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Abstract—The focus of this paper is on spatial precoding in cor-
related multiantenna channels where the number of data-streams
is adapted independent of the number of transmit antennas.
Towards the goal of a low-complexity implementation, a statistical
semiunitary precoder is studied where the precoder matrix evolves
fairly slowly with respect to the channel evolution. While prior
work on statistical precoding has focussed on information-the-
oretic limits, most of these computations result in complicated
functional dependencies of the mutual information with the
channel statistics that do not explicitly reveal the impact of sta-
tistics on performance. In contrast, estimates that are directly in
terms of the channel statistics are obtained here for the relative
mutual information loss of a semiunitary precoder with respect
to a perfect channel information benchmark. Based on these
estimates, matching metrics are developed that capture the degree
of matching of a channel to the precoder structure continuously
and allow ordering two matrix channels in terms of their mutual
information performance. While these metrics are based on
bounds, numerical studies are used to show that the proposed
metrics capture the performance tradeoffs accurately. The main
conclusion of this work is a simple-to-state fundamental principle
in the context of signaling design for single-user MIMO systems:
the best channel for the statistical precoder is the channel that is
matched to it.

Index Terms—Adaptive coding, correlated channels, low-com-
plexity signaling, MIMO systems, multimode signaling, semiuni-
tary precoding, spatial precoding.

1. INTRODUCTION

ULTIPLE antenna communications has received signif-
M icant attention over the last decade as a mechanism to in-
crease the rate of information transfer, or the reliability of signal
reception, or a combination of the two. The focus of this work is
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on point-to-point spatial precoding systems where the number
of independent data-streams is constrained to be a subset, M,
of the transmit dimension NV;. Initial works on precoding study
optimal signaling strategies when perfect channel state infor-
mation (CSI) is available at the transmitter and the receiver.
These studies show that a channel diagonalizing input that cor-
responds to exciting the dominant M -dimensional eigen-space
of the channel, with a power allocation that can be computed via
waterfilling, is robust under different design metrics [1]-[10].

Although perfect CSI provides a benchmark on the perfor-
mance, it is difficult to obtain in practice. More importantly, the
system performance is not robust under CSI uncertainty. Small
perturbations in the channel entries could result in large pertur-
bations in a singular vector of the channel if the discernibility
of the corresponding singular value diminishes. Furthermore,
even if perfect CSI is available, tight constraints on complexity
as well as energy consumption [11]-[14, Ch. 5] at the RF level
in the mobile ends may disallow the implementation of optimal
solutions in practice. This is because Third Generation wireless
systems and beyond are expected to be multicarrier in nature and
the burden of computing the optimal input is magnified by the
number of subcarriers and the rate of evolution of the channel re-
alizations. Besides this, the structure of the input could change,
often dramatically, at the rate of evolution of the channel realiza-
tions, which also makes it difficult to implement. These reasons
suggest that a slower rate of adaptation of the input signals, that
is of low complexity and is more robust to CSI uncertainty, is
preferred in practice.

In realistic wireless systems, where the channels are spatio-
temporally correlated, the slow rate of statistical evolution im-
plies that it is reasonable to assume perfect statistical knowledge
of the channel at the transmitter. Since the spatial statistics ex-
perienced by the individual subcarriers are identical [15], [16],
the burden of computing the optimal input with only the sta-
tistical information at the transmitter is equivalent to that of a
narrowband system. Even in this setting, optimal precoding has
been studied for different spatial correlation models [16]-[27].
These works show that the eigen-directions of the optimal input
covariance matrix correspond to a set of the M -dominant eigen-
vectors of the transmit covariance matrix and are hence, easily
adaptable to change in statistics. However, computing the power
allocation across the M modes requires Monte Carlo averaging
or gradient descent-type iterative approaches [22]-[25]. While
the computational complexity of the power allocation algorithm
may be affordable at the base station end, whether it is possible
or not at the mobile end is questionable.

Many of the above works have also leveraged tools from
asymptotic random matrix theory and made significant progress
in characterizing the information-theoretic limits in correlated

0018-9448/$26.00 © 2011 IEEE



RAGHAVAN et al.: SPATIALLY CORRELATED MIMO CHANNELS

MIMO channels. However, most of them rely on the implicit
characterization of the limiting eigenvalue distribution of
random matrices (given by the Stieltjes transformational for-
mula [28], [29]) and obtain fixed-point equations which can
be solved at any fixed SNR to produce asymptotic capacity
formulas; see [22]-[25], [29], [30], and references therein.
While this approach is valid in the antenna asymptotics for any
fixed SNR, insights on the impact of the channel statistics (the
transmit and receive covariance matrices) on capacity is ren-
dered difficult due to the complicated nature of the fixed-point
equations.

With this background in mind, we restrict our theoretical
attention to the mutual information performance of a class of
statistical semiunitary! precoders where the eigen-directions
of the input correspond to the dominant eigenvectors of the
transmit covariance matrix and the power allocation is uniform.
Our focus here is on two questions: 1) can the performance
of a semiunitary precoder be captured as a function of the
channel statistics transparently, in contrast to existing im-
plicit characterizations?, 2) when is the semiunitary precoder
near-optimal with respect to a perfect CSI benchmark and what
is the “gap”? in performance in terms of the system and the
channel parameters?

Towards answering these questions, we use tools from
asymptotic random matrix theory to bound the relative average
loss in mutual information between the perfect CSI and statis-
tical semiunitary precoders. These bounds are transparent and
in terms of the eigenvalues of the transmit and receive covari-
ance matrices. Motivated by these bounds, we introduce the
notion of matching metrics that abstractly capture the degree of
channel-to-precoder matching. On one extreme is a perfectly
matched channel where: 1) the M-dominant eigenvalues of
the transmit covariance matrix are well-conditioned® whereas
the remaining (N; — M) eigenvalues are ill-conditioned away
from the dominant ones, and 2) the receive covariance matrix
is also well-conditioned. On the other extreme is a perfectly
mismatched channel where both the transmit and receive
covariance matrices are ill-conditioned with the additional
constraint that rank(H) > M with probability 1.

Our work establishes the following simple-to-state funda-
mental principle, akin to existing source-channel matching
paradigms, in the context of signaling design for single-user
MIMO systems. While there exists no metric for ordering two
matrices [31], multiantenna channel matrices can be ordered
continuously with respect to their average mutual information
performance with a semiunitary precoder of a fixed rank using
the matching metrics. In particular, the two extreme cases of
channels (as above) correspond to the setting where the mutual
information of the semiunitary precoder is closest and farthest
to the perfect CSI precoder, respectively. While the matching
metrics have been defined based on bounds and these bounds
have only been established under certain special assumptions

IAn N; x M matrix X with M < N is said to be semiunitary if it satisfies
XAX = 1Iy.

2This gap can possibly be bridged with a limited feedback scheme that pro-
vides partial channel information to the transmitter.

3MfA(1) > -+ > A, (M) denote the first M eigenvalues of the transmit
covariance matrix and 1(; i((Al 1)) is (or is not) significantly larger than 1, we loosely
say that these eigenvalues are ill-(or well-)conditioned.
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(antenna asymptotics and high SNR), we provide numerical
studies to show that the matching metrics capture the perfor-
mance tradeoffs accurately for all SNRs and even small antenna
numbers.

Despite the growing importance of statistical (semiunitary)
precoding in wireless standardization efforts, a comprehensive
study of the performance limits of statistical precoding is
lacking in the literature and the channel-to-precoder matching
principle established here provides some intuition on what type
of precoder is best suited to a specific channel statistics.

A. Organization

After elucidating the system model in Section II, we bench-
mark the structure of the optimal precoder with perfect CSI and
only statistical knowledge at the transmitter in Section III. We
also motivate the need to study statistical semiunitary precoding
in this section. In Section IV and the appendices, using tools
from random matrix theory and eigenvector perturbation theory,
we study the asymptotic (in antenna dimensions) performance
of a statistical semiunitary precoder. We discuss the implica-
tions of our results and illustrate them numerically in Section V.
Concluding remarks are provided in Section VI.

B. Notation

The M-dimensional identity matrix is denoted by I»;. The
1, 7-th and ¢-th diagonal entries of a matrix X are denoted by
X(4,7) and X(4), respectively. In more complicated settings
(for example, when the matrix X is represented as a product
or sum of many matrices), the above entries are denoted by X;;
and X, respectively. The complex conjugate, conjugate trans-
pose, and inverse operations are denoted by (-)*, (-)¥,and (-)~!
while the expectation, the trace and the determinant operators
are given by E[], Tr(-) and det(-), respectively. The standard
big-Oh (O) and little-oh (0) notations are used along with the
decreasing ordering for eigenvalues of an n X n Hermitian ma-
trix X: A(X) > -+ > A, (X). The largest and the smallest
eigenvalues are also denoted by Apax (X) and Apin(X), respec-
tively. The notation 2 stands for max(z,0). All logarithms are
to base e unless mentioned otherwise.

II. SYSTEM SETUP

We consider a communication system with N; transmit and
N, receive antennas where M (1 < M < N,) independent
data-streams are used in signaling. That is, the M -dimensional
input vector s is precoded into an NV;-dimensional vector via the
N; X M precoding matrix F' and transmitted over the channel.
With a transmit power constraint of p, the discrete-time base-
band signal model used is

y:,/%HFs-l—n

where y is the N,.-dimensional received vector, H is the IV,. x
N;-dimensional channel matrix, and n is the N,.-dimensional
(zero mean, unit variance) additive white Gaussian noise. The
most general decomposition of the precoder is

ey

F = VgAY *UE )
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where VF is Ny x M semiunitary, Ag is an M x M nonnegative
definite power shaping (allocation) matrix, and Ug is M x M
unitary. Under the assumption that s has i.i.d. components with
zero mean and unit variance, the transmit power constraint is
met with Tr(Ag) < M.

A. Channel Model

In this work, we make the reasonable assumption that the re-
ceiver has perfect CSI. The main emphasis here is on the impact
of transmitter knowledge of statistics of the channel process on
performance. We assume a block fading, narrowband model for
the time-frequency correlation of H and focus on the spatial cor-
relation. It is well-known that Rayleigh fading (zero mean com-
plex Gaussian) is an accurate model for H in a non line-of-sight
setting and hence, the complete spatial statistics are described
by the second-order moments of {H(z, j)}.

The most general, mathematically tractable spatial correla-
tion model is a canonical decomposition* of the channel along
the transmit and receive covariance bases [24], [26], [32]. In this
model, we assume that the auto- and cross-covariance matrices
of all rows of H have the same unitary eigen-basis (denoted
by Uy,;), and the auto- and cross-covariance matrices of all the
columns of H have the same unitary eigen-basis (U,.). Thus, we
can decompose H as

H = U, H;,U; 3)
where Hj,4 has independent, but not necessarily identically dis-
tributed entries. The transmit and receive covariance matrices
are defined as

¥, £ E[HYH] = U,EHEH, JU! = UAUE (4
¥, £ E[HH"] = U, E[H, HZ U = U A U" (5)

where A; = E[Hde;nd] and A, = E[HindHfd] are diagonal.
Note that the eigenvalues of the transmit covariance matrix are

N,
{Zaflﬁk = 17-"7Nt}
i=1

where a,?]- denotes the variance of H;j,4(¢, 7). Given a correlated
channel, we will assume that M < rank(A;) < N;. We will also
assume that the columns of Hj,g are arranged in the decreasing
order of transmit eigenvalues.

Under certain conditions, the model in (3) reduces to some
well-known spatial correlation models such as the i.i.d. model,
the separable correlation [33] and the virtual representation [15],
[23] frameworks. For example, in the separable case, under the
normalization that

(6)

Tr(At) = Tr(Ar) = pc = Nt N,., @)
we can write H;,4 for the normalized channel as
1
H=— %/"Hy%," (8)

VPe

4This model is referred to as the “eigen-beam or beamspace model” in [32]
and is used in capacity analysis in [24].
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e H A U AY?H A PUE )
Pe
1
= Hjg = 'Ai/2HiidA:/2 (10)
Pe

where H;;q is an i.i.d. channel matrix and the correlation of the
channel entries is in the form of a Kronecker product of the
transmit and receive covariance matrices. Even though the sepa-
rable model may be an accurate fit under certain channel condi-
tions, deficiencies acquired by the separability property result in
misleading estimates of system performance [26]. The readers
are referred to [26] and [32] for more details on how the gen-
eral (nonseparable) version of the canonical model fits measured
data better.

B. Receiver Architecture

Under these assumptions, the optimal reception strategy
corresponds to nonlinear maximum likelihood (ML) decoding.
However, the exponential complexity of ML decoding in both
antenna dimensions and coherence length implies that simpler
receiver architectures are preferred. In this work, we assume a
linear minimum mean-squared error (MMSE) receiver. With
this receiver, the symbol corresponding to the k-th data-stream
is recovered by projecting the received signal y on to the N, x 1
vector

—1
L (£HFFHHH + INT) H,

7 an

gk =
where f}, is the k-th column of F'. That is, the recovered symbol
is S(k) = gl'y, and the mean-squared error of this recovery
process, MSEy, is given by
1
MSE, = {(IM n ﬁFHHHHF) } (12)
M k

III. PRELIMINARIES

We first summarize known results on optimal precoder design
in this section before proceeding onto the focus of this paper.

The metric of interest in this work is the mutual information
between the input and output symbols since it captures both the
achievable rate as well as reliability performance under a con-
catenated inner and outer code design [34] (where soft decisions
are allowed at the decoder of the inner code). Under the assump-
tion that the input symbols are Gaussian, the mutual information
at an SNR (of p) is given as

I(s;y) = log det (IM + ﬁFH HY HF) (13)

It can be seen that maximizing the mutual information in (13)
can be formulated as the minimization of a Schur-concave func-
tion: the determinant of the mean-squared error matrix [9].

A. Perfect CSI Case

A unified convex programming framework for precoder op-
timization in the perfect CSI case, summarized in the following
lemma, is proposed in [9] by studying two broad classes of func-
tions: Schur-concave and Schur-convex functions.
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Lemma I: Let f : RM — R be a function such that f(-)
is monotonically increasing in its arguments. That is, let the
univariate function f(...,zg,...) : R — R be monotonically
increasing for all k. If MSE = [MSE; - -- MSE,] and f(-) is
Schur-concave over its domain, then f(MSE) is minimized by
Fperr whose singular value decomposition (SVD) is given as

1/2
Fperf = [Vl T V]\[] . Aperf'

(14)

On the other hand, if f(-) is Schur-convex, f(MSE) is mini-
mized by
1/2 1

Fperf = [Vl - -VM] .Aperf - (15)

for an appropriate choice of unitary matrix I' (see [9] for its
construction). In both cases, the diagonal entries of Apes are
obtained via waterfilling and we assume a SVD for H as

H=UgA{{’VE, Va=[vi---vy,] (16)
and the singular values are arranged in decreasing order. |

Specific instantiations of the above lemma have been studied
in the cases of average mean-squared error of the data-streams
[1]-[4], weighted average of mean-squared error of the data-
streams [5], [6], determinant of the mean-squared error matrix
[7], determinant under a peak-power constraint [8], and bit-error
rate [9], [10].

Lemma 2: Using the ideas of [9] and [31], Lemma 1 can be
straightforwardly extended to the case of perfect CSI semiuni-
tary precoding, where A in (2) is constrained to be Ap = Iy;.
If f(-) is Schur-concave over its domain, then f(MSE) is min-
imized by

Fperf,semi = [Vl ce VJ\VI] . )

On the other hand, if f(-) is Schur-convex, f(MSE) is mini-
mized by

Fperf,semi = [Vl e V]\J] -T (18)

for an appropriate choice of unitary matrix I (same as in the

perfect CSI case). In fact, Lemma 1 can be extended to the case

where Ap is fixed (but is different from I;) by using the notion

of weak super-majorization from [31]. The details are not pro-

vided here. |

B. Statistical Case

Following Lemmas 1 and 2, since the eigen-modes of the op-
timal input are a function of the CSI, performance degradation
with respect to CSI error is directly related to singular vector
perturbations of the channel matrix. While it is true that a small
perturbation in the matrix entries can only lead to a small per-
turbation in the singular values, a small entry-wise perturba-
tion can result in a large perturbation of the singular vectors
depending on the condition number of the true channel matrix
[35, pp. 202-203],[36], [37]. See, for example, [38]-[40, Figs.
6 and 7] etc. that illustrate MIMO settings where losses equiva-
lent to a 25 dB SNR penalty occur due to lack of perfect CSI.

On the other hand, it may not be possible to adapt the precoder
structure to the channel optimally even if perfect CSI is available
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since RF design is often the fundamental bottleneck for realizing
MIMO systems in practice [14, Ch. 5]. This may be because: 1)
the eigenspace of the optimal input could change dramatically
from one channel realization to the next, and/or 2) the efficient
utilization of CSI is constrained by fundamental limits on en-
ergy per bit constraints at the computational or processing level
[11]-[14]. For example, the move towards multicarrier signaling
and the fast rate at which channel realizations evolve leads to
computational limits on how many SVD operations can be af-
forded. These reasons suggest that statistical precoding where
the optimal input is adapted in response to the statistical infor-
mation, which evolves slowly compared with the channel real-
izations, is of importance. In this setting, the following lemma
considers the mutual information maximization problem.

Lemma 3: Let H be described by the statistical model in (3)
with the eigenvalues of ¥, arranged in the decreasing order. Let
H;.4 denote the N,. X M principal submatrix of H;,4. The op-
timal precoder that maximizes the average mutual information
is of the form

Foat = VauALL: (19)
where Vg, is a set of M -dominant eigenvectors of ¥; and Aga

is the unique solution to the following constrained optimization
problem:

Age = arg %162124 Enu [log det (INP + ﬁﬁindAﬁf{d)} (20)

with £ denoting the convex set of all diagonal M x M nonneg-
ative definite matrices A such that Tr(A) < M. |

The optimality of the dominant eigenvectors of ¥; is not
surprising; see [17]-[20], [22]-[25], and references therein for
problems of a similar nature. The optimization in (20) is stan-
dard: maximizing a concave function over a convex set. A gra-
dient descent-type approach for this is provided in [27] and
Monte Carlo approaches are provided in [23] and [24].

C. Statistical Semiunitary Precoder

While Lemma 3 establishes the benchmark in the statistical
case, computational constraints (as in the perfect CSI case) of
Monte Carlo/gradient descent approaches could often make the
computation of Ag,e hard, if not impossible. This motivates
studying a low-complexity alternative of statistical semiunitary
precoding:

Fstat,semi = Vgt (21)
where Vg, corresponds to the optimal choice of eigen-modes
from Lemma 3.

Let Ioers and Igiat semi denote the mutual information (random
variables) achievable with Fef and Fia¢ semi, respectively. The
main goal of this paper is to compare the performance of a statis-
tical semiunitary precoder with respect to its perfect CSI bench-
mark. In particular, we would like to estimate A I, defined as,

Alemi A En [Iperf - Istat,semi]
En [Istat,semi]

(22)
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The reason for considering a normalized quantity in (22) in con-
trast t0 Eq [Iper — Lstar,semi] 18 the following. For any signaling
scheme, the mutual information tends to zero as p — 0 and
tends to infinity as p — oo. Thus, the difference in mutual in-
formation between two schemes can converge to zero as p — 0
at a rate different from that of either scheme, and/or could blow
up to infinity as p — oo. In this setting, a more meaningful
metric would be the relative difference in mutual information
between these schemes.

It is clear that Al is a complicated function of the SNR,
channel statistics and antenna dimensions, and a general closed-
form expression seems hard. To simplify further analysis, we
will assume that the SNR as well as the antenna dimensions are
large. In particular, we will assume that p > a% for some
suitable o > 1. With respect to asymptotics of antenna dimen-
sions, four cases arise based on the correlation structure in (3)
and how antenna dimensions go to infinity: i) separable correla-
tion with A'r — 0 or 0o, ii) nonseparable correlation w1th —

0 or oo, iii) separable correlation with 4= — v € (0, oo) "and
iv) nonseparable correlation with 4= — v € (0, 00). The first

two cases denote the setting of relative antenna asymptotics,
where one antenna dimension increases to infinity relative to
the other. The last two correspond to the case where antenna di-
mensions grow in proportion.

IV. MUTUAL INFORMATION LOSS WITH SEMIUNITARY
PRECODING

The difference Algem; in (22) can be expanded as

EH [Iperf - Iperf,semi]

Ay oA~
AL
EH [Iperf,semi - stat,semi] (23)
EH [Istat,semi]
&;2

where Iperf semi denotes the mutual information achievable with
Fperf semi- Since the argument within the expectation of the nu-
merator of Al is not explicitly dependent on the spatial corre-
lation model, it is straightforward to obtain a bound for A7; in
the high SNR regime.

Proposition 1: Let Ag(M) = Xy (H”H) denote the Mth
largest squared sinTular value of H as in (16). If p is such that

p > alby [% for some o« > 1, A is bounded as

2M
Al < . 24)
! azEH [Istat semi] (E [ 1 2
H | Aa(D)
Proof: See Appendix B. ]

Intuitively, as « and, hence, the SNR increases, the water-
filling power allocation of the perfect CSI scheme converges to
uniform power allocation across the M modes (see [22], [23],
[25], etc.) and thus, AI; decreases. The bound provided in (24)
is not tight since we have not characterized the exact probability
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Pr(ng < M) (in Appendix B) that determines AI;. But the
above bound is sufficient to capture the performance loss with
uniform power allocation. Characterization of Ay, which is ex-
plicitly dependent on the spatial correlation model, is nontrivial.
In the following section, we provide estimates of Al for dif-
ferent correlation models and regimes.

A. Relative Antenna Asymptotics

We start with the simplest case of separable correlation.

Theorem 1: Let the channel H be described by the normal-
ized separable model as in (8)—(10). Let the columns of Hjy be
ordered such that the eigenvalues of A; are in decreasing order.
For any fixed value of p and under the assumption of % — 0,
AI is bounded as

S (A(0)? M
S A) ik log (14 £Ad(0)

where k1 is a constant determined from an application of
Lemma 6 (in Appendix A).

AIQ S K1 - (25)

Proof: See Appendix C. ]

As seen from Appendix C, Aly is a function of only
)\k (AtHiIi-gArHiid) and )\k (AtHﬁArHiid)~ Since )\(AB) =

A(BA), Theorem 1 can be easily modified even when
% — 00. Hence, this case will not be studied in consid-
erable detail. We now consider the nonseparable case with
% — 0.

Theorem 2: Let H be described by the general model in (3)
and let o7; denote the variance of Hing(7, j) with the assumption
that

N,
Zi:l 0-7,2J

N =0(1) forall j=1,...,

M. (26)

There exists a constant xo determined from an application of
Lemma 6 (in Appendix A) such that

AIQ<I‘€2 \[ ZM-‘,—pZo‘
1

Zjle log (1 + 2 Uz'zj) .

27)

The proof of Theorem 2 follows along the approach of
Theorem 1 via the generalized asymptotic eigenvalue char-
acterization in Lemma 6. Observe that Al in both (25) and
(27) converges to zero as SNR increases as m. In terms
of the asymptotic trend as antenna dimensions increase, since
> A(i) = p. = N¢N,, the typical behavior of A, () is
A, (i) = O(NV:), which implies that

Y (A(0)? = O(Ney/Ny)

Eiv:rl(AT(i))Q :(9<
21 An(d)

Ny
W) 28
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which is essentially the same trend as (27).

B. Special Case: Beamforming

‘We now pay attention to the beamforming case (M = 1), the
low-complexity of which makes it an attractive signaling choice
in many wireless standards. While the SNR regime where beam-
forming is capacity-optimal has been established in prior work
[22], [23], [25], [41], the performance gap between statistical
and perfect CSI beamforming is less clear. Using tools from
eigenvector perturbation theory, introduced in [40], we estab-
lish the following result.

First, note that the term AT is redundant in the beamforming
case. Let Iperf and Lo denote the mutual information achiev-
able by beamforming with perfect CSI and statistical informa-
tion alone, respectively. Define the loss term

EH [Iperf - Istat]

Al
bF = EH [Istat]

(29)

The following discussion complements recent work on the per-
formance gap with the separable model [42], that has been es-
tablished by exploiting some recent advances in random ma-
trix theory. Unlike [42] which is based on exact random matrix
theory results and is applicable only for Exp [Iperf — Istat] in the
separable case, we generalize the results to the general canon-
ical modeling framework, but do not consider fine refinement of
constants in the following result for the sake of brevity.

Proposition 2: In the regime where N,  — 0, Al can be
bounded as
N -log(N,.) 1

N, — N; log (14 pN,.)

Alps < Kpf - (30)

where ks is a constant that depends only on the eigenvalues of
¥, and X,..

Proof: See Appendix D. ]

Note that the trend of A, in (30) is similar to that of (25)
and (27) in terms of SNR behavior, whereas in terms of trend
as antenna dimensions increase, we are able to leverage eigen-
vector perturbation theory to obtain a tighter bound, in contrast
with the earlier discussion.

C. Proportional Growth of Antenna Dimensions

We now consider the more complicated asymptotic setting
where {M, N,.} — oo with ]]\‘—,{ — yand v € (0,00).

Theorem 3: Let the channel H be characterized by the nor-
mahzed separable model. Also, let A = Nell= = O(1) and
B = i (M) = O(1). Let Gs,o denote the geometric means of

the statistical eigenvalues, defined as,

M 1/M M
GM7tX é (H Af@)) ) G]\f[,rx é (H AT(’L)>
i=1 i=1

1/M

(3D
Ifp=a- % for some « > 1 and X is defined as
VAB -\AB + 4
X271 +ae (32)

2
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Al is bounded as
log (¢/M) + ks

Al < 33

2= 10g(ﬂ/epc) + log (G]\/[,tx : GZ\er : X) ( )
in{A:(1),A,.(1

k3 = K3 + log (Hgi{t t'(G)]\’j ( ))(}> (34)

where rj is a constant dependent only on the antenna dimen-
sions.

Proof: See Appendix E. ]

In the general case of nonseparable correlation, bounding
AT is difficult due to the lack of a fundamental random matrix
theory of spectral properties of random matrices with indepen-
dent entries. As a result, unlike the earlier cases, we have to
resort to approximations for Als.

Proposition 3: Let the channel be characterized by the non-
separable model with ]]\‘,—{ — yandy € (0,00). Let 6 > 0 be
a constant (appropriately small). Then, the following approxi-
mation to an upper bound of Al holds with high probability
(which converges to 1 as 6 — 0):

AL, <AIY® (35)
log (%°) + 37 iy log (1 + 6(A}[xj(/1i;Nr) 36)
tog (3£ ) + 7 Jog (IT2, Aet))
Proof: See Appendix F. ]
Since
> Ai) ZAt = pe = NiN, (37)
the typical behavior of G'pr+x and Gy 1S
O(Grr) = O(Grr) = O(N}) = O(N,).  (38)
Thus, typically, both (33) and (36) are symmetric with
SNR—o00 1
AL 7 =0 ——— d
2 <log(SN R)) o %9)

Al

{M,N;,N,}—o0 1 _ 1
- O(log(Nt)> =0 <10g(Nr)>' 40

Also, note that while (33) and (36) are asymmetric in the sense
that (33) is a function of G'jr . Whereas (36) is not. This is a
deficiency of the approximation technique in the most general
case and not of the trend exhibited by the tightest bound possible
for AI,.

Comparing the bounds between the relative antenna asymp-
totic and the proportional growth settings, the only difference
is that AI, = O(1/v/N,.) in the former case, whereas Al, =

O(1/log(N,)) in the latter case. This difference arises as a con-
sequence of the fundamental difference in asymptotic spectral
properties in the two cases.

V. DISCUSSION AND NUMERICAL STUDIES

We now use the bounds established in Section IV to develop
a heuristic on the structure of H that is best’ or worst’ for a
given precoding scheme. For this, we freeze A, to be a fixed
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matrix so as to develop an understanding of the structure of A;
that minimizes the bounds to Algem;.

Given that a constraint Zf\il A (i) = p. has to be met, the
common performance loss-minimizing A; (if it exists) is the
solution to the following simultaneous optimization:

M
max {glog (1 + ﬁAt(L)) ,GA“X} , and

M
min {At(l), Zlog (1 + Afét)) } 41

for some §; > 0. The above objectives are equivalent to min-
imizing Al in each of the four cases studied in Section IV.
While these objectives are in general unrelated, as SNR and an-
tenna dimensions increase, the four problems can be incorpo-
rated into the following optimization:

M N,
max [ [ A+(i) subject to Y~ Ay(i) = pe. (42)
=1 =1
The solution to the above problem is
A1) = - = Ay(M) ZPM (43)

On the other extreme, the worst choice of A; that minimizes
Hf\il A, (7) and hence, maximizes the upper bound to A Igey; is
of the form:

A:(1) = p. and Ay(3) = 0,3 > 2, (45)
but with the additional constraint that rank(A;) > M. It is
important to note that the largest gap> is not achieved when
rank(A;) = 1. Motivated by the above discussion, it is worth-
while defining a matching metric for the transmitter side:

M
M, 2 T A), (46)
=1

that captures the closeness of a given channel from the best
and worst channels. While M is defined following Section IV
where bounds to Al are obtained, we hope that as M, in-
creases, the channel becomes more matched on the transmitter
side and the performance loss A I, decreases and vice versa.
Capturing the impact of A,. on performance loss in the general
setting is difficult since A, is hidden in the first-order analysis
of Section IV. Nevertheless, in one special case, (25) suggests
that a matching metric for the receiver side can be defined as

N
A A\ 2
M, = (A-(2)) 47
=1
Note that since Zi\;l A,.(i) = pc, M, is minimized by
Pe
A =-"-1 48
7 Nr N, ( )
SIn fact, if rank(Ai) = 1, the statistical precoder achieves the same

throughput as the optimal precoder.
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and maximized by

A.(1) = p. and A.(7) =0, 3> 2, (49)
but with the added constraint that rank(A,.) > M. It can be seen
that the performance loss is not maximized when rank(A,.) <
M. Asbefore, M,. is defined following bounds to A I, and the
notion of matching has to be understood within this fundamental
constraint.

To summarize the above discussion, we refer to a channel
that is perfectly matched on both the transmitter and the receiver
sides as a perfectly matched channel and this structure is optimal
(as per the bounds established) for the given precoder structure
(fixed choice of M). The structure of this channel is such that:
1) the rank of A; is M with the dominant transmit eigenvalues
being well-conditioned, and 2) A,. is also well-conditioned. A
channel that is ill-conditioned on both the transmit and the re-
ceive sides such that rank(H) > M (with probability 1) is said
to be a perfectly mismatched channel.

An interesting consequence of the study in Theorems 1 and
2 is that channel hardening, that occurs as NN,. increases, results
in the vanishing of Aly,;. That is, statistical information is as
good as perfect CSI in the receive antenna asymptotics. This be-
havior is peculiar of this asymptotic regime, as documented in
the beamforming case [38], [40], [42]. The high SNR charac-
terization for signaling with M spatial modes (p > a% for
some « > 1) has also been identified in prior work [41]. Our
results can also be extended to the case of relative average error
probability enhancement with the semiunitary precoder. How-
ever, these details are not provided here.

A. Numerical Studies

We now illustrate the results established so far via numerical

studies.

* Conservatism of the Bounds: While Section IV has es-
tablished bounds for Ay, under certain assumptions, it
is important to understand as to how conservative these
bounds are and whether they capture the underlying
tradeoffs accurately in the low to medium SNR regime
and with reasonable antenna numbers. Fig. 1 compares
the exact Algmi, obtained via Monte Carlo averaging,
with the bounds in Theorem 1 for the separable case with
Ny = 4, M = 2 and N, = 4,8,16 and 32. We plot
log(Algemi) vs. p and while Fig. 1 shows that the bounds
are loose (due to the lack of tight random matrix theoretic
estimates) especially in the low SNR regime with small
antenna numbers, they get tight in the regime where the
theoretical results have been established. Nevertheless,
the following study addresses the question of whether the
intuition obtained via these bounds is useful in practice or
not.

* Performance Gap as a Function of M;: In contrast to
bounds on Aly;, the focus here is on the performance
gap between the perfect CSI and statistical precoders
with the exact Al,mi. We consider 4 x 4 channels with
M = 2 and freeze U, and U, to some fixed choice in our
study. We also freeze A, to A, = 41, so as to maintain
pe = N¢N, = 16 and to focus on the impact of matching



RAGHAVAN et al.: SPATIALLY CORRELATED MIMO CHANNELS

2 T T i T
L Monte Carlo, N =4

AN - - -Bound, N =4
S —o— Monte Carlo, Nr =8
S —Bound, Nr =8
- —e—Monte Carlo, N =16 |

—s— Bound, Nr =16
—a— Monte Carlo, Nr =32|]
—#— Bound, Nr =32

LCT

Fig. 1. Comparison of Monte Carlo estimates of Al with the bounds es-
tablished in Theorem 1.

on the transmitter side. Note that the matching metric,
My = fc”:l A (k), takes values in the range (0, 64] in
our setting. A family of ~ 1700 channels (each character-
ized uniquely by A:(k), k =1,..., N;) is generated such
that ZkN;1 A(k) = p. = 16 and M, takes values over
its range. The channels become more matched (on the
transmitter side) to the precoder structure as M increases.
While much of our study has been based on asymptotic
random matrix theory, Fig. 2 illustrates that the notion of
matched channels developed here is useful even in prac-
tically relevant regimes like 4 x 4 channels. Fig. 2 shows
that the exact Al decreases as M, increases for three
choices of p. Note that for a given channel as p increases,
Algemi decreases as 1/log(p). It is important to note that
while there exists no ordering relationship between any two
matrix channels [31], when the focus is only on the mutual
information performance, M, (and M,.) are sufficient to
order channels.

* Asymptotic Optimality: The next study illustrates the
asymptotic optimality of statistical precoding. Fig. 3 plots
the exact Al,m; as a function of IV, with N; and M fixed
at Ny = 4 and M = 2. The channels have a separable
correlation structure with A; = I, whereas A, = NiTI N,
which results in p. = 4 for all the channels. As can be
seen from the study in the previous section, channel hard-
ening, where the eigenvectors of H” H converge to the
eigenvectors of £; = F[HTH] as % — 0, ensures that
even statistical information is sufficient for near-perfect
CSI performance as N, increases.

VI. CONCLUDING REMARKS

The main focus of this work is on precoding for spatially
correlated multiantenna channels that are often encountered in
practice. Motivated and inspired by many recent wireless stan-
dardization efforts, we studied the performance of statistical
semiunitary precoding in this paper. Here, the eigen-modes of
the precoder are chosen to be the dominant eigenvectors of the
transmit covariance matrix whereas the power allocation across
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Al
semi
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. .
15 20 25 30 35 40 45 50 55 60
Less Matched « Mt — More Matched

Fig. 2. Gap in mutual information performance between statistical and perfect
CSI semiunitary precoding as a function of the matching metric M.

Al
semi

Fig. 3. Performance loss with the statistical semiunitary precoder for fixed
N, =4, M = 2 as N, increases.

the excited modes is uniform. We analytically characterized the
relative average mutual information loss of the semiunitary pre-
coder using tools from random matrix and eigenvector pertur-
bation theories.

Our results show that given a precoder architecture (that is,
fixed antenna dimensions and precoder rank), the relative dif-
ference metric is minimized by a channel that is matched to
it. A matched channel is one that has: 1) the same number of
dominant transmit eigen-modes as the precoder rank, and 2)
the dominant transmit as well as the receive eigen-modes that
are well-conditioned. Our theoretical study also characterizes
matching metrics that enable the comparison of two channels
with respect to performance loss captured by the relative differ-
ence metric. In particular, as the channel becomes more matched
to the precoder structure and the matching metric changes ac-
cordingly continuously, the performance loss decreases mono-
tonically and vice versa. As a by-product of our computations,
we also showed that the semiunitary precoder is near-optimal
in the relative antenna asymptotic setting for any channel. This
result generalizes previous work [40], [42] on the beamforming
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case (M = 1) where the performance of the statistical beam-
forming scheme has been studied.

While prior works on statistical precoding exist, ours is the
first attempt to transparently characterize the performance in
terms of the channel statistics. Much of this study has been
rendered feasible due to substantial advances in capturing the
eigen-properties of random matrices with independent entries.
Nevertheless, there exist many directions along which this
work can be developed. We now list a few of these directions.
This work is limited to the high SNR, large antenna asymp-
totic regime where a comprehensive random matrix theory is
available to capture precoder performance [28], [29]. Even in
this regime, it may be possible to refine the constants in the
bounds for the relative loss terms and obtain further insights
on the impact of spatial correlation on performance loss. The
notion of precoder-channel matching introduced in this work
can be developed further to aid in the design of low-complexity,
structured and adaptive signaling schemes. In the case of
mismatched channels, the construction of limited feedback
schemes to bridge the gap in performance has been undertaken
in recent work [39]. The question of tradeoffs between spatial
versus spatio-temporal precoding and extensions to more gen-
eral Ricean fading, multiuser, wideband systems are also of
interest.

APPENDIX

A) Key Mathematical Results: We now introduce some key
mathematical results from matrix theory that will be needed in
the ensuing proofs.

Lemma 4: This lemma provides bounds for eigenvalues of
sums and products of Hermitian matrices [43]. If A and B are
n X n Hermitian matrices, for any k = 1,...,n, we have

/\k (A)/\max(B)7 (50)

+A Ak(A)+Amax(B). (51)

Ak(A) +Amin(B) <A (A B)

]

Lemma 5: This lemma extends the previous one to the

complex case [31, p. 253-255]. Let A be an n X n complex
matrix with {R;, C;} defined as

Ry => |AGH)C; =Y |AG.).ij=1,...
j=1 i=1

Let the eigenvalues of A be arranged in a decreasing order:

n. (52)

[A1(A)| > -+ > |An(A)|, and let {R;, C;} be rearranged such
that Rjy) > -+ > Ry and Cpyy > -+ - > Cpy,). Then, we have
k
H A)| < mm{HRM HC 3 (53)
|

Lemma 6: Let X be a p X n complex random matrix with
1.1.d. entries of mean zero, common variance 1 and a finite fourth
moment. Consider two cases: 1) p is finite and n — o0, and
2) {p,n} — oo with p/n — 0. In either case, in the asymp-

7nI

\/_

totics of n, the empirical eigenvalue distribution of X
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converges pointwise with probability 1 to the semi-circular law
F(z) where

0 ifrx < —1,
F(z) = { Sl E2V/I=2dy if-1<a<1, (549
1 ifx > 1.
In particular, with probability one, we have
Amin XXH
1- 2\/7 < hmmf¥
n n n
Amax (XX H
< lim sup # <1+ 2\/5. (55)
n n n

Let A be an n X n positive definite diagonal matrix. Under the
same assumptions on X, p, n as above, there exists a finite con-
stant y; > 0 (dependent on p and n only through A) such that,

with probability 1
7 . H
2iAG) 71\/E < liminf Amin(XAXT)
n n n n
Amax (XAXH)

SZM@+m¢E (56
n n n

On the other hand, let X be a p X n complex random matrix
with independent entries from a fixed probability space such that
X(i,7) is zero mean, has variance o7, and

< lim sup
n

SupmaxEHX(L DY < 72 < oo
n.p

(57)

Also, without loss of generality, assume that { }>"_, o7;} are
arranged in decreasing order. Then there exists a finite constant
~v3 > 0 (independent of p, n) such that, for all ¢

2721 Uiz'

/ XXH
S~ P < hmlnfb
n n

\i(XXH v ok

( )gzhlj+%wﬁ (58)
n n

with probability 1.

Proof: We provide an elementary proof of the claim when
p is finite, n — oo and X(4, j) are standard, complex Gaussian.
Define the set

{w : Amax (X (w)AX (w)H)

< limsup

A 2

>1+61—|—62}. 59)

If we can show that ) Pr(A4,) < oo, it follows from the
Borel-Cantelli lemma [44] that Pr(limsup A,) = 0. By
choosing €1 and ey appropriately (as a function of n), we can
establish strict bounds on the eigenvalues.

Breaking XAX¥ into a diagonal component and an off-di-
agonal component and using Lemma 4, it follows via a union

bound that
—1)A(
Pr(4,) < pPr ( ) (@) > 61)
n

(I > iy X(L A X(2, 1)

n

Yo (X))

+p?Pr

> 62> . (60)
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Using a Chernoff-type bound [44], we have the following:
€ n2
Pr(An) < pexp <_n14>
231 (A6)?

2,2
—|—2p2 exp <—

z?=1<A<z'>>2> D

for some ¢ > 0. The smallest value of ¢; and ¢- that can still
result in Pr (limsup A4,,) = 0 is such that

2 i1 (A(D)?

€1 = 0(62) = " . n1/2_777 Ui > 0 (62)
Letting | 0, we have
AHla){ X'AX'H
lim sup #
n
™ OA(G " A(9)?
< 2 i1 Ad) ¥ v Ez:l (1) . (63)

n f

where 74 > 0 is a constant independent of p and n. The ex-
pression for Ap,in(-) is symmetric with that of A,,ax(-) and can
be obtained similarly. The extension to the case where X has
only independent entries (not necessarily complex Gaussian)
also proceeds via the same logic.

Since p — oo in Case 2), the above technique is not useful
in establishing the claim of the lemma. Here, the result follows
from [28], [45, Th. 2.9, p. 623]. The generalizations with A and
independent entries follow via the same proof technique as in
[45] and hence no proofs are provided. The readers are referred
to [28] for a brief summary of the general technique. [ |

Stochastic Approximation for Random Determinants: In
the case of an N x N matrix Hjyy, stochastic properties of
det(H;q Hfg ) can be studied using the Bartlett decomposition
(or bidiagonalization) of a sample covariance matrix [46], [47],
which states that there exist independent random variables Z;
on some probability space such that

Hz

~ XN =i+ 1))

Z = det (HiHE) ~ (64)

Z; NZ|HndZJ

(65)

where x?(2k) is a central chi-squared random variable with 2k
degrees of freedom. In the non-i.i.d. case, performing this task

1293

is difficult as an equivalent decomposition is not known. Never-
theless, a tight stochastic approximation for the random deter-
minant is still possible.

Lemma 7 (Girko): Let ﬁ;nd be an N, x M random matrix
with N, > M and independent entries that are distributed as
CN (0, 07;). There exist independent random variables Z;, i =

,M on some probability space such that det (Hde.nd)

can be well approximated as

T [70 7~ i Era kP

det (H Hing) N

(66)

=1

Proof: See [47, Ch. 2, p. 104] and [48, pp. 35, 39] for a
version of the above statement on random determinant approx-
imation. The justifications for the approximation are found in
[26, Lemma 5]. [ ]

B) Proof of Proposition 1: To characterize the behavior of
AlL, recall the structure of Fpers and Fperf semi from Lemmas 1
and 2. Using these facts, we have

f: log (1 + AH(z‘)Awf(z'))]

=1

M
Y log (1 + %AH(Z‘))] 67)
=1

AII . EH [lstat,semi] = EH

—Fy

where given a channel realization H, {AH (i),i=1,..., Nt}
are the squared singular values of H, ny modes of
the channel are excited (1 < ng < M) with power
A (7) £ QI,H — ﬁ(t)) and the water level pg is chosen

such that ™ Ay () = p. It can be easily checked that A.(z)
can be written as

, p I & 1 1
Aw 1) = — — ~ 3 68
0= ¥ o — Au(j)  Au(i) ©%
and nyg satisfies
nyg = arg maxk s.t.
u(i) — Au(k)
1<k<M, — 2 < p. (69)
Z Au(i)Au(k)

Hence, as stated in (70) and (71) at the bottom of the page, we
have a bound on Al;. In the second inequality, we have used

AII . EH [Istat,semi] S EH

o
Z log | 1+
i=1

ny M

pAn (i) (M—nn)

A H
ng M -1+ H< ) EJ 1 AH(J)

(g pAw () (M —nsp)

|4 A ® (70)

-1+ 'nH)Z] lAH (7)

<Enu Z

i=1

An
p- (i)
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the fact that log(1 + z) < z for all # > —1. The following
simplifications follow routinely:

Al - EH [Istat seml] Eyu [M - nH]
n Au(i
RN e M
< kEn o pAu(i) pAH(z) 72)
L H =1 1 + 1 +
M & 1 1
<Fu |— ~ - 4 (73)
" = (zj: pAu(j) 14 PAn@)
M ! nH 1
=Fg | — — — ‘ 74
" & (pAHw rr %)] o
M 5w+ pAu() (5% -1
By |2 ng T p H()(A ) (75)
_nH im1 PAH( ) (1 + P H(7))
2 )
— - F . 7
<— En ZAHW] (76)
1=1
From (69), it is easily recognized that ngg > k if
k
k 1
> — —. 77
> Fai) 2 Kul) 7

Thus, if p > aFy [%} for some o > 1 as in the statement
of the theorem, both the terms in the expansion of Ey [Lstat semi]
in (76) can be bounded by constants that depend only on the

channel statistics. For this note that

Moy
< M-Pr (AH(M)—;AH(Z) p) (79)
1 1
<M-Pr<AH(M)>aE AH(M)D@O)

S - . @@ -4
“ (Blat))

where (a) follows from Chebyshev’s inequality. A trivial upper
bound for the other term gives the desired result. |

C) Proof of Theorem 1: It can be checked that the numer-
ator, A, of A, can be written as

M

Z log <1 +
k=1

—EH |:10g <1

N = En

p
Mp. Ak (AHE A Hyy) >]

+ Mppc Ak (XtﬁﬁArﬁiid)>:| (82)
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where ﬁ;;d is the N; X M principal submatrix of Hj4 and 1N\t is
the M x M principal submatrix of A;. An application of Lemma
4 shows that

M
Z log <1 +

k=1

—EH |:10g (1

Following an application of Lemma 6, we have
N < ZIO ( oAl (1 iy gx\(()»))
—log <1 4 PALR) (1 - v’izi(m(.i))z)) (84)

M 2 A (D)
where v and v follow from the corresponding bounds in Lemma
6. After some straightforward simplifications, we have

N < Ey M)

pA: (k)
5 Amin (FHEA, Hd)>] (83)

pAL (k) A (EL HA H,,d)>]

M ;
vopAuk) /A0
N ) los (1 P AR S A )
M )
Y pA(k)  VEi(A(0)?
—kz::llog (1 - M + pA(k) ' i A (d) ) -

Ifx < %, we have

T
— log(l — .17) = IOg <1 + m)

<log (1 +z(1+ 2z)) < log(1 + 2z) (86)
and this in combination with the log-inequality results in
\/ pAq(k
2
N <(y+2v) ZA ZMJFAt (87)
2 (Ar(i))2
<(v+29) M- Y (88)
2 An(0)

A lower bound to the denominator term, Ex [Istat semi], can be
obtained via the same logic and combining these two bounds
result in the statement of the theorem. |

D) Proof of Proposition 2: We have the following well-
known facts:

Toers = log (1 + pA1) (39)

N
Ly = log (1 +pY elvid usm|2)

k=1

(90)

where A\ = Apax(HH), ug. is an eigenvector corre-
sponding to the dominant eigenvalue of ¥; and an eigen-de-
composition of HF H is of the form

Ny
HHH = Z )\kaVkH.
k=1

O
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The following simplifications can be made:

Alpf - Ea [Ltat]
< By [log(1+ pA1)]
— Fy [log(l + p)\1|v,€lustat|2)]
Fyu [log(l + pA1|kau5tat|2)]

log (1+pA1(1-9)) - x (|v1€1ustat|2>1_6):| ©3)

92)

>E

Y £ log (1+p)\1(1—6))]Pr (IVFuga]>>1-6) (94)

® T e
> E|log (14 pA(1— 6))} . (1 - 2Nt6_m) 95)

where the bounds are optimized over the choice of ¢, (a) fol-
lows from the independence between singular values and sin-
gular vectors of random matrices with independent entries [29],
[47], [48], (b) follows from the distortion bound computed in
[40, Th. 1] via eigenvector perturbation theory, and « is a con-
stant that depends only on the eigenvalues of ¥; and X,.. We
thus have

,0)\16
Alys - By L] < Ept [log (14 — P20
o il < i o (14 0 )|

5k Ny
42N, e Nt - By [Lpeg] . (96)

Upon applying Jensen’s inequality and noting that Ex[A1] <
pe = N N,., we have
By [Tpers] < log(1+ pN¢N;.) L)

which when used with the choice

N,
b=% f,i ' [log(ZNr) + log (log (1 + pNtNT))} (98)
results in
log (14 125 ) + N Pl __
Al < ( 1 6) N, 1g(1+pNtNT). ©9)

EH [Istat]

In the regime where Nt — 0, both the terms in the above equa-
tion are on the same order and thus, we have

N -log(N,.)

AIbf . EH [Istat] S Nr

K1 (100)
where k4 is an appropriate condition number-dependent quan-
tity. Using (95) with the choice of ¢ in (98) followed by an ap-

plication of Lemma 6 leads to the statement of the proposition.
|

E) Proof of Theorem 3: As in Appendix C, we can write
Al as

EH [Iperf,semi]

1+ AL =
2 EH [Istat,semi]

(101)
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P [ Sy log (1 +

i [321 ow (1 st A (ABEA ) |
(102)

£ (HTH)) |

The denominator of (102) can be computed following the
method in [30, Theorem 1] and equals

Tstat semi] = Zlog< —uAt( )>
+Zlog <1+ LA (k )) -

k=1

where 1 and j satisfy the recursive equations

1 & A(k)
=M Z T+ 2, (k) (104
MZ 1+ uAt &) (105)

A simple lower bound for F [Isat semi] 1S Obtained by using the
facts thatlog(1+x) > log(x) forz > 0 and ” pit < 1resulting
in

(106)

Totat Seml] > Zlog < 2,

We now establish that the above bound is order- optimal as «
increases (with p = a7+ i ( M ), by lower bounding p/i. For this,

puiAy (k) A, (k')> :

note that -—,a > 018 monotomcally increasing in = and
hence
A (M ~ A
T+ 2h, (M) " = T uA (M)

combining both of which results in the quadratic inequality

Eaona00(u) - (Zaana.on +1) i

(&

+A (M)A, (M) < 0. (108)
It is straightforward to check that
2p? 2
p@ Ad(M)A,(M) - pfi > p—” A(M)A,(M) + 1
4p
—/— - A(MA. (M) + 1. (109)
Pe
Letting A and B denote A = M Neand B = i ( M) , and noting

that both are O(1) according to the assumption of the theorem,
elementary computation shows that

P sy VAB -AB + 4«
Lup>1-
Pe 2

(110)
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withp =« - % Combining these facts, we have

EH[Istat,semi] Z MlOg (1 2
(6]

M p
1
+ ; Og (epc

Proceeding in the same way, one can obtain an upper bound for
Ex[Ipers semi] - Since the main goal here is to obtain the trends of
AT, we find it convenient and less cumbersome? to replace the
upper bound with an approximation (log(1 + z) = log(x)) by
ignoring the term that decays as % Thus, we have

_m.m)

ABA®). a1

EH [Iperf,semi]
p

~ M log (M)

M H )
+ En Zlog (Ak(AtHiidArH|ld)>] (112)

Lk=1 Pe

(a)

< Mlog (%) + min(4, B) (113)

— H -~ M
A=MEy |log <A‘“‘"‘*(H;dATH"")>} + log (Ay(k))
L ¢ k=1
(114)
i Amax<HndAtHf;§)ﬂ al
B =MEy |log ( i + log (A (K
u| . I; (A (k)
(115)

where in (a) we have used Lemma 4. Combining (111) and
(113), we have

log (¢/M) + k3

Al < 116
2= 10g(p/6)+10g (X/pc)+10g (GJ\/I,tx'GI\/I,rx) ( )
K3 = min {EH [log (AmaX(HﬁArHiid))]
By [log (Amax(HiaA:H{Y))] }
—log (G ) — log (Gar,) — log(X) (117)

where X and Gjr,e are as defined in the statement of the the-
orem. Noting that [28]

HE..
)\max(HiidHud) <K

lim sup N <
-

(118)
for some appropriate constant K that only depends on N, and

N,., we have the statement of the theorem. |

The approximation can be made precise, but we will not bother with this
technicality here.
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F) Proof of Proposition 3: We first apply Lemma 5 with
A = HiI:dHind, n = N, and & = M to bound the product of
eigenvalues of A, resulting in

M M
H Xi(HHig) < H Ch (119)
=1 i=1
where
Ci _ Yiey Hina(k, i)
N, N,
M ‘2221 Hind(kuj)Hi:d(kv Z)
+ (120)
J=1,57 r

Using the law of large numbers, we know that the first term

converges to A;V—(Z) whereas each of the terms in the second sum

is small with hiéh probability. More precisely, for every § > 0,
there exists an € > 0 such that

C; < A(i)+6(M —1)N,. with prob. > 1—-(M—1)e. (121)

Thus, we have

EH [Iperf,semi]

M
=Fn Zlog (1 + ﬁ)‘k(HindHiﬁId))] (122)
k=1
(a) =
< Mlog (ﬁ) + 3" log (A(HingHIL)) (123)
k=1

M
Y Mog (%) +3 log (At(z‘)+e(M—1)N,,) (124)
k=1

where the approximation in (a) is using the high SNR assump-
tion and (b) follows from (119) and has to be read as an approx-
imation with high probability (following the earlier discussion).

For Exi[Itat semi], we have the following high SNR approxi-
mation:

EH [Istat,semi]

~ M log (ﬁ) + By [logdet (ﬁ{;’dﬁind)} (125)
W Miog (£)+ ilog (NL -At(i)> (126)

where (a) follows from Lemma 7 and (b) follows from Stirling
approximation as { M, N,.} — co. Combining (124) and (127),
we obtain the statement in (36). |
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