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Capacity Results for Block-Stationary Gaussian
Fading Channels With a Peak Power Constraint
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Abstract—A peak-power-limited single-antenna block-sta-
tionary Gaussian fading channel is studied, where neither the
transmitter nor the receiver knows the channel state informa-
tion, but both know the channel statistics. This model subsumes
most previously studied Gaussian fading models. The asymptotic
channel capacity in the high signal-to-noise ratio (SNR) regime is
first computed, and it is shown that the behavior of the channel
capacity depends critically on the channel model. For the special
case where the fading process is symbol-by-symbol stationary, it is
shown that the codeword length must scale at least logarithmically
with SNR in order to guarantee that the communication rate can
grow logarithmically with SNR with decoding error probability
bounded away from one. An expression for the capacity per unit
energy is also derived. Furthermore, it is shown that the capacity
per unit energy is achievable using temporal ON–OFF signaling
with optimally allocated ON symbols, where the optimal ON-symbol
allocation scheme may depend on the peak power constraint.

Index Terms—Asymptotic capacity, block fading, capacity per
unit cost, noncoherent capacity, wireless channels.

I. INTRODUCTION

THE capacity analysis of noncoherent fading channels has
received considerable attention in recent years since it

provides the ultimate limit on the rate of reliable communi-
cation on such channels. Proposed approaches to modeling
noncoherent fading channels can be classified into two broad
categories. The first is to model the fading process as a block-in-
dependent process. In the standard version of this model [1], the
channel remains constant over blocks consisting of symbol
periods, and changes independently from block to block. The
second is to model the fading process as a symbol-by-symbol
stationary process. In this model, the independence assumption
is removed, but the block structure is not allowed.1 Some-
what surprisingly, these two models lead to very different
capacity results. For the standard block-fading model, the
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1Here the block structure refers to the nature of the fading process, not the
way the channel is used. For example, in a time-division system, each user may
experience a block-stationary channel even if the underlying fading process is
symbol-by-symbol stationary. However, the existing capacity results derived for
the symbol-by-symbol stationary fading model do not apply to this scenario.

capacity is shown [1], [2] to grow logarithmically with the
signal-to-noise ratio (SNR), while for the symbol-by-symbol
stationary model, the capacity grows only double-logarith-
mically in SNR at high SNR if the fading process is regular
[3]–[5]. For symbol-by-symbol stationary fading channels, if
the Lebesgue measure of the set of harmonics where the spec-
tral density of the fading process is zero is positive, the fading
process is nonregular and the capacity grows logarithmically
with SNR [6], [7]. This result is consistent with the capacity
result for block-independent fading channels in the sense that
the logarithmic growth with SNR in the high-SNR regime
results from the rank deficiency of the correlation matrix of
the fading process. This point was elucidated in [8] where a
time-selective block-fading model was considered in which the
rank of the correlation within the block is allowed to be any
number between one and the block length.

However, the mechanisms that cause the rank defi-
ciency in the block-independent fading and nonregular
symbol-by-symbol stationary models are different. For the
block-independent fading model, the rank deficiency happens
within each block. But for the nonregular symbol-by-symbol
stationary fading channel model, the correlation matrix of
the fading process over any finite block can still be full-rank;
the rank deficiency in this case is in the asymptotic sense. In
general, the rank deficiency of the correlation matrix can be
affected by both the short time-scale correlation of the fading
process as in the block-independent fading model and large
time-scale correlation as in the symbol-by-symbol stationary
channel model. In order to capture both of these effects,
we model the fading process as a block-stationary Gaussian
process.

The block-stationary model was introduced and justified in
[8]. We summarize the main points of the justification here. In
the block-independent fading model, the channel is assumed
to change in an independent and identically distributed (i.i.d.)
manner from block to block. The independence can be justified
in certain time-division or frequency-hopping systems, where
the blocks are separated sufficiently in time or frequency to un-
dergo independent fading. The independence assumption is also
convenient for information-theoretic analysis as it allows us to
focus on one block in studying the capacity. If the blocks are not
separated far enough in time or frequency, the fading process
can be correlated across blocks and the block-stationary model
is more appropriate in this scenario. Without time or frequency
hopping, the channel variations from one block to the next are
dictated by the long-term variations in the scattering environ-
ment. If we assume that the variations in average channel power
are compensated for by other means such as power control, it
is reasonable to model the variation from block to block as sta-
tionary and ergodic.
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Remark 1: The block-stationary model does not imply
that the fading process is stationary on a symbol-by-symbol
basis as in the analysis of [3], [6]. But as explained in [8],
the symbol-by-symbol stationary model is not realistic for
time intervals that are larger than the time it takes for the
mobile to traverse a distance that is of the order of a few
carrier wavelengths. This is because the number of paths
joining the transmitter and receiver, their strengths, and their
relative delays can all change significantly for movements of
the order of a few wavelengths. For this reason, it may be
more accurate to model the fading process using a block-fading
model with possible correlation across blocks than it is to
model it as a symbol-by-symbol stationary process. From the
viewpoint of analysis, the block-stationary model generalizes
all previously considered models discussed above and therefore
so do the capacity results for this model. More importantly,
the block-stationary model provides us with a framework to
study the interplay between many aspects of fading channels
which are not captured in the symbol-by-symbol stationary and
block-independent models, and allows us to identify the prop-
erties that are shared by the different models and the properties
that are model dependent.

The channel capacity for the block-stationary model was only
studied in [8] under certain constraints on the correlation struc-
ture across blocks, which essentially disallow rank deficiency
over the large time scale. In this paper, we conduct a more com-
plete study of the capacity for this channel model.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the notation used in the paper and the system
model. In Section III, we establish single-letter upper and lower
bounds on channel capacity, and use these bounds to analyze
the asymptotic capacity in the high-SNR regime. In Section IV,
we discuss the robustness of the asymptotic capacity results,
and the interplay between the codeword length, communication
rate, and decoding error probability. In Section V, we adapt the
formula of Verdú for capacity per unit cost [9] to our channel
model, and use it to derive an expression for the capacity per
unit energy in the presence of a peak power constraint. We sum-
marize our results in Section VI.

II. NOTATION AND SYSTEM MODEL

A. Notation

The following notation is used in paper. For deterministic ob-
jects, upper case letters denote matrices, lower case letters de-
note scalars, and underlined lower case letters denote vectors.
Random objects are identified by corresponding boldfaced let-
ters. For example, denotes a random matrix, denotes the
realization of , denotes a random vector, and denotes a
random scalar. For simplicity, sometimes we also use to de-
note the random vector . Although upper case

letters are typically used for matrices, there are some exceptions,
and these exceptions are noted explicitly in the paper. The op-
erators , , , , and denote determinant, trace, conju-
gate, transpose, and conjugate transpose, respectively. For pos-
itive integer , the identity matrix is denoted by ,
and for random vectors and ,
is denoted by . Here is the expectation operation and

denotes the conditional expectation of given . All log-
arithms in this paper are to the natural base.

B. System Model

We consider a discrete-time channel whose time- complex-
valued output is given by

(1)

where is the input at time with peak power con-
straint , models the fading process, and
models additive noise. We assume that the processes and

are independent and have a joint distribution that does not
depend on the input . We assume that is a sequence
of i.i.d. random variables with , where we use
the notation to indicate that has a zero-mean
unit-variance circularly symmetric complex-Gaussian distribu-
tion. We assume that the fading process is a block-sta-
tionary process with and block length , i.e.,

is a vector-valued sta-
tionary process. Furthermore, we assume that is an er-
godic process with a matrix spectral density function ,

. Specifically

where . Since , , it is
not difficult to check that is Hermitian, i.e.,

. Moreover, we have , i.e.,
is a positive semi-definite matrix.

There is an interesting relation between the matrix spectral
density function and the asymptotic prediction error. Specifi-
cally, for the block stationary process , define
the following prediction error covariance matrices shown at the
bottom of the page. Then and are related to the
matrix spectral density function of as [10]

(2)

(3)
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III. ASYMPTOTIC CAPACITY AT HIGH SNR

We denote the capacity with peak power constraint by
. For any and , let

Let be the set of probability distributions on
. Since the channel is block-wise stationary and

ergodic, a coding theorem exists [11], [12] and we have

A. Lower Bound and Upper Bound

To derive a lower bound on for the channel model
given in (1), we adopt the interleaved decision-oriented training
scheme proposed in [13] with some modifications. This scheme
can also be viewed as a way of interpreting the computations in
[3, Sec. IV-E].

Let be a probability distribution on with
. Construct the codebook

with subcodebooks , where codebook
contains codewords of length gen-

erated independently symbol by symbol using distribution .
Assume that is a multiple of the block length , i.e.,
for some positive integer . Now we multiplex (or interleave)
these codebooks. Specifically, codebook
is used at time instants . For
codebook , its codeword can be successfully decoded if

for sufficiently large . Furthermore, using the facts that
are i.i.d. and that the channel is stationary over

time instants , we get

(4)

This is to be expected since a channel with memory has a higher
reliable communication rate than the memoryless channel with
the same marginal transition probability. Thus, reliable com-
munication at rate is possible for subcode-
book . After is successfully decoded, the re-
ceiver can use these values as well as to estimate

. Specifically, is used to estimate
, . To facilitate the calculation, we as-

sume 2 that is used to estimate by
forming the minimum mean-square error (MMSE ) estimate

The receiver decodes the codeword in codebook using

as side information.

Successful decoding is possible if

Similar to (4), we can use the following lower bound to show
that reliable communication at rate

is possible for subcodebook

By applying this procedure successively, we can conclude that
for codebook , reliable communication is possible at rate

2This assumption can be justified by the following argument. The receiver first
generates a sequence of i.i.d. circularly symmetric complex Gaussian random
variables fnnn g (with nnn � CN (0; 1)) that are independent of
everything else. Since jxxx j 2 [x ; ], the receiver can construct
hhh + zzz using (xxx ; yyy ;nnn ), where

zzz =
x

xxx
zzz + x

1

x
�

1

jxxx j
nnn ;

j = 0; 1; . . . ; n� 1:

It can be verified that the estimation based on hhh + zzz is equiv-

alent to that based on hhh + zzz , j = 0; 1; . . . ; n� 1.
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Thus, using this interleaved decision-oriented training scheme,
we can have reliable communication at an overall rate of

We show in Appendix I that

is a monotone increasing sequence with the limit shown in the
first equation at the bottom of the page. Now we let go to
infinity (i.e., we let since is fixed), and we obtain
the second equation at the bottom of the page. This yields the
single-letter lower bound

(5)

where all have the same distribution , which
is to be optimized later.

Remark 2: Although channel estimation and communica-
tion are intertwined in this interleaved decision-oriented training
scheme, the effect of channel memory is isolated from channel
coding through interleaving. This is because when is large
enough, are roughly indepen-
dent. Thus, the codeword in codebook , which is transmitted

over time instants , essen-
tially experiences a memoryless channel. This also suggests that
as goes to infinity, the single-letter lower bound (5) provides
a correct estimate of the rate supported by this interleaved de-
cision-oriented training scheme. We can see that the channel
memory manifests itself in the lower bound (5) only through

Furthermore, in (5), we can write as the sum of two indepen-
dent random variables: the coherent fading component

which is known to the receiver, and the noncoherent fading
component

which is unknown. Isolating the effect of channel memory
facilitates the channel code design: we only need to design
channel codes for memoryless fading channels with different
coherent and noncoherent components, instead of designing
different codes for channels with different memory structures.

To derive a single-letter upper bound on , we follow
the approach in [6]. The capacity is given by

By the chain rule
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We can upper-bound as shown at the bottom of
the page. Since

is a sufficient statistic for estimating from

it follows that

Note that by the block stationarity of the fading process,

depends on only through . Therefore, we obtain
the single-letter upper bound

(8)

B. Asymptotic Analysis

Now we proceed to show that the lower bound (5) and upper
bound (8) together characterize the asymptotic behavior of

in the high-SNR regime.

Lemma 1: For every , let be an
symmetric positive semidefinite matrix. We have

where is the Lebesgue measure of the set
.

For the special case where for all and
, we get

Proof: See Appendix II.

Lemma 2 ([6, Sec. IV]): If is uniformly distributed over the

set , ,

, ; and , , , are all
independent, then

(9)

where is the Euler constant.

(6)

(7)
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Theorem 1: For the block-stationary Gaussian fading channel
model given in (1)

(10)

Remark 3: The second equality in (10) follows from (2) and
Lemma 1.

Proof: Below we provide an intuitive explanation of this
theorem based on the lower bound (5). The details of the proof
are left to Appendix III.

In the lower bound (5), let be uniformly distributed over
the set , and write as

where

Suppose , . We can then
write as , where with

. By viewing as the output of a coherent
fading channel with the fading , which is known at the re-
ceiver, and noise , we get

Thus, the lower bound (5) can be approximated by

We then complete the proof by showing that is re-
lated to the matrix spectral density function through the
equation

Theorem 1 generalizes many previous results on the nonco-
herent capacity for Gaussian channels in the high-SNR regime
as we illustrate in Section III-C.

C. Previous Results as Special Cases of Theorem 1

Example 1: Constant Fading Within Block: For the special
case where the fading remains constant within a block, i.e.,

, for all , all the en-
tries of , for any fixed , are identical. This implies that, for
any fixed , all the entries of are identical, which we

shall denote by . It is easy to see that is essentially
the spectral density function of . The rank of is

if , and is if . We therefore have

When , we recover the result in [6] that

(11)

which illustrates the effect of large time scale correlation of the
fading process on the pre-log term of the channel capacity in the
high-SNR regime. When the fading is independent from block
to block, we have , and thus recover the
result in [1], [2] that

which illustrates the effect of short time scale correlation of the
fading process on the pre-log term of the capacity at high SNR.

Example 2: Time-Selectivity Within Block: In this example,
we recover the main result in [8] concerning the case where rank
deficiency is caused purely by the correlation within a block. If

, then3

(12)

To prove (12), we first note the equation at the top of the
following page, where denotes positive semidefinite ordering:

means that is a positive semidefinite matrix. We
therefore have the bound

By Lemma 1

which implies that

3The condition rank(�(1)) = rank(R(0)) is satisfied, for instance, when
the fading process is independent from block to block.
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Therefore, by Theorem 1

It is worth noting that in this case the pre-log term of
the capacity can be achieved by a scheme simpler than the
aforementioned interleaved decision-oriented training scheme.
Suppose the rank of is , so that has
positive-definite principal submatrix. Without loss of gen-
erality, suppose this submatrix is the covariance matrix of

. Then can be represented as a linear
combination of for any and

. The simpler scheme is described
as follows.

The transmitter sends deterministic training symbols with
maximum power at time instants ,
i.e.,

where . The receiver can form the MMSE
estimates

for and . Clearly, we
have

With the side information

at the receiver, we can communicate reliably at time instants
with rate at least

Let be uniformly distributed over the set

By Lemma 2

Therefore, the overall rate is lower-bounded by

and the pre-log term is achieved. This scheme has the following
obvious advantages over the interleaved decision-oriented
training scheme: i) channel estimation and communication
are completely decoupled; and ii) channel estimation is done
locally since the estimate

only depends .

D. Regular Block-Stationary Process

The following theorem generalizes [3, Corollary 4.42] for
regular Gaussian fading processes to the block-stationary case.
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Theorem 2: If , then

(13)

Remark 4: The second equality in (13) follows from (3).

Proof: See Appendix IV.

Example 3: Gauss–Markov Process: Suppose is
a Gauss–Markov process with if

, and otherwise. Here , are complex numbers with
. In this case, we have

Therefore, by Theorem 2

If and , then it follows from (12) that

Therefore, a small perturbation of a parameter in the channel
model can dramatically affect the asymptotic capacity. How-
ever, this phenomenon needs to be interpreted with great
caution. It should be noted that the sensitivity of the capacity
asymptotics to the channel modeling does not imply the sensi-
tivity of the channel capacity at a fixed SNR level. Intuitively,
if the parameter perturbation is small enough, its effect on the
channel capacity at a fixed SNR level should be negligible. In
the above example, if varies from to (where is a
small positive number), it is natural to expect that the channel
capacity only changes slightly over a wide range of SNR, and
that a significant difference only appears at sufficiently high
SNR.

IV. SYMBOL-BY-SYMBOL STATIONARY FADING MODEL

For simplicity, we assume in this section that the fading
process is symbol-by-symbol stationary, i.e., . In this
case, Theorem 1 is specialized to (11).

A. Best and Worst Case Spectral Densities

We can see that two fading processes with spectral density
functions and can induce the same pre-log
term in the high-SNR regime as long as

. But in the nonasymptotic regime, the capaci-
ties of these two channels may behave very differently. So, for
a fixed , it is natural to ask the question: which
spectral density function gives the largest (or smallest)
channel capacity at a given ? This question is difficult
to answer since we do not have a closed-form expression for
noncoherent channel capacity. We therefore turn to the lower
bound (5) to formulate a closely related problem.

When , the lower bound (5) can be reduced to

(14)

We can see that the lower bound (14) depends on only
through

Furthermore, if we fix the input distribution , then it follows
from Proposition 2 in Appendix I that

implies the equation at the bottom of the page . We can therefore
ask which yields the largest (or smallest) value for

More precisely, since
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we can formulate the problem in the following form:

(15)

subject to

where . Due to the strict concavity of , it is easy
to show that the maximizers of the optimization problem (15)
are the set of spectral density functions with the property

This solution has the following interpretation. Without con-
straints on the spectral density function, the worst fading
process is the i.i.d. Gaussian process whose spectral density
function is flat. With the constraint , the
spectral density function cannot be completely flat,
but the worst fading process should have a spectral density
function that is as flat as possible, i.e., the correlation in the
time domain should be the weakest possible. Note that the
solution does not depend on . We can use this fact to derive
a universal lower bound on for the class of spectral
density functions , which has
further implications for the high-SNR asymptotic behavior of

. Let be a maximizer of (15). We have

For any spectral density function with
, we get (16) at the bottom of the page ,where is

distributed over the set ,
, ,

, and are all independent. We can
further optimize over to tighten the lower bound (16).

Minimizers of (15) do not exist. Consider the following set
spectral density functions given by

,

where with

.

We can compute

Note that

Therefore, as goes to infinity, ap-
proaches the lower bound that is not attainable by any spectral
density function. Intuitively, the fading process associated with

becomes more and more deterministic as gets larger,
and it can be verified that

This result has interesting implications for the channel capacity.

Proposition 1: For any ,

Proof: See Appendix V.

Remark 5: Although by Theorem 1, for any fixed , the
ratio between and converges to ,
Proposition 1 says that the convergence is not uniform with
respect to . This is intuitively clear because when is large,
we have for . Therefore, it can
be expected that for a large range of SNR, the channel capacity

behaves like , which could
be significantly larger than . For the extreme case
where , by Theorem 2 (also see [3, Corollary 4.42]), for
any fixed , the capacity grows like
at high SNR. But Proposition 1 implies that even in this extreme
case, the capacity for some can grow linearly
with for a large range of SNR. This is consistent with
the result in [13] where it was shown that for the Gauss–Markov

(16)
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process with , the capacity grows like
for a wide range of SNR levels if is close to . An

intuitive explanation for this behavior is that if is close to ,
the spectrum

is approximately zero for all values of except those around
zero, and we can expect from (11) that should grow
like for a wide range of SNR. But it should be noted
that as opposed to a Gauss–Markov process, a general Gaussian
stationary process cannot be characterized by a single param-
eter, and the behavior of can be more complicated as
shown in the following example.

Example 4: Consider the spectral density function

where , , and
(Note: For two positive numbers and , means is
much greater than ). We show in Appendix VI that is
approximately equal to for , and gradu-
ally decreases to as approaches . By Theorem 2 (also
see [3, Corollary 4.42]), eventually grows like

and consequently converges to .

This example shows that can be highly SNR depen-
dent. For a regular Gaussian fading process, the noncoherent ca-
pacity can be approximated by in the high-SNR
limit, where the constant is termed the fading number [3].
However, in order for this approximation to be accurate, one
needs to be at least comparable with the fading
number, which may require large values of SNR if the fading
number is large. The behavior of at moderate SNR
levels (more precisely, in the regime where is not
significantly larger than the fading number) may be highly de-
pendent on the spectral density function. A related and detailed
discussion can also be found in [4, Sec. III-B].

Overall, these examples suggest that great caution should
be exercised when using the asymptotic results in Theorems 1
and 2 to approximate the channel capacity at a finite
SNR level. The analysis of these examples also indicates that
more information about the channel capacity is contained in the
noisy prediction error than in the capacity asymptotics.

Therefore, as also suggested in [14], it is important to study the
noisy prediction error to better understand the moderate SNR
regime.

B. Finite Codeword-Length Behavior

In the capacity analysis, it is assumed that the codeword is of
infinite length. But when the length of codewords is finite, the
behavior of the communication rate as a function of SNR can be
quite different. By Fano’s inequality, the communication rate
is upper-bounded by

where is the codeword length and is the decoding error
probability. Suppose we fix and , and let go to infinity.
For a symbol-by-symbol stationary Gaussian fading process,
even if , the correlation matrix of the
fading process over any finite block length can still be full-rank.
Note that is upper-bounded by the capacity of a
block-independent Gaussian fading channel with the correlation
matrix of each block given by . Since
is full-rank, it follows from Theorem 2 that , and
hence, , grows at most like as goes to in-
finity. Therefore, there is no nontrivial tradeoff between diver-
sity and multiplexing in the sense of [15]. If we want to grow
linearly with while having the decoding error proba-
bility bounded away from , the codeword length must
scale with . It is of interest to determine how fast the code-
word should scale with in order to guarantee that the rate

can grow as with the decoding error probability not
approaching . More precisely, letting the rate , code-
word length , and decoding error probability
all depend on , we wish to determine conditions on
that guarantee the existence of a sequence of codebooks (in-
dexed by ) with rate and codeword length
such that

and

where and .
Now we proceed to derive a necessary condition on the

growth rate of . It follows from the chain rule that

By (6), we can upper-bound as
shown in the equation at the bottom of the page. Since

, and the equation
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at the top of the page, we get, by Fano’s inequality and the
condition the first equation at
the bottom of the page. Therefore, in order for

we must have have (17), also at the bottom of the page. Since

is a monotone increasing function of , it is easy to see that (17)
implicitly provides us with a lower bound on the scaling rate of

.
In order to derive an explicit lower bound on the scaling rate

of , we need to introduce a concept called transfinite
diameter [16].

Definition 1: Let be a compact set in the plane. Set

and

The transfinite diameter of is defined by

We need the following facts regarding the transfinite diam-
eter.

i) For two compact sets and with , we have
.

ii) The diameter of the unit circle is . More generally, the
diameter of an arc of central angle on the unit circle is

.
iii) The transfinite diameter of any closed proper subset of the

unit circle is less than .
A full discussion of the transfinite diameter can be found in [16].

Now return to the original problem. Since

(17)
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we have the equation at the bottom of the page. Let
. It was shown in [17] that if the set consists of a

finite number of arcs of the unit circle, then

Under the conditions
a) the set consists of a finite number of arcs of the unit

circle;
b) the set is a closed proper subset of the unit circle;

it can be shown by using Facts i)–iii) that

Therefore, under Conditions a) and b), we have

(18)

It is clear that in order to guarantee that (18) is greater than or
equal to , we must have

which is a necessary condition on the scaling rate of .
In contrast to this result, we show in Appendices VII and VIII

that for the additive white Gaussian noise (AWGN) channel and
memoryless coherent Rayleigh-fading channel, it is possible to
have the rate grow linearly with with fixed
codeword length and bounded decoding error probability at
high SNR. For these two cases, to facilitate the calculation, we
adopt the average power constraint. But our main conclusion
holds also under the peak power constraint.

It can be seen from (2) and (3) that and
are invariant under a reordering of the set of har-

monics . In view of Theorems 1 and 2, this invariance
property is inherited by the capacity asymptotics. In fact, many
existing nonasymptotic capacity bounds depend on the spectral
density function only through or ,
and consequently possess the same invariance property. In
contrast, the transfinite diameter can be affected by a
reordering of the set of harmonics. Therefore, more informa-
tion about the spectral density function is reflected in the finite
codeword-length setting than in the capacity results.

V. CAPACITY PER UNIT ENERGY

In the preceding sections, we focused on the channel capacity
in the high-SNR regime. Now we proceed to characterize the
behavior of channel capacity in the low average power regime
for the block-stationary Gaussian fading channel model. To
this end, we shall study the capacity per unit energy (which
is denoted by ) due to its intrinsic connection with
the channel capacity in this regime. The following theorem
provides a general expression for the capacity per unit energy.

Theorem 3 ([9], [18]):

Furthermore, the capacity per unit energy is related to the ca-
pacity by

where is the channel capacity with average power
constraint and peak power constraint .

The following theorem is an extension of [18, Proposi-
tion 3.1] for the symbol–symbol stationary channel model to
the block-stationary model.

Theorem 4: For the block-stationary Gaussian fading channel
model given in (1)

where

and is an principal minor of with
the indices of columns and rows specified by .

Proof: The proof is omitted since it is almost identical to
that for the symbol-by-symbol stationary fading channel [18].
The only difference is that although the capacity per unit en-
ergy of the block-stationary fading channel can be asymptoti-
cally achieved by temporal ON–OFF signaling, we have to deter-
mine how to allocate the ON symbols in a block. It can be shown
that the optimal allocation scheme is given by , which is
the minimizer of . Here might not
be unique.

We note that is a monotonically increasing function
of . It is easy to see that goes to as ,
and goes to as . The following result provides a more
precise characterization of the convergence behavior.
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Corollary 1: At high SNR, we get (19) at the bottom of the
page. At low SNR, if

then

(20)

Proof: By Lemma 1, at high

Therefore, we get the second equation at the bottom of the page.
At low SNR, using the second-order approximation [19], we
obtain

Therefore, we have the third equation at the bottom of the page,
where the last equality follows from the fact that

Remark 6: Using the inequality4

we can upper-bound by

It can be seen from Corollary 1 that this upper bound is a good
approximation of in the low-SNR regime.

Now we proceed to compute in the following
examples.

Example 5: When the channel changes independently from
block to block, is equal to

where is an principal minor of with
the indices of columns and rows specified by . If we further

4This equality can be proved by applying the eigenvalue decomposition to
S (e ) and then using the inequality log(1 + x) � x � x .

(19)
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let the fading remain constant within a block, then all the entries
of are one. It is not difficult to show that

which is minimized when , i.e., .
So we have

as shown in [18].

Example 6: Consider the case in which the fading process
satisfies the following conditions:

1) all the off-diagonal entries of are equal to , where
is a constant;

2) all the entries of are equal to for any nonzero in-
teger , where is a constant that depends only on .

We also know that the diagonal entries of are all one. So
for any fixed , all the diagonal entries of

are identical, and all the off-diagonal entries
of are identical. It then follows from Szasz’s
inequality [20] that for any

is minimized when . In this case, we there-
fore have

If the fading remains constant within a block, then for any
fixed , all the entries of are identical, which we shall
denote by . It can be shown that

which yields

(21)
We can see from (21) that is a monotonically in-
creasing function of and . Intuitively, as is increased,
the receiver can estimate the channel more accurately, and thus
the capacity per unit energy of the noncoherent channel should
converge to that of the coherent channel, which is equal to one.
As goes to infinity, should also converge to one
since flash signaling can be used if there is no peak power con-
straint (i.e., ) [21]. Moreover, (21) provides a precise
characterization of the interplay between the coherence time and

signal peakiness, stating that the capacity per unit energy is un-
affected as long as the product of and is fixed. See [22],
[23] for a related discussion.

For the special case, where the fading is a block Gauss–
Markov process, i.e., all the entries of are equal to if

, and equal to if , for some , with
, we have

where

and

with . The function is
analytic and nonzero in a neighborhood of the unit disk. Thus,
by Jensen’s formula

from which we can recover [18, Corollary 4.1] by setting .
Finding the optimal is a difficult problem in general.

Moreover, as shown in the following example, the optimal
may depend on the SNR level.

Example 7: Let the fading process be independent from block
to block with

where .

The following is shown in Appendix IX.
1) When , the optimal is , and

2) When , we get the equation at the bottom of
the page.

3) When , the optimal is , and

or

and

.
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It can be verified that this result is consistent with the asymp-
totic analysis in Corollary 1. Since for any

, it is easy to see that

is minimized at if , and minimized at
if . Therefore, by (19), the optimal

at high SNR should be if , and should be
if . Since

it follows that is maximized at if
, and maximized at if . Therefore,

by (20), the optimal at low SNR should be if ,
and should be if .

Intuitively, if is close to , we can approximate by the
all-one matrix, and then it follows from Example 5 that the op-
timal is . The approximation breaks down at high
SNR since Corollary 1 implies that the optimal should be

as .

VI. CONCLUSION

We conducted a detailed study of the block-stationary
Gaussian fading channel model introduced in [8]. We derived
single-letter upper and lower bounds on channel capacity, and
used these bounds to characterize the asymptotic behavior
of channel capacity. Specifically, we computed the asymp-
totic ratio between the noncoherent channel capacity and the
logarithm of the SNR in the high-SNR regime. This result
generalizes many previous results on noncoherent capacity.
We showed that the behavior of the channel capacity depends
critically on channel modeling. We also derived an expression
for the capacity per unit energy for the block-stationary fading
model. It is clearly of interest to generalize these results to the
multiple-antenna scenario [2], [5], but such an extension seems
technically nontrivial.

Another direction that we explored was the interplay between
the codeword length, SNR level, and decoding error probability.
We showed that for noncoherent symbol-by-symbol stationary
fading channels, the codeword length must scale with SNR in
order to guarantee that the communication rate can grow linearly
with with decoding error probability bounded away
from one, and we found a necessary condition for the growth
rate of the codeword length. We believe that a more complete
characterization of the interplay between the codeword length,

SNR level, and decoding error probability would be of theoret-
ical significance and practical value.

APPENDIX I
PROOF OF MONOTONICITY

Proposition 2: Let , , and be independent
random variables. Suppose , and
are jointly Gaussian, . If , then

Proof: If , then we can construct a
zero-mean Gaussian random variable independent of every-
thing else such that have the same
joint distribution as . Now we have

where the first and third equalities follow from the fact that
and ) are just scaled versions of and
, respectively. To complete the proof, we note that the

data processing theorem implies

Now we proceed to prove the monotonicity. By the block
stationarity of the fading process, we have

(22)

It follows by Proposition 2 that for any

(23)

Equations (22) and (23) together imply that

is a monotone increasing sequence.
For every
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we can construct a random variable indepen-
dent of everything else such that

in distribution. Clearly, as . Moreover, it is easy
to see that

(24)

Combining (22) and (24), we get

Note that

By [3, Lemma 6.11], we get

Since conditioned on

are jointly Gaussian with uniformly bounded differential en-
tropy for any realization of (note: ), it follows
by the dominated convergence theorem that

Therefore

APPENDIX II
PROOF OF LEMMA 1

By eigenvalue decomposition, we write

and

where is a unitary matrix, and is a diagonal ma-
trix with nonnegative diagonal entries. Since

, define

We have

For (possibly after permutating diagonal entries), we can
write , where

, . Therefore
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where is the Lebesgue measure of . By
the argument in [6, Sec. VIII], it can be shown that

So we have

APPENDIX III
PROOF OF THEOREM 1

Define

In the lower bound (5), let be uniformly distributed over the
set . By Lemma 2

Since , it follows that

Let

where is a lower triangular matrix with unit diagonal
entries, and

We have

(25)

Therefore

(26)

We use (8) to derive an upper bound on . First it is
easy to see the inequality in (27), shown at the bottom of the
page. Note that is the capacity of the
memoryless noncoherent Rayleigh-fading channel (see [3, eq.
(141)] for a nonasymptotic upper bound), and we have

(28)

Now we proceed to upper-bound the first term in (27) as in (29)
at the top of the following page. Therefore, we get (30), also
at the top of the following page. The desired result follows by
combining (26) and (30).

APPENDIX IV
PROOF OF THEOREM 2

Define

(27)
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(29)

(30)

Similar to (25), we have

Therefore, implies for all .
Note that if for some , then it follows from

Proposition 2 that

In the lower bound (5), let be uniformly distributed
over the interval . As grows sub-
linearly in to infinity, we get the first equation at the
bottom of the page, where the last equality follows from [3,
Proposition 4.23]. Therefore, we get (31), also at the bottom of
the page. Since (31) holds for arbitrary positive , it follows that

(32)

(31)
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From the upper bound (8), we have (33) at the bottom of the
page, where (33) follows from the fact that

form a Markov chain.
It was shown in [3, Corollary 4.19] that

Furthermore

(34)

where (34) follows from the fact that
form a Markov chain. Therefore, we get

(35)

The desired result follows by combining (32) and (35).

APPENDIX V
PROOF OF PROPOSITION 1

At high SNR, we have the second equation at the bottom of
the page, and thus

(36)

where , , and

In the lower bound (14), let be uniformly distributed over
the set . By Lemma 2 and (36),
we get the third equation at the bottom of the page.

By specializing the upper bound (8) to the case where
and then invoking (27), (28), (29), and (36) we obtain the

equation at the top of the following page. The proof is complete.

(33)
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APPENDIX VI
EXAMPLE 4

In the lower bound (14), let be uniformly distributed over
the set . By Lemma 2, we get
(37) at the bottom of the page, where

(38)

By specializing the upper bound (8) to the case where
and then invoking (27), (28), and (29), we obtain (39), also at
the bottom of the page, where

It follows from (37) and (39) that at high SNR, can
be lower-bounded by

minus a constant term, and upper-bounded by

plus a term that is negligible compared with .
In view of (38) and the fact that , we have,

for , (40), shown at the top of the following
page, and for

(41)

Similarly, we have, for , (42), also at the top
of the following page, and , in (43)
also at the top of the following page.

(37)

(39)
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(40)

(42)

(43)

In view of (40), (41), (42), and (43), we can conclude that
is approximately equal to for ,

and is approximately equal to for
.

APPENDIX VII
AWGN CHANNEL

By the random coding bound [24], we have

where is defined in (44) at the bottom of the page, if

and

(44)
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(45)

if

Let , where . By (44), we
get the first equation at the bottom of the page. For any ,
we can find an such that

Therefore, for any , there exist a sequence of codebooks
with rate and fixed codeword length such that

and .

APPENDIX VIII
COHERENT RAYLEIGH-FADING CHANNEL

It was shown in [25] that

where .

Choosing and ,
we get the second equation at the bottom of the page, which is
positive if .

Therefore, for any , we can find a sequence of code-
books with rate and fixed codeword length such that

and .

APPENDIX IX
EXAMPLE 7

We can compute
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It can be verified that

So the optimal is either or . Setting
yields

which, after some algebraic manipulation, is equivalent to

The above equation has two solutions

can be discarded since it is always negative. is pos-
itive for . When , it can be verified
that if ,
and if .
When , is nonpositive. In this case, we have

for all .
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