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In a distributed optimization problem, the complete problem information is not available at a single location
but is rather distributed among different agents in a multi-agent system. In the problems studied in the
literature, each agent has an objective function and the network goal is to minimize the sum of the agents’
objective functions over a constraint set that is globally known. In this paper, we study a generalization of
the above distributed optimization problem. In particular, the network objective is to minimize a function of
the sum of the individual objective functions over the constraint set. The ‘outer’ function and the constraint
set are known to all the agents. We discuss an algorithm and prove its convergence, and then discuss
extensions to more general and complex distributed optimization problems. We provide a motivation for
our algorithms through the example of distributed regression of distributed data.

Keywords: distributed optimization; convex optimization; distributed regression

AMS Subject Classification: 90C25; 90C30

1. Introduction

This paper deals with a distributed optimization problem, where the complete objective function is
not available at a single location, but is rather distributed among different agents who are connected
through a network. The focus is on solving the distributed optimization problem in large time-
synchronous multi-agent systems. In multi-agent systems, each agent only knows the identity of
its immediate neighbours and has no information about the global network topology. The large
size of the network and the lack of global network topology information makes it infeasible to
collect the problem data from the agents at a single location and then use standard centralized
optimization techniques. Instead, algorithms that are distributed and local are appropriate. In a
distributed algorithm, different parts of the algorithm are executed by different agents, possibly
simultaneously. The algorithm is additionally local when each agent uses only information locally
available to it and other information it can obtain from its immediate neighbours.
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72 S. Sundhar Ram et al.

Prior work has addressed different versions of the distributed sum optimization (DSO) problem.
In this problem, each agent has a unique objective function and the network goal is to minimize
the sum of the individual objective functions over a constraint set. The constraint set is known to
all the agents. See [14] for an overview of literature related to the DSO problem. In this paper, we
study a generalization of the DSO problem, where the network objective is to minimize a nonlinear
function of the sum of the individual agent’s objective functions over the constraint set. The ‘outer’
nonlinear function and the constraint set are known to all the agents. To solve this problem, we
propose a distributed, local and iterative algorithm. Each agent maintains an estimate of the optimal
point and a summary statistic that is updated in each iteration. The agent receives the estimate and
the summary statistic from its immediate neighbours, and then evaluates a weighted average. The
weighted average is then updated using locally available information, i.e. the agent’s own objective
function, the outer function and the constraint set. The network connectivity assumptions are as
in [14]. We discuss the proof of convergence for the above problem, and then discuss extensions
to more general and complex distributed optimization problems.

Our contributions are twofold. First, we contribute to the literature on distributed optimization
by introducing a new class of distributed problems, and an algorithm for solving these problems.
The novelty of the algorithm is in the use of a ‘tracking’-like step in combination with a distributed
gradient-based update. Second, we apply the algorithm to address the problem of vertically and
horizontally distributed regression in large peer to peer systems.

The rest of the paper is organized as follows. In Section 2, we introduce the optimization
problem and discuss the algorithm. In Section 3, we discuss the assumptions that we make, and
in Section 4, we discuss the necessary background. The convergence of the algorithm is proved in
Section 5. We then discuss some extensions of the problem in Section 6. We address the distributed
regression problem in Section 7 and show that this is a special case of the problems solved in this
paper. We conclude with some comments in Section 8.

2. Problem and algorithm

We consider a network consisting of m agents that are indexed by V = {1, . . . , m}. The network
objective is to solve the following optimization problem:

minimize f (x) := g

(
m∑

i=1

hi(x)

)
,

subject to x ∈ X, (1)

where g : � → �, X ⊆ �p, hi : X → � for all i ∈ V. The function hi is known only to agent i.

The function g and the set X are globally known, i.e. to every agent. Further, the network size m

is also known to all the agents. The optimal value and the optimal set of the problem are denoted
as follows:

f ∗ = min
x∈X

f (x), X∗ = {x ∈ X : f (x) = f ∗}. (2)

To solve problem (1), we propose the following distributed, local and iterative algorithm. Time
is slotted and one iteration of the algorithm is performed in one time slot. At any time k, every
agent i has two statistics; xi,k and si,k. The statistic xi,k is agent i’s estimate of an optimal point
and si,k is agent i’s estimate of the average value (1/m)

∑m
i=1 hi(xi,k). These statistics are updated
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Optimization Methods & Software 73

as follows: [
x̄i,k

s̄i,k

]
=

∑
j∈Ni(k+1)

ai,j (k + 1)

[
xj,k

sj,k

]
,

xi,k+1 = PX[x̄i,k − αk+1g
′(ms̄i,k)∇hi(x̄i,k)],

si,k+1 = s̄i,k + hi(xi,k+1) − hi(xi,k). (3)

Here, Ni(k + 1) is the index set of agents that agent i can communicate with at time k + 1, and
this set also includes agent i. Further, ai,j (k + 1) are positive weights, αk+1 is the stepsize, g′ is
the derivative of g, ∇hi is the gradient of hi , and PX denotes the Euclidean projection onto the
set X. The algorithm is initialized with

xi,0 ∈ X, si,0 = hi(xi,0) for all i ∈ V. (4)

The algorithm is distributed and local. Agent i receives xj,k and sj,k from its current neighbours
and calculates the weighted averages x̄i,k and s̄i,k using the weights ai,j (k + 1). The weighted
average is then updated using locally available information (functions g and hi, number of agents
m and the set X) to generate xi,k+1 and si,k+1. We postpone the discussion of the algorithm to
Section 5, as we need some background material that is introduced in the subsequent sections.

3. Assumptions

We here discuss our assumptions on the problem including the function g, the agents’functions hi ,
i ∈ V, the set X, as well as the connectivity structure of the underlying communication network
for the agents.

Assumption 3.1 The following conditions hold.

(a) The set X is convex and closed.
(b) The set X is bounded, i.e. there exists a scalar D > 0 such that supx∈X ‖x‖ ≤ D.
(c) The function f is convex over an open set that contains the set X.
(d) The functions g and hi are differentiable. Further, g′ and ∇hi are Lipschitz continuous with

constant L.

Assumption 3.1(a) and (c) imply that the problem is a convex optimization problem. From
Assumptions 3.1(b) and (d) we can conclude that the norms of the gradients, i.e. |g′| and ‖∇hi‖,
are uniformly bounded over the set X. We denote this bound by C, i.e.∣∣∣∣∣g′

(
m∑

i=1

hi(x)

)∣∣∣∣∣ ≤ C, ‖∇hi(x)‖ ≤ C for all x ∈ X and i ∈ V. (5)

We make the following standard assumption [14] on the network. At each time k, the topology
of the network is represented by a directed graph Gk = (V , Ek), with (i, j) ∈ Ek if and only if
agent i and agent j can communicate at time k.

Assumption 3.2 There exists a positive integer Q such that the graph (V , ∪�=1,...,QEk+�) is
strongly connected for all k.
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74 S. Sundhar Ram et al.

Note that we do not require the network to be connected at each time. Further, the global
constant Q need not be known to any of the agents. It is only important that such a constant exists.
The weights ai,j (k) are chosen to satisfy the following assumption.

Assumption 3.3 For all k, we have

(a) ai,j (k) ≥ 0 for all i, j ∈ V , and ai,j (k) = 0 for all i ∈ V and j /∈ Ni(k);
(b)

∑m
j=1 ai,j (k) = 1 for all i ∈ V ;

(c) There exists a scalar η ∈ (0, 1) such that ai,j (k) ≥ η whenever ai,j (k) > 0;
(d)

∑m
i=1 ai,j (k) = 1 for all j ∈ V .

Assumption 3.3(a) states that the weights ai,j (k) are non-negative and are equal to zero when
agent j is not a neighbour of i at a given time. Assumption 3.3(b) requires that the sum of all
weights ai,1(k), . . . , ai,m(k) is 1 for each agent i.Assumptions 3.3(a) and (b) imply that each agent
computes a weighted average of all the iterates it receives from its neighbours. Assumption 3.3(c)
ensures that each agent gives a sufficient weight to its current iterate and all the iterates it receives.
The agents need not be aware of the common bound η.

Assumption 3.3(d) requires that all the weights a1,j (k), . . . , am,j (k) sum to 1 for every agent j .
This assumption together with Assumption 3.2, ensures that all the agents are equally influential
in the long run. To satisfy Assumption 3.3(d), the agents need to coordinate their weights. Some
coordination schemes are discussed in [16].

4. Preliminaries

In our analysis, we will use the following results. For a non-empty closed convex set X ⊆ �p,

the Euclidean projection on X is non-expansive,

‖PX[x] − PX[y]‖ ≤ ‖x − y‖ for all x, y ∈ �p. (6)

We will also use the following theorem.

Theorem 4.1 Let {bk}, {dk}, and {ck} be non-negative sequences. Suppose that
∑

k ck < ∞ and

bk+1 ≤ bk − dk + ck f or all k, (7)

then the sequence {bk} converges and
∑

k dk < ∞.

This is a deterministic version of the theorem by Robbins and Seigmund [10, Lemma 11,
Chapter 2.2].

4.1 Distributed averaging

We briefly review the distributed averaging algorithm. See [7] for a recent survey. In the distributed
averaging problem, agent i has the value θi . The goal in distributed averaging is for the agents to
learn θ̂ = (1/m)

∑m
i=0 θi in a distributed and local manner. We will refer to θ̂ as the target and θi

as agent i’s start value.
Distributed averaging is usually achieved iteratively through a sequence of consensus steps. In

each step, each agent evaluates the new iterate as a weighted average of its current iterate and
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Optimization Methods & Software 75

the current iterates of its neighbours. The initial value of the iterate at agent i is its start value θi .
Formally, if {θi,k} denotes the sequence of estimates for the target generated by agent i then

θi,k+1 =
∑

j∈Ni(k+1)

ai,j (k + 1)θj,k, θi,0 = θi . (8)

Under Assumptions 3.2 and 3.3, it can be shown that limk→∞ θi,k = θ̂ for all i ∈ V (see [8,
Corollary 1]). Further, it is intuitively clear that the closer the agents’ start values are to the target
value the fewer number of iterations are required to obtain a good estimate of the target by each
agent.

We state a result that captures the effect of deterministic errors in the averaging algorithm. The
result guarantees that the agents achieve consensus when the errors diminish. We state the result
here and provide its proof in the appendix.

Theorem 4.2 Let Assumptions 3.2 and 3.3 hold. Consider the iterates generated by

θi,k+1 =
m∑

j=1

ai,j (k + 1)θj,k + εi,k+1 f or all i ∈ V.

Suppose there exists a non-negative non-increasing scalar sequence {αk} such that

∞∑
k=1

αk‖εi,k‖ < ∞ f or all i ∈ V.

Then, for all i, j ∈ V,
∞∑

k=1

αk‖θi,k − θj,k‖ < ∞.

5. Algorithm convergence

Since ai,j (k + 1) = 0 for j /∈ Ni(k + 1), we can rewrite (3) as follows:

[
x̄i,k

s̄i,k

]
=

m∑
j=1

ai,j (k + 1)

[
xj,k

sj,k

]
,

xi,k+1 = PX[x̄i,k − αk+1g
′(ms̄i,k)∇hi(x̄i,k)],

si,k+1 = s̄i,k + hi(xi,k+1) − hi(xi,k). (9)

We next provide some intuition for the algorithm. The standard gradient projection algorithm
for solving the problem in (1) has the following form:

xk+1 = PX

⎡
⎣xk − αk+1g

′
⎛
⎝ m∑

j=1

hj (xk)

⎞
⎠ m∑

j=1

∇hj (xk)

⎤
⎦ .

To replicate the standard gradient projection algorithm in our distributed setting, the computations
of

∑m
j=1 ∇hj (xk) and

∑m
j=1 hj (xk) have to be distributed and local. When the function g is the

identity function then (9) is identical to the distributed subgradient algorithm in [14]. As in [14],
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76 S. Sundhar Ram et al.

the combined effect of agent i using ∇hi(x̄i,k) to update the iterate and then evaluating a weighted
average approximates

∑m
j=1 ∇hj (x̄i,k) with decreasing error as time k increases.

The term s̄i,k is essentially an approximation for the average value (1/m)
∑m

j=1 hj (xi,k). There-
fore, agent i uses g′(ms̄i,k) to approximate g′(

∑m
j=1 hj (xk)). In iteration k + 1, each agent in the

network is interested in determining (1/m)
∑m

j=1 hj (xj,k+1) while each term hi(xi,k+1) is available
only to agent i. If agent i were to use hi(xi,k+1) as the start value, then a large number of consensus
steps would be required for agent i to obtain a good approximation to (1/m)

∑m
j=1 hj (xj,k+1).

As an alternative, we consider a more efficient procedure that uses s̄i,k + hi(xi,k+1) − hi(xi,k)

as the start value to estimate (1/m)
∑m

j=1 hj (xj,k+1). In this way, a single consensus step is
enough to obtain a sufficiently good approximation. When the difference between xi,k+1 and xi,k

is small, the difference between
∑m

j=1 hj (xj,k+1) and
∑m

j=1 hj (xj,k) is also small. Thus, the value
s̄i,k + hi(xi,k+1) − hi(xi,k) is closer to the target value than just hi(xi,k+1), assuming s̄i,k is a good
approximation to (1/m)

∑m
j=1 hj (xj,k). This approach to tracking the network wide average of a

changing statistic is reminiscent of the consensus filters than have been proposed in literature [9].
We now formally establish the convergence of the algorithm. We first characterize the rate of

consensus.

Lemma 5.1 Let Assumptions 3.1, 3.2, and 3.3 hold. If {αk} is a non-negative non-increasing
sequence such that

∑∞
k=1 α2

k < ∞, then

∞∑
k=1

αk‖xi,k − xj,k‖ < ∞ f or all i, j ∈ V.

Proof Note from (9) that

xi,k+1 =
m∑

j=1

ai,j (k + 1)xj,k + pi,k+1, (10)

where pi,k+1 = xi,k+1 − x̄i,k . From (9), the Euclidean projection property in (6) and the
boundedness of the gradients in (5), we obtain

‖pi,k+1‖ ≤ αk+1‖g′(ms̄i,k)∇hi(xi,k)‖ ≤ αk+1C
2. (11)

Since
∑

k α2
k < ∞ we conclude that

∑
k αk‖pi,k‖ < ∞ for each i ∈ V . Therefore, by (10)

and (11), the iterates {xi,k} satisfy the conditions of Theorem 4.2 and the result follows. �

An immediate consequence of relation (11) is that the agents achieve consensus asymptotically,
i.e. limk→∞ ‖xi,k − xj,k‖ = 0 for all i, j ∈ V .

Define

x̂k = 1

m

m∑
j=1

xj,k, ŝk = 1

m

m∑
j=1

hj (x̂k). (12)

We next characterize the rate of consensus for {si,k}.

Lemma 5.2 Let Assumptions 3.1, 3.2 and 3.3 hold. If {αk} is a non-negative non-increasing
sequence such that

∑∞
k=1 α2

k < ∞, then
∑∞

k=1 αk‖si,k − ŝk‖ < ∞ for all i ∈ V .
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Optimization Methods & Software 77

Proof Using the triangle inequality, we obtain

‖si,k − ŝk‖ ≤
∥∥∥∥∥∥si,k − 1

m

m∑
j=1

sj,k

∥∥∥∥∥∥ +
∥∥∥∥∥∥

1

m

m∑
j=1

sj,k − ŝk

∥∥∥∥∥∥ . (13)

We consider the last term and show that
m∑

i=1

si,k =
m∑

i=1

hi(xi,k). (14)

We will use the induction. For k = 0, from (4) we have si,0 = hi(xi,0) and, hence, the hypoth-
esis is true for k = 0. Now, assume that the hypothesis is true for k − 1. Observe that from
Assumption 3.3(d) we have

m∑
i=1

s̄i,k−1 =
m∑

i=1

m∑
j=1

ai,j (k)s̄j,k−1 =
m∑

j=1

sj,k−1 =
m∑

i=1

hj (xj,k−1),

where the last equality follows by the hypothesis. By the definition of si,k in (9) and the preceding
relation, we conclude that

m∑
j=1

sj,k =
m∑

j=1

s̄j,k−1 +
m∑

j=1

hj (xj,k) −
m∑

j=1

hj (xj,k−1) =
m∑

j=1

hj (xj,k).

This proves the induction hypothesis for k and hence (14) follows. Using (14) in (13) and
substituting for ŝk , we obtain

‖si,k − ŝk‖ ≤
∥∥∥∥∥∥si,k − 1

m

m∑
j=1

sj,k

∥∥∥∥∥∥ +
∥∥∥∥∥∥

1

m

m∑
j=1

hj (xj,k) − 1

m

m∑
j=1

hj (x̂k)

∥∥∥∥∥∥ . (15)

Now, we deal with the first term on the right-hand side of (15). Note that we can rewrite

si,k+1 =
m∑

j=1

ai,j (k + 1)sj,k + wi,k+1, (16)

where wi,k+1 = hi(xi,k+1) − hi(xi,k). Next, we show that
∑

k αk+1‖wi,k+1‖ < ∞. Since the gra-
dient of hi is bounded by C, the function hi is Lipschitz continuous with C. Using this and the
definition of xi,k+1 in (9), we get

‖wi,k+1‖ ≤ C‖xi,k+1 − xi,k‖ ≤ C‖PX[x̄i,k − αk+1g
′(ms̄i,k)∇hi(x̄i,k)] − xi,k‖.

By using the triangle inequality and the Euclidean projection property in (6), we have

‖wi,k+1‖ ≤ C‖x̄i,k − αk+1g
′(ms̄i,k)∇hi(x̄i,k) − xi,k‖

≤ C(‖x̄i,k − xi,k‖ + αk+1‖g′(ms̄i,k)∇hi(x̄i,k)‖)
≤ C(‖x̄i,k − xi,k‖ + αk+1C

2), (17)

where the last inequality follows from the boundedness of the gradients in (5). Next note that the
conditions of Lemma 5.1 are satisfied. Therefore for all i, j ∈ V ,

∞∑
k=1

αk‖xi,k − xj,k‖ < ∞,
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78 S. Sundhar Ram et al.

and hence
∑∞

k=1 αk‖xi,k − x̄i,k‖ < ∞ for all i ∈ V . Since {αk} is a non-increasing sequence this
implies

∞∑
k=1

αk+1‖xi,k − x̄i,k‖ < ∞ for all i ∈ V.

Using the preceding inequality in (17) and the fact that
∑

k α2
k < ∞, we can conclude that

∞∑
k=1

αk+1‖wi,k+1‖ < ∞ for all i ∈ V.

Thus (16) satisfies the conditions of Theorem 4.2 and we can conclude that for all i, j ∈ V ,

∞∑
k+1

αk‖si,k − sj,k‖ < ∞,

which implies

∞∑
k=1

αk

∥∥∥∥∥∥si,k − 1

m

m∑
j=1

sj,k

∥∥∥∥∥∥ < ∞ for all i ∈ V. (18)

We now consider the term ‖(1/m)
∑m

j=1 hj (xj,k) − (1/m)
∑m

j=1 hj (x̂k)‖ on the right-hand
side of (15). From the Lipschitz continuity of hj , we have

‖hj (xj,k) − hj (x̂k)‖ ≤ C‖xj,k − x̂k‖.

By the definition of x̂k in (12), we have x̂k = (1/m)
∑m

j=1 xj,k , so that

‖hj (xj,k) − hj (x̂k)‖ ≤ C

∥∥∥∥∥xj,k − 1

m

m∑
i=1

xi,k

∥∥∥∥∥ ≤ C

m

m∑
i=1

‖xj,k − xi,k‖.

By Lemma 5.1, we obtain for all i ∈ V ,

∞∑
k=1

αk‖hj (x̂k) − hj (xj,k)‖ ≤ C

m

∞∑
k=1

αk

m∑
i=1

‖xj,k − xi,k‖ < ∞.

Therefore, from the preceding inequality, (15) and (18) we get for all i ∈ V ,

∞∑
k=1

αk‖si,k − ŝk‖ < ∞. �

We next use Lemmas 5.1 and 5.2 to prove convergence to an optimal point.

Theorem 5.3 Let Assumptions 3.1, 3.2 and 3.3 hold. If the stepsize sequence {αk} is non-
negative, non-increasing, and such that

∑∞
k=1 αk = ∞ and

∑∞
k=1 α2

k < ∞, then there exists
a vector x∗ ∈ X∗ such that limk→∞ ‖xi,k − x∗‖ = 0 for all i ∈ V .
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Proof Note that the solution set X∗ is non-empty since f is continuous over the set X and X is
compact. Fix an arbitrary x∗ ∈ X∗. By the Euclidean projection property in (6), we have

‖xi,k+1 − x∗‖2 = ‖PX[x̄i,k − αk+1g
′(ms̄i,k)∇hi(x̄i,k)] − x∗‖2

≤ ‖x̄i,k − x∗‖2 + α2
k+1‖g′(ms̄i,k)∇hi(x̄i,k)‖2

− 2αk+1(x̄i,k − x∗)Tg′(ms̄i,k)∇hi(x̄i,k). (19)

Using the boundedness of the gradients in (5), we obtain

‖g′(ms̄i,k)∇hi(x̄i,k)‖ ≤ C2.

By Assumption 3.3 on the weights and the convexity of the squared Euclidean norm, we have

m∑
i=1

‖x̄i,k − x∗‖2 =
m∑

i=1

∥∥∥∥∥∥
m∑

j=1

ai,j (k + 1)xj,k − x∗

∥∥∥∥∥∥
2

≤
m∑

i=1

m∑
j=1

ai,j (k + 1)‖xj,k − x∗‖2

≤
m∑

j=1

‖xj,k − x∗‖2.

Summing (19) over all i and using the preceding two relations, we obtain

m∑
i=1

‖xi,k+1 − x∗‖2 ≤
m∑

i=1

‖xi,k − x∗‖2 + mα2
k+1C

4

− 2αk+1

m∑
i=1

(x̄i,k − x∗)Tg′(ms̄i,k)∇hi(x̄i,k). (20)

By the definitions of x̂k and ŝk in (12), we have ∇f (x̂k) = ∑m
i=1 g′(mŝk)∇hi(x̂k). Using this we

can write

m∑
i=1

(x̄i,k − x∗)Tg′(ms̄i,k)∇hi(x̄i,k) =
m∑

i=1

(x̄i,k − x̂k)
Tg′(ms̄i,k)∇hi(x̄i,k)

+
m∑

i=1

(x̂k − x∗)T(g′(ms̄i,k) − g′(mŝk))∇hi(x̄i,k)

+
m∑

i=1

(x̂k − x∗)Tg′(mŝk)(∇hi(x̄i,k) − ∇hi(x̂k))

+ (x̂k − x∗)T∇f (x̂k).

By the boundedness of the gradients (cf. Eq. (5)), we have

m∑
i=1

(x̄i,k − x̂k)
Tg′(ms̄i,k)∇hi(x̄i,k) ≥ −C2

m∑
i=1

‖x̄i,k − x̂k‖.
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80 S. Sundhar Ram et al.

By the compactness of X (Assumption 3.1(b)), gradient boundedness and the Lipschitz gradient
assumption (Assumption 3.1(d)), we also have

m∑
i=1

(x̂k − x∗)T(g′(ms̄i,k) − g′(mŝk))∇hi(x̄i,k) ≥ −DLCm

m∑
i=1

‖s̄i,k − ŝk‖,

m∑
i=1

(x̂k − x∗)Tg′(mŝk)(∇hi(x̄i,k) − ∇hi(x̂k)) ≥ −DCL

m∑
i=1

‖x̄i,k − x̂k‖,

where D is the diameter of the set X. Finally, by the convexity of f (Assumption 3.1(c)), we have

(x̂k − x∗)T∇f (x̂k) ≥ f (x̂k) − f (x∗).

Combining the preceding relations, we obtain

m∑
i=1

(x̄i,k − x∗)Tg′(ms̄i,k)∇hi(x̄i,k) ≥ (f (x̂k) − f (x∗)) − C2
m∑

i=1

‖x̄i,k − x̂k‖

− DCL

m∑
i=1

(m‖s̄i,k − ŝk‖ + ‖x̄i,k − x̂k‖).

Using this relation in (20), we obtain

m∑
i=1

‖xi,k+1 − x∗‖2 ≤
m∑

i=1

‖xi,k − x∗‖2 − 2αk+1(f (x̂k) − f ∗) + 2C2
m∑

i=1

αk+1‖x̄i,k − x̂k‖

+ 2DCL

m∑
i=1

αk+1(m‖s̄i,k − ŝk‖ + ‖x̄i,k − x̂k‖) + mα2
k+1C

4.

From Lemma 5.1 and the fact that the sequence {αk+1} is non-increasing, we have

∞∑
k=1

αk+1‖x̄i,k − x̂k‖ < ∞ for all i ∈ V.

Using Lemma 5.2 and the fact that the sequence {αk+1} is non-increasing, we obtain

∞∑
k=1

αk+1‖s̄i,k − ŝk‖ < ∞ for all i ∈ V.

Thus, the conditions of Lemma 4.1 are satisfied and we can conclude that ‖xi,k+1 − x∗‖ converges
for every x∗ ∈ X∗ and every i ∈ V , and

∞∑
k=1

αk+1
(
f (x̂k) − f ∗) < ∞.

This and Lemma 5.1 imply that the sequences {xi,k}, i ∈ V, must converge to a common point
in the set X∗. �

6. Extensions

We next discuss two extensions of the problem in (1) and generalize the algorithm in (9) to solve
these extensions.
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6.1 Extension I

Consider the following general distributed optimization problem

minimize
m∑

j=1

gj

(
m∑

i=1

hi,j (x)

)
,

subject to x ∈ X, (21)

where gj : � → �, X ⊆ �p, hi,j : X → � for all i, j ∈ V. The functions hi,j , j ∈ V, are known
only to agent i. The functions gj and the set X are globally known. Note that the index set for j

can be other than V . We prefer to keep j ∈ V for simplicity of notation.
We can modify the algorithm in (9) to solve problem (21) as follows. Let si,k now denote agent

i’s estimate of the vector [(1/m)
∑m

r=1 hr,1(xi,k) . . . (1/m)
∑m

r=1 hr,m(xi,k)]T.Agent i recursively
generates xi,k+1 and si,k+1 according to the following rules:

[
x̄i,k

s̄i,k

]
=

m∑
j=1

ai,j (k + 1)

[
xj,k

sj,k

]
,

xi,k+1 = PX

⎡
⎣x̄i,k − αk+1

m∑
j=1

g′
j (m[s̄i,k]j )∇hi,j (x̄i,k)

⎤
⎦ ,

si,k+1 = s̄i,k +
⎡
⎢⎣

hi,1(x̄i,k+1)
...

hi,m(x̄i,k+1)

⎤
⎥⎦ −

⎡
⎢⎣

hi,1(x̄i,k)
...

hi,m(x̄i,k)

⎤
⎥⎦ . (22)

Here [s̄i,k]j denotes the j th component of the vector s̄i,k. In the (k + 1)th iteration, agent i receives
xj,k and sj,k from its current immediate neighbours and computes a weighted averages x̄i,k and
s̄i,k . The weighted average is then updated using locally available information (functions gj and
hi,j , and the set X) to generate xi,k+1 and si,k+1. The algorithm is initialized with

xi,0 ∈ X, si,0 =
⎡
⎢⎣

hi,1(xi,0)
...

hi,m(xi,0)

⎤
⎥⎦ for all i ∈ V.

6.2 Extension II

We next consider a generalization of problem (21), where the objective function has the same form
but the knowledge about the functions is distributed differently. For this, we write problem (21)
in the following form:

minimize g1

(
m∑

�=1

h�(x)

)
+ g2

(
2m∑

�=m+1

h�(x)

)
+ · · · + gm

⎛
⎝ m2∑

�=m(m−1)+1

h�(x)

⎞
⎠ ,

subject to x ∈ X, (23)

where gj : � → � for all j, X ⊆ �p and h� : X → � for all �.
Now, consider the case where each function h� is known to only one agent, denoted by �. This

would give rise to a network of m2 agents indexed by �, where � ∈ W = {1, . . . , m2}. In addition,
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82 S. Sundhar Ram et al.

we let each agent � know the function gj that depends on its function h�. To formally describe
this, we let j (�) = ��/m�, and note that in this notation, agent � knows gj(�). Essentially, the
function gj is known to agents � = m(j − 1) + 1, . . . , mj. As before, the set X is known to all
the agents.

We modify the algorithm in (9) to solve problem (23) as follows. Let x�,k∈ �p denote agent
� estimate of the optimal point at time k. Let s�,k ∈ �m denote agent � estimate of the following
vector ⎡

⎣ 1

m

m∑
r=1

hr(x�,k)
1

m

2m∑
r=m+1

hr(x�,k) . . .
1

m

m2∑
r=m(m−1)+1

hr(x�,k)

⎤
⎦

T

.

For each � ∈ W, agent � recursively generates vectors x�,k+1 and s�,k+1 as follows:

[
x̄�,k

s̄�,k

]
=

m2∑
r=1

a�,r (k + 1)

[
xr,k

sr,k

]
,

x�,k+1 = PX[x̄�,k − αk+1g
′
j (�)(m[s̄�,k]j (�))∇h�(x̄�,k)],

[s�,k+1]j =
{

[s̄�,k]j for j �= j (�),

[s̄�,k]j + h�(x�,k+1) − h�(x�,k) for j = j (�).
(24)

In the (k + 1)th iteration, agent � receives xj,k and sj,k from its current immediate neighbours
and calculates weighted averages x̄�,k and s̄�,k . These averages are then updated using locally
available information (functions gj(�) and h�, and the set X) to generate x�,k+1 and s�,k+1. Note
that agent � updates j (�)th coordinate of the vector s�,k+1 differently from the other coordinates,
where j (�) is the index of the function gj that depends on the function h� known to agent �. The
other coordinates of s�,k+1 are updated based on the consensus-step only.

The algorithm is initialized with x�,0 ∈ X and s�,0 = h�(x�,0)ej (�), where ej (�) is the unit vector
with j (�)th component equal to 1.

7. Application to distributed regression

Our main motivation for studying this class of optimization problems is distributed regression.
Regression involves modelling a response variable as a function of one or more predictor variables
using samples of the response variable at different levels of the predictor variables (see, e.g.
textbook [4]). The response variable is viewed as a random variable and its mean is modelled as
a known function of the predictor variables and an unknown regression parameter. The goal in
regression is to determine the unknown regression parameter value that best explains the observed
data. This is usually done by defining a ‘goodness of fit’ cost criterion and choosing the parameter
value that minimizes the criterion. Thus, regression involves solving an optimization problem in
which the objective function is decided by the observed data and the optimization is with respect
to the regression parameter.

Let us consider regression in large peer to peer systems like sensor networks. In such systems,
different parts of the regression data are collected by different agents in the network. Data in the
network is distributed vertically when each agent has access only to a subset of the predictor vari-
ables’ values in each sample. Thus the optimization problem that specifies the optimal parameter
value becomes a distributed optimization problem. This is in contrast to horizontally distributed
data where the agents observe complete samples but no agent has access to all the samples [5].
This leads to a different distributed optimization problem. Finally, data could be both vertically
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and horizontally distributed, which leads to a general distributed optimization problem. As we
will see, when the regression function has an additive form, the resultant optimization problems
are special cases of the general optimization problems discussed in this paper.

Distributed regression in networks with structured connectivity (such as ring structure) has been
considered, for example, for sensor networks (see [2,3,11,12] and the literature therein). On the
other hand, the literature on distributed regression in large networks with arbitrary connectivity
structure is limited. The chapter [17] surveys sequential linear ordinary least square algorithms
proposed for horizontally distributed data in large unstructured networks. In addition, a recent
related paper is [1], where both linear regression and model monitoring algorithms are proposed for
horizontally distributed data. For horizontal distributed regression in small structured networks,
algorithms with a meta-learning approach are proposed in [19] and algorithms that emphasize
privacy are proposed in [6]. We note that in [19], the data sets are heterogeneous but still horizontal.
To the best of our knowledge, there is no literature on vertical distributed regression in unstructured
networks. The papers [5,13,20] study vertical distributed regression in structured networks with
a central fusion centre.

We mathematically describe the regression problem below. Let R be the response variable and
U(i), i ∈ V = {1, . . . , m}, denote the ith predictor variable. For convenience, we take U(i) and
R to be scalar variables. The regression parameter is x, x ∈ �p, and the regression function has
the following additive form:

E[R | U(1), . . . , U(m)] =
m∑

i=1

fi(x, U(i)) for x ∈ X, (25)

where X ⊆ �p and fi : X × � → �. Note that the case fi(x, U(i)) = xiU
(i) corresponds to linear

regression.
A total of m observation samples are available.1 The j th response sample is denoted by rj and

it is measured at the value u
(i)
j of the ith predictor variable. The optimal parameter x∗ is chosen

as follows:

x∗ = Arg min
x∈X

1

m

m∑
j=1

q

(
rj −

m∑
i=1

fi(x, u
(i)
j )

)
. (26)

In least square regression, the function q(t) is given by t2. Other functions such as Huber’s function
may be used for robust regression.

7.1 Horizontal regression

Consider a network of m agents indexed by j, j ∈ V = {1, . . . , m}. When the data is horizontally
distributed, only agent j has access to the j th sample, i.e. rj , u

(1)
j , . . . , u

(m)
j . This case is illustrated

in the plot to the left in Figure 1. Observe now that problem (26) is a special case of the distributed
optimization problem in (1) with

g(t) = t, hj (x) = q

(
rj −

m∑
i=1

fi(x, u
(i)
j )

)
.

7.2 Vertical regression

Consider a network of m agents indexed by i, i ∈ V. The data are vertically distributed. Therefore,
only agent i has access to the samples of the ith predictor random variable, i.e. {u(i)

j }j∈V is known
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84 S. Sundhar Ram et al.

Figure 1. Horizontally/vertically distributed regression data: R is the response variable and rj is the j th response

sample. The variable U is the predictor, where the value u
(i)
j is the ith predictor variable for sample rj . For simplicity, it

is assumed that the number of samples and the predictors is the same. The plot to the left shows the case when the data
in each row is available to a single agent, i.e. the variables rj and u

(1)
j , . . . , u

(m)
j are known to agent j . The plot to the left

shows the case when the data in each column of the predictor (U -data) is available to a single agent and all agents have
access to all the samples, i.e. the variables r1, . . . , rm and u

(i)
1 , . . . , u

(i)
m are known to agent i.

only to agent i. The response variable samples are available to all the agents. This situation is
illustrated in the plot to the right in Figure 1. Problem (26) can be seen to be a special case of
problem (21) by letting

gj = q, hi,j (x) = rj

m
− fi

(
x, u

(i)
j

)
.

This formulation can be relaxed to the case when there is an (m + 1)th agent that collects the
samples of the response variable.

7.3 Vertical and horizontal regression

We consider a network of m2 agents. Each agent is indexed by �, where � ∈ W. When the data
are vertically and horizontally distributed, agent i + m(j − 1) has access to only u

(i)
j and rj . In

this case, problem (26) is a special case of (23) with

gj = q, hm(j−1)+i = rj

m
− fi

(
x, u

(i)
j

)
.

8. Discussion

In this paper, we have introduced a new class of distributed optimization problems. We have
proposed and analysed a distributed and local algorithm for solving such problems in a network
of agents with partial information about the problem data. We have established convergence of
the algorithm to an optimal point. The algorithm combines the ideas of consensus-based gradient
schemes [14] and consensus-based tracking schemes [9]. The algorithm has a potential use in
other distributed contexts, such as power control [18].
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Implicit in the development of (3) is an algorithm to track the network wide average of a statistic
that ‘slowly’ changes with time. This is similar to the distributed filters proposed by [9] though
the analysis perspective is different.

There are multiple directions for future work. First, it is important to understand the effect of
gradient stochastic errors on the algorithm. This will help in extending the methods to sequential
distribution regression as in [14,16]. Second, for practical implementations, it is important to
obtain bounds on the performance of the algorithm as a function of number of iterations. Third, we
have assumed that the objective function is smooth and convex. In order to handle �1-regularized
problems, it is important to extend the results to non-smooth convex functions.Also, it is of interest
to obtain convergence results (typically to a stationary point) when the functions are non-convex.
Finally, the algorithm proposed in this paper is synchronous. Ideas similar to those used in [15]
can be employed to accommodate an asynchronous implementation of the algorithm.
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A. Appendix

Proof of Theorem 4.2 In view of Assumption 3.3 we can rewrite (8) as

θi,k+1 =
m∑

j=1

ai,j (k + 1)θj,k + εi,k+1, θi,0 = θi . (A1)

Let A(k) be the matrix with (i, j)th entry equal to ai,j (k).As a consequence ofAssumptions 3.3(a),
(b) and (d), the matrix A(k) is doubly stochastic (its entries are non-negative, and the sum of its
entries in every row and in every column is equal to 1). Define, for all k, s with k ≥ s,

�(k, s) = A(k)A(k − 1) · · · A(s + 1). (A2)

We first state a result from [8, Corollary 1] on the convergence properties of the matrix �(k, s).

Let [�(k, s)]i,j denote the (i, j)th entry of the matrix �(k, s), and let e ∈ �m be the column
vector with all entries equal to 1. �

Lemma A.1 Let Assumptions 3.2 and 3.3 hold. Then

(1) limk→∞ �(k, s) = (1/m)eeT for all s.
(2) Further, the convergence is geometric and the rate of convergence is given by∣∣∣∣[�(k, s)]i,j − 1

m

∣∣∣∣ ≤ γβk−s ,

where

γ =
(

1 − η

4m2

)−2
, β =

(
1 − η

4m2

)1/Q

.

We will also use the following result from [14] (Lemma 3.1(b)).

Lemma A.2 Let {ζk} be a scalar sequence. If ζk ≥ 0 for all k,
∑

k ζk < ∞ and 0 < β < 1, then∑∞
k=0

(∑k
�=0 βk−�ζ�

)
< ∞.

Using the matrices �(k, s) defined in (A2) we can write

θj,k+1 =
m∑

i=1

[�(k + 1, 0)]j,iθi,0 + εj,k+1 +
k∑

�=1

(
m∑

i=1

[�(k + 1, �)]j,iεi,�

)
. (A3)

Define

φk = 1

m

m∑
i=1

θi,k.
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Using (A1), we can also rewrite φk as

φk+1 = 1

m

⎛
⎝ m∑

i=1

m∑
j=1

ai,j (k + 1)θj,k +
m∑

i=1

εi,k+1

⎞
⎠

= 1

m

⎛
⎝ m∑

j=1

(
m∑

i=1

ai,j (k + 1)

)
θj,k +

m∑
i=1

εi,k+1

⎞
⎠ .

In the view of the doubly stochasticity of the weights, we have
∑m

i=1 ai,j (k + 1) = 1, implying
that

φk+1 = 1

m

⎛
⎝ m∑

j=1

θj,k +
m∑

i=1

εi,k+1

⎞
⎠ = φk + 1

m

m∑
i=1

εi,k+1.

Therefore

φk+1 = φ0 + 1

m

k+1∑
�=1

m∑
i=1

εi,� = 1

m

m∑
i=1

θi,0 + 1

m

k+1∑
�=1

m∑
i=1

εi,�. (A4)

Substituting for φk+1 from (A4) and for θj,k+1 from (A3), we obtain

‖φk+1 − θj,k+1‖ =
∥∥∥∥∥ 1

m

m∑
i=1

θi,0 + 1

m

k+1∑
�=1

m∑
i=1

εi,� −
(

m∑
i=1

[�(k + 1, 0)]j,iθi,0 + εj,k+1

+
k∑

�=1

m∑
i=1

[�(k + 1, �)]j,iεi,�

)∥∥∥∥∥
=

∥∥∥∥∥
m∑

i=1

(
1

m
− [�(k + 1, 0)]j,i

)
θi,0 +

k∑
�=1

m∑
i=1

(
1

m
− [�(k + 1, �)]j,i

)
εi,�

+ 1

m

m∑
i=1

εi,k+1 − εj,k+1

∥∥∥∥∥ .

Therefore, for all j ∈ V and all k,

‖φk+1 − θj,k+1‖ ≤
m∑

i=1

∣∣∣∣ 1

m
− [�(k + 1, 0)]j,i

∣∣∣∣ ‖θi,0‖

+
k∑

�=1

m∑
i=1

∣∣∣∣ 1

m
− [�(k + 1, �)]j,i

∣∣∣∣ ‖εi,�‖ + 1

m

m∑
i=1

‖εi,k+1‖ + ‖εj,k+1‖.

We can bound ‖θi,0‖ ≤ maxi∈V ‖θi,0‖. Further, we can use the rate of convergence result from
Lemma A.1 to bound |(1/m) − [�(k, �)]j,i |. We obtain

‖φk+1 − θj,k+1‖ ≤ mγβk+1 max
i∈V

‖θi,0‖ + mγ

k∑
�=1

βk+1−� max
i∈V

‖εi,�‖

+ 1

m

m∑
i=1

‖εi,k+1‖ + ‖εj,k+1‖.
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Multiplying both sides by αk+1 and using the fact that the sequence {αk} is non-negative and
non-increasing, we have

∞∑
k=1

αk+1‖φk+1 − θj,k+1‖ ≤mγ max
i∈V

‖θi,0‖
∞∑

k=1

αk+1β
k+1

+ mγ

∞∑
k=1

k∑
�=1

βk+1−�

(
α� max

i∈V

∥∥εi,�

∥∥)

+
∞∑

k=1

αk+1

m

m∑
i=1

‖εi,k+1‖ +
∞∑

k=1

αk+1

∥∥εj,k+1

∥∥ .

Since the sequence {αk+1} is bounded and 0 < β < 1, the first term is finite. By letting ζk =
αk maxi∈V ‖εi,k‖ in Lemma A.2 and using the assumption

∑∞
k=1 αk+1‖εi,k+1‖ < ∞, we see that

the second term is finite.Also, by
∑∞

k=1 αk+1‖εi,k+1‖ < ∞, the last two terms are finite. Therefore,
we conclude that ∞∑

k=1

αk+1‖φk+1 − θj,k+1‖ < ∞ for all i ∈ V.

Using the triangle inequality we can write for all i, j ∈ V,

∞∑
k=1

αk+1‖θi,k+1 − θj,k+1‖ ≤
∞∑

k=1

αk+1‖φk+1 − θj,k+1‖ +
∞∑

k=1

αk+1‖φk+1 − θi,k+1‖ < ∞.
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