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Abstract—Multimode precoding, where the number of indepen-
dent data streams is adapted optimally, can be used to maximize
the achievable throughput in multiantenna communication sys-
tems. Motivated by standardization efforts embraced by the
industry, the focus of this work is on systematic precoder design
with realistic assumptions on the spatial correlation, channel
state information (CSI) at the transmitter and the receiver, and
implementation complexity. For the spatial correlation of the
channel matrix, we assume a general channel model, based on
physical principles, that has been verified by many recent mea-
surement campaigns. We also assume a coherent, linear minimum
mean-square error (MMSE) receiver and knowledge of the spatial
statistics at the transmitter along with the presence of an ideal,
low-rate feedback link from the receiver to the transmitter. The
reverse link is used for codebook-index feedback and the goal
of this work is to construct precoder codebooks, adaptable in
response to the statistical information, such that the achievable
throughput is significantly enhanced over that of a fixed, non-
adaptive, independent and identically distributed (i.i.d.) codebook
design. We illustrate how a codebook of semiunitary precoder
matrices localized around some fixed center on the Grassmann
manifold can be skewed in response to the spatial correlation via
low-complexity maps that can rotate and scale submanifolds on
the Grassmann manifold. The skewed codebook in combination
with a low-complexity statistical power allocation scheme is then
shown to bridge the gap in performance between a perfect CSI
benchmark and an i.i.d. codebook design.

Index Terms—Adaptive coding, channel state information (CSI)
at transmitter, limited feedback communication, low-complexity
signaling, multimode signaling, multiple-input multiple-output
(MIMO) systems, quantized feedback.

I. INTRODUCTION

R ESEARCH over the last decade has firmly established
the utility of multiple antennas at the transmitter and the

receiver in providing a mechanism to increase the reliability of
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signal reception [1], or the rate of information transfer [2], or a
combination of the two. The focus of this work is on maximizing
the achievable rate under certain communication models that
are motivated by practical wireless systems [3]. In particular,
we assume a limited (or quantized) feedback model [4] with
perfect channel state information (CSI) at the receiver, perfect
statistical knowledge of the channel at the transmitter, and a
low-rate feedback link from the receiver to the transmitter.

In this setting, the fundamental problem is to determine the
optimal signaling/feedback scheme that maximizes the average
mutual information given a statistical description of the channel,
the signal-to-noise ratio (SNR), the number of antennas, and
the quality of feedback. A first step to solve this problem is to
identify the rank of the optimal precoder as a function of the
statistics, SNR, and the feedback quality [5]. In practice, the
implementation of such a solution is often constrained by the
need for low-complexity techniques that limit the number of
radio-frequency (RF) link chains (and consequently, the rank
of the precoder). Thus, the design of the optimal scheme under
low-complexity constraints is, in principle, essentially the same
as that of the optimal design of a fixed rank limited feedback
precoder.

Motivated by this line of reasoning, the main theme of this
work is the construction of a systematic, yet low-complexity,
limited feedback precoding scheme (of a fixed rank) that re-
sults in significantly improved performance over an open-loop1

scheme. Towards this goal, we consider a simple block fading/
narrowband setup where spatial correlation is modeled by a
mathematically tractable channel decomposition [6], [7], and in-
cludes as special cases the well-studied independent and iden-
tically distributed (i.i.d.) model [2], the separable correlation
model [8], and the virtual representation framework [9], [10].
Furthermore, we assume a simple, linear minimum mean-square
error (MMSE) receiver architecture in this work.

While precoding has been studied extensively under the
i.i.d. model [11]–[19], considerable theoretical gaps exist in
the limited feedback setting. The extreme case of limited
feedback beamforming has been studied in the i.i.d. setting
where the isotropicity2 of the dominant right singular vector of
the channel can be leveraged to uniformly quantize the space
of unit-normed beamforming vectors, a problem well-studied
in mathematics literature as the Grassmannian line packing

1There is no channel statistical information at the transmitter in an open-loop
scheme. That is, the channel is assumed to be independent and identically dis-
tributed (i.i.d.) and an i.i.d. codebook design is used.

2Here, isotropic means that the dominant right singular vector is equally likely
to point along any direction in the space of all possible right singular vector(s),
which is referred to as the Grassmann manifold. Precise definitions follow later.
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(GLP) problem [20], [21]. Alternate constructions based on
vector quantization (VQ)/random vector quantization (RVQ)
are also possible [22], [23]. Spatial correlation, however,
skews the isotropicity of the right singular vector, and hence
poses a fundamentally more challenging problem. While VQ
codebooks can be constructed for the correlated channel case,
the construction suffers from high computational complexity
and the codebook has to be reconstructed from scratch every
time the statistics change, thus rendering VQ-type solutions
impractical. Recently, beamforming codebooks that can easily
be adapted to statistical variations (with low-complexity trans-
formations) have been proposed [24]–[26]. The other extreme,
limited feedback spatial multiplexing, has also been studied
recently [23], [27].

In the intermediate setting3 of rank- precoding, under the
i.i.d. assumption, the isotropicity property of the dominant right
singular vector of the channel extends to the subspace spanned
by the -dominant right singular vectors thereby allowing a
Grassmannian subspace packing solution [28]. In the correlated
case, the fundamental challenge on how to quantize the space of

-dominant right singular vectors nonuniformly remains the
same as in the beamforming case. However, unlike the beam-
forming case, it is not even clear how a codebook designed for
i.i.d. channels can be skewed in response to the channel corre-
lation. In fact, using an i.i.d. codebook design in a correlated
channel can lead to a dramatic degradation in performance (see
Figs. 3 and 4).

In contrast to VQ codebooks [23], [29], our systematically
constructed semiunitary4 precoder codebooks are tailored to
the spatial correlation, and are easily adaptable in response
to changes in statistics. The heuristic behind our construction
comes from our previous study of the asymptotic (in antenna
dimensions) performance of statistical precoders [30]. We
showed in [30] that the performance of a statistical precoder is
closest to the optimal precoder when the number of dominant
transmit eigenvalues is equal to the rank of the precoder, these
dominant eigenvalues are well-conditioned, and the receive
covariance matrix is also well-conditioned. A channel satis-
fying the above conditioning properties is said to be matched
to the precoding scheme. Measurement campaigns (e.g., see
[31, Figs. 9–11]) show that in many realistic situations, the
number of dominant transmit eigenmodes is much larger than
the precoder rank (which is limited by complexity constraints)
indicating that mismatched channels, where the above channel
conditions are not met, are quite common in practice. Thus,
while limited (or even perfect) feedback can only lead to
marginal performance improvement in matched channels, in
the case of mismatched channels where the relative gap in
performance between the statistical and the optimal precoders
is usually large (see Figs. 3 and 4), the potential benefits of
limited feedback are more significant.

Our study [30] suggests that spatial correlation orients the
directivity of the -dominant right singular vectors of the
channel towards the statistically dominant subspaces, and

3Here, � � � � ����� �� � with � and � denoting the transmit and
the receive antenna dimensions.

4An� �� matrix� with� � � is said to be semiunitary if it satisfies
� � � � .

hence, a nonuniform quantization of the local neighborhood
around the statistically dominant subspaces is necessary. The
realizability of such nonuniform quantization with low-com-
plexity, as well as its adaptability, are eased by constructing
mathematical maps that can be used to rotate a root codeset
(or a submanifold) centered at some arbitrary location on the
Grassmann manifold towards an arbitrary center and
scale it arbitrarily.

Our design includes a statistical component of dominant
-dimensional subspaces of the transmit covariance matrix,

a component corresponding to local quantization around the
codewords in the statistical component, and an RVQ component
that can be constructed with low-complexity. In this context,
our construction mirrors and generalizes our recent work in the
beamforming case [26]. By combining a semiunitary codebook
(of a small enough cardinality) with a low-complexity power
allocation scheme that is related to statistical waterfilling, we
show via numerical studies that significant performance gains
can be achieved, and that the gap to the perfect CSI scheme can
be bridged considerably.

Organization: The system setup is introduced in Section II.
In Section III, we introduce the notion of mismatched chan-
nels where limited feedback precoding results in significant per-
formance improvement. In Section IV, limited feedback code-
books that enhance performance are proposed, and in Section V,
mathematical maps are constructed to realize these designs with
low-complexity. Numerical studies are provided in Section VI,
with a discussion of our results and conclusions in Section VII.

Notation: The -dimensional identity matrix is denoted by
. We use and to denote the th and th diag-

onal entries of a matrix , respectively. In more complicated
settings (e.g., when the matrix is represented as a product or
sum of many matrices), we use to denote the th entry.
The complex conjugate, conjugate transpose, regular transpose
and inverse operations are denoted by and

while and stand for the expectation,
the trace, and the determinant operators, respectively. The
-dimensional complex vector space is denoted by . We

use the ordering for the eigenvalues
of an -dimensional Hermitian matrix . The notations

and also stand for and ,
respectively.

II. SYSTEM SETUP

We consider a communication model with transmit and
receive antennas where inde-

pendent data streams are used in signaling. That is, the -di-
mensional input vector is precoded into an -dimensional
vector via the precoding matrix and transmitted over
the channel. The discrete-time baseband signal model used is

(1)

where is the -dimensional received vector, is the
channel matrix, and is the -dimensional zero-mean, unit
variance additive white Gaussian noise.
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A. Channel Model

We assume a block fading, narrowband model for the cor-
relation of the channel in time and frequency. The main em-
phasis in this work is on the channel correlation in the spa-
tial domain. The spatial statistics of depend on the oper-
ating frequency, the physical propagation environment that con-
trols the angular spreading function, and other factors such as
the path distribution and antenna geometry (arrangement and
spacing). It is well known that Rayleigh fading (zero-mean com-
plex Gaussian) is an accurate model for in a non-line-of-sight
setting, and hence the complete spatial statistics are described
by the second-order moments.

The most general, mathematically tractable spatial correla-
tion model is a canonical decomposition5 of the channel along
the transmit and receive covariance bases [6], [7]. In this model,
we assume that the auto- and the cross-covariance matrices of
all the rows and the columns of have the same eigenbases (de-
noted by unitary matrices and , respectively), and thus we
can decompose as

(2)

where has independent, but not necessarily identically dis-
tributed entries. The transmit and the receive covariance ma-
trices are given by

(3)

where and are diag-
onal. Under certain special cases, the model in (2) reduces to
some well-known spatial correlation models [6], as follows.

• The case of ideal channel modeling assumes that the en-
tries of are i.i.d. standard complex Gaussian random
variables [2]. The i.i.d. model corresponds to an extreme
where the channel is characterized by a single independent
parameter, the common variance.

• When is assumed to have the form
with an i.i.d. channel matrix and the

channel power , the canonical
model reduces to the often-studied normalized separable
correlation framework where the correlation of channel
entries is in the form of a Kronecker product of the transmit
and the receive covariance matrices [8]. The separable
model is described by no more than independent
parameters corresponding to the eigenvalues and

.
• When uniform linear arrays (ULAs) of antennas are used

at the transmitter and the receiver, and are well-ap-
proximated by discrete Fourier transform (DFT) matrices
and the canonical model reduces to the virtual representa-
tion framework [9], [10], [32]. In contrast to the general
model in (2), the virtual representation offers many attrac-
tive properties: a) The matrices and are fixed and
independent of the underlying scattering environment and
the spatial eigenfunctions are beams in the virtual direc-
tions. Thus, the virtual representation is physically more

5This model is referred to as the “eigenbeam/beamspace model” in [7].

intuitive than the general model in (2). b) It is only neces-
sary that the entries of be independent, but not nec-
essarily Gaussian, a criterion important as antenna dimen-
sions increase. For example, this is relevant as signaling
moves towards the 60-GHz frequency regime. c) The case
of specular (or line-of-sight) scattering can be easily incor-
porated within the virtual representation framework [32].
In contrast to the separable model, the virtual representa-
tion can support up to independent parameters cor-
responding to the variances of .

While performance analysis is tractable in the i.i.d. case, it
is unrealistic for applications where large antenna spacings or
a rich scattering environment are not possible. Even though the
separable model may be an accurate fit under certain channel
conditions [33], deficiencies acquired by the separability prop-
erty result in misleading estimates of system performance [6],
[34], [35]. The readers are referred to [7], [31], [34], and [36] for
more details on how the canonical/virtual models fit measured
data better.

B. Channel State Information

If the fading is sufficiently slow, perfect CSI at the receiver is
a reasonable assumption for practical communication architec-
tures that use a “training followed by signaling” model. Even
in scenarios where this may not be true (e.g., a highly mobile
setting), the performance with imperfect CSI at the receiver can
be approximated reasonably accurately by the perfect CSI case
along with an SNR-offset corresponding to channel estimation.
Thus, in this work, we will assume a perfect CSI (coherent) re-
ceiver architecture. However, obtaining perfect CSI at the trans-
mitter is usually difficult due to the high cost associated with
channel feedback/reverse-link training.6

On the other hand, the statistics of the fading process change
over much longer time scales and can be learned reliably at
both the ends. Hence, we assume that the transmitter has perfect
knowledge of the channel statistics. In addition, recent techno-
logical advances have enabled the possibility of a few bits of
quantized channel information to be fed back from the receiver
to the transmitter at regular intervals. The most common form of
quantized channel information is via a limited feedback code-
book of codewords known at both the ends. In this setup,
the receiver estimates the channel at the start of a coherence
block and computes the index of the optimal codeword from
for that realization of the channel according to some optimality
criterion. It then feeds back the index of the optimal codeword
with bits over the limited feedback link which is assumed
to have negligible delay and essentially no errors (since is
usually small [3]). The transmitter exploits this information to
convey useful data over the remaining symbols of the coherence
block.

C. Transceiver Architecture

The transmitted vector [see (1)] has a power constraint
. Assuming that the input symbols have equal energy

6In case of time-division duplexed (TDD) systems, the reciprocity of the for-
ward and the reverse links can be exploited to train the channel on the reverse
link. In case of frequency-division duplexed (FDD) systems, the channel infor-
mation acquired at the receiver has to be fed back.
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satisfies . Nonlinear maximum
likelihood (ML) decoding of the transmitted data symbols using
knowledge of at the receiver is optimal. However, ML de-
coding suffers from exponential complexity, in both antenna di-
mensions and coherence length. Thus, a simple linear MMSE
receiver is preferred in practice. With this receiver, the symbol
corresponding to the th data stream is recovered by projecting
the received signal on to the vector

(4)

where is the th column of . That is, the recovered symbol is
. The signal-to-interference-noise ratio

(SINR) at the output of the linear filter is

SINR (5)

The outputs are passed to the decoder and we assume
separate encoders/decoders for each data stream, as well as in-
dependent interleavers and de-interleavers, which reduces the
correlation among the interference terms at the outputs of the
receiver filters. The performance measure is the mutual infor-
mation between and . Assuming that the interference plus
noise at the output of the linear filter has a Gaussian distribution,
which is true with Gaussian inputs and is a good approximation
in the non-Gaussian setting when are large, the
mutual information is given by

SINR (6)

(7)

When perfect CSI is available at the transmitter and no con-
straints are imposed on the structure of the precoder, the op-
timal precoder is channel diagonalizing and is of the form

where is an eigendecomposi-
tion of with the eigenvalues arranged in nonincreasing
order, is the principal submatrix of , and
is an matrix with nonnegative entries only along the
leading diagonal and these entries are obtained by waterfilling.
In this setting, the mutual information is given by

(8)

The optimality of with other choices of objective func-
tions is also known; see [11]–[19].

D. Limited Feedback Framework

The focus of this work is on understanding the implications
of partial CSI at the transmitter on the performance of the pre-
coding scheme. In particular, there exists a precoder codebook

(9)

The most general structure for is where is
an semiunitary matrix and is an nonnega-
tive definite, diagonal power allocation matrix. While the struc-
ture of the optimal limited feedback codebook of bits could
involve allocating some fraction of to the power allocation
component of , numerical studies [5], [30] indicate that the
degradation in performance is minimal when is chosen to be
fixed (say, with , but designed appropri-
ately, as a function of SNR if necessary, so that it can be adapted
easily to statistical variations without recourse to Monte Carlo
methods.7

Motivated by this heuristic, in this work, all the bits in
limited feedback are allocated to quantize the eigenspace of the
channel. That is, the codebook is
and the index of the codeword that is fed back is

(10)

Although computing is straightforward, the design of an op-
timal codebook to maximize is achieved via VQ-based
codebook constructions in the literature [23], [29]. The high-
complexity of such VQ designs leads us to adopt a suboptimal
strategy in Section IV where the goal is to maximize the average
projection of the best quantizer from onto . Towards the
precise mathematical formulation of this problem, we need a
metric to define distance between two semiunitary matrices.

E. Distance Metrics and Spherical Caps on the Grassmann
Manifold

We now recall some well-known facts about the Grassmann
manifold. The unit sphere in , also known as the uni-di-
mensional8 complex Stiefel manifold , is defined as

. The invariance of
any vector to transformations of the form in the
above definition is incorporated by considering vectors modulo
the above map. The partitioning of by this equiva-
lence map results in the uni-dimensional Grassmann manifold

. In short, a point on the Grassmann manifold repre-
sents a linear subspace of an Euclidean space. Similarly, the
class of semiunitary matrices forms the -dimensional
complex Stiefel manifold and points on the -di-
mensional complex Grassmann manifold are identi-
fied modulo the -dimensional unitary space.

A literature survey of packings on [37]–[39] shows
that the dot-product metric defined as,

(11)

is the most natural metric from an engineering perspective.
Using this distance metric, for any , we can define a

7The low-complexity design of � will be described in Section IV.
8Uni-dimensional because its definition is based on the norm of an � � �

vector.
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spherical cap with center and radius (as a submanifold on
as the open set

(12)

In the more general case, there is no unique distance
metric extension [38]. While various well-defined distance met-
rics can be pursued depending on the space in which the Grass-
mann manifold is embedded [38], [39], we will focus on the
projection 2-norm distance metric in this work. Here, the dis-
tance between two semiunitary matrices and is
defined as

(13)

(14)

If the principal angles9 between the subspaces spanned by
columns of and are denoted by ,
it is known that [38] the singular values of
are . Furthermore, the projection
2-norm distance can be written as

(15)

A particular choice of the distance metric is not extremely crit-
ical in precoder optimization since codebooks designed with
different choices of distance metrics result in near-identical per-
formance for SNR regimes of practical interest [28], [30]. We
now state some properties of the projection 2-norm metric.

Lemma 1: In the case, the projection 2-norm metric
reduces to the standard dot-product metric.

Proof: Let and be two unit-normed vectors.
The proof follows trivially from the principal angle interpreta-
tion of in (15). In the case,
and from (15), it follows that

(16)

In Appendix A, we present an alternate proof of the above claim
rooted in matrix algebra.

Propsition I: The following are true:
1) ;
2) more precisely,

(17)

3) equality in the lower bound of 1) occurs if and only if
on while equality is possible in the upper

bound if and only if .
Proof: The proof is obvious following the geometric in-

terpretation of . The first claim follows immediately
since the principal angles are in by definition. The
second claim follows from the connection between singular
values and the principal angles in (15). See Appendix A for an
alternate proof of the above claims. For the third claim, note
that if , then . Thus,

9The principal angles are quantities in ��� ���� describing the relative orien-
tation of one subspace with the other, more precisely to their bi-orthogonal basis
expansions (see [40]), which are independent of the given representation of the
subspaces. We thank one of the reviewers for this observation.

is , unitary and hence, on .
The other direction of the statement follows trivially. Both the
directions of the upper bound follow from the expression in
2).

Lemma 2: Let be a fixed unitary matrix. Then,
.

Proof: The proof is obvious from the geometric interpre-
tation of (15) since rotation by does not change the relative
orientation of the subspaces and hence, the distance properties.
Alternately, using the fact that the eigenvalues of and
are the same, the proof is also obvious from (13).

Once a choice of distance metric has been settled, the notion
of a spherical cap in (12) can be generalized as a submanifold
on with center and radius as the open set

(18)

The codebook design problem can now be simply stated as

Construct

is minimized

Towards a systematic solution to this problem, we now describe
some related prior work [30].

III. MATCHED VERSUS MISMATCHED CHANNELS

The case of unconstrained precoding with genie-aided perfect
CSI and the optimality of was summarized in
Section II-C. Knowledge of and at the transmitter ne-
cessitate the tracking of the evolution of which is difficult in
practice. To avoid this problem and to reduce the complexity of
precoding, structured precoding10 was introduced in [30]. The
readers are referred to [30] for the following results.

• When the precoder is assumed to be structured, the op-
timal choice of under perfect CSI is still . This op-
timality is assured for many different classes of objective
functions apart from the case of maximizing mutual infor-
mation. When only statistical information is available at
the transmitter, the optimal choice of is where

(19)

where is as in (3). We call these two
schemes optimal structured and statistical structured pre-
coding schemes, respectively.

• We studied the performance loss between these two
schemes as a function of the channel statistics. The notion
of matched and mismatched channels, introduced in [30],
correspond to the cases where the relative performance of
the statistical structured precoder is closest to and farthest
from the perfect CSI structured precoder, respectively.
Even knowledge of only channel statistics at the trans-
mitter results in near-optimality for the matched channel
case! Thus, it is important to note that any feedback (lim-
ited or otherwise) is helpful only in mismatched channels.

10In structured precoding, the precoder has the form � � �� where�
is an� �� semiunitary matrix that can be optimized, and� is an���
fixed, ���	-� power allocation matrix chosen a priori.
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This conclusion is a generalization of our earlier beam-
forming result [26], [41].

• More specifically, a matched channel is one where the
channel is effectively matched to the precoding scheme
(in particular, the precoding rank ) with the following
two conditioning properties being true: 1) The -dom-
inant eigenvalues of are well-conditioned,11 whereas
the remaining eigenvalues are ill-conditioned
away from the dominant ones, and 2) is also well-con-
ditioned. A mismatched channel is one where both and

are ill-conditioned, with the additional condition that
with probability 1. We also proposed met-

rics to capture the degree of channel-to-precoder scheme
matching continuously and showed that these metrics can
be used to compare two channels in terms of their average
mutual information performance [30, Fig. 2].

Henceforth, the focus is on mismatched channels primarily be-
cause the potential to bridge the performance gap between the
statistical and perfect CSI schemes is maximum (see numer-
ical studies in [30] for performance of statistical schemes over
matched channels). Our goal is to construct a systematic, statis-
tics-dependent codebook (of a fixed size that ensures this
bridging.

IV. QUANTIZED FEEDBACK DESIGNS TO BRIDGE THE

PERFORMANCE GAP

In contrast to the i.i.d. case where the isotropicity of
leads to a design [28] based on Grassmannian subspace pack-
ings [39], spatial correlation skews this isotropicity and poses
fundamental challenges. The optimality of in the statis-
tics-only case and its near-optimality in the matched channel
case suggests that when we have the freedom to pick more than
one codeword , the codewords should correspond to
a local quantization12 of . This heuristic is also motivated
by numerical studies [26, Figs. 1 and 2], [30] that show that for
most reasonable channels, the probability density function of

is concentrated around 0, suggesting that a
local quantization could lead to improved performance.

Building on our prior work in the beamforming case [26],
[41] where we designed codebooks on a local quantization prin-
ciple, we now develop a multimode generalization. The main
difference here is in packing subspaces instead of lines and in
the choice of an appropriate distance metric. The proposed de-
sign has three components: 1) a statistical component, 2) local
perturbation components, and 3) an RVQ component. The car-
dinalities of these components are denoted by and

with the feedback rate (per channel use) defined by
.

Statistical Component: We first need to identify the domi-
nant -dimensional subspaces of . Note that this identifica-
tion cannot be based on distance metrics because if and

11If � ��� � � � � � � ��� denote the first � eigenvalues of � and
�� ������� ���� is (or is not) significantly larger than 1, we loosely say that
these eigenvalues are ill- (or well-) conditioned.

12The notion of local quantization will be made mathematically precise
shortly.

denote any two distinct -dimensional subspaces of , then
from Proposition 1 we have

(20)

Since there exists no granularity in subspace dominance based
on distance metrics, we define the generalized eigenvalue of
a -dimensional subspace as follows. The generalized eigen-
value of the subspace of is

(21)

In the above definition, is a distinct -tuple of
which implies that there are distinct -di-

mensional subspaces of . Note that the subspace spanned by
results in the largest generalized eigen-

value, and we will denote by (for short). Similarly,
when necessary, we will use to denote the th dominant gen-
eralized eigenvalue of .

The precise probability distribution of
is dependent on the separation (gap) between the generalized
eigenvalues of . For example, if and are close to each
other, there is a nonnegligible probability for the event that
the best quantizer is the subspace corresponding to and
hence, the distance between and could be arbitrarily
close (follows from Prop. 1 and the triangle inequality for the

metric) to 1. On the other hand, if is much larger
than the other generalized eigenvalues, it is intuitive to expect
that is concentrated around zero and hence,
statistical precoding is near-optimal. Thus, the gap between

and the rest of the generalized eigenvalues heuristically
determines the statistical component.

In our work, a threshold is chosen a priori and the statistical
component consists of all -dimensional subspaces such that
their generalized eigenvalues exceed . That is

(22)

The cardinality of is denoted by . Note that if is large,
is small and may not accurately quantize the space of

statistical eigenvectors of . On the other hand, if is small,
the feedback overhead for the statistical component may be too
large. This heuristical tradeoff governs the choice of . In our
numerical studies, we found setting to result in a good
tradeoff. Future work will study this optimization problem more
carefully.

Local Components: Let denote the th member of the
statistical component. The local component, , around is
defined as

(23)
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such that these codewords are localized and well-packed
around . The notions of localized and well-packed are made
mathematically precise in Section V. The heuristic here is to
choose in proportion to . The following observation
motivates this heuristic: the larger the separation of (cor-
responding to from or the more matched is, the
lesser the relevance of the subdominant subspaces in terms of
precoding and hence, the smaller the values of
need to be. These codewords form the
local component of our codebook design.

While can be constructed brute-force via VQ or a Monte
Carlo method as theoretically conceived in [23] and [29], we
provide low-complexity alternatives in Section V.

RVQ Component: If is sufficiently large, there is a need to
refine the quantization of . This is because while the statis-
tical and the local components lead to significant limited feed-
back gains when is small, their marginal utility diminishes as

increases. Empirical observations suggest that the addition of
a few codewords obtained via RVQ can help in boosting perfor-
mance significantly. In this context, we set

(24)

Random channel matrices are generated
according to the relationship in (2) and the RVQ component

is given as

is the principal submatrix of (25)

Note that the RVQ component can be generated with low-com-
plexity once the statistics are known perfectly.

In practice, the choice of is determined by the applica-
tion. For example, in the design of Third Generation wireless
systems, is on the order of one to four per subcarrier chunk
(which usually consists of 20–30 OFDM tones) [3]. The choice
of determines what value should take, whereas is
determined by the relative strength of the eigenmodes and the
above guidelines. The choice of then dictates as per the
relationship in (24).

In Fig. 1, we illustrate the design of a codebook with sta-
tistical and local components (no RVQ component) for

and . If
, then the three statistical transmit eigenspaces

with are those spanned by , and .
The “directions” corresponding to these subspaces are symbol-
ically represented in the figure with dashed lines. The first local
component consists of two codewords around and so on.
Since there are eight codewords in our design, this codebook can
be parameterized with 3 bits.

A. Power Allocation

It is preferred that the power allocation matrix be only
dependent on the channel statistics and be easily adaptable
to statistical variation. The optimal choice of needs
to be constructed via a Monte Carlo algorithm [29] which
is difficult to implement as well as adapt to statistical vari-

Fig. 1. Proposed Codebook Design for � � ��� � �, and � � � with
only the statistical and local components.

ations with low-complexity. As an alternative, we consider
three low-complexity power allocations: 1) uniform power
allocation across the excited modes; 2) waterfilling based on

; and 3) power allocation proportional to
the transmit eigenvalues. The last two schemes have near-iden-
tical performances and are near-optimal in the low-SRN regime
while uniform power allocation is more useful in the high-SNR
regime [5], [30].

B. Codeword Selection

The receiver acquires the channel information at the start of a
coherence block and it computes the index of the optimal code-
word from the codebook that maximizes the instantaneous mu-
tual information. The receiver then communicates to the trans-
mitter the index of the optimal codeword with bits. The trans-
mitter uses the optimal codeword along with an appropriate
power allocation to communicate over the remaining period in
the coherence block.

V. ROTATING AND SCALING SPHERICAL CAPS ON

We now construct mathematical maps to ensure that the code-
book design proposed in Section IV can be realized with low-
complexity. For this, we need the notion of a root codeset.13 A
root codeset, , is a set of semiunitary matrices

satisfying the following properties that sig-
nify a “good” local quantization.

1) Localization: The root codeset is localized (centered)
around , which is labeled as the center of the
root codeset. There exists a such that

for all . The smaller the
value of , the more localized a packing. This is illustrated
in Fig. 2 where a set of precoders form the localized
root codeset in the setting.

2) Well-Packing: The codewords in are well-
packed (well-separated). That is, the minimum distance of
the packing satisfies

for some (26)

The larger the value of , the more well-packed is.
Hence, can also be viewed as an abstract measure of

13We use the term root codeset to indicate that the construction of � is rooted
in the design of a “good” �.
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Fig. 2. (a) Rotation of a root codeset of semiunitary precoders �� � � �
�� � � � � �� with � � � and � � �. The root codeset satisfies the localization
and well-packing properties described in Section V. The distance between any
two precoders remains unchanged after rotation. (b) Scaling of the root codeset
by �. The position of � remains unchanged after scaling.

the packing density. Here, is the max-
imum possible packing density14 achievable in the Grass-
mann manifold with codewords localized in
a cap of radius .

Note that for any fixed choice of and , it is intuitive
to expect that decreases as decreases. In
other words, the above two properties are in some sense con-
flicting with a root codeset that is more localized necessarily
forced to have a small packing density and vice versa.

Despite this apparent difficulty, it is important to note that a
packing with the above properties can always be constructed,
either via algebraic methods or via a vector quantization [22],
[23] approach (that is, a brute-force search via Monte Carlo
methods). Furthermore, needs to be constructed (offline) just
once, and once this has been done, can be designed for any
statistics starting from . For this, we now show how mathe-
matical operations can be constructed to perform the following
two tasks:

1) Given , how can we center around
to obtain without having to

resort to a VQ-type codebook construction again? That is,
we seek a map to rotate the center of to without
changing the packing density.

2) Given and some fixed , how can
we scale to obtain for some ?
That is, we seek a map to reduce the radius of without
changing its center.

While we develop such maps for spherical caps/submani-
folds, we will state the results as applicable to finite element
subsets of . But prior to that, we recall results from re-
cent work [42], [43] where rotation and scaling maps to solve 1)
and 2) (as above) have been proposed in the beamforming case

14While the exact characterization of � �� ����� �� remains an open
problem for general values of � ���� and �, some bounds have been estab-
lished; see [20], [25], [38], [39] and references therein.

. The rotation map is straightforward and is effected
by an appropriately chosen unitary matrix. In contrast to the ro-
tation operation, the scaling map requires some care due to the
constraints of the space. For example, an operation of the form

(where ) yields a vector that is not unit-norm. It
is to be noted that both rotation and scaling maps are nonunique.
We summarize the maps of [42], [43] in the following lemma15

for .
Lemma 3 (See [42] and [43]): Let

be a root codeset in . Rotation of
to is trivially achieved by the map

with satisfying16 . Scaling by is
achieved by the composition

(27)

(28)

In (27), is the map that induces the rotation of
to (a vertex of the unit cube),

is a vertex scaling map with

(29)

and the argument in the above equation is in its polar form. We
now generalize the above result to the precoding scenario,

.
Lemma 1: Let be a

root codeset in . Rotation of to is achieved
by

where (30)

with unitary matrices and defined as
and . Here, and

are -dimensional representatives of the
null-spaces of and , respectively.

Proof: The proof follows trivially from Lemma 2 since ro-
tation by a common unitary matrix does not alter
the distance properties of the root codeset.

Note that there exists more than one basis for the null-space
and therefore the usage of the term “representative” in the state-
ment of the theorem. The lack of a unique representative for the
null-space is responsible for the nonuniqueness of the rotation
map that can effect a desired rotation.

Before we get into the most general form of the scaling map
in Appendix B, we illustrate a special case of it so as to provide
insights into its construction. Let where is

15The readers are referred to [26] for details of the proof.
16One possible choice of� is� � 	� � 
	� � 


where� and� refer to matrix representatives from the � � �� ���
dimensional null-space of� and� , respectively. That is,� � �
� and � � � � .
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an vector and is the th column of . Define the map
by

(31)

and is orthogonal to (that is, . We
illustrate three properties satisfied by which ensures that it
can scale submanifolds. A straightforward consequence of the
orthonormality of in and
is that . For , note that and

which results in .
Proposition 2: We also have

for any . Thus, induces the scaling
of by .

Proof: Note that

where in (a) we have used and (b) follows from
(31). Using the eigenvalue computation trick of Lemma 1 in
Appendix A, observe that the square of in the above
equation satisfies

(32)

(33)

(34)

The choice of is not unique and it is not clear whether
the map in (31) is unique modulo the choice of . Further-
more, note that when can be written as

(35)

where and has only one nonzero
entry which is at the th location and its value is . In
Appendix B, we resolve the uniqueness issue and construct the
most general form of . We also show that the most general
form of is of the form in (35) for a suitable choice of
and .

Corollary 1: It can also be easily checked that in the special
case of , the scaling map proposed in (31) (and extended
in Theorem 2 of Appendix B) is a generalization of the map
proposed in Lemma 3 [see (28)].

A. Low-Complexity Generation of Local Components

We now illustrate how the theory of rotation and scaling maps
can be used to construct precoding codebooks with low-com-
plexity.

Root Codeset Generation: A root codeset that satisfies
the localization and well-packing conditions as described
above is constructed via VQ and stored offline. The number
of codewords in the root codeset is larger than so as
to ensure that any local component has a cardinality smaller
than that of the root codeset. Furthermore, since the scaling

map can only ensure that the output packing is more localized
than the input packing, we need to pick sufficiently large,
but smaller than . The quantity corre-
sponding to the choices of and is determined via
Monte Carlo techniques and some is chosen in the interval

.
Local Components: For each member of the statistical com-

ponent, we rotate the root codeset (via the rotation map of The-
orem 1) to the matrix corresponding to the subspace
of in the statistical component. Then, each rotated codeset is
scaled by a shrinking factor . That is, we scale
each rotated codeset in proportion to the generalized eigenvalue
of that subspace. From each rotated codeset of codewords, we
retain codewords. The heuristic behind
the choice of has been explained in the previous section.
The same heuristic can be used to justify the choice of as
well.

B. Exploiting the General Structure of the Scaling and
Rotation Maps

We now delve into why a general form of the maps in
Appendix B is useful. In many practical systems, it is desirable
for the precoder codebook to have more structure so as to
facilitate implementation [3]. For example, two commonly
desired properties are as follows.

1) Bounded Gain Power Amplifier Architecture where we re-
quire

(36)

The above condition is useful in ensuring that the power
amplifiers used in the RF link chain are not driven to their
operational limits. The most general form of the rotation
and scaling maps allows one to search for a codebook that
satisfies the above property in addition to the localization
and well-packing properties.

2) Recursive/Nested Codebook Structure where a codebook
of can be generated from a codebook of

(with by retaining only
a subset of columns from every precoder in the

codebook. This property is desired so as
to minimize the algorithmic complexity of generating a
family of codebooks of different ranks on the fly. The low-
complexity property of the proposed maps and the offline
generation of the root codesets of different ranks ensure
that this issue is redundant with our codebook design.

Thus, we strongly generalize the maps of [42] and [43] and
as a by-product observe that even in the case, a rich
family of maps can effect the scaling operation other than (28).
Additional structure in the codebook can also be accommodated
to ease implementation complexity.

VI. NUMERICAL RESULTS

We now illustrate via numerical studies the performance
gains possible with our codebook construction and the con-
sequent bridging of the gap between statistical and optimal
precoding. In the first study, we consider a 4 4 channel under
the separable model with
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Fig. 3. (a) Average mutual information with Gaussian inputs in a 4� 4 mis-
matched channel following a separable model. Two data streams are used in
signaling and a limited feedback codebook designed along the principle eluci-
dated in Section IV is used. (b) Error probability performance with the same
codebook under QPSK inputs.

and . This choice en-
sures that the transmit/receive covariance matrices are both
ill-conditioned and with , note that the channel is
not matched to the precoder. We first generate a root codeset
of codewords with and
via VQ. Let denote the column vectors
of . The codebook used for satisfies
with the codeword corresponding to and
while with , the codebook has an additional RVQ
codeword and a local codeword around . Similarly, with

and .
The statistical codewords correspond to .
Since we are mainly interested in illustrating the performance
gains in the high-SNR regime, uniform power allocation is used
for .

Fig. 3(a) shows the average mutual information with a
Gaussian input for statistical and limited feedback precoding.

Fig. 4. Average mutual information with Gaussian inputs in a 4� 4 mis-
matched channel with nonseparable correlation and� � �.

In addition to the mutual information, raw bit error rate (BER)
is useful as well. Fig. 3(b) shows the improvement in error
probability for the same channel with QPSK inputs. In the error
probability case, the index of the codeword that minimizes the
distance to the instantaneous is fed back. Note that while
the performance gap between the optimal and the statistical
schemes is significantly bridged in the error probability case,
further improvement in mutual information is possible. Never-
theless, both the figures show that substantial gains are possible
with a few bits of feedback. For example, with 4 bits of
feedback, a 3-dB gain is possible at a rate of 10 b/s/Hz while
a 6-dB gain is possible at a BER of . Also, note that an
i.i.d. codebook design incurs a dramatic loss in performance in
correlated channels.

In the second study, we consider a 4 4 channel with non-
separable correlation following the virtual representation frame-
work. The variance matrix used in
the study is

(37)

Note that the channel has a single dominant transmit (as well
as receive) eigenmode and is hence mismatched when
data streams are used in signaling. The parameters of the root
codeset are and . As before, let

denote the column vectors of the DFT matrix
. The codebook for has the two statistical codewords

and . For , we use two additional RVQ
codewords and for , we use

and . The third statistical codeword when
is . Fig. 4 illustrates the bridging of the gap

in mutual information between the optimal and the statistical
schemes. It is important to note that both the channels studied
here are so constructed to result in a substantial performance gap
between perfect CSI and statistical signaling. Thus, our studies
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illustrate that substantial gains can be achieved even with few
bits of feedback.

VII. CONCLUDING REMARKS

In this work, we have studied linear precoding under a re-
alistic system model. In particular, the focus is on the impact
of spatial correlation when perfect CSI is available at the re-
ceiver, statistical information is available at both the ends, and
quantized channel information is fed back from the receiver to
the transmitter. While initial works on precoding assume per-
fect CSI at both the ends and hence do not impose any partic-
ular structure on the precoder matrices, under the model studied
here, we see that structure can help in minimizing the reverse-
link feedback as well as reduce the implementation complexity.

We further developed the notions of matched and mismatched
channels, introduced in [30], in this work. The study of sta-
tistical precoding in [30] motivates the proposed limited feed-
back design where we quantize the space of semiunitary ma-
trices with a nonuniform bias towards the statistically dominant
eigenmodes. The design as well as its adaptability are rendered
practical by the construction of mathematical maps (operations)
that can be used to rotate and scale submanifolds on the Grass-
mann manifold. More importantly, numerical studies show that
the proposed designs yield significant improvement in perfor-
mance when the channel is mismatched to the communication
scheme.

This work is a first attempt at systematic precoder codebook
design in single-user multiantenna channels that exploits spa-
tial correlation and channel structure explicitly. Possible exten-
sions are the study of more complex receiver architectures and
performance analysis in the finite antenna, arbitrary SNR set-
ting, along the lines of [30]. More work also needs to be done
to understand the impact of spatial correlation on the perfor-
mance of the proposed limited feedback scheme which could in
turn drive the development of more efficient codebook construc-
tions. Other open issues that need further study include prac-
tical aspects such as codebook designs for wideband channels,
codebook designs based on Fourier/Hadamard matrices that are
useful in achieving the bounded gain power amplifier architec-
ture and hence, have found much interest in the standardiza-
tion community, incorporating the cost of statistics acquisition
in performance analysis [44], and more general scattering envi-
ronment-independent channel decompositions [45] that mimic
the physical model closely. The case of multiuser systems with
feedback, where the impact of different users’ channel structure
is more critical in system performance, is another area for study.

We close the paper by drawing attention to the philosophy
that has guided this work. While deducing the structure of the
optimal signaling scheme under general assumptions on spa-
tial correlation and channel information seems extremely dif-
ficult, an alternative approach that partitions this problem into
smaller subproblems could be quite fruitful. The general idea
of matching the rank of the precoding scheme to the number
of dominant transmit eigenvalues with the resolution necessary
to decide whether an eigenvalue is “dominant” or not being a
function of the SNR reminds one of the classical source-channel

matching paradigm [46]. Initial evidence seen in this paper also
suggests that this partitioning provides a natural framework to
understand the performance of limited feedback schemes.

APPENDIX

A. Matrix-Algebraic Proofs of Distance Properties

Proof of Lemma 1: The projection 2-norm dis-
tance between and is defined as

. We can write the matrix within
the above operation as . Since the nontrivial
eigenvalues of a matrix product are the same as those of

, we need the largest eigenvalue of

(38)

Expanding the characteristic equation of ,
we have . Using the positive root for

, the lemma follows immediately.
Proof of Prop. 1: The matrix-algebraic proof is as follows.

1) Note that

(39)

and

(40)

The claim in 1) follows from the above two inequalities.
2) We the need the following result [47] that helps in com-

puting the determinant of partitioned matrices.
Lemma 4: If , and are matrices and is

invertible, we have

(41)

Using this fact and the trick (in the above version of the Proof
of Lemma 1) of rewriting the eigenvalues of in terms of
eigenvalues of , 2) follows trivially.

B. Generalized Scaling Map

Let be a root codeset on . Let
and be arbitrary unitary matrices and let be an
arbitrary unitary matrix. Given
and , for any , generate an
diagonal, positive-definite matrix with

Then, define as . Define the
principal component of the diagonal ma-
trix as and as .
If , for any , generate an

diagonal, positive-semidefinite matrix
with:
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and . Then, define as
with the principal component of
being . Define as with the principal

component of being
and the principal southeast component being .

Theorem 2: The map that leads to scaling of
by is given by

(42)

where is a representative of the null-space corresponding
to .

Proof: As in the beamforming case, we can decompose
as with

(43)

where rotates to the canonical precoder

while scales (shrinks) the
canonical codeset by a factor and rotates it back to the
direction corresponding to .

Let be an full rank matrix and be an
matrix such that

(44)

and is as in (42). We now show that and have
to be as in the statement of the theorem so that results
in scaling by . First, note that the semiunitarity of and
the facts that and

imply that .
Thus, we have

(45)

The map should satisfy
1) ;
2) for all .
First, let us consider the distance scaling property. We need

(46)

where and are the principal angles between and

, and and , respectively.

In the above series of equations, (a) and (f) follow from (15),
(b) from the distance scaling property of , (c) from Lemma
2, (d) from (43), and (e) from (44). Now using the property that

and are the singular values of and
, respectively, and the relation between sines and cosines, we

have

(47)

The constraints elucidated above are the only constraints to be
imposed on the singular values of .

We now describe the complete decomposition as in the state-
ment of the theorem. Assume a singular value decomposition
for and of the form: and

, respectively where and are
unitary matrices, and is an unitary

matrix. The full-rankness of means that the diag-
onal matrix is positive definite while the
matrix has nonnegative entries only along the leading di-
agonal. Since , we have

. Comparing the two sides, we
see that (we set both to be and

. Note that since there are no constraints on/rela-
tionship between and , the leading diagonal entries of

and can be in any order. This is because either unitary
matrix can be appropriately adjusted by a permutation matrix.

If , without loss in generality assume that the
diagonal entries of are in nonincreasing order while those
of may be not. Given a choice of , the condition

can be met by choosing the principal
component of to be . If ,

assume that the diagonal entries of are in nonincreasing
order while those of may be not. Then, the condition

can be met if entries of are
1. The additional constraint on the smallest diagonal entry (see
discussion above) ensures distance scaling.

To close the theorem, it is necessary to verify that
. This can be done by checking that can

be computed in closed-form. For this, note that and
since , we have . From here, it can be
checked that and from (42), we thus have

. On the Grassmann manifold ,
multiplication by an unitary matrix results in the same
“point.” Thus, and the proof is complete.

Note that the choice of the scaling map is nonunique due
to freedom in the choice of and as well as the
eigenvalues of and . The case of is special
where turns out to be . With almost any other choice
of , these matrices are nonidentity, in general. Besides these
choices, nonuniqueness of the representative of also leads
to nonuniqueness of the map.
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