max min Y q(u)D (pf;;’Hp;f')

q(u) jeM\{i}
— log(R:)

<
T max min q(u)D (p¥||p¥
a(w) jeM\{z‘};’( )D (pillpy)

(1+0(1)). (19)

Furthermore, the modified Chernoff test is asymptotically op-
timal in the following strong sense. If the prior 7 has full sup-
port on M, then any sequence of tests with vanishing maximal
risk, i.e, kmea&c Ry — 0, satisfies for every i € M,

[El[N] > _ 10g(Ri)

T max 1min a(w)D (pe]|p®
a(u) jEM\{i} ; 1(u)D (p; v

] (1+0(1)). (20)

Remark 5: The converse assertion (20) in terms of maximal
risk implies the one in terms of the maximal error probability,
but not vice versa. Thus the asymptotic optimality of the modi-
fied Chernoff test established in Theorem 3 is stronger than the
corresponding result in [18], [19], which is given in terms of
maximal error probability.

C. Asymptotically Optimal Test Meeting Hard Constraints on
the Risks

Although the calculation of risks involves the prior distribu-
tion of the hypothesis, the test proposed in Section IV-A does not
use the knowledge of the prior distribution at all. In this section,
we show that by using this knowledge, we can further modify
our test to meet hard constraints on the risks. Another key to this
new test is the use of different thresholds for the peak of the pos-
terior distribution depending on the index of the ML hypothesis
instead of a single threshold as in (14). In the asymptotic regime
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TABLE 1

EXAMPLE

u=a|u=blu=c
1=0 P P D
1=1 P P j
1 =2 D p P

in which all the risks vanish, we show that this modified test will
also be asymptotically optimal.

Specifically, for a given tuple (R, ..., Rar), we will design
a test to satisfy R; < R;, i € M. To this end, we modify the

stopping rule (14) to be so that we stop at the first time »» when

W(;n)ptn (y™, u™) (M —1)7(iy)
)y (57 0" 210g< 7, )

in
JFin

B B B (21)

Theorem 4. For any tuple (R1,..., Ry ), R > 0,i e M
and any 7 with a full support, the modified Chernoff test but
with the stopping rule (21) in place of (14) satisfies, for every

ie M,
Zw(j)uwj {s(v¥, uNy =i} <R,

it

(22)

Furthermore, as m%l( R, — 0, while satisfying mea( R, <
_ ASK 1€
K (HliAI/Il R;) for some K > 0, the proposed test is asymptoti-
1E
cally optimal, i.e., it satisfies (18) and, hence, also (19).

V. EXAMPLE

We consider an example with parameters M = 3, YV =
{0,1}, U = {a,b,c}. For an arbitrary ¢, 0 < ¢ < (1/2), de-
note by p(y) and B(y), the two pmfs on Y for which p(1) = ¢
and p(1) = 1 — e, respectively. Then, consider the model for
controlled sensing for hypothesis testing in which the pmfs p}*,
i €{0,1,2},u € {a,b, c}, are assigned according to Table I.

This example is motivated by adaptive sensor selection for
event detection. Consider a sensor network with a fusion center
and three sensors a, b and ¢, collecting measurements from three
separate locations 0, 1, 2. A specific event takes place at exactly
one unknown location,; it affects the distribution of the measure-
ments at this particular location (represented by the distribution
p in Table I), while the measurements at the other two locations
are distributed according to p. At every time step, the fusion
center can query only one sensor to measure its readings. The
goal is to determine the location of the event in the most effi-
cient manner.

The optimal exponent for open-loop control (cf. (9)) can be
easily calculated to be

2 _ 2
for = EC(Pap) =3 log <2 e(l - 5)) : (23)

For causal control, we apply the control policy presented in
Section III-B-2 (cf. (10)). Then, by solving the maximization in
(10), we obtain a deterministic causal control policy, which is
given by w41 = f(ix), where f(0) = a, f(1) = b, f(2) = c.
Lastly, at time n, the decision is made for the maximum likeli-
hood estimate, i.e., 6(y™) = En. We now analyze the maximal
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error probability of this test. To this end, for any ™, we let

ki = {k: e{l,....n}: "7 aand gy, =1, Or}‘. 24)

uy # aand y, =0

Then, we get from Table I that po(y™) = e*a(1 — e)"Fa,
Similarly, we can define k; and k. with ¢ in (24) replaced by
b and c, respectwely, and get that pl( my = efo (1 — ) ke,
paly™) = ebe(1 — ek,

We sort {kq, ks, k.} in an ascending order and denote the
sorted values by k&1 < k2 < k3. Note that at every time step,
the most likely hypothesis is the one associated with k7. Then,
it follows from Table I that as n increases by one, if y, = 1,
then the least of {k,. ks, k.} increases by one, while the other
two remain fixed. On the other hand, if y, = 0, then the least
of {kq. ks, k.} remains fixed, while the other two increase by
one. Hence, If we let & denote the number of zeros in y", then
(ko + ko + ko)/3 = (n+ k)/3. In addition, starting from no
observation at time zero when {k,, ks, k. } are all equal to zero,
we get from an induction argument that, k2 < k3 < ky+1. This
argument is similar to that in [pp. 54] [9]; we refer the reader to
[9] for further details. We can now conclude from these previous
identities that

n+k 1

ko +ky +FE. 1
fy > Fat koA ke 1

(25)

Attime n, §(y™) corresponds to the smallest k1 ; it follows from
(25) that for any ¢ = 0, 1, 2,

Pi{s£i} <> W0
>, X

w=1ym:[{ky, =0} |=w

n
[ ot 2n—w
(Z( )e—( R ”%)
w
w=0

(-0t +eta-o)"

€i(l—¢) %

_ k)

€kz(1/"')(1 _ 6)77,,@(1/”)

INA

and we get that

</_1_nax P, {6 # 1}>

> —log (F(1-F +F(1- ). (6)

1
lim ——log
n

n— 00

Comparing (23)to (26), we get that for every ¢, 0 < € < (1/2),
causal control can yield a larger error exponent than the
best open-loop control. By the symmetry in Table I,
the upper bound for J¢ in (11) can be calculated to be
C(p.p) = —log(2y/e(1 —€)),

Lastly, we show that our lower bound for 8¢ in (11) gives the
same achievable error exponent in (26) for this example. To this
end, we consider the argument of the — log in the lower bound

o[vor™ w)—pl(n)]

sup min max (Z pi(yle” =D ) . 27)
v u K2 ¥
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Note that the argument minimizer « in (27) is a function of ».
Hence, if the minimizer is replaced by a specific function u =
f(v), then we will get a larger quantity, i.e.,

71(1'0171‘(7/)—1"?(1/))
S pr)e e

y
< bup max (Z pf(u) (y)e

In particular, consider the following function

sup min max
u 2

v

n(ucp'[(")(y)—p‘[(v)(y)
(1—v(8))

)
. (28)

(29)

a, argmax; (i) =0,
arg max; v{i) = 1,
¢, argmax; v(i) = 2.

For an arbitrary v(7), ¢ 0, 1, 2, denote their respective
sorted values by v, > v. > v. Then, it follows from (29) via
appropriate algebraic manipulations using Table I that

F) '/("C‘Pf(")(:'/)*pfc(v)(:u))
v
sup max E D; (y)e T=o0))

v 7

Y

(1 — €)e 1120 4 gen(1-2¢)
—n(1—26)vy n(1—26)vy
= sup max | (1 —€)e” T-ve) 4 ee T-ve)
1>v,>2v.2vy —n{l—2¢)vq n{l—2e)vq,
(1 —e)e = o +ee T

(30)

Next, we select ) = 2log((1 — €)/e)/3(1 — 2¢). Note that for
any vy 2 Ve 2 Ve,
1 2vy

< 21, 2
37 3(1 —w)

<
S350 3

€2))

It then follows from the selection of , (31), and the fact that for
any 0 < € < (1/2),

w|>~
oa|x\:

(1€ = (1—e)Teh +(1—e) e

that for any v, > v, > vy,

(1 —€)e™ +ee?,
(1 —€)e Ve 4+ eee,
(1 —€)e™ " +eeM

where v = 2log((1 — €)/¢)/3,v. = 21log((1 — €)/€)ru/3(1 —
ve), mt = 2log((1 — €)/€)vu/3(1 — 1). Following from (28)
and (30) by taking — log, we get that

o) n(uoz,u»)(_,,)_vp.if(u)(7/))
Bc > —log| sup max Zpi (y)e T=o (D)
v b
y

max :(1—6)5i %-l—(l—e)%e%,

=—log (( )§€%+(1—6)%6§)
as required. This lower bound matches the one in (26).
In the sequential setting, the quantities dic-
tating the asymptotically optimal performance are
max min > q(u)D(p}||p}), the denominators on the

q(u) jEM\{i} ) i .
right-side of (18), which can readily be computed for this

example to be —log(24/€e(1 —¢€)) for every i € M. The
numerical value of this quantity is, as expected, larger than
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B¢ in the fixed sample size setting, as now the control has an
additional capability to adaptively stop taking observations
based on past observations.

VI. DISCUSSION

In the proposed sequential test in Section IV, information
from the past is used to form the maximum likelihood estimate
of the hypothesis, which is used in turn to select the maximizing
distribution and the maximizing control value in (13). In con-
trast to binary hypothesis testing with a fixed sample size (cf.
Proposition 1), information from the past seems to be crucial
for attaining the asymptotically optimal performance in the se-
quential setting, since the mentioned maximizers can depend on
the identity of the ML hypothesis even for the case of binary hy-
pothesis testing.

VII. CONCLUSIONS

We studied the structure of the optimal controller for mul-
tihypothesis testing with observation control under various
asymptotic regimes. First, in a setting with a fixed sample
size, the optimal error exponent corresponds to the maximum
Chernoff information over the choice of controls for binary
hypothesis testing. In particular, in this setup, a pure stationary
open-loop control policy is asymptotically optimal even among
the broader class of causal control policies. For multiple hy-
pothesis testing, we characterized the optimal error exponent
achievable by open-loop control and derived precise lower and
upper bounds for the optimal error exponent achievable by
causal control. We also proposed a causal control policy for
multihypothesis testing based on maximizing the minimum
Chernoff information of the distributions corresponding to the
most likely hypothesis and all the alternative hypotheses. We
illustrated through an example that the proposed causal control
policy strictly outperforms the best open-loop control policy.

Second, we considered a sequential setting wherein the objec-
tive is to minimize the expected stopping time subject to the con-
straints of vanishing error probabilities under each hypothesis.
We proposed a suitably modified version of the Chernoff test for
multiple hypotheses testing and showed that it is asymptotically
optimal in a strong sense, using the notion of decision making
risk instead of the overall probability of error. Our control policy
is based on maximizing the KL distance of the distributions cor-
responding to the most likely hypothesis and the nearest alter-
native hypothesis. We also designed another sequential test to
meet hard constraints on the risks while retaining the asymp-
totic optimality.

For binary hypothesis testing, the findings showed that past
information is crucial in achieving the asymptotically optimal
performance in the sequential setting, while it is superfluous in
the fixed sample size setting. Our results also showed that for
general multiple hypothesis testing, randomization in control is
always superfluous (for any number of hypotheses) in achieving
the asymptotically optimal performance in the fixed sample size
setting. On the other hand, we showed that in the sequential set-
ting, randomization can facilitate the structure of the asymptot-
ically optimal control policy following the separation principle
between estimation and control especially in the sequential set-
ting.
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APPENDIX

A. Proof of Results in Section 111

1) Proofof Theorem 1: We start with the achievability proof.
First, note that for any n, and any test

% S P{s#£i} < max P, {5 # i}

ieM
1 .
<M (M Y Pi{s # z}) E)

iEM

Fix a sequence u" € U™, and let 8y, : V™ — M be the ML

decision rule. It now follows that

% Z Pi{ome(Y") # 2}

ieM
= % z Z Pi {omL(Y™) =4} .

iEM jEM\{i}

(33)

Foranyi,j,0 <i< j<M-—1,andany s € [0, 1], we get that

Pi{omu(Y") =4} <Py {Pi(?/n)spj(y")lis > Pi(?/")} :

(34)
and
P {oae(Y™) =i} <Py {mile") msw")' " 2 pily™) }-
(35)
Combining (34) and (35), we obtain that
Pi {omu(Y™) = j} + P {omn(Y") = i}
< [ 11 62w ) 1] s ()
e k=1 k=1
N / Pyt () p* () g, (yn)
k=1 \;
Yk
n ( Y dw)log (]/ Pl W) ey () dp, (y)) )
_ .\ | . (36)
where g(-) denotes the empirical distribution of «” : G(u) e

(1/n){k: ke {1,....,n}, ur = u}|. Since (36) is true for any
s € [0,1], we get that

Pi{omL(Y™) =i} + Py {omn(Y") = i}
—n max — alu) lo B ) ™ ()L o
<e (56[0,1] Z q(u)l g(fyp,, (W)*pily) " dn (y))>

uEU

Because there are only finitely many pairs of hypotheses in the
sum on the right-side of (33), the pair corresponding to the
smallest exponent will dominate the exponent. Hence, we get

7 S P £} < (M - 1)
1E€EM

—n | min max - g(u) log pr(y) e (v)  dp, (v)
<z<j <€[0,1] Zu: (Uf !
Xe ; .

Since u™ is arbitrary, we can approximate any distri-
bution ¢g(u) arbitrarily close by the empirical distribution
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q(”)(u) of an appropriate deterministic sequence »” such that
max, [7"(u) — g(u)] — 0. This fact combined with (32)
yields that

for > maxmin max
g(u) 1<J s€[0,1]

=Sawlos | s B | 6

Y

and that the error exponent on the right-side of (37) is achievable
by pure open-loop control.

Next, we prove that the reverse inequality of (37). Since we
proved that B¢, is achievable by pure control, we restrict our at-
tention to pure open-loop control. By considering the necessary
and sufficient condition for the maximizing s of the function

= Sotow | [ BB ) i o)
k=1

Y

we obtain for any v € U™, and any pair of hypotheses ¢, €
M that

= argmax — Z log i,

sE[O 1] =1

[ e
o (38)
satisfies (cf. (5))

ZIO% /"’ 1) DI () e ()

U
=30 (b ) = ZD (i o). 9
k=1
We next consider, for the same pair of hypotheses i, 7 as above,

the pdf/pmf  defined by p(y™) = Hk bt
test, it either holds that

max —
s€[0,1]

(yx). For any

P{6(Y") =4} > =, orthat P {6(Y™) #£ i} > (40)

DN | =
N | —

Suppose that the first case of (40) holds. For any causal
control policy, under the stationary Markovity assumption
and assumption (2), it follows that the random process Sy,

k=1,...,n, where
-7:'ll‘|)7

a~fy (i () (B
Sk_;<10g< ) ) [E[log (W)

is a “stable” martingale adapted to F}, the sigma fields gen-
erated by (Y*, U*), k = 1,...,n. By the martingale stability
theorem of Loéve [26, pp. 53], we get that {(1/n)S,, },—, con-
verges to zero a.s. and, hence, in probability, i.e., for any 7 > 0,

1 n ‘ b;-’“s* (Yk)
G5 (e ()
) > 'r[} =0. 41

lim P

n— 00

k=1

(b0
—E l108< p}lrk (Ye) )

Fr_1
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Since ug, & = 1,...,n are fixed (pure open-loop control
policy), we obtain from (41) that

1 b (Yh)
lim P 1 =
o {n Z ( og( p}lk(Yk)
-D (b}ff’*’ Hp”")) > n} —0. (42)

The first inequality of (40) and (42) yield that for any € > 0,
any v > 0 and all » large,

——e’<[|5{
2 =

—_

H P (Ye)
‘"(Eiid(D(%?”Ww;
>e k=1
X H b“k’ }

)

n(i %D(buk 1)“1<)+77)
<P {6(Y™) #jje V=t - (43)

If the second case of (40) holds instead, then similar to (41) we

obtain that
()
og ;
S\ ()

. - 1 T
7}51;6"”{52
b (b:;’ﬂlp“)) > ”} w89

k=1
From the second case of (40) and (44), we obtain that for any
¢ > 0and anyn > 0,

1 . n,(i #D(bu‘ b‘\HP ';)+7)>
5~ SP{(Y") #ide Vo ; (45)

which parallels (43). It now follows from (43), (45) and (39)
that for any i, 7 € M,

lim —— log

n—oc

(maXP {6 # 7}>

< lim_— - log (max (P, {5(Y") # i), B, {5(4™) # 7))

<max (;;D(bu’ " '"") ZD(b“’ " '""))
:%élog /p:"

Y&

)™ P2 () dpta, ()

#

=— g(u)log / pEW) ) uly)
U y
= max —;ﬁ(m log ' / P i)' puly) | 5 (46)

Y
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where g denotes the empirical distribution of u™. Since (46)
must hold for every pair 7, j of hypotheses, we then get that

n—oo N

. 1. f _ 0y
lim ——log (Elé%{ P {6(Y"™) # L})

< mi ax — () log w(, NS Ul 178)((1 u
< min max ZH:(J(U) og /p (w)* pi(y) () |

Yy

and, hence,

Bor £ max min max
gq(u) i<y s

= " q(u)log /p}"(y)s*p?(y)l"”*duu . (47)

Y

Note that in (46), the empirical distribution (%) depends only
on the pure control %™ and not on the pair of hypotheses ¢, 7,
while the maximizer s* in (38) depends both on «™ and on the
pair of hypotheses. The assertion of Theorem 2 is now proved
by combining (37) and (47).

2) Proof of Theorem 2: We first prove that ¢ is achiev-
able by a pure control policy. For any fixed n, the problem
of finding the optimal causal control that minimizes the exact
average probability of error can be cast as a finite-horizon sto-
chastic optimal control problem through the use of the posterior
distribution as a sufficient statistic. Since U/ is finite, it follows
from a standard dynamic programming argument [27] that the
optimal causal control is a deterministic one.

Next, we prove the upper bound for F¢ in (11). Observe that
for any test for M hypotheses, with a decision rule § and any pair
of hypotheses i, 7 € M, abinary test for hypotheses ¢ and 7, can
be constructed using the same control policy and an appropriate
decision rule ¢ so that

max (P;, {S(Yn, um) # Z} Pj {5(Yn’ ur) # J})

< maxP; {§(Y",U") #4} .
< max {o( ) # i}

Applying the converse part of Theorem 1 with the roles of

{P6 Y ey and {pi'},, ¢ therein being played by {p}'}, ., and
{p}"}ue . respectively, we obtain that

| / pi() i y)  dpa(y)

Y

Ao < max max — log
u€U s€[0,1]

As the previous argument applies for any ¢ # j,¢,j € M, we
obtain the upper bound in (11) by minimizing over all pairs of
hypotheses i, j € M.

It is then only left to prove the lower bound for 3¢ in (11). The
proof relies on the following lemma whose proof is deferred to
Appendix A3.
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Lemma 1: Let J = |Y|. Foreverye,0 < e < 1,and 5 > 0,
it holds that

1 Jpt(y) =1
Sup min max Zp}‘(y) + e (Jpi(y) )
v Tv()pt (y)
' e (%; Ty 1)
J#i

> e, (48)

where the outer supremum on the left-side of (48) is over the set
of all pmfs on M that are not point-mass distributions.

By L’Hopital’s rule, for every v that is not a point-mass dis-
tribution,

L+e(Jpt(y) —1
im +e(Jpily) = 1)
- Tv(i)ps ()
1+e¢ (Z S =T o 1>

iZi
v(Heiy
U (Z =y P (y))
— e J#e e

Consequently, by letting e — 0, we get from Lemma 1 and (49)
through the finiteness of M, 4, Y that for any n > 0,

77(1/011"(7/)—71;”(71))
(I—v (i)

(49)

n[wp“(y)—pf(y)]
—log | sup min max Z pi(y)e a=eo) < Be.
v u i -

Y

The proof of Theorem 3 follows by optimizing over i > 0.

3) Proof of Lemma 1: We shall consider a test based on a
mismatched posterior distribution on the hypothesis. In partic-
ular, the control value at every time is picked based on the pos-
terior distribution on M computed based on an appropriately
chosen mismatched model {g}* }75{1 (instead of the real model
{p¥ }ff\fl) and the uniform prior distribution on M. In partic-
ular, denote the posterior probability of hypothesis ¢ € M at
time k = 0,...,n, by (). Then,

1 1=

I/O(i) =

Also denote the likelihood ratio for hypothesis « € M at time
k=0,...,n,by (i), ie,

N A wm@) o w(h)
ZU(Z) - M — 1’ ]k(l) o l—llk(’i) - ;Vk(])

w1 vy 1“
vi(i)g; " (to ))(yk+1)

N Up v (y®
§m@mx“““”@ﬂg
JF

lhya(i) = , 0<k<n—1. (50)
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The decision rule at time » is the maximum likelihood estimate
of the hypothesis, i.e., 6(y™) = argmax; v, (4). Next, we ana-
lyze the probability of error of such test as a function of {g¥},
i € M, u € U, and the pure control ur = wug(ve—1) =
ur(y® 1) which will be specified later. We get that for any
A < 0, the probability of error (with respect to the real model
{p!'}, i € M, u € U) under hypothesis ¢ can be upper bounded
as

P{6£i} =P; {argmaxﬂn(j) # l}

7

<P {L,(i) <1} <E;: [La()Y] . (51)

Next, by writing

_ " Lp(d) ) . - ( Li(4) ) 1
L,(¢) = - , Lo(e) = - >
@ kl;[l (Lk_l(q,) o(?) ;1;[1 Lia(i)) M—1
(52)
and substituting (52) into (51), we get that for any A < 0,

n . A
P £ 1) <E, [H () ] M- )

k=1

We next specify the mismatched model {¢¥*}, i € M, u € U.

For any ¢, 0 < € < 1, consider the conditional pmf W, (y|y'),

¥,y € Y, such that

% + e, y=vy,
. y#y.

776

Weyly') = { (54)

Then, let

. \73 A 1,
g (y) =pf o Wely) =2 pi (v ) Welyly')
.

=t {5+ U5 + 2 7 (5-5)
1 €
==+ =

7t73 (55)

(Jpi(y) - 1).

Using this particular {¢¥}, i € M, u € U, with F;,_;1 denoting
the sigma field generated by 4* =1, k = 1,...,n, we get from
(50) through an easy algebraic manipulation that

(Lﬁ(fgz‘) ) A ‘f’“]

=Sy | Ui )

E;

> ve—1(9)g;" ()
j#i
1+e[Jp™*(y) — 1]

v 1+e<z

JF

Tvi—1 (e} * ()
o)

_1> |
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where ug = ug(vg_1) = up(y* 1). Next, let A = —(n/Je) for
an arbitrary 77 > 0, and let

uw* (V)

1 Jnt(y)—1
=arg min max Zp:%(y) +e(Jpiy)—1)
R Tv()p! ()

v 1+€ (Z 7—1>
J#

(1-v(3)
(56)

If we select the control to be uy, = u*(14_1), where u*(v) is as
in (56), then we get that for any ¢ € M, k = 2,....n, and any
realization of vj,_; (as a function of y*~1),

(Lﬁ(f()z‘)y% F’“]

=1uin max E pi(y)
u K3
y

E;

s
=

I+e(Jp}(y)—1)

1—|—€(Z

i

Jve_1(Dpj () 1>
(1—vp_1(4)

Note that since vy (uniform) and all ¢;*, ¢« € M, u € U, have
full supports (cf. (55) upon noting that e < 1), it follows that
for every k = 1,...,n, and every realization y*, vy (y*) will
have a full support. With this observation, continuing from (53)
by using the smoothing property of conditional expectation, we
get that

L

™

;—/9C< < G P‘ (S‘ I.r
e o < (1,_2}3‘( i #1}>

< sup min max
” U 1

L+e(Jpi(y) - 1)

N

> i)
y Jv(@)ri (v)
7 {(1—v(®))

x (M — 1),
The lemma follows by taking the limit as n — oc.

B. Proofs of Results in Section IV

1) The Converse Proof of Theorem 3: We now prove the
assertion (20). To simplify notation let

max min
q(u) jeM\{d}

7_ Y?'Ir! Tn
log piY",U™)
Dy (Yn‘ Un)

dr & g(u)D (p¢|Ip}) .

Il

Zij(n)

It is not hard to see that (20) follows immediately from Lemma
2 below and Markov inequality.
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Lemma 2: For every 0 < p < 1, any sequence of tests with
vanishing maximal risk i.e., {naé Ry — 0, satisfies
ke

Pi{N>%}—>l,

for every i € M.
Lemma 2 in turn relies on the following lemma.
Lemma 3: For any sequence of tests with max Ry, — 0, any
£

0 < p < 1, it holds that for each 5 € M,
Pi{Zij(N) > —plog R;} — 1. (57)

Proof: Define the subset ¢2,, of the sample space as

Qu = {(y" u™) : Zig(n) < plog Ri,s = i, N = n}

From the definition of ?; in (15), for every j € M\ {i}, we
have the following set of inequalities

I
7(4)

>Pi{6 =i} > P{Qu}t > R PH{Qn},
n=1 n=1

where the third inequality follows from the fact that Z;;(n) <
—plog R; on @},,. Hence, for every ¢ # j, 4,7 € M,

o0 1
Z Pi{Qn} S Ri

a
n=1 7T(]) .

(58)

Thus,

Pi{Zi;(N) < —plog R;} < > Pi{Qu} +Pi{5 # i}

n=1
R* R,
Tt X
jeEM\{i}

< (59)

m

—~

The second inequality above follows from (58) and from the fact
that P;(6 = 7) < (R;/=(i)). The right-side of (59) goes to 0
since It; — 0, for each ¢ € M. This proves Lemma 3. [ |
The following result follows from a standard martingale con-
vergence argument as in Lemma 5 in [18] and is omitted due to
space constraints.
Forany 0 < p < 1, it holds that

lim P, ‘ in Z;. >n(df+1- =0.
nl—{go ) {1£1r?§n JG%I\II{L} J<7n) - n( ’ T p)}

(60)
Combining the result in Lemma 3 and (60), we get for every

0<p<l,

p < Zplosfti L
Tdi+1-p

which is equivalent to the assertion of Lemma 2.

2) Achievability Proof of Theorem 3 Without Condition (12):
Because the instantaneous control picked in (13) is a function
only of the identity of the ML estimate of the hypothesis and not
of the reliability of the estimate, e.g., the value of the posterior
probability of the ML hypothesis, when the ML estimate is in-
correct, the instantaneous control in (13) can be quite bad. This
can happen with large probability especially when only a few
observations are collected. Condition (12) essentially ensures

(61)
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that when the ML hypothesis is incorrect, the control value of
(13) will not be too bad. Consequently, (12) leads to a fast con-
vergence of the ML estimate of the hypothesis to the true one
when the ML estimation is used together with the control policy
(13) at all times. Without (12), the convergence may not happen
or even if it does, it may not be fast enough. This phenomenon is
analogous to and is tightly connected to another one, which oc-
curs in a somewhat more exacerbated form, in stochastic adap-
tive control [28] illustrating the failure of ML identification in
closed-loop [29].

As previously mentioned at the end of Section IV-A, we
slightly modify the control policy (13) by occasionally sam-
pling from the uniform control independently of the identity
of the ML hypothesis; this sparse sampling is used to guard
against the event of incorrect ML estimation of the hypothesis.
Precisely, for some a > 1, at times k& = [a'],! = 0,1,..., we
let U4 be uniformly distributed on /. At all other times, we
still follow the control policy in (13). The stopping rule is still
as in (14), and the final decision is still ML. Without loss of
generality, we can assume that for every i # 7, ¢, € M, there
exists a « € U for which

D (p;lr}) > 0. (62)

otherwise, the probability of error can never be driven to zero. It
now follows from (62) and the argument as in the proof of [18,
Lemma 1] that for every ¢ # j, and all n sufficiently large

n

L logn

Pi{ E Lk} <e Umee,
k=1

where Lj, 2 log(p* (Yk)/p[f" (Y%)), for some b > 0, as we can
only guarantee that E;[e~(1/DLs|F, 1] < 1 for logn/loga
times in n time slots (precisely at those times when the control
value is forced to be uniformly distributed). Let 7" be the earliest
time such that the ML estimate of the hypothesis equals the
true hypothesis for all time £ > 7. Then, we get that for all

sufficiently large &,

log ¢

PA{T >k} < MZe*”logu <O(k™)

t>k

(63)

for an arbitrary large v when a is chosen to be sufficiently close
to 1. Note that it was shown in [18, Lemma 1] that if (12) holds,
then P;{T > k} decays exponentially.

Our achievability proof of asymptotic optimality without
(12), i.e., that the modified test satisfies (18) without imposing
(12), follow closely the steps in the proof of [18, Lemma 2]
under assumption (12). Due to space limitations, we shall just
emphasize key steps and point out the difference from the proof
when (12) is relaxed. To this end, we denote the maximizers in
the denominator on the right-side of (18) by ¢ ().

Referring to the stopping rule in (14), we see that the stop-
ping time depends on the time needed for the Log-Likelihood
Ratio (LLR) corresponding to the closest alternative hypoth-
esis to cross the stopping threshold — log ¢. Thus, the main idea
is to show that the LLR per observation concentrates around
the denominator on the right-side of (18) for the control policy
described above. The key step in the proof of (18) deals with



NITINAWARAT et al.: CONTROLLED SENSING FOR MULTIHYPOTHESIS TESTING

the following decomposition for an arbitrary hypothesis j # 1,
where ¢ is the true hypothesis,

1 n 1 T
g;Lk:;Z {Lk -

+ILZ{ (L | Fre1] Z%
+Zqz (willpy) -

The proof of the measure concentration then boils down to
proving that the two averages of the bracketed {}-quantities
concentrate around 0 from the negative side with a sufficiently
quick decay of the probability of non-concentration. In partic-
ular, it suffices to prove that the following two sequences of
probabilities (as a function of n) go to zero sufficiently fast:

[Ei[Lk|fkfl]}

oo}

(64)

Pi {%i {Lr — Bi[Lg|Fra]} < —6} : (65)
T k=1
and
P,{:’Z{ il Lk | Fr— 1]—2(]7 u)D (pi'|lp} )} —e}.
k=1

(66)
Note that the minimum value of the third term in the decompo-
sition in (64) over j # ¢ is specifically the denominator on the
right-side of (18).

The same argument leading to [ 18, Equation (5.10)] gives that
(65) goes to zero exponentially. Also, (63) implies a polynomial
decay of (66), as with probability 1,

{ [ Lk Fra] Zqz vi'llpy )}
< C'min(T,n) +

[

>

k=1

C" logn,

for some constants C’, C” by virtue of fact that ¢ = ¢} for each
k > T, such that k # [a'],! > 1 (cf. the definition of 7" in
above). This will lead us to [18, Equation (5.9)] but only with
a polynomial decay (with an arbitrarily high degree v in (63))
in the probability on the right-side of the equation. Neverthe-
less, the sufficiently quick polynomial decay in the probability
therein still enables us to complete the steps at the beginning to
proof of [18, Lemma 2] to eventually upper bound the asymp-
totes of the expected sample sizes to be (18).

3) Proof of Theorem 4: We first prove (22). Let ¢ be the true
hypothesis. For any j € M, j # ¢, consider the event

A =y"u

Following the approach in [30], on the set A, ; we have the
following set of inequalities,

log (—W(J.)pj v ')> > log
™

pily™s )

"Y:Na=n,6=j}. (67)

w(7)p,(y™, u™)
max w(i)p; {y™, u™)
i#]

(68)
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The last inequality above follows since the test ends at n and the
stopping criteria must be met for the choice of the thresholds in
(21). Thus,

R;

(M

Pi{An;} < ﬁ

Pi{An;}
It now follows that

P{é—i}—ZP{An,}<

n=1

ZP {Ani}

n=1
R.f

= (7= () )

From the definition of R; in (15), we then get that R; < R;.
The result holds for each j € M.

The last assertion of Theorem 4 pertaining to asymptotic op-
timality of the proposed test follows by considering yet another
test with the stopping rule (21) being replaced by the following

stopping rule with a single threshold
D y n, un -
ZACKL > log ((7\/./ —1) (max r(]))) ;
i£j R
(70)

max p; (y", u")

JF
and with the same control and decision rule as those of the pro-
posed test. It follows from (21) and (70) that the stopping time of
this new test will always dominate (larger than) that of the pro-
posed test a.s. Let us denote the two respective stopping times
by N and N'. Since 7 has a full support, as IIEldXR — 0, the

single threshold on the right-side of (70) will go to infinity. By

Theorem 3, this new test with the single threshold is asymptot-

ically optimal, i.e., it satisfies, for every ¢ € M,

E:[N'] < 1
loge = maxmin ) g(u)

a(u) 371 "y

lim -
max R;—0
i

: , (7D
D (p2lpY)

where ¢ = (1/(M — 1))(11211(]? :/7(4))). On the other hand, it
follows from (69) and the assumption in the statement of The-
orem 4 that
. Rj ’
max P;{§ # i} <max —— < K'¢, (72)
i i w(i)
for a suitable constant &X’. The aforementioned dominance, i.e.,

N < N’ as., and (72) along with (71) give that for every ¢ €
M,

E;[N E;[N’
lim - V] < lim - 1'[ )
m?x R;—0 IOg (IHI?X Pk{6 7& k}) m?x R;—0 0gc
1
= S aw)D (7).
max min U | p¥
qlu) J#i 1 Pallp;
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