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Abstract—Recent attention in quickest change detection in the
multisensor setting has been on the case where the densities of the
observations change at the same instant at all the sensors due to
the disruption. In this work, a more general scenario is considered
where the change propagates across the sensors, and its propaga-
tion can be modeled as a Markov process. A centralized, Bayesian
version of this problem is considered, with a fusion center that has
perfect information about the observations and a priori knowledge
of the statistics of the change process. The problem of minimizing
the average detection delay subject to false alarm constraints is for-
mulated in a dynamic programming framework. Insights into the
structure of the optimal stopping rule are presented. In the lim-
iting case of rare disruptions, it is shown that the structure of the
optimal test reduces to thresholding the a posteriori probability of
the hypothesis that no change has happened. Under a certain con-
dition on the Kullback-Leibler (K-L) divergence between the post-
and the pre-change densities, it is established that the threshold test
is asymptotically optimal (in the vanishing false alarm probability
regime). It is shown via numerical studies that this low-complexity
threshold test results in a substantial improvement in performance
over naive tests such as a single-sensor test or a test that incorrectly
assumes that the change propagates instantaneously.

Index Terms—Change-point problems, distributed deci-
sion-making, optimal fusion, quickest change detection, sensor
networks, sequential detection.

I. INTRODUCTION

A N important application area for distributed deci-
sion-making systems is in environment surveillance and

monitoring. Specific applications include: i) intrusion detec-
tion in computer networks and security systems [1], [2]; ii)
monitoring cracks and damages to vital bridges and highway
networks [3]; iii) monitoring catastrophic faults to critical
infrastructures such as water and gas pipelines, electricity
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connections, supply chains, etc., [4]; iv) biological problems
characterized by an event-driven potential including monitoring
human subjects for epileptic fits, seizures, dramatic changes
in physiological behavior, etc., [5], [6]; v) dynamic spectrum
access and allocation problems [7]; vi) chemical or biological
warfare agent detection systems to protect against terrorist at-
tacks; vii) detection of the onset of an epidemic; and viii) failure
detection in manufacturing systems and large machines. In all
of these applications, the sensors monitoring the environment
take observations that undergo a change in statistical properties
in response to a disruption (change) in the environment. The
goal is to detect the point of disruption (change-point) as
quickly as possible, subject to false alarm constraints.

In the standard formulation of the change detection problem,
studied over the last fifty years, there is a sequence of obser-
vations whose density changes at some unknown point in time
and the goal is to detect the change-point as soon as possible.
Two classical approaches to quickest change detection are: i)
the minimax approach [8], [9], where the goal is to minimize
the worst-case delay subject to a lower bound on the mean time
between false alarms; and ii) the Bayesian approach [10]–[12],
where the change-point is assumed to be a random variable with
a density that is known a priori and the goal is to minimize the
average (expected) detection delay subject to a bound on the
probability of false alarm. Significant advances in both the min-
imax and the Bayesian theories of change detection have been
made, and the reader is referred to [8]–[21] for a representative
sample of the body of work in this area. The reader is also re-
ferred to [8], [15], [17], [21]–[26] for performance analyses of
the standard change detection approaches in the minimax con-
text, and [27], [28] in the Bayesian context.

Extensions of the above framework to the multisensor case
where the information available for decision-making is dis-
tributed has also been explored [28]–[32]. In this setting, the
observations are taken at a set of distributed sensors, as shown
in Fig. 1. The sensors may send either quantized/unquantized
versions of their observations or local decisions to a fusion
center, subject to communication delay, power, and bandwidth
constraints, where a final decision is made, based on all the
sensor messages. In particular, in much of this work [28]–[31],
it is assumed that the statistical properties of all the sensors’
observations change at the same time.

However, in many scenarios such as detecting pollutants and
biological warfare agents, the change process is governed by
the movement of the agent through the medium. Thus, it is
more suitable to consider the case where the statistics of each
sensor’s observations may change at different points in time.
This problem is studied in [32] where the authors consider a
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Fig. 1. Change-point detection across a linear array of sensors.

one-shot scheme with each sensor running a cumulative sum
(CUSUM) algorithm. The sensors communicate with the fusion
center only when they are ready to signal an alarm. It is estab-
lished in [32] that a scheme where the fusion center employs
a minimal strategy of declaring change upon receiving the first
asynchronous signal from the sensors is asymptotically optimal
in an extended minimax sense.

In this work, we consider a Bayesian version of this problem
and assume that the point of disruption (that needs to be de-
tected) is a random variable with a geometric distribution. More
general disruption models can be considered, but the case of a
geometric prior has an intuitive and appealing interpretation due
to the memorylessness property of the geometric random vari-
able. In addition, the practically relevant rare disruption regime
can be obtained by letting the geometric parameter go to zero.
We assume that the sensors are placed in an array or a line and
they observe the change as it propagates through them. The pro-
gression of change in only one strictly determined direction can
be thought as a first approximation to more realistic situations.
The inter-sensor delay is modeled with a Markov model and, in
particular, the focus is on the case where the inter-sensor delay
is also geometric. This model can be viewed as a first order ap-
proximation to more general propagation models, with the ze-
roth-order model being the case where the statistical properties
of the sensors’ observations change at the same time.

We study the centralized case, where the fusion center
has complete information about the observations at all the
sensors, the change process statistics, and the pre- and the
post-change densities. This is applicable in scenarios where: i)
the fusion center is geographically collocated with the sensors
so that ample bandwidth is available for reliable communication
between the sensors and the fusion center; and ii) the impact
of the disruption-causing agent on the statistical dynamics of
the change process and the statistical nature of the change
so induced can be modeled accurately. Note that under the
centralized model, the special case where the change happens
at the same time at all sensors corresponds to the standard

(single sensor) quickest change detection problem [12] with an
-vector observation.
Our work differs from Hadjiliadis et al. in two ways. First,

the nature of the one-shot scheme implies that the complexity
of decision-making is at the sensor level in [32], whereas it is at
the fusion center here. In terms of the natural trade-off between
reliability of decision-making (due to a -fold sensor diversity)
and device-level complexity of the sensor network, we can view
these two works as corresponding to the two extreme cases. Sec-
ondly, prior information about the change process (including the
direction of change propagation) incorporated in the Bayesian
setting here should allow us to improve performance over the
minimax problem of [32].

Summary of Main Contributions: The goal of the fusion
center is to come up with a strategy (or a stopping rule) to
declare change, subject to false alarm constraints. Towards
this goal, we first show that the problem studied here fits the
standard dynamic programming (DP) framework [33] with the
sufficient statistics given by the a posteriori probabilities of
the state of the system conditioned on the observation process.
We then establish a recursion for the sufficient statistics, which
generalizes the recursion for the case when all the sensors
observe the change at the same instant, which is equivalent
to the single sensor case studied in [33, p. 133]. We further
go on to establish the structure of the optimal stopping rule
for change detection. This rule takes the form of the smallest
time of cross-over (intersection) of a linear functional (or
hyperplane) in the space of sufficient statistics with a nonlinear
concave function. While further analytical characterization of
the optimal stopping rule is difficult in general, in the extreme
scenario of a rare disruption regime, we show that the structure
of this rule reduces to a simple threshold test on the a posteriori
probability that no change has happened. This low-complexity
test is denoted as (corresponding to an appropriate choice
of threshold ) for simplicity.

While is obtained as a limiting form of the optimal test,
this does not necessarily imply that it is a “good” test. We there-
fore proceed to establish that is asymptotically optimal (as
the false alarm probability vanishes) under a certain con-
dition on the Kullback-Leibler (K-L) divergence between the
post- and the pre-change densities. Meeting this condition be-
comes easier as the change propagates more quickly across the
sensor array, and in the extreme case where the sensor observa-
tions change at the same time, this condition reduces to the mild
one that the K-L divergence be positive.

The difference between the noninstantaneous and instan-
taneous change propagation settings is more apparent in the
nonasymptotic, but small regime. Asymptotic optimality
of a particular test in the instantaneous change propagation
setting translates to an -fold increase in the slope of average
detection delay versus in the regime where
the false alarm probability is small, but not vanishing (e.g.,

or ). However, if the change propagates
slowly across the sensor array, numerical studies indicate that
not all of the sensors’ observations may contribute to the
performance of in this regime. Nevertheless, as ,
all the sensors are expected (in general) to contribute to the
slope.
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Thus, while it is not clear if is asymptotically optimal in
general, or even if all the sensors’ observations contribute to
its performance in the nonasymptotic regime, numerical studies
also show that can result in substantial performance im-
provement over naive tests such as: (i) the single sensor test,
where only the first sensor’s observation is used in decision-
making; or (ii) the mismatched test, where all the sensors’ obser-
vations are used in decision-making, albeit with a wrong model
that change propagates instantaneously. This improvement in
performance is especially apparent in regimes of practical im-
portance, where the disruption is rare, and the propagation is
reasonably quick, but noninstantaneous across the sensors. The
performance improvement possible with , in addition to its
low-complexity, make it an attractive choice for many practical
applications with a basis in multisensor change process detec-
tion.

Organization: This paper is organized as follows. The change
process detection problem is formally set up in Section II. In
Section III, this problem is posed in a dynamic programming
framework and the sufficient statistics of the dynamic program
(DP) are identified. The structure of the optimal stopping rule
in the general case and the rare disruption regime are illustrated
in Section IV. The limiting form of the optimal test is denoted
as for simplicity. The main statements regarding the asymp-
totic optimality of are stated in Section V. These results are
established in Section VI and the Appendices. A discussion of
the main results and numerical studies to illustrate our results
are provided in Section VII. Concluding remarks are made in
Section VIII.

II. PROBLEM FORMULATION

Consider a distributed system with an array of sensors, as in
Fig. 1, that observes an -dimensional discrete-time stochastic
process , where is the observation
at the th sensor at the th time instant. A disruption in the
sensing environment occurs at the random time instant , and
hence, the density1 of the observations at each sensor undergoes
a change from the null density to the alternate density .

Change Process Model: We consider a change process where
the change-point evolves across the sensor array. In particular,
the change-point as seen by the th sensor is denoted as . We
assume that the evolution of the change process is Markovian
across the sensors. That is,

for all and . Further simplification of the
analysis is possible under a joint-geometric model on .
Under this model, the change-point evolves as a geometric
random variable with parameter , and inter-sensor change
propagation is modeled as a geometric random variable with
parameter . That is

1We assume that the pre-change �� � and the post-change �� � densities exist.

and

independent of for all such that . We will
find it convenient2 to set and so that
is defined for all .

While a joint-geometric model is consistent with the Mar-
kovian assumption as only the inter-sensory (one-step) prop-
agation parameters are modeled, the change-points at the in-
dividual sensors themselves are not geometric. The joint-geo-
metric model can be viewed as a first order approximation of
more realistic propagation scenarios. In particular, note that

corresponds to the case where instantaneous disruption (that
is, the event ) has a high probability of occurrence.
On the other hand, uniformizes the change-point in the
sense that the disruption is equally likely to happen at any point
in time. This case where the disruption is “rare” is of signifi-
cant interest in practical systems [15], [18], [28]–[31]. This is
also the case where we will be able to make insightful state-
ments about the structure of the optimal stopping rule. Simi-
larly, we can also distinguish between two extreme scenarios at
sensor depending on whether or . The
case where corresponds to instantaneous change
propagation at sensor and with high proba-
bility. The case where corresponds to uniformly
likely propagation delay. The widely-used assumption of instan-
taneous change propagation across sensors is equivalent to as-
suming for all .

Observation Model: To simplify the study, we assume that
the observations (at every sensor) are independent, conditioned3

on the change hypothesis corresponding to that sensor, and are
identically distributed pre- and post-change, respectively. That
is,

We will describe the above assumption as that corresponding to
an “i.i.d. observation process.” Let denote the Kull-
back-Leibler divergence between and . That is,

We also assume that the measure described by is absolutely
continuous with respect to that described by . That is, if

for some , then . This condition ensures
that .

Performance Metrics: We consider a centralized, Bayesian
setup where a fusion center has complete knowledge of the ob-
servations from all the sensors, , in addition
to knowledge of statistics of the change process (equivalently,

2This is also consistent with an equivalent �� � ��-sensor system where
sensor indices run through �� � �� � � � � � � ��.

3More general observation (correlation) models are important in practical set-
tings. This will be the subject of future work.
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) and statistics4 of the observation process (equiva-
lently, and ). The fusion center decides whether a change
has happened or not based on the information, , available to
it at time instant (equivalently, it provides a stopping rule or
stopping time ).

The two conflicting performance measures for quickest
change detection are the probability of false alarm,

, and the average detection delay,
, where . This conflict is cap-

tured by the Bayes risk, defined as

for an appropriate choice of per-unit delay cost , where
is the indicator function of the event . We will be particularly
interested in the regime where . That is, a regime where
minimizing is more important than minimizing , or
equivalently, the asymptotics where .

The goal of the fusion center is to determine

from the class of change-point detection procedures
for which the probability of false alarm does not

exceed . In other words, the fusion center needs to come up
with a strategy (a stopping rule ) to minimize the Bayes risk.

III. DYNAMIC PROGRAMMING FRAMEWORK

It is straightforward to check that [12, pp. 151-152] the Bayes
risk can be written as

Towards solving for the optimal stopping time, we restrict at-
tention to a finite-horizon, say the interval , and proceed
via a dynamic programming (DP) argument.

The state of the system at time is the vector
with denoting the state at sensor . The

state can take the value 1 (post-change), 0 (pre-change),
or (terminal). The system goes to the terminal state , once a
change-point decision has been declared. The state evolves
as follows:

where the transition function is given as

if
if
if or

with . Since captures the information contained in
for and all , given

is independent of for all . Thus, the state

4We assume that the fusion center has knowledge of � and � so that it can
use this information to declare that a change has happened. Relaxing this as-
sumption is important in the context of practical applications and is the subject
of current work.

evolution satisfies the Markov condition needed for dynamic
programming.

The state is not observable directly, but only through the ob-
servations. The observation equation can be written as

where and are the th samples from independently
generated infinite arrays of i.i.d. data according to and ,
respectively. When the system is in the terminal state, the ob-
servations do not matter (since a change decision has already
been made) and are hence denoted by a dummy random vari-
able, . It is clear that the observation uncertainty
satisfies the necessary Markov conditions for dynamic program-
ming since they are i.i.d. in time.

Finally, the expected cost (Bayes risk) can be expressed as the
expectation of an additive cost over time by defining

and a terminal cost . Thus the problem fits the
standard dynamic programming framework with termination
[33], with the sufficient statistic (belief state) being given by

where for such that , i.e.,
for each . Note that this sufficient statistic is described by

conditional probabilities, corresponding to the values that
can take. We will next see that this sufficient statistic can be

further reduced5 to only independent probability parameters
in the general case.

The fusion center determines , and, hence, the minimum
expected cost-to-go at time for the above DP problem can be
seen to be a function of . For a finite horizon , the cost-to-go
function is denoted as and is of the form (see [33, p.
133], [29], for examples of similar nature)

where is the empty set. The first term in the above mini-
mization corresponds to the cost associated with stopping at
time , while the second term corresponds to the cost associ-
ated with proceeding to time without stopping. The min-
imum expected cost for the finite-horizon optimization problem
is .

Recursion for the Sufficient Statistics: We define an
-tuple of conditional probabilities,

We now show that can be obtained
from via a recursive approach. For this, we note that the

5This should not be entirely surprising as our assumption of a line (or array)
geometry imposes a “natural” ordering on the sensors’ change-points. They can
be arranged in nondecreasing order: � � � for all �.
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underlying probability space in the setup can be partitioned
as

where

The event where no sensor has observed the change is denoted
as . On the other hand, (for ) corresponds to the
event where the maximal index of the sensor that has observed
the change before time instant is .

Observe that is the probability of conditioned on .
To show that can be written in terms of , the observa-
tions and the prior probabilities, we partition further as

Note that . Using the new partition
and applying Bayes’ rule repeatedly, it

can be checked that can be written as

(1)

where denotes the conditional probability density func-
tion of and denotes the numerator term.

From the i.i.d. assumption on the statistics of the observa-
tions, the first term within the summation for can be written
as

where is the likelihood ratio of the two hy-
potheses given that is observed at the th sensor at the th
instant. For the second term, observe from the definitions that

Thus, we have

(2)

where the first part is a weighted sum of with weights
decided by the prior probabilities, and the second part of the
evolution equation, , can be viewed as that part that
depends only on the observation .

Many observations are in order at this stage:
• The above expansion for can be explained intuitively:

If the maximal sensor index observing the change by time
is , then the maximal sensor index observing the

change by time should be from the set .
• Using the joint-geometric model for , it can be shown

that is of the form

(3)

with the understanding that the product term in the defini-
tion of is vacuous (and is to be replaced by 1) if .
It is important to note that the joint-geometric assumption
renders the weights associated with inde-
pendent of . This will be useful later in establishing con-
vergence properties for the DP.

• It is important to note that given a fixed value of
is dependent on the entire vector and not on
alone. Thus, the recursion for implies that forms the
sufficient statistic and the function can be written
as a function of only , say . The finite-horizon
DP equations can then be rewritten as

with

Note that the previously established recursion for im-
plies that for an appropriate choice of

(the precise form of is clear from (1) and (2))
which ensures that the right-hand side is indeed a function
of .

• It is easy to check that the general framework reduces to the
special case when all the change-points coincide with .
In this case, as in [29], we define .
Note that only and are nonempty sets with
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Furthermore, the recursion for reduces to

which coincides with [29, eq. (13)-(15)]. This case can also
be obtained from (3) by setting for all with

.

IV. STRUCTURE OF THE OPTIMAL STOPPING RULE

The goal of this section is to study the structure of the optimal
stopping rule, . For this, we follow the same outline as in
[33] and study the infinite-horizon version of the DP problem
by letting .

Theorem 1: Let be an element
of the standard -dimensional simplex , defined as,

. The infinite-horizon cost-to-go
for the DP is of the form

where the function : i) is concave in over ; ii) is
bounded as ; and iii) satisfies over
the hyperplane .

Proof: See Appendix A.
At this stage, it is a straightforward consequence that the op-

timal stopping rule is of the form

That is, a change is declared when the hyperplane on the left
side is exceeded by and no change is declared, other-
wise. We will next see that this test characterization reduces to
a degenerate one as .

To establish this degeneracy, we define the following
one-to-one and invertible transformation:

which is equivalent to

and

We can write in terms of the priors as

Note that while are conditional probabilities of certain
events, and hence, lie in the interval , the range of is
in general .

It can be checked that the evolution equation can be rewritten
in terms of as

(4)

It is interesting to note from (4) that the update for is a
weighted sum of with progressively de-
creasing weight as increases. Similarly, we can define
and in terms of . Using the transformation
is seen to have the form

When all coincide, we have

Further, it is straightforward to check that the evolution in (4)
reduces to

(5)

Thus, the space of sufficient statistics and the optimal test re-
duce to a one-dimensional variable ( or
equivalently, ) and a threshold test on (or equivalently, on

), respectively. In the general case, unless something more is
known about the structure of (which is possible if there
is some structure on ), we cannot say more about .
Nevertheless, the following theorem establishes its structure in
the practical setting of a rare disruption regime . The
limiting test thresholds (from below) the a posteriori probability
that no-change has happened, and is denoted as .

Theorem 2: The test structure corresponding to con-
verges in probability to a simple threshold operation in the
asymptotic limit as . This limiting test is of the form

Stop if

Continue if

for an appropriate choice of threshold .
Proof: See Appendix B.

The test is of low-complexity because of the following
properties: i) a simple recursion formula (4) for the sufficient
statistics; ii) a threshold operation for stopping; and iii) the
threshold value that can be precomputed given the con-
straint (see Prop. 3).

The fact that for an appropriate choice of does
not imply that is asymptotically (as or as )
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optimal. However, the low-complexity of this test, in addition
to Theorem 2, and the fact that the structure of (and,
hence, ) are not known suggest that it is a good candidate
test for change detection across a sensor array. In fact, we will
see this to be the case when we establish sufficient conditions
under which is asymptotically optimal.

V. MAIN RESULTS ON

Towards this end, our main interest is in understanding the
performance ( versus ) of for any general choice
of threshold .

Special Cases of Change Parameters: To build intuition, we
start by considering some special scenarios of change propaga-
tion modeling. The first scenario corresponds to the case where
one (or more) of the is 1. The following proposition ad-
dresses this setting.

Proposition 1: Consider an -sensor system described in
Section II, parameterized by , where for
some and . This system is equivalent to
an -sensor system, parameterized by , where

with the th sensor observing (a combination of)
and with a geometric delay parameter of

.
Proof: The proof is straightforward by studying the evo-

lution of for the original -sensor system. From (4), it
can be seen that (identically) for all and the re-
duced -dimensional system discards this redundant in-
formation, while the observation corresponding to the th
sensor is carried over to the th original sensor.

The second scenario corresponds to the case where one (or
more) of the is 0.

Proposition 2: Consider an -sensor system, parameterized
by , with indicating the smallest index such that

. This system is equivalent to an -sensor system
with the same parameters as that of the original system. It is as
if sensors and beyond do not exist (or contribute) in
the context of change detection.

Proof: The proof is again straightforward by considering
the evolution of in (4) and noting that are
identically 0 for all .

It is useful to interpret Propositions. 1 and 2 via an “infor-
mation flow” paradigm. If change propagation is instantaneous
across a sensor (corresponding to the first case), it is as if the
fusion center is oblivious to the presence of that sensor con-
ditioned upon the previous sensors’ observations. In this set-
ting, the detection delay corresponding to that sensor is zero, as
would be expected from the fact that the geometric parameter is
1. In the second case, information flow to the fusion center (con-
cerning change) is cut-off or blocked past the first sensor with
a geometric parameter of 0. That is, the observations made by
sensors (if any) do not contribute information
to the fusion center in helping it decide whether the disruption
has happened or not. Apart from these extreme cases of obliv-

ious/blocking sensors, we can assume without loss in generality
that

Continuity arguments suggest that if some is small (but
nonzero), it should be natural to expect that the th sensor
and beyond may not “effectively” contribute any information
to the fusion center. We will interpret this observation after
establishing performance bounds for .

Probability of False Alarm: We first show that letting
in corresponds to considering the regime where

.
Proposition 3: The probability of false alarm with can be

upper bounded as

That is, if and the threshold is set as ,
then .

Proof: The proof is elementary and follows the same ar-
gument as in [28] and [34]. Note that and can also be
written as

Thus, we have

Universal Lower Bound on : We now establish a lower
bound on for the class of stopping times . That is,
any stopping time should have an larger than the lower
bound if is to be smaller than .

Proposition 4: Consider the class of stopping times
. Under the assumption that

, we have

as

where the term converges to zero as .
Proof: The proof follows on similar lines as [28, Lemma 1

and Theorem 1], but with some modifications to accommodate
the change process setup. See Appendix C.

Upper Bound on of : We will now establish an upper
bound on of .

Theorem 3: Let be such that
. Further, assume that be such that

there exists some satisfying and

(6)

for all . Then, the performance of with
is given by

as
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Corollary 1: Combining Proposition 4 and Theorem 3, it can
be seen that is asymptotically optimal (as ) for any
fixed . In other words

where we have used the notation as to mean
.

The proof of Theorem 3 in the general case of an arbitrary
number of sensors with an arbitrary choice of re-
sults in cumbersome analysis. Hence, it is worthwhile to con-
sider the special case of two sensors that can be captured by just
two change parameters: and . The main idea that is neces-
sary in tackling the general case is easily exposed in the
setting in Section VI. The general case is carefully studied in
Appendix D.

VI. AVERAGE DETECTION DELAY: SPECIAL CASE

The main statement in the case is the following result.
Proposition 5: The stopping time is such that

as . Further, if satisfies

we also have

We will work our way to the proof of the above statement by
establishing some initial results.

Proposition 6: If , we can recast as
follows:

Proof: We start with the recursions

The expression for is obtained by isolating the term
at every stage as increases from 2 to . The expression

for is obtained by isolating the term
at every stage as increases.

The test can now be rewritten as

We need the following preliminaries in the course of our anal-
ysis.

Lemma 1: Since , note that can be trivially
upper bounded as

Lemma2: If are i.i.d. with and
, then

a.s. and in mean

If are i.i.d. with and , then

a.s. and in mean

Note that both these conclusions are true even if are not
i.i.d. (or even independent) as long as the condition on the sign
of can be replaced with an almost sure (and in mean)
statement on the sign of (or an appro-
priate variant thereof).
The following statement, commonly referred to as the Black-
well’s elementary renewal theorem [35, pp. 204-205], is needed
in our proofs.

Lemma 3: Let be i.i.d. positive random variables and de-
fine as follows:

and

The number of renewals in is . Then,
we have

a.s. as
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and

as

where .
Proof of Proposition 5 : We will postpone the

proof of the first statement to Appendix D when we consider the
general case in Proposition 9. For the second statement, we first
use the bound for from Lemma 1 and the fact that ,
and thus we have

Now, observe that

where the first equality follows since (change has
to eventually happen at the second sensor to ensure that

), the second step follows from
Jensen’s inequality and the third equality from the fact that

. Using this fact in conjunction with Lemma 2
and noting that , as , we have

The above relationship implies that where

Applying Lemma 3 (since the entries in the definition of
are independent) and the first statement of the theorem that

as , we have

The general case where is discussed in Appendix D.

VII. DISCUSSION AND NUMERICAL RESULTS

Discussion: A loose sufficient condition for all the sensors
to contribute to the slope of of is that

Another sufficient condition is that

That is, if is such that

then and the condition of Theorem 3 reduces to a mild
one that the K-L divergence between and be positive. A
special setting where the above condition is true (irrespective of
the rarity of the disruption-point) is the regime where change
propagates across the sensor array “quickly.” The case instan-
taneous propagation is an extreme example of this regime and
Theorem 3 recaptures this extreme case.

In more general regimes where change propagates across the
sensor array “slowly,” either the disruption-point should become
less rare (independent of the choice of and ) or that the den-
sities and be sufficiently discernible (independent of the
rarity of the disruption-point) so that all the sensors can con-
tribute to the asymptotic slope. When these conditions fail to
hold, it is not clear whether the theorems are applicable, or even
if all the sensors contribute to the slope of . Neverthe-
less, it is reasonable to conjecture that as long as

, then all the sensors contribute to the asymptotic slope.
However, the difference between the asymptotic and the

nonasymptotic regimes needs a careful revisit. Following the
initial remark (Proposition 2) on the extreme case of blocking
sensors (where some ), in the more realistic case
where some may be small (but nonzero), it is possible
that if is smaller than some threshold value (deter-
mined by the change propagation parameters), not all of the
sensors may “effectively” contribute to the slope of , at
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Fig. 2. Probability of false alarm versus Average detection delay for a � � � setting with � � ����� and � � ���.

least for reasonably small, but nonasymptotic values of .
For example, see the ensuing discussion where numerical re-
sults illustrate this behavior at values of to for
some choice of change propagation parameters, even when the
condition in Theorem 3 is met. When the condition in Theorem
3 is not met, such a behavior is expected to be more typical.

The final comment is on the approach pursued in this paper.
While the approach pursued in Section VI and Appendix D re-
sults in interesting conclusions, it is not clear if this approach
is fundamental in the sense that this is the only approach pos-
sible for characterizing versus . Furthermore, this ap-
proach assumes the existence of (see Appendix D). Even
if these quantities exist and are hence, theoretically computable,
such a computation is complicated by the fact that

are correlated. Thus, verification of the exact condi-
tion in Proposition 10 (equivalently, computing ) has to be
achieved either via Monte Carlo methods or by bounding ,
as done here. Furthermore, correlation of , and hence,
[see (11)]) implies that statistics of have to be obtained using
nonlinear renewal theoretic techniques for general (correlated)
random variables [36]. This is the subject of current work.

Numerical Study I—Performance Improvement With :
Given that the structure of is not known in closed-form, we
now present numerical studies to show that results in sub-
stantial improvement in performance over both a single sensor
test (which uses the observations only from the first sensor
and ignores the other sensor observations) and a test that uses
the observations from all the sensors but under a mismatched
model (where the change-point for all the sensors is assumed
to be the same), even under realistic modeling assumptions.

The first example corresponds to a two sensor system where
the occurrence of change is modeled as a geometric random
variable with parameter . Change propagates from
the first sensor to the second with the geometric parameter

. The pre- and post-change densities are
and , respectively so that . While
the threshold for is set as in Proposition 3, the thresholds
for the single sensor and mismatched tests are set as in [28].
The recursion for the sufficient statistic of the mismatched test
follows the description in [29]. Fig. 2 depicts the performance
of the three tests obtained via Monte Carlo methods and shows
that can result in an improvement of at least 4 units of delay
at even marginally large values on the order of .

The second example corresponds to a five sensor system
where . Change propagates across the array according
to the following model:
and . The pre- and the post-change densities are

and so that . With
and the change parameters as above, Theorem 3

assures us that at least sensors contribute to the
versus slope asymptotically. On the other hand, Fig. 3
shows that more than two sensors indeed contribute to the
slope. Thus, it can be seen that Theorem 3 provides only a
sufficient condition on performance bounds. It is also worth
noting the transition in slope (unlike the case in [29]) for both
the mismatched test and as decreases from moderately
large values to zero, whereas the slope of the single sensor test
(as expected) remains constant.

Numerical Study II—Performance Gap Between the Tests:
We now present a second case-study with the main goal being
the understanding of the relative performance of with respect
to the single sensor and the mismatched tests. We again consider
a sensor system and we vary the change process parame-
ters, and , in this study. The pre- and the post-change den-
sities are and so that .

Figs. 4 and 5(b) show the performance of the three tests with
varying parameters for a fixed choice of . We observe that
the gap in performance between the single sensor test and
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Fig. 3. Probability of false alarm versus Average detection delay for a typical � � � setting.

increases as decreases, whereas the gap between and the
mismatched test stays fairly constant. Similarly, Fig. 5 shows
the performance of the three tests with varying parameters
for a fixed choice of . We observe from these plots that the gap
between the mismatched test and increases as decreases,
whereas the gap between the single sensor test and increases
as increases.

The choice of is such that the sufficient
condition in Theorem 3 are satisfied, independent of the change
parameters. Hence, we expect the slope of the versus
plot to be of the form asymptotically as

. Nevertheless, Fig. 5(c) and (d) show that, when both
and are small, the slope of is only as good as (or

slightly better than) the single sensor test, which is known to
have a slope of the form . Thus, we see that
even though our theory guarantees that both the sensors’ obser-
vations contribute in the eventual performance of asymptot-
ically, we may not see this behavior for reasonable choices of

such as . The case of observation models not meeting
the conditions of Theorem 3 is expected to show this trend for
even lower values.

To summarize these observations, if and
denote the average detection delays for , mismatched

and single sensor tests (respectively) for some fixed choice of
, then

and independent of

It is interesting to note from the above equations that
impacts the gap between the two tests in a contrasting way. The

test is expected to result in significant performance improve-
ment in the regime where is small, but is neither too
small nor too large. In fact, this regime where is expected
to result in significant performance improvement is the precise
regime that is of importance in practical contexts. This is so be-
cause we can expect the occurrence of disruption (e.g., cracks in
bridges, intrusions in networks, onset of epidemics, etc.) to be a
rare phenomenon. Once the disruption occurs, we expect change
to propagate across the sensor array fairly quickly due to the
geographical (network proximity in the case of computer net-
works) proximity of the other sensors, but not so quick that the
extreme case of instantaneous propagation is applicable. Clas-
sifying the regime of and where significant
performance improvement is possible with is ongoing work.
It is also of interest to come up with better test structures in the
regime where does not lead to a significant performance im-
provement.

VIII. CONCLUDING REMARKS

We considered the centralized, Bayesian version of the
change process detection problem in this work and posed it in
the classical dynamic programming framework. This formu-
lation of the change detection problem allows us to establish
the sufficient statistics for the DP under study and a recursion
for the sufficient statistics. While we obtain the broad structure
of the optimal stopping rule , any further insights into
it are rendered infeasible by the complicated nature of the
infinite-horizon cost-to-go function. Nevertheless, reduces
to a threshold rule (denoted in this work as ) in the rare
disruption regime.
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Fig. 4. Probability of false alarm versus Average detection delay for a � � � setting with different model parameters.

The test possesses the following properties and thus
serves as an attractive test for practical applications that can be
modeled with a change process: i) it is of low-complexity; ii)
under certain mild sufficient conditions (more specifically, if the
K-L divergence is more than a number determined
by the parameters of the change process), it is asymptotically
optimal in the small regime; and iii) numerical studies
suggest that it can lead to substantially improved performance
over naive tests. Nevertheless, the asymptotic expansion of

in terms of is not enough to determine how
small the false alarm probability should be in order for this
expansion and asymptotic optimality of to hold. Studies
indicate that should be chosen significantly smaller than
those needed for good approximations in the simpler quickest
detection problems solved earlier by the same approach.

Apart from the recent work of [32], the change process
detection problem has not been studied in detail. Thus, there
exists potential for extending this work in multiple new di-
rections. While we established the asymptotic optimality of

when , it is unclear as to what happens

when . In other words, is when
given that ? It is most likely that

is asymptotically optimal even in this regime as long as
, but establishing this result may require new

analysis tools. However, if is not asymptotically optimal
in this regime, it is of interest to design better low-complexity
stopping rules, e.g., threshold tests on weighted sums of the a
posteriori probabilities based on further study of the structure
of .

More careful asymptotic analysis of and the performance
gap between and other tests would involve tools from non-
linear renewal theory [25], [28], [36] and is the subject of current
attention. Such an asymptotic study could in turn drive the de-
sign of better test structures. Our numerical results also illustrate
and motivate the need for nonasymptotic characterization (e.g.,
piece-wise linear approximations of the versus
curve) of the proposed tests.

Extensions of this work to more general observation models
are important in the context of practical applications. For
example, non-iid [28] and Hidden-Markov models [23] have
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Fig. 5. Probability of false alarm versus Average detection delay for a � � � setting with different model parameters.

found increased interest in biological problems determined by
an event-driven potential [5], [6]. Practical applications will in
turn drive the need for understanding quickest change detection
with certain specific observation models.

APPENDIX

A. Proof of Theorem 1

Before considering the infinite-horizon DP, we will study the
finite-horizon version and establish some properties along the
directions of [29], [37], [33]. A straightforward induction argu-
ment shows that if is fixed

for all

for all

Similarly, it is easy to observe that for any and
equal zero if . A routine induction argument (illustrated at

the end of the main part of this proof) establishes the concavity
of and .

We now consider the infinite-horizon DP and show that it is
well-defined. (That is, we remove the restriction that the stop-
ping time is finite and let .) Towards this end, we need
to establish that exists, which is done as follows:
By an induction argument, we note that for any and fixed,
we have

It is important to note that this conclusion critically depends on
the joint-geometric assumption of the change process [in par-
ticular, the memorylessness property that results in the indepen-
dence of on in (3)] and the i.i.d. nature of the observa-
tion process conditioned on the change-point.

Using a similar induction approach, observe that for any
and fixed, . Heuristically, this can also be
seen to be true because the set of stopping times increases with
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. Since for all and , for any fixed , we can let
and we have

Furthermore, the memorylessness property and the i.i.d. obser-
vation process results in the invariance of on . This is
shown by a simple time-shift argument. Denote this common
limit as .

A simple dominated convergence argument [35] then shows
that is well-defined and independent of . If we
denote this limit as , we have

where we have denoted the dependence of on by the
notation and the fact that is indepen-
dent of is denoted as . Hence, the infinite-horizon
cost-to-go can be written as

The structure of follows from the finite-horizon charac-
terization by letting .

Establishing Concavity of and : We now show
that and are concave in . First, note that

is concave in because it is affine. Using the
recursion for , it is straightforward to check that

Using this in the definition of , we have

Since both and are affine and piece-
wise-affine (It is important to note that the slope of the second
affine part, which is , is smaller than the first .)
in respectively, they are concave.

We now assume that is concave in and
show that is also concave in . For this, consider

with and being two elements
in the standard -dimensional simplex. We have

where

Using the concavity of , we can upper bound the
above as follows:

If we define

it is straightforward to check that

Using these facts, we have

thus establishing the concavity of . The concavity of
follows since the minimum and sum of concave func-

tions is concave. An inductive argument completes the proof.

B. Proof of Theorem 2

We will show that

(in probability) for an appropriately chosen function that
satisfies . We start with the finite-horizon DP
and define and as follows:

The main idea behind the proof is to show that and are
bounded by a function of (that goes to 0 as ), uniformly
for all . Thus, the structure of the test in the limit as can
be obtained.

Towards this goal, note from Appendix A that
. Also, note that can be written as
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which can be equivalently written as

Note that and we have

where

Now observe that can be rewritten as

Furthermore, for all and the set within the indicator
function (above) converges to the empty set as . Thus, a
straightforward consequence of the bounded convergence the-
orem for conditional expectation [35] is that

independent of the choice of .
Plugging the above relation in the expression for

, we have

with . As before, it is straightforward
to check that the set within the indicator function converges to
the empty set as and we can write as

with

and

Following the same logic inductively, it can be checked that

independent of the choice of . That is, we have

Thus, the test structure reduces to stopping when

and using the limiting form for as , we have the
threshold structure (as stated). The proof is complete by going
from the finite-horizon DP to the infinite-horizon version as in
the proof of Theorem 1. Note that while we expect the limiting
test structure in the finite-horizon setting to be dependent on ,
it is not seen to be the case in this work because is a
discontinuity point for the DP.

C. Proof of Proposition 4

We first intend to show that a version of [28, Lemma 1] holds
in our case. More precisely, our goal is to show that for any

, we have

where denotes the probability measure when
and
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Note that as . Following along the logic of the
proof of [28, Lemma 1] here, it can be seen that

(7)

where denotes the probability mea-
sure when no change happens, and

with .
For the first term in (7), we have the following. With the ap-

propriate definitions of and , and the tail probability distri-
bution of a geometric random variable, it is again easy to check
(as in the proof of Lemma 1) that for any , we have

as

for any and all . For the second term in (7), we
need a condition analogous to [28, equation (3.2)]:

for all and

This is trivial since the following is true:

as (8)

for all .
The above condition follows from the following series of

steps. First, note that the strong law of large numbers for i.i.d.
random variables implies that

as

Then, it can be easily checked that

Since from the statement of the proposition,
we have for all , and hence, (8)
holds. Applying the condition in (8) with as

, we have the equivalent of [28, Lemma 1].
The proposition follows by application of an equivalent ver-

sion of [28, Theorem 1, eq. (3.14)] which follows exactly as in
[28].

D. Average Detection Delay: General Case

We now consider the general case where . The main
statement here is as follows.

Proposition 5 : If is such that (6) is satis-
fied, we have

As in Section VI, we will work towards the proof of this state-
ment. For this, the following generalizations of Proposition 6
and Lemma 1 are necessary.

Proposition 7: We have

where

Proof: The proof is provided in Appendix E for the sake
of completeness. Also, see Appendix E for how this proposition
can be reduced to the case of [29].

Lemma 4: The following upper bound for is obvious
when :

From Proposition 7, can be conveniently rewritten as

Unlike the setting in Section VI, the structure of (as of
now) is not amenable to studying (in further detail). This
is because it has the form of log of sum of random variables
(see [34] for similar difficulties in the multihypothesis testing
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problem). We alleviate this difficulty by rewriting the test
statistic in terms of quantities whose asymptotics can be easily
studied.

Proposition 8: We have the following expansion for the test
statistic:

where

with .
Proof: The proof is straightforward by using the induction

principle.
The following proposition establishes the general asymptotic

trend of .
Proposition 9: The test is such that a.s. as

.
Proof: See Appendix E.

As we try to understand further, it is important to note that
the behavior of the decision statistic of is determined (only)
by the trends of

This is so because the asymptotics of are also primarily
determined by the trends of . We now develop the gener-
alized version of the heuristic in Section VI for the upper bound
of . Consider the case where . The second piece
in the description of the test statistic (in Proposition 8) can be
written as

where the evolution of and is described in
Proposition 8. In the regime where , note that if

(with high probability), then . On the other hand, if
(with high probability), then . Thus, we

can identify (and partition) eight cases as follows:

In all the eight cases, we have a universal description for (as
) that holds with high probability:

for all

If , then the above summation is replaced by 0, and if
there exists no such that the above condition holds,
then is set to 5.

The following proposition provides a precise mathematical
formulation of the above heuristic.

Proposition 10: Let the following limit be well defined and
be denoted as
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Define as

for all

(9)

If there exists no element in the set for the operation
in (9), we set . Then, as (and, hence,

a.s. from Proposition 9), we have

a.s. (10)

If , then the second term in the above expression is set to
0.

Proof: See Appendix E.
Following Propositions 9 and 10, as can be

restated as

(11)

with defined in (9).
Observe that if the condition in Proposition 10 is satisfied, the

first sensors contribute to the slope of and the rest
of the sensors (if any) do not contribute to the slope.
While this characterization seems to be hard to utilize subse-
quently, it is important to understand the conditions under which

. In this direction, (6) provides a simple condition
such that the observations from all the sensors contribute to
the slope.

Proof of Proposition 5 : First, using Lemma 4 note
that, we can bound as

Using Jensen’s inequality and noting that

and (6) is sufficient to ensure that for all , there
exists some such that . It is important to realize
that the above condition is necessary as well as sufficient for

. Thus, under the assumption that (6) holds, invoking
Proposition 9 as (that is, letting a.s. and
using Proposition 10), can be written as

Note that since , we have

and hence, where

Thus, we have

where the convergence is again due to Lemma 3.

E. Completing Proofs of Statements in Appendix D

Proof of Proposition 7: We start from (4) and apply the
recursion relationship for . Noting that
for all such that , we can collect the contributions
of different terms and write as

where is as defined in the statement of the proposi-
tion. Thus, we have

Iterating the above equation, we have the conclusion in the state-
ment of the proposition.
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It is useful to reduce Proposition 7 to the case of [29] when
for all . For this, note that (and,

hence, ) are identically zero for all . Thus, we
have

We then have the following reductions:

and hence

with the initial condition that and for all
. It is straightforward to establish via induction that the only

way in which the above recursion can hold is if satisfies

which, as expected, is the same recursion as (5).
Proof of Proposition 9: First, note that if we can find

such that for all

then where

We use Lemma 4 to obtain the following bound and the associ-
ated :

where

. With the above bound, we have

The conclusion follows by using Lemma 3 and noting that

Proof of Proposition 10: This proof is a formal write-up of
the heuristic presented before the statement of Proposition 10.
Following the definition of and the fact that ,
we have

Suppose there exists an as defined in (9), invoking
Lemma 2 with the fact that for all , we have

a.s. and in mean

Thus, we have

a.s. and in mean
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The main contribution to (10) is now established via induc-
tion. Since , we can expand the sum as (modulo the a.s.
and in mean convergence parts)

If , it is clear that the proposition is true. If
, since , by the definition of , there exists (a

smallest choice) such that

with

or for all

provided the set is not empty. There are two
possibilities: or . (Note that
results in a contradiction since it will imply ,
but we know this is not true from the definition of ). In the
first case, we are done upon invoking Lemma 2. In the second
case, iterating by replacing 2 with (as many times as
necessary) and finally invoking Lemma 2 and noting the main
contribution of the sum in (10), we arrive at the conclusion of
the proposition.
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