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INCREMENTAL STOCHASTIC SUBGRADIENT ALGORITHMS
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Abstract. This paper studies the effect of stochastic errors on two constrained incremental
subgradient algorithms. The incremental subgradient algorithms are viewed as decentralized network
optimization algorithms as applied to minimize a sum of functions, when each component function
is known only to a particular agent of a distributed network. First, the standard cyclic incremental
subgradient algorithm is studied. In this, the agents form a ring structure and pass the iterate in
a cycle. When there are stochastic errors in the subgradient evaluations, sufficient conditions on
the moments of the stochastic errors are obtained that guarantee almost sure convergence when a
diminishing step-size is used. In addition, almost sure bounds on the algorithm’s performance with a
constant step-size are also obtained. Next, the Markov randomized incremental subgradient method
is studied. This is a noncyclic version of the incremental algorithm where the sequence of computing
agents is modeled as a time nonhomogeneous Markov chain. Such a model is appropriate for mobile
networks, as the network topology changes across time in these networks. Convergence results and
error bounds for the Markov randomized method in the presence of stochastic errors for diminishing
and constant step-sizes are obtained.
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approximation, subgradient, random networks
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1. Introduction. A problem of recent interest in distributed networks is the
design of decentralized algorithms to minimize a sum of functions, where each com-
ponent function is known only to a particular agent [5, 11, 22, 26, 31]. Such problems
arise in many network applications, including in-network estimation, learning, signal
processing, and resource allocation [8, 18, 30–33]. In these applications, there is no
central coordinator that has access to all the information and, thus, decentralized
algorithms are needed to solve the problems. In this paper, we consider decentralized
subgradient methods for constrained minimization of a sum of convex functions, where
each component function is only known partially (with stochastic errors) to a specific
network agent. We study two incremental subgradient methods with stochastic errors:
a cyclic and a (noncyclic) Markov randomized incremental method.

The cyclic incremental algorithm is a decentralized method in which the network
agents form a ring and process the information cyclically. The incremental method was
originally proposed by Kibardin [13] and has been extensively studied more recently
in [5, 9, 19, 22, 35]. Incremental gradient algorithms were first used for optimizing the
weights in neural network training [9, 19, 35], and most of the associated literature
deals with differentiable nonconvex unconstrained optimization problems [4, 5, 9, 35,
36]. The incremental subgradient algorithm for nondifferentiable constrained convex
optimization has been investigated in [21, 22] without errors, and in [15, 23, 31,
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36] where the effects of deterministic errors are considered. The algorithm that we
consider in this paper is stochastic and as such differs from the existing literature.
For this algorithm, we establish convergence for diminishing step-size and provide an
error bound for constant step-size.

The Markov randomized incremental algorithm is a decentralized method where
the iterates are generated incrementally within the network by passing them from
agent to agent. Unlike the cyclic incremental method, where the agent network has
a ring structure and the information flow is along this ring (cycle), in the Markov
randomized incremental method, the network can have arbitrary structure. However,
similar to cyclic incremental method, in the Markov randomized incremental method,
only one agent updates at any given time. In particular, an agent in the network
updates the current iterate (by processing locally its own objective function), and
either passes the new iterate to a randomly chosen neighbor, or processes it again.
Thus the order in which the agents update the iterates is random. This class of
incremental algorithms was first proposed in [22], where the agent that receives the
iterate is chosen with uniform probability in each iteration (corresponding to the
case of a fully connected agent network). Recently, this idea has been extended
in [11] to the case where the sequence in which the agents process the information
is a time homogeneous Markov chain. The rationale behind this model is that the
agent updating the information at a given time is more likely to pass this information
to a close neighbor rather than to an agent who is further away. In this paper, we
consider a more general framework than that of [11] by allowing the sequence in which
the agents process the information to be a time nonhomogeneous Markov chain.1 We
prove the algorithm convergence for diminishing step-size and establish an error bound
for a constant step-size. This extends the results in [11], where an error bound for a
homogeneous Markov randomized incremental subgradient method is discussed for a
constant step-size and error-free case.

The Markov randomized incremental algorithm is also related to the decentralized
computation model in [3, 6, 40] for stochastic optimization problems. However, the
emphasis in these studies is on parallel processing where each agent completely knows
the entire objective function to be minimized. More closely related is the work in
studies in [24] that develops a “parallel” version of the unconstrained incremental
subgradient algorithm. Also related is the constrained consensus problem studied
in [27] where agents are interested in obtaining a solution to a feasibility problem,
when different parts of the problem are known to different agents. At a much broader
scale, the paper is also related to the literature on distributed averaging and consensus
algorithms [3, 10, 12, 24, 27, 28, 37, 38, 40, 41].

Our main contributions in this paper are the development and analysis of the
Markov randomized incremental method with stochastic subgradients and the use
of a time nonhomogeneous Markov model for the sequence of computing agents. In
addition, to the best of our knowledge, this is among the few attempts made at study-
ing the effects of stochastic errors on the performance of decentralized optimization
algorithms. The other studies are [17, 38, 39], but the algorithms considered are
fundamentally different from the incremental algorithms studied in this paper.2

1The primary motivations for such models are mobile networks where the network connectivity
structure is changing in time, and thus the set of the neighbors of an agent is time-varying.

2In that work, the components of the decision vector are distributed while the objective function
is known to all agents. In contrast, in this paper, the objective function data are distributed, while
each agent has an estimate of the entire decision vector.
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The paper is organized as follows. In section 2, we formulate the problem of
interest, and introduce the cyclic incremental and Markov randomized incremental
method with stochastic errors. We also discuss some applications that motivate our
interest in these methods. In section 3, we analyze convergence properties of the
cyclic incremental method. We establish convergence of the method under diminishing
step-size and provide an error bound for the method with a constant step-size, both
valid with probability 1. We establish analogous results for the Markov randomized
incremental method in section 4. We give some concluding remarks in section 5.

2. Problem formulation and motivation. We consider a network of m agents,
indexed by i = 1, . . . , m. The network objective is to solve the following problem:

(2.1)
minimize f(x) =

m∑
i=1

fi(x)

subject to x ∈ X,

where x ∈ �n is a decision or a parameter vector, X is a closed and convex subset
of �n, and each fi is a convex function from �n to � that is known only to agent
i. Problems with the above structure arise in the context of estimation in sensor
networks [31, 32], where x is an unknown parameter to be estimated and fi is the
cost function that is determined by the ith sensor’s observations (for example, fi

could be the log-likelihood function in maximum likelihood estimation). Furthermore,
problems with such structure also arise in resource allocation in data networks. In
this context, x is the resource vector to be allocated among m agents and fi is the
utility function for agent i [8]. We discuss these examples in more detail later.

To solve the problem (2.1) in a network where agents are connected in a directed
ring structure, we consider the cyclic incremental subgradient method [22]. Time is
slotted, and in each time slot, the estimate is passed by an agent to the next agent
along the ring. In particular, agent i receives the iterate from agent i−1, and updates
the received estimate using a subgradient of its own “objective function fi”. The
updated iterate is then communicated to the next agent in the cycle, which is agent
i + 1 when i < m, and agent 1 when i = m. We are interested in the case where the
agent subgradient evaluations have random errors. Formally, the algorithm is given
as follows:

(2.2) z0,k+1 = zm,k = xk,
zi,k+1 = PX [zi−1,k+1 − αk+1 (∇fi(zi−1,k+1) + εi,k+1)] ,

where the initial iterate x0 ∈ X is chosen at random. The vector xk is the estimate at
the end of cycle k, zi,k+1 is the intermediate estimate obtained after agent i updates
in k +1st cycle, ∇fi(x) is the subgradient of fi evaluated at x, and εi,k+1 is a random
error. The scalar αk+1 is a positive step-size and PX denotes Euclidean projection
onto the set X. We study the convergence properties of method (2.2) in section 3 for
diminishing and constant step-size.

In addition, for a network of agents with arbitrary connectivity, we consider an
incremental algorithm where the agent that updates is selected randomly according
to a distribution depending on the agent that performed the most recent update.
Formally, in this method the iterates are generated according to the following rule:

(2.3) xk+1 = PX

[
xk − αk+1

(∇fs(k+1)(xk) + εs(k+1),k+1

)]
,

where the initial iterate x0 ∈ X is chosen at random and the agent s(0) that initializes
the method is also selected at random. The integer s(k + 1) is the index of the agent

D
ow

nl
oa

de
d 

08
/2

3/
13

 to
 1

30
.1

26
.1

38
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

694 S. SUNDHAR RAM, A. NEDIĆ, AND V. V. VEERAVALLI

that performs the update at time k +1, and the sequence {s(k)} is modeled as a time
nonhomogeneous Markov chain with state space {1, . . . , m}. In particular, if agent i
was processing at time k, then the agent j will be selected to perform the update at
time k + 1 with probability [P (k)]i,j . Formally, we have

Prob {s(k + 1) = j | s(k) = i} = [P (k)]i,j .

When there are no errors (εs(k+1),k+1 = 0) and the probabilities [P (k)]i,j are all equal
to 1

m , the method in (2.3) coincides with the incremental method with randomization
that was first proposed by Ermoliev [7] (see Chapter 3, section 5), and later studied
in [22].

Following [11], we refer to the method in (2.3) as the Markov randomized incre-
mental stochastic algorithm. We analyze convergence properties of this method in
section 4 for diminishing and constant step-sizes.

2.1. Motivation. As mentioned, we study the convergence properties of the
incremental algorithms (2.2) and (2.3) for diminishing and constant step-size, and
for zero and nonzero mean errors. Such errors may arise directly as computational
round-off errors, which are of interest when the entire network is on a single chip and
each agent is a processor on the chip [20]. In addition, stochastic errors also arise in
the following context.

Let the function fi(x) have the following form

fi(x) = E[gi(x, Ri)] ,

where E[·] denotes the expectation, Ri ∈ �d is a random vector, and gi : �n×d → �.
Agent i does not know the statistics of Ri, and thus does not know its complete
objective function fi. However, agent i sequentially observes independent samples
of Ri and uses these samples to determine an approximate subgradient using the
Robbins–Monro approximation [34] or Kiefer–Wolfowitz approximation [14]. These
approximate sub-gradients can be considered to be the actual sub-gradient corrupted
by stochastic errors.

We next discuss some specific problems that fall within the framework that we
consider and can be solved using the proposed methods.

Distributed regression. Consider m sensors that sense a time invariant spatial
field. Let ri,k be the measurement made by ith sensor in time slot k. Let �i be the
location of the ith sensor. For each i, let h(�i, x) be a model set, i.e., set of candidate
models, for the spatial field at �i that is parameterized by x and selected based on
a priori information. Thus, for each x, h(�i, x) is a model for the measurement ri,k.
The problem in regression is to choose the best model among the set of candidate
models based on the collected measurements ri,k, i.e., to determine the value for x
that best describes the spatial field. In least squares regression, the parameter value
x∗ corresponding to the best model satisfies the following relation:

x∗ ∈ Argmin
x∈X

lim
N→∞

m∑
i=1

1
N

N∑
k=1

(ri,k − h(�i, x))2 .

If for each i, {ri,k}k∈N can be viewed as a sequence of i.i.d. samples of a random
variable Ri, then the preceding limit exists and the problem simplifies to

x∗ ∈ Argmin
x∈X

m∑
i=1

E
[
(Ri − h(�i, x))2

]
.
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In linear least squares regression, the models h(�i, x), i = 1, . . . , m, are linear in x, so
that each of the functions fi(x) = E

[
(Ri − h(�i, x))2

]
is convex in x.

Distributed resource allocation. An important problem in wireless networks
is the fair rate allocation problem [8]. Consider a wireless network represented by a
graph with a set of directed (communication) links. Suppose that there are m flows
indexed 1, . . . , m, whose rate can be adjusted, and let xi be the rate of the ith flow.
Each flow is characterized by a source node b(i) and a destination node e(i). The
rate vector x must satisfy some constraints that are imposed by the individual link
capacities of the network. For example, if there are multiple flows (or, parts of the
flows) that use a link of total capacity c then the total sum of the rates of the flow
routed through that link must not be greater than c. Apart from this there could also
be some queuing delay constraints. Thus, only flow vectors that are constrained to a
set X can be routed through the network. Associated with each flow, there is a reward
function Ui(xi) depending only on the flow rate xi and known only at the source node
b(i). The reward function is typically a concave and increasing function. In the fair
rate allocation problem, the source nodes {b(�)} need to determine the optimal flow
rate x∗ that maximizes the total network utility. Mathematically, the problem is to
determine x∗ such that

x∗ ∈ Argmax
x∈X

m∑
i=1

Ui(xi).

In some networks, the same flow can communicate different types of traffic that has
different importance in different time slots. For example, in an intruder detection
network, a “detected” message is more important (and is rewarded/weighted more)
than a “not detected” message or some other system message. Thus, the reward
function is also a function of the contents of the flow: If the type of flow i in time slot
k is ri,k, where ri,k takes values from the set of all possible types of flow data, then
the reward is Ui(xi, ri,k) at time k. If the type of traffic on each flow across slots is
i.i.d, then {ri,k} are i.i.d. samples of a random variable Ri and the fair allocation rate
problem can be written as

max
x∈X

m∑
i=1

E[Ui(xi, Ri)] .

The statistics of Ri may not be known since they may depend upon external factors
such as the frequency of intruders in an intruder detection network.

2.2. Notation and basics. We view vectors as columns. We write x�y to
denote the inner product of two vectors x and y. We use ‖ · ‖ to denote the standard
Euclidean norm. For a vector x, we use xi to denote its ith component. For a matrix
A, we use [A]i,j to denote its (i, j)th entry, [A]i its ith row, and [A]j its jth column.
We use e to denote a vector with each entry equal to 1. Unless stated otherwise, all
equalities and inequalities that involve random quantities are in an almost sure sense.

We use f∗ to denote the optimal value of the problem (2.1), and we use X∗ to
denote its optimal set. Throughout the paper, we assume that the optimal value f∗

is finite.
In our analysis, we use the subgradient defining property. Specifically, for a convex

function f : �n → �, the vector ∇f(x) is a subgradient of f at x when the following
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relation is satisfied:

∇f(x)�(y − x) ≤ f(y) − f(x) for all y ∈ �n(2.4)

(see, for example, [2]).

3. Cyclic incremental subgradient algorithm. Recall that the cyclic incre-
mental stochastic subgradient algorithm is given by

(3.1)
z0,k+1 = zm,k = xk,
zi,k+1 = PX [zi−1,k+1 − αk+1 (∇fi(zi−1,k+1) + εi,k+1)] ,

where x0 ∈ X is a random initial vector, ∇fi(x) is a subgradient of fi at x, εi,k+1 is
a random noise vector, and αk+1 > 0 is a step-size.

The main difficulty in the study of the incremental stochastic subgradient algo-
rithm is that the expected direction in which the iterate is adjusted in each sub-
iteration is not necessarily a subgradient of the objective function f . For this reason,
we cannot directly apply the classic stochastic approximation convergence results
of [7, 16, 29] to study the convergence of method in (2.2). The key relation in our
analysis is provided in Lemma 3.1 in section 3.1. Using this lemma and a stan-
dard super-martingale convergence result, we obtain results for diminishing step-size
in Theorem 3.3. Furthermore, by considering a related “stopped” process to which
we apply a standard supermartingale convergence result, we obtain the error bound
results for a constant step-size in Theorem 3.5.

We make the following basic assumptions on the set X and the functions fi.
Assumption 1. The set X ⊆ �n is closed and convex. The function fi : �n → �

is convex for each i ∈ {1, . . . , m}.
In our analysis, we assume that the first and the second moments of the sub-

gradient noise εi,k are bounded uniformly over the agents, conditionally on the past
realizations. In particular, we define F i

k as the σ-algebra generated by x0 and the
subgradient errors ε1,1, . . . , εi,k, and assume the following.

Assumption 2. There exist deterministic scalar sequences {μk} and {νk} such
that

‖E[εi,k | F i−1
k

] ‖ ≤ μk for all i and k,

E
[‖εi,k‖2 | F i−1

k

] ≤ ν2
k for all i and k.

Assumption 2 holds, for example, when the errors εi,k are independent across
both i and k, and have finite moments. Note that under the assumption that the
second moments are bounded, from Jensen’s inequality we readily have

(3.2)
∥∥E[εi,k | F i−1

k

]∥∥ ≤
√

E
[‖εi,k‖2 | F i−1

k

] ≤ νk.

However, for a constant step-size, the terms
∥∥E

[
εi,k | F i−1

k

]∥∥ and E
[‖εi,k‖2 | F i−1

k

]
affect the error bounds on the performance of the incremental method differently,
as seen in section 3.3. For this reason, we prefer to use different upper-bounds for
the terms

∥∥E[εi,k | F i−1
k

]∥∥ and E
[‖εi,k‖2 | F i−1

k

]
. We will also, without any loss of

generality, assume that μk < νk.
We also assume that the subgradients ∇fi(x) are uniformly bounded over the

set X for each i. This assumption is commonly used in the convergence analysis of
subgradient methods with a diminishing or a constant step-size.
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Assumption 3. For every i, the subgradient set of the function fi at x ∈ X is
nonempty and uniformly bounded over the set X by a constant Ci, i.e.,

‖∇fi(x)‖ ≤ Ci for all subgradients ∇fi(x) and for all x ∈ X.

Assumption 3 holds, for example, when each fi is a polyhedral function or when
the set X is compact.

3.1. Preliminaries. In this section, we provide a lemma establishing a basic
relation for the iterates generated by the incremental method (3.1) and any step-size
rule. This relation plays a key role in our subsequent development.

Lemma 3.1. Let Assumptions 1, 2, and 3 hold. Then, the iterates generated by
algorithm (3.1) are such that for any step-size rule and for any y ∈ X,

E
[‖dk+1(y)‖2 | Fm

k

] ≤ ‖dk(y)‖2 − 2αk+1 (f(xk) − f(y))

+ 2αk+1μk+1

m∑
i=1

E[‖di−1,k+1(y)‖ | Fm
k ]

+ α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

,(3.3)

where dk(y) = xk − y and di,k+1(y) = zi,k+1 − y for all k.
Proof. Using the iterate update rule in (3.1) and the nonexpansive property of

the Euclidean projection, we obtain for any y ∈ X ,

‖di,k+1(y)‖2 = ‖PX [zi−1,k+1 − αk+1∇fi(zi−1,k+1) − αk+1εi,k+1] − y‖2

≤ ‖zi−1,k+1 − αk+1∇fi(zi−1,k+1) − αk+1εi,k+1 − y‖2

= ‖di−1,k+1(y)‖2 − 2αk+1di−1,k+1(y)�∇fi(zi−1,k+1)

− 2αk+1di−1,k+1(y)�εi,k+1 + α2
k+1 ‖εi,k + ∇fi(zi−1,k+1)‖2

.

Taking conditional expectations with respect to the σ-field F i−1
k+1, we further obtain

E
[‖di,k+1(y)‖2 | F i−1

k+1

] ≤ ‖di−1,k+1(y)‖2 − 2αk+1di−1,k+1(y)�∇fi(zi−1,k+1)

− 2αk+1di−1,k+1(y)�E
[
εi,k+1 | F i−1

k+1

]
+ α2

k+1E
[
‖εi,k+1 + ∇fi(zi−1,k+1)‖2 | F i−1

k+1

]
.

By using Assumption 2 on the error moments, we have for all i and k,

−di−1,k+1(y)�E
[
εi,k+1 | F i−1

k+1

] ≤ μk+1‖di−1,k+1(y)‖.

In addition, using Assumption 3 on the subgradient norms, we have for all i and k,

E
[
‖εi,k+1 + ∇fi(zi−1,k+1)‖2 | F i−1

k+1

]
≤ (νk+1 + Ci)2.

Combining the preceding three relations we obtain for all y ∈ X ,

E
[‖di,k+1(y)‖2 | F i−1

k+1

] ≤ ‖di−1,k+1(y)‖2 − 2αk+1di−1,k+1(y)�∇fi(zi−1,k+1)

+ 2αk+1μk+1‖di−1,k+1(y)‖ + α2
k+1(νk+1 + Ci)2.(3.4)
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We now estimate the second term in the right-hand side of the preceding relation.
By using the subgradient inequality in (2.4) and the subgradient norm bound from
Assumption 3, we have

−di−1,k+1(y)�∇fi(zi−1,k+1) ≤ − (fi(xk) − fi(y)) + Ci ‖zi−1,k+1 − xk‖ .(3.5)

We next consider the term ‖zi−1,k+1 − xk‖. From (3.1) we have

‖zi−1,k+1 − xk‖ =

∥∥∥∥∥∥
i−1∑
j=1

(zj,k+1 − zj−1,k+1)

∥∥∥∥∥∥ ≤
i−1∑
j=1

‖zj,k+1 − zj−1,k+1‖.

By the nonexpansive property of the projection, we further have

‖zi−1,k+1 − xk‖ ≤ αk+1

i−1∑
j=1

(‖∇fj(zj−1,k+1)‖ + ‖εj,k+1‖) ≤ αk+1

i−1∑
j=1

(Cj + ‖εj,k+1‖) .

(3.6)

By combining the preceding relation with (3.5), we have

−di−1,k+1(y)�∇fi(zi−1,k+1) ≤ − (fi(xk) − fi(y)) + αk+1Ci

i−1∑
j=1

(Cj + ‖εj,k+1‖) .

By substituting the preceding estimate in the inequality in (3.4), we obtain for all
y ∈ X ,

E
[‖di,k+1(y)‖2 | F i−1

k+1

] ≤ ‖di−1,k+1(y)‖2 − 2αk+1 (fi(xk) − fi(y))

+ 2α2
k+1Ci

i−1∑
j=1

(Cj + ‖εj,k+1‖)

+ 2αk+1μk+1‖di−1,k+1(y)‖ + α2
k+1(Ci + νk+1)2.

Taking the expectation conditional on Fm
k , we obtain

E
[‖di,k+1(y)‖2 | Fm

k

] ≤ E
[‖di−1,k+1(y)‖2 | Fm

k

]− 2αk+1 (fi(xk) − fi(y))
+ 2αk+1μk+1E[‖di−1,k+1(y)‖ | Fm

k ]

+ 2α2
k+1Ci

i−1∑
j=1

(Cj + νk+1) + α2
k+1(Ci + νk+1)2,

where we have used Assumption 2 and Jensen’s inequality to bound E[‖εj,k+1‖ | Fm
k ]

by νk+1 [cf. (3.2)]. Summing over i = 1, . . . , m, and noting that d0,k+1(y) = xk − y,
we see that

E
[‖dk+1(y)‖2 | Fm

k

] ≤ ‖dk(y)‖2 − 2αk+1 (f(xk) − f(y))

+ 2αk+1μk+1

m∑
i=1

E[‖di−1,k+1(y)‖ | Fm
k ]

+ 2α2
k+1

m∑
i=1

Ci

i−1∑
j=1

(Cj + νk+1) +
m∑

i=1

α2
k+1(Ci + νk+1)2.D
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Finally, by noting that

2
m∑

i=1

Ci

i−1∑
j=1

(Cj + νk+1) +
m∑

i=1

(Ci + νk+1)2 =

(
m∑

i=1

Ci + mνk+1

)2

,

we obtain the desired relation.

3.2. Convergence for diminishing step-size. We now study the convergence
of the method in (3.1) for diminishing step-size rule. In our analysis, we use the
following result due to Robbins and Siegmund (see Lemma 11, Chapter 2.2, [29]).

Lemma 3.2. Let (Ω,F ,P) be a probability space and let F0 ⊂ F1 ⊂ . . . be a
sequence of sub σ-fields of F . Let uk, vk, and wk, k = 0, 1, 2 . . . , be nonnegative Fk-
measurable random variables and let {qk} be a deterministic sequence. Assume that∑∞

k=0 qk < ∞, and
∑

k=0 wk < ∞ and

E[uk+1 | Fk] ≤ (1 + qk)uk − vk + wk

hold with probability 1. Then, with probability 1, the sequence {uk} converges to a
nonnegative random variable and

∑∞
k=0 vk < ∞.

We next provide a convergence result for diminishing step-sizes.
Theorem 3.3. Let Assumptions 1, 2, and 3 hold. Assume that the step-size se-

quence {αk} is positive and such that
∑∞

k=1 αk = ∞ and
∑∞

k=1 α2
k < ∞. In addition,

assume that the bounds μk and νk on the moments of the error sequence {εi,k} are
such that

∞∑
k=1

αkμk < ∞,

∞∑
k=1

α2
kν2

k < ∞.

Also, assume that the optimal set X∗ is nonempty. Then, the iterate sequence {xk}
generated by the method (3.1) converges to an optimal solution with probability 1.

Proof. First note that all the assumptions of Lemma 3.1 are satisfied. Let x∗ be
an arbitrary point in X∗. By letting y = x∗ in Lemma 3.1, we obtain for any x∗ ∈ X∗,

E
[‖dk+1(x∗)‖2 | Fm

k

] ≤‖dk(x∗)‖2 − 2αk+1 (f(xk) − f∗)

+ 2αk+1μk+1

m∑
i=1

E[‖di−1,k+1(x∗)‖ | Fm
k ]

+ α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

.(3.7)

We relate ‖di−1,k+1(x∗)‖ to ‖dk(x∗)‖ by using the triangle inequality of norms,

‖di−1,k+1(x∗)‖ = ‖zi−1,k+1 − xk + xk − x∗‖ ≤ ‖zi−1,k+1 − xk‖ + ‖dk(x∗)‖.

Substituting for ‖zi−1,k+1 − xk‖ from (3.6) we obtain

‖di−1,k+1(x∗)‖ ≤ αk+1

i−1∑
j=1

(Cj + ‖εj,k+1‖) + ‖dk(x∗)‖.D
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Taking conditional expectations and using the inequality ‖dk(x∗)‖ ≤ (1+‖dk(x∗)‖2)/2,
we further obtain

E[‖di−1,k+1(x∗)‖ | Fm
k ] ≤ 1

2
(1 + ‖dk(x∗)‖2) + αk+1

i−1∑
j=1

(Cj + νk+1) ,

where we have used Assumption 2 and Jensen’s inequality to bound E[‖εj,k+1‖ | Fm
k ]

by νk+1. Using the preceding inequality in (3.7), we see that

E
[‖dk+1(x∗)‖2 | Fm

k

] ≤ (1 + mαk+1μk+1) ‖dk(x∗)‖2 − 2αk+1 (f(xk) − f∗)

+ mαk+1μk+1 + 2α2
k+1μk+1

m∑
i=1

i−1∑
j=1

(Cj + νk+1)

+ α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

.(3.8)

By the assumptions on the step-size, and the sequences {μk} and {νk}, we have

∞∑
k=0

mαk+1μk+1 < ∞,

∞∑
k=0

2α2
k+1μk+1

m∑
i=1

i−1∑
j=1

(Cj + νk+1) ≤ 2
∞∑

k=0

m∑
i=1

i−1∑
j=1

(
α2

k+1μk+1Cj + α2
k+1ν

2
k+1

)
< ∞,

∞∑
k=0

α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

≤ 2
∞∑

k=0

α2
k+1

⎛
⎝m2ν2

k+1 +

(
m∑

i=1

Ci

)2
⎞
⎠ < ∞,

where in the second relation above, we have used μk+1 ≤ νk+1 [cf. (3.2)], while in
the last inequality, we have used (a + b)2 ≤ 2(a2 + b2) valid for any scalars a and b.
Thus, the conditions of Lemma 3.2 are satisfied with uk = ‖dk(x∗)‖2, Fk = Fm

k ,
qk = mαk+1μk+1, vk = 2αk+1 (f(xk) − f∗), and

wk = mαk+1μk+1 + 2α2
k+1μk+1

m∑
i=1

i−1∑
j=1

(Cj + νk+1) + α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

.

Therefore, with probability 1, the scalar ‖dk+1(x∗)‖2 converges to some nonnegative
random variable for every x∗ ∈ X∗. Also with probability 1, we have

∞∑
k=0

αk+1 (f(xk) − f∗) < ∞.

Since
∑∞

k=1 αk = ∞, it follows that liminfk→∞ f(xk) = f∗ with probability 1. By
considering a sample path for which liminfk→∞ f(xk) = f∗ and ‖dk+1(x∗)‖2 converges
for any x∗, we conclude that the sample sequence must converge to some vector in
the optimal set X∗ in view of continuity of f . Hence, the sequence {xk} converges to
some vector in X∗ with probability 1.

Define dist (x, X∗) to be the distance between the point x and the set X∗. Note
that under assumptions of Theorem 3.3, it can be seen that E

[
dist (xk, X∗)2

]
also
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converges to 0. In particular, since the solution set X∗ is closed and convex, there
exists a point x∗

k ∈ X∗ that is closest to xk for every k. Letting y = x∗
k in relation

(3.8) and using the fact that dist (xk+1, X
∗) ≤ dk+1(x∗

k) with probability 1, we obtain
for all k,

E
[
dist (xk+1, X

∗)2 | Fm
k

]
≤ (1 + mαk+1μk+1) dist (xk, X∗)2 − 2αk+1 (f(xk) − f∗)

+ mαk+1μk+1 + 2α2
k+1μk+1

m∑
i=1

i−1∑
j=1

(Cj + νk+1)

+ α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

.

Taking expectations, we obtain for all k,

E
[
dist (xk+1, X

∗)2
]
≤ (1 + mαk+1μk+1)E

[
dist (xk, X∗)2

]
− 2αk+1 (f(xk) − f∗)

+ mαk+1μk+1 + 2α2
k+1μk+1

m∑
i=1

i−1∑
j=1

(Cj + νk+1)

+ α2
k+1

(
mνk+1 +

m∑
i=1

Ci

)2

.

From the deterministic analog of Lemma 3.2, we can argue that E
[
dist (xk+1, X

∗)2
]

converges and liminfk→∞ E[f(xk)] = f∗. Since {xk} converges to a point in X∗ with
probability 1, it follows that E

[
dist (xk+1, X

∗)2
]

converges to 0.

We next state a convergence result that requires weaker assumptions than Theo-
rem 3.3. The result can be proved by combining the line of analysis used in the proof
of Theorem 3.3 with the analysis used in [1].

Theorem 3.4. Let Assumption 1 hold. In addition, assume the following.
(a) For each i ∈ {1, . . . , m}, the function fi(x) has linearly bounded subgradients,

i.e., there exist a1 > 0 and a2 > 0 such that

‖∇fi(x)‖ ≤ a1‖x‖ + a2 for all subgradients ∇fi(x) and for all x ∈ X.

(b) There exist two deterministic nonnegative sequences {μ̄k} and {ν̄k} such that
for each i ∈ {1, . . . , m} and all k there is a subgradient ∇fi(zi−1,k) satisfying∥∥E

[
εi,k | F i−1

k

]∥∥ ≤ μ̄k (1 + ‖∇fi(zi−1,k)‖) ,

E
[‖εi,k‖2 | F i−1

k

] ≤ A + ν̄2
k‖∇f(zi−1,k)‖2.

(c) The step-size sequence {αk} is such that
∑∞

k=1 αk = ∞ and
∑∞

k=1 α2
k < ∞.

The bounds μ̄k and ν̄k on the moments of the error sequence {εi,k} are such
that

∞∑
k=1

αkμ̄k < ∞,
∞∑

k=1

α2
kν̄2

k < ∞.

(d) The optimal set X∗ is nonempty and bounded.
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Then, the iterate sequence {xk} generated by the method (3.1) converges to an optimal
solution with probability 1.

The condition in part (d) of Theorem 3.4 is satisfied, for example, when X is
compact, or when the function f(x) is coercive over X , i.e., lim ‖x‖→∞

x∈X
f(x) = ∞.

Observe that the assumptions on the subgradients and the stochastic errors in
Theorem 3.4 are weaker than in Theorem 3.3. For example, when each fi is quadratic,
then the conditions of Theorem 3.4 hold, while the conditions of Theorem 3.3 may
not hold (since the gradients of fi may not be bounded).

3.3. Error bound for constant step-size. Here, we study the behavior of the
iterates {xk} generated by the method (3.1) with a constant step-size rule, i.e., αk = α
for all k. In this case, we cannot guarantee the convergence of the iterates; however,
we can provide bounds on the performance of the algorithm. In the following lemma,
we provide an error bound for the expected values E[f(xk)] and a bound for infk f(xk)
that holds with probability 1. The proofs of these results are similar to those used
in [21].

Theorem 3.5. Let Assumptions 1 and 2 hold. Let the sequence {xk} be generated
by the method (3.1) with a constant step-size rule, i.e., αk = α for all k ≥ 1. Also,
assume that the set X is bounded, and

μ = sup
k≥1

μk < ∞, ν = sup
k≥1

νk < ∞.

We then have

(3.9) liminf
k→∞

E[f(xk)] ≤ f∗ + mμ max
x,y∈X

‖x − y‖ +
α

2

(
m∑

i=1

Ci + mν

)2

,

and with probability 1,

(3.10) inf
k≥0

f(xk) ≤ f∗ + mμ max
x,y∈X

‖x − y‖ +
α

2

(
m∑

i=1

Ci + mν

)2

.

Proof. Since X is compact and each fi is convex over �n, the subgradients of fi

are bounded over X for each i. Thus, all the assumptions of Lemma 3.1 are satisfied.
Furthermore, the optimal set X∗ is nonempty. Since μk ≤ μ and νk ≤ ν for all k, and
‖di−1,k+1(y)‖ ≤ maxx,y∈X ‖x − y‖, according to the relation of Lemma 3.1, we have
for y = x∗ ∈ X∗,

E
[‖dk+1(x∗)‖2 | Fm

k

] ≤‖dk(x∗)‖2 − 2α (f(xk) − f∗) + 2mαμ max
x,y

‖x − y‖

+ α2

(
m∑

i=1

Ci + mν

)2

.(3.11)

By taking the total expectation, we obtain for all y ∈ X and all k,

E
[‖dk+1(x∗)‖2

] ≤E
[‖dk(x∗)‖2

]− 2α (E[f(xk)] − f∗) + 2mαμ max
x,y

‖x − y‖

+ α2

(
m∑

i=1

Ci + mν

)
.
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If the relation (3.9) did not hold, then there would exist a γ > 0 and an index kγ such
that for all k > kγ ,

E[f(xk)] ≥ f∗ + γ + mμ max
x,y∈X

‖x − y‖ +
α

2

(
m∑

i=1

Ci + mν

)2

.

This would imply that for all k ≥ kγ ,

E
[‖dk+1(x∗)‖2

] ≤ E
[‖dkγ (x∗)‖2

]− 2γα(k − kγ),

which evidently cannot hold for sufficiently large k. Thus, the relation (3.9) must hold.
We now prove the relation in (3.10). Define the set

LN =

⎧⎨
⎩x ∈ X : f(x) < f∗ +

1
N

+ mμ max
x,y∈X

‖x − y‖ +
α

2

(
m∑

i=1

Ci + mν

)2
⎫⎬
⎭ .

Let x∗ ∈ X∗ and define the sequence x̂k as follows:

x̂k+1 =

{
xk+1 if x̂k /∈ LN ,
x∗ if x̂k ∈ LN .

Thus, the process {x̂k} is identical to the process {xk}, until {xk} enters the set LN .
Define

d̂k(y) = x̂k − y.

Let us first consider the case when x̂k ∈ LN . Since x̂k = x∗ and x̂k+1 = x∗, we have
d̂k(x∗) = 0 and d̂k+1(x∗) = 0, yielding

(3.12) E
[
‖d̂k+1(x∗)‖2 | Fm

k

]
= ‖d̂k(x∗)‖2.

When x̂k /∈ LN , x̂k = xk and x̂k+1 = xk+1. Using relation (3.11), we conclude that

E
[
‖d̂k+1(x∗)‖2 | Fm

k

]
≤‖d̂k(x∗)‖2 − 2α (f(x̂k) − f(x∗)) + 2mαμ max

x,y∈X
‖x − y‖

+ α2

(
m∑

i=1

Ci + mν

)2

.

Observe that when x̂k /∈ LN ,

f(x̂k) − f∗ ≥ 1
N

+ mμ max
x,y∈X

‖x − y‖ +
α

2

(
m∑

i=1

Ci + mν

)2

.

Therefore, by combining the preceding two relations, we obtain for x̂k /∈ LN ,

(3.13) E
[
‖d̂k+1(x∗)‖2 | Fm

k

]
≤ ‖d̂k(x∗)‖2 − 2α

N
.

Therefore, from (3.12) and (3.13), we can write

E
[
‖d̂k+1(x∗)‖2 | Fm

k

]
≤ ‖d̂k(x∗)‖2 − Δk+1,(3.14)
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where

Δk+1 =

⎧⎨
⎩

0 if x̂k ∈ LN ,
2α

N
if x̂k /∈ LN .

Observe that (3.14) satisfies the conditions of Lemma 3.2 with uk = ‖d̂k(x∗)‖2, Fk =
Fm

k , qk = 0, vk = Δk+1, and wk = 0. Therefore, it follows that
∑∞

k=0 Δk+1 < ∞
with probability 1. However, this is possible only if Δk = 0 for all k sufficiently large.
Therefore, with probability 1, we have xk ∈ LN for all sufficiently large k. By letting
N → ∞, we obtain (3.10).

As seen from relation (3.10) of Theorem 3.5, the error bound on the “best func-
tion” value infk f(xk) depends on the step-size α, and the bounds μ and ν for the
moments of the subgradient errors εi,k. When the errors εi,k have zero mean, the
results of Theorem 3.5 hold with μ = 0. In this case3, the error bound reduces to
α
2 (
∑m

i=1 Ci + mν)2, which can be controlled with the step-size α. Furthermore, in
the absence of any errors (i.e., μ = 0 and ν = 0), the error bound of Theorem 3.5
reduces to f∗ + α

2 (
∑m

i=1 Ci)
2
, which coincides with the error bound for the cyclic

incremental subgradient method (without errors) established in [22], Proposition 2.1.

4. Markov randomized incremental subgradient method. While the
method of section 3 is implementable in networks with a ring structure (the agents
form a cycle), the method of this section is implementable in networks with an arbi-
trary connectivity structure. The idea is to implement the incremental algorithm by
allowing agents to communicate only with their neighbors. In particular, suppose at
time k, an agent j updates and generates the estimate xk. Then, agent j may pass
this estimate to his neighboring agent i with probability [P (k)]i,j . If agent j is not a
neighbor of i, then this probability is 0. Formally, the update rule for this method is
given by

(4.1) xk+1 = PX

[
xk − αk+1

(∇fs(k+1)(xk) + εs(k+1),k+1

)]
,

where x0 ∈ X is some random initial vector, εs(k+1),k+1 is a random noise vector, and
αk+1 > 0 is the step-size. The sequence of indices of agents updating in time evolves
according to a time nonhomogeneous Markov chain with states 1, . . . , m. We let P (k)
denote the transition matrix of this chain at time k, i.e.,

[P (k)]i,j = Prob {s(k + 1) = j | s(k) = i} for all i, j ∈ {1, . . . , m}.

In the absence of subgradient errors (εs(k),k = 0), when the probabilities [P (k)]i,j
are all equal, i.e., [P (k)]i,j = 1

m for all i, j and all k, the method reduces to the
incremental method with randomization proposed in [22], which is applicable only to
the agent networks that are fully connected.

We note here that the time nonhomogeneous Markov chain models networks where
the set of neighbors of an agent may change in time (as the network may be mobile or
for other reasons). We will also assume that the agents decide the probabilities with
which they communicate with their neighbors, i.e., at time k, the agent j chooses the
probabilities [P (k)]i,j ≥ 0 for his neighbors i.

3When µ = 0, the result of Theorem 3.5 can be shown under the assumption that the subgradients
are bounded, which is weaker than the assumption that X is bounded.
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The main difficulty in the analysis of the method in (4.1) comes from the depen-
dence between the random agent index s(k+1) and the iterate xk. Assuming that the
Markov chain is ergodic with the uniform steady-state distribution, in the absence of
the errors εi,k (i.e., εi,k = 0), it is intuitively possible that the method uses directions
that approximate the subgradient 1

m

∑m
i=1 ∇fi(xk) in the steady state. This is the

basic underlying idea that we exploit in our analysis.
For this idea to work, it is crucial not only that the Markov chain probabilities

converge to a uniform distribution but also that the convergence rate estimate is
available in an explicit form. The uniform steady state requirement is natural since
it corresponds to each agent updating his objective fi with the same steady state
frequency, thus ensuring that the agents cooperatively minimize the overall network
objective function f(x) =

∑m
i=1 fi(x), and not a weighted sum. We use the rate

estimate of the convergence of the products P (�) · · ·P (k) to determine the step-size
choices that guarantee the convergence of the method in (4.1).

To ensure the desired limiting behavior of the Markov chain probabilities, we use
the following two assumptions on the matrices [P (k)].

Assumption 4. Let V = {1, . . . , m}. Let E(k) be the set of edges (j, i) induced
by the positive entries of the probability matrix P (k), i.e.,

E(k) = {(i, j) | [P (k)]i,j > 0}.

There exists an integer Q ≥ 1 such that the graph
(
V,∪k+Q−1

l=k E(�)
)

is strongly con-
nected for all k.

Generally speaking, Assumption 4 ensures that the agents are connected suffi-
ciently often in time. To guarantee that each agent updates the estimate xk with the
same frequency in the long run, we impose the following assumption.

Assumption 5.

(a) The diagonal entries of P (k) are all positive for each k.
(b) All positive entries of [P (k)] are uniformly bounded away from zero, i.e., there

exists a scalar η > 0 such that for all i, j ∈ {1, . . . , m} and all k,

if [P (k)]i,j > 0, then [P (k)]i,j > η.

(c) The matrix P (k) is doubly stochastic for each k; i.e., the sum of the entries
in every row and every column is equal to 1.

Assumptions 5(a) and 5(b) ensure that the information from each and every
agent is persistent in time. Assumption 5(c) ensures that the limiting Markov chain
probability distribution (if one exists) is uniform. Assumptions 4 and 5 together
guarantee the existence of the uniform limiting distribution, as shown in [27]. We
state this result in the next section.

Note that the cyclic incremental algorithm (2.2) does not satisfy Assumption 5.
The transition probability matrix corresponding to the cyclic incremental method is
a permutation matrix with the (i, i)th entry being zero when agent i updates at time
k. Thus, Assumption 5(c) is violated.

We now provide some examples of transition matrices [P (k)] satisfying Assump-
tion 5. The second and third examples are variations of the Metropolis–Hasting
weights [10, 41], defined in terms of the agent neighbors. We let Ni(k) ⊂ {1, . . . , m}
be the set of neighbors of an agent i at time k, and let |Ni(k)| be the cardinality of
this set. Consider the following rules:
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• Equal probability scheme. The probabilities that agent i uses at time k are

[P (k)]i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
m

if j = i and j ∈ Ni(k),

1 − |Ni(k)|
m

if j = i,

0 otherwise.

• Min-equal neighbor scheme. The probabilities that agent i uses at time k are

[P (k)]i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
{

1
|Ni(k)| + 1

,
1

|Nj(k)| + 1

}
if j = i and j ∈ Ni(k),

1 −
∑

j∈Ni(k)

min
{

1
|Ni(k)| + 1

,
1

|Nj(k)| + 1

}
if j = i,

0 otherwise.

• Weighted Metropolis–Hastings scheme. The probabilities that agent i uses at
time k are given by

[P (k)]i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηi min
{

1
|Ni(k)| ,

1
Nj(k)|

}
if j = i and j ∈ Ni(k),

1 − ηi

∑
j∈Ni(k)

min
{

1
|Ni(k)| ,

1
|Nj(k)|

}
if j = i,

0 otherwise,

where the scalar ηi > 0 is known only to agent i.
In the first example, the parameter η can be defined as η = 1

m . In the second
example, η can be defined as

η = min
i,j

{
1

|Ni(k)| + 1
,

1
|Nj(k)| + 1

}
,

while in the third example, it can be defined as

η = min
i
{ηi, 1 − ηi} min

i,j

{
1

|Ni(k)| ,
1

|Nj(k)|
}

.

Furthermore, note that in the first example, each agent knows the size of the
network and no additional coordination with the other agents is needed. In the other
two examples, an agent must be aware of the number of the neighbors each of his
neighbors has at any time.

4.1. Preliminaries. We first state a result from [25] for future reference. The
result captures the convergence and the rate of convergence of the time nonhomoge-
neous Markov chain to its steady state. Define Φ(k, �), with k > l, to be the transition
probability matrix for the Markov chain from time l to k, i.e., Φ(k, �) = P (�) · · ·P (k)
with k ≥ l. Then, we have the following convergence result for the transition matrices.
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Lemma 4.1. Assume the matrices P (k) satisfy Assumptions 4 and 5. Then:
1. limk→∞ Φ(k, s) = 1

mee� for all s.
2. The convergence is geometric and the rate of convergence is given by∣∣∣∣[Φ(k, �)]i,j − 1

m

∣∣∣∣ ≤ b βk−l for all k and l with k ≥ l ≥ 0,

where

b =
(
1 − η

4m2

)−2

and β =
(
1 − η

4m2

) 1
Q

.

We use the estimate of Lemma 4.1 to establish a key relation in Lemma 4.2,
which is repeatedly invoked in our subsequent analysis. The idea behind Lemma 4.2
is the observation that when there are no errors (εs(k),k = 0) and the Markov chain
has a uniform steady state distribution, the directions ∇fs(k+1)(xk) used in (4.1) are
approximate subgradients of the function 1

m

∑m
i=1 fi(x) at points xn(k) far away from

xk in the past [i.e., k >> n(k)]. However, even though xn(k) are far away from xk in
time, their Euclidean distance ‖xk −xn(k)‖ can be small when the step-size is selected
appropriately. Overall, this means that each iterate of method in (4.1) can be viewed
as an approximation of the iteration

xk+1 = PX

[
xk − αk+1

m

m∑
i=1

∇fi(xk) + αk+1ξk

]
,

with correlated errors ξk depending on current and past iterates.
In the forthcoming lemma and thereafter, we let Gk denote the entire history

of the method up to time k, i.e., the σ-field generated by the initial vector x0 and{
s(n), εs(n),n; 0 ≤ n ≤ k

}
.

Lemma 4.2. Let Assumptions 1–5 hold. Then, the iterates generated by algorithm
(4.1) are such that for any step-size rule, for any y ∈ X, and any nonnegative integer
sequence {n(k)}, n(k) ≤ k, we have

E
[‖dk+1(y)‖2 | Gn(k)

] ≤ E
[‖dk(y)‖2 | Gn(k)

]− 2αk+1

m

(
f
(
xn(k)

)− f(y)
)

+ 2b

(
m∑

i=1

Ci

)
αk+1β

k+1−n(k)
∥∥dn(k)(y)

∥∥
+ 2Cαk+1

k−1∑
l=n(k)

αl+1 (C + νl+1)

+ 2αk+1μk+1E
[‖dk(y)‖ | Gn(k)

]
+ α2

k+1(νk + C)2,

where dk(y) = xk − y and C = max1≤i≤m Ci.
Proof. Using the iterate update rule in (4.1), the nonexpansive property of the

Euclidean projection and the subgradient inequality in (2.4), we obtain for any y ∈ X
and k ≥ 0,

‖dk+1(y)‖2 ≤‖dk(y)‖2 − 2αk+1

(
fs(k+1) (xk) − fs(k+1)(y)

)
− 2αk+1dk(y)�εs(k+1),k+1 + α2

k+1

∥∥εs(k+1),k+1 + ∇fs(k+1) (xk)
∥∥2

.
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By writing

fs(k+1) (xk) − fs(k+1)(y) =
(
fs(k+1) (xk) − fs(k+1)

(
xn(k)

))
+
(
fs(k+1)

(
xn(k)

)− fs(k+1)(y)
)
,

and by taking conditional expectations with respect to the σ-field Gn(k), we obtain

E
[‖dk+1(y)‖2 | Gn(k)

] ≤ E
[‖dk(y)‖2 | Gn(k)

]
− 2αk+1

(
E
[
fs(k+1) (xk) − fs(k+1)

(
xn(k)

) | Gn(k)

])
− 2αk+1

(
E
[
fs(k+1)

(
xn(k)

)− fs(k+1) (y) | Gn(k)

])
− 2αk+1E

[
dk(y)�εs(k+1),k+1 | Gn(k)

]
+ α2

k+1E
[∥∥εs(k+1),k+1 + ∇fs(k+1) (xk)

∥∥2 | Gn(k)

]
.(4.2)

We use the subgradient inequality in (2.4) and the subgradient boundedness from
Assumption 3 to estimate the second term in the preceding relation, as follows:

E
[
fs(k+1) (xk) − fs(k+1)

(
xn(k)

) | Gn(k)

] ≥− CE
[∥∥xn(k) − xk

∥∥ | Gn(k)

]
.

We next estimate E
[∥∥xn(k) − xk

∥∥ | Gn(k)

]
from the iterate update rule (4.1) and the

nonexpansive property of the Euclidean projection as follows:

E
[∥∥xn(k) − xk

∥∥ | Gn(k)

] ≤ k−1∑
l=n(k)

E
[‖xl+1 − xl‖ | Gn(k)

]

≤
k−1∑

l=n(k)

αl+1E
[∥∥∇fs(�+1) (xl)

∥∥+
∥∥εs(�+1),l+1

∥∥ | Gn(k)

]

≤
k−1∑

l=n(k)

αl+1 (C + νl+1) ,

where in the last step we have used the law of iterated conditioning, and the bound-
edness of subgradients and the second moments of εi,k [cf. (3.2)]. From the preceding
two relations, we obtain

E
[
fs(k+1) (xk) − fs(k+1)

(
xn(k)

) | Gn(k)

] ≥− C

k−1∑
l=n(k)

αl+1 (C + νl+1) .

For the last term in (4.2), by using the subgradient boundedness of Assumption 3 and
the boundedness of the second moments of εi,k [cf. (3.2)], we have for all k,

E
[∥∥εs(k+1),k+1 + ∇fs(k+1) (xk)

∥∥2 | Gn(k)

]
≤ (νk + C)2.

We next estimate the term E
[
dk(y)�εs(k+1),k+1 | Gn(k)

]
in (4.2). Since Gn(k) ⊂ Gk

and dk(y) is Gk-measurable, from the law of iterated conditioning it follows

E
[
dk(y)�εs(k+1),k+1 | Gn(k)

]
= E

[
E
[
dk(y)�εs(k+1),k+1 | Gk

] | Gn(k)

]
= E

[
dk(y)�E

[
εs(k+1),k+1 | Gk

] | Gn(k)

]
≥ −E

[‖dk(y)‖ ∥∥E[εs(k+1),k+1 | Gk

]∥∥ | Gn(k)

]
≥ −μk+1E

[‖dk(y)‖ | Gn(k)

]
.
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By substituting the preceding three estimates in relation (4.2), we obtain

E
[‖dk+1(y)‖2 | Gn(k)

] ≤ E
[‖dk(y)‖2 | Gn(k)

]
+ 2Cαk+1

k−1∑
l=n(k)

αl+1 (C + νl+1)

− 2αk+1

(
E
[
fs(k+1)

(
xn(k)

)− fs(k+1) (y) | Gn(k)

])
+ 2αk+1μk+1E

[‖dk(y)‖ | Gn(k)

]
+ α2

k+1(νk + C)2.(4.3)

Finally, we consider the term E
[
fs(k+1)

(
xn(k)

)− fs(k+1) (y) | Gn(k)

]
, and we use

the fact that the probability transition matrix for the Markov chain {s(k)} from time
n(k) to time k is Φ(k + 1, n(k)) = P (n(k)) · · ·P (k). We have

E
[
fs(k+1)

(
xn(k)

)− fs(k+1) (y) | Gn(k)

]
=

m∑
i=1

[Φ(k + 1, n(k))]s(n(k)),i

(
fi

(
xn(k)

)− fi(y)
)

≥
m∑

i=1

1
m

(
fi

(
xn(k)

)− fi(y)
)− m∑

i=1

∣∣∣∣[Φ(k + 1, n(k))]s(n(k)),i −
1
m

∣∣∣∣ ∣∣fi

(
xn(k)

)− fi(y)
∣∣

≥ 1
m

(
f
(
xn(k)

)− f(y)
)− bβk+1−n(k)

m∑
i=1

∣∣fi

(
xn(k)

)− fi(y)
∣∣ ,

(4.4)
where at the last step we have used Lemma 4.1. By the subgradient inequality (2.4),
we further have ∣∣fi

(
xn(k)

)− fi(y)
∣∣ ≤Ci

∥∥xn(k) − y
∥∥ = Ci‖dn(k)(y)‖.(4.5)

The result now follows by combining the relations in (4.3), (4.4), and (4.5).

4.2. Convergence for diminishing step-size. In this section, we establish the
convergence of the Markov randomized method in (4.1) for a diminishing step-size.
Recall that in Theorem 3.3 for the cyclic incremental method, we showed an almost
sure convergence result for a diminishing step-size αk subject to some conditions that
coordinate the choice of the step-size, and the bounds μk and νk on the moments of
the errors εi,k. To obtain an analogous result for the Markov randomized method,
we use the boundedness of the set X and a more restricted step-size. In particular,
we consider a step-size of the form αk = a

kp for a range of values of p, as seen in the
following.

Theorem 4.3. Let Assumptions 1, 2, 4, and 5 hold. Assume that the step-size
is αk = a

kp , where a and p are positive scalars with 2
3 < p ≤ 1. In addition, assume

that the bounds μk and νk on the error moments satisfy
∞∑

k=1

αkμk < ∞, ν = sup
k≥1

νk < ∞.

Furthermore, let the set X be bounded. Then, with probability 1, we have

liminf
k→∞

f(xk) = f∗, liminf
k→∞

dist(xk, X∗) = 0.

Proof. Since the set X is compact and fi is convex over �n, it follows that the
subgradients of fi are bounded over X for each i. Thus, Assumption 3 is satisfied,
and we can use Lemma 4.2.
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Since X is compact and f is convex over �n (therefore, also continuous), the
optimal set X∗ is nonempty, closed, and convex. Let x∗

k be the projection of xk on
the set X∗. In Lemma 4.2, we let y = x∗

k and let n(k) = k + 1 − �kγ� , where γ > 0
(to be specified more precisely later on). Note that n(k) ≤ k for all k ≥ 1. Using this
and the relation dist (xk+1, X

∗) ≤ ‖xk+1 − x∗
k‖, from Lemma 4.2, we obtain for all

k > 1,

E
[
dist (xk+1, X

∗)2 | Gn(k)

]
≤ E

[
dist (xk, X∗)2 | Gn(k)

]
− 2αk+1

m

(
f
(
xn(k)

)− f∗)
+ 2b

(
m∑

i=1

Ci

)
αk+1β


kγ� ∥∥dn(k)(x∗
k)
∥∥

+ 2Cαk+1αn(k)+1(�kγ� − 2) max
n(k)≤l≤k

(C + νl+1)

+ 2αk+1μk+1E
[
dist (xk, X∗) | Gn(k)

]
+ α2

k+1(νk + C)2.

Taking expectations and using supk≥1 νk = ν, we obtain for all k > 1,

E
[
dist (xk+1, X

∗)2
]
≤ E

[
dist (xk, X∗)2

]
− 2αk+1

m

(
E
[
f
(
xn(k)

)]− f∗)+ τk+1,

where

τk+1 = 2b

(
m∑

i=1

Ci

)
αk+1β


kγ� ∥∥dn(k)(x∗
k)
∥∥

+ 2C(C + ν)αk+1αn(k)+1(�kγ� − 2)

+ 2αk+1μk+1E[dist (xk, X∗)] + α2
k+1(νk + C)2.

We next show that
∑∞

k=2 τk+1 < ∞. Since αk = a
kp , we have αk+1 < αk for all

k ≥ 1. Furthermore, since β < 1, we have β
kγ� < βkγ

. Therefore, αk+1β

kγ� < aβkγ

kp .
By choosing γ > 0 such that γ ≥ 1 − p, we see that 1

kp ≤ 1
k1−γ for all k > 1. Hence,

for all k > 1,

∞∑
k=2

αk+1β

kγ� <

∞∑
k=2

aβkγ

kp
≤

∞∑
k=2

aβkγ

k1−γ
≤ a

∫ ∞

1

βyγ

y1−γ
dy = − aβ

γ ln(β)
.

Since the set X is bounded, it follows that

(4.6)
∞∑

k=2

2b

(
m∑

i=1

Ci

)
αk+1β


kγ� ∥∥dn(k)(x∗
k)
∥∥ < ∞.

Next, since �kγ� − 2 < kγ for all k ≥ 2, and since αk+1 < αk, αk = 1
kp and

n(k) = k + 1 − �kγ�, it follows that for all k ≥ 2,

αk+1αn(k)+1(�kγ� − 2) <
a2 kγ

kp(k + 2 − �kγ�)p
<

a2 kγ

kp(k − kγ)p
=

a2 kγ

k2p(1 − kγ−1)p
.

By choosing γ > 0 such that it also satisfies γ < 2p− 1 (in addition to γ ≥ 1− p), we
have γ < 1 (in view of p ≤ 1). Therefore, for all k ≥ 2,

kγ

k2p(1 − kγ−1)p
≤ 1

(1 − 2γ−1)p

1
k2p−γ

.
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By combining the preceding two relations, we have

∞∑
k=2

2C(C + ν)αk+1αn(k)+1(�kγ� − 2) < 2C(C + ν)
a2

(1 − 2γ−1)p

∞∑
k=2

1
k2p−γ

< ∞,

(4.7)

where the finiteness of the last sum follows from 2p − γ > 1.
Finally, as a consequence of our assumptions, we also have

∞∑
k=2

2αk+1μk+1E[dist (xk, X∗)] < ∞,

∞∑
k=2

α2
k+1(νk + C)2 < ∞.

From (4.6) and (4.7), and the preceding two relations, we see that
∑∞

k=2 τk+1 < ∞.

From the deterministic analog of Lemma 3.2, we conclude that E
[
dist (xk, X∗)2

]
converges to a nonnegative scalar and

∞∑
k=2

2αk+1

m

(
E
[
f
(
xn(k)

)]− f∗) < ∞.

Since p < 1, we have
∑∞

k=2 αk+1 = ∞. Further, since f
(
xn(k)

) ≥ f∗, it follows that

(4.8) liminf
k→∞

E
[
f
(
xn(k)

)]
= f∗.

The function f is convex over �n and, hence, continuous. Since the set X is bounded,
the function f(x) is also bounded on X. Therefore, from Fatou’s lemma it follows that

E

[
liminf
k→∞

f (xk)
]
≤ liminf

k→∞
E[f (xk)] = f∗,

implying that liminfk→∞ f (xk) = f∗ with probability 1. Moreover, from this relation,
by the continuity of f and boundedness of X , it follows that liminfk→∞ dist (xk, X∗) =
0 with probability 1.

As seen in the proof of Theorem 4.3, E
[
dist (xk, X∗)2

]
converges to a nonnegative

scalar. Since liminfk→∞ dist (xk, X∗) = 0 with probability 1, there is a subsequence
of {dist (xk, X∗)2}, which we denote by {dist (x�k

, X∗)2}, which converges to 0 with
probability 1. Since the set X is bounded, the sequence {dist (x�k

, X∗)2} is bounded.
By the dominated convergence theorem, we conclude that E

[
dist (x�k

, X∗)2
]

must also

converge to 0. Therefore, the whole sequence
{
E
[
dist (xk, X∗)2

]}
converges to 0.

4.3. Error bounds for constant step-size. We now establish error bounds
when the Markov randomized incremental method is used with a constant step-size.

Theorem 4.4. Let Assumptions 1, 2, 4, and 5 hold. Let the sequence {xk} be
generated by the method (4.1) with a constant step-size rule, i.e., αk = α for all k.
Also, assume that the set X is bounded, and

μ = sup
k≥1

μk < ∞, ν = sup
k≥1

νk < ∞.
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Then for any integer T ≥ 0,

liminf
k

E[f(xk)] ≤ f∗ + μ max
x,y∈X

‖x − y‖ +
1
2
α(ν + C)2 + αTC (C + ν)

+ b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖,(4.9)

where β =
(
1 − η

4m2

) 1
Q and C = max1≤i≤m Ci. Furthermore, with probability 1, the

same estimate holds for infk f(xk).
Proof. Since X is compact and each fi is convex over �n, the subgradients of fi

are bounded over X for each i. Thus, all the assumptions of Lemma 4.2 are satisfied.
Let T be a nonnegative integer and let n(k) = k−T . Since μk ≤ μ and νk ≤ ν for all
k, and ‖dk(y)‖ ≤ maxx,y∈X ‖x−y‖, according to Lemma 4.2, we have for y = x∗ ∈ X∗

and k ≥ T,

E
[‖dk+1(x∗)‖2 | Gn(k)

] ≤ E
[‖dk(x∗)‖2 | Gn(k)

]− 2α

m
(f (xk−T ) − f∗)

+ 2b

(
m∑

i=1

Ci

)
αβT+1 max

x,y∈X
‖x − y‖

+ 2α2TC (C + ν)

+ 2αμ max
x,y∈X

‖x − y‖ + α2(ν + C)2.(4.10)

By taking the total expectation, we obtain for all x∗ ∈ X∗ and all k ≥ T ,

E
[‖dk+1(x∗)‖2

] ≤ E
[‖dk(x∗)‖2

]− 2α

m
(E[f (xk−T )] − f∗)

+ 2b

(
m∑

i=1

Ci

)
αβT+1 max

x,y∈X
‖x − y‖

+ 2α2TC (C + ν)

+ 2αμ max
x,y∈X

‖x − y‖ + α2(ν + C)2.

Now assume that the relation (4.9) does not hold. Then, there will exist a γ > 0 and
an index kγ ≥ T such that for all k ≥ kγ ,

E[f(xk)] ≥f∗ + γ + μ max
x,y∈X

‖x − y‖ +
1
2
α(ν + C)2 + αTC (C + ν)

+ b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖.

Therefore, for k ≥ kγ + T , we have

E
[‖dk+1(x∗)‖2

] ≤E
[‖dk(x∗)‖2

]− 2αγ ≤ · · · ≤ E
[‖dkγ (x∗)‖2

]− 2αγ(k − kγ).

For sufficiently large k, the right-hand side of the preceding relation is negative, yield-
ing a contradiction. Thus, the relation (4.9) must hold for all T ≥ 0.
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We next show that for any T ≥ 0,

inf
k

f(xk) ≤f∗ + μ max
x,y∈X

‖x − y‖ +
1
2
α(ν + C)2 + αTC (C + ν)

+ b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖,(4.11)

with probability 1. Define the set

LN =

{
x ∈ X : f(x) < f∗ +

1
N

+ μ max
x,y∈X

‖x − y‖ +
1
2
α(ν + C)2 + αTC (C + ν)

+b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖

}
.

Let x∗ ∈ X∗ and define the sequence x̂k as follows:

x̂k+1 =

{
xk+1 if x̂k /∈ LN ,

x∗ otherwise.

Thus, the process {x̂k} is identical to the process {xk} until {xk} enters the set LN .
Define

d̂k(y) = x̂k − y for any y ∈ X.

Let k ≥ T. Consider the case when x̂k ∈ LN . Then, x̂k = x∗ and x̂k+1 = x∗, so that
d̂k(x∗) = 0 and d̂k+1(x∗) = 0, yielding

(4.12) E
[
‖d̂k+1(x∗)‖2 | Gn(k)

]
= E

[
‖d̂k(x∗)‖2 | Gn(k)

]
.

Consider now the case when x̂k /∈ LN . Then, x̂l = xl and xl /∈ LN for all l ≤ k + 1.
Therefore, by the definition of the set LN , we have

f(xk−T ) − f∗ ≥ 1
N

+ μ max
x,y∈X

‖x − y‖ +
1
2
α(ν + C)2 + αTC (C + ν)

+ b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖.(4.13)

By using relations (4.10) and (4.13), we conclude that for x̂k /∈ LN ,

(4.14) E
[
‖d̂k+1(x∗)‖2 | Gn(k)

]
≤ E

[
‖d̂k(x∗)‖2 | Gn(k)

]
− 2α

N
.

Therefore, from (4.12) and (4.14), we can write

E
[
‖d̂k+1(x∗)‖2 | Gn(k)

]
≤ E

[
‖d̂k(x∗)‖2 | Gn(k)

]
− Δk+1,(4.15)

where

Δk+1 =

⎧⎨
⎩

0 if x̂k ∈ LN ,
2α

N
if x̂k /∈ LN .

D
ow

nl
oa

de
d 

08
/2

3/
13

 to
 1

30
.1

26
.1

38
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 S. SUNDHAR RAM, A. NEDIĆ, AND V. V. VEERAVALLI

Observe that (4.15) satisfies the conditions of Lemma 3.2 with uk = E[‖d̂k(x∗)‖2 |
Gn(k)], Fk = Gn(k), qk = 0, wk = 2Δk+1, and vk = 0. Thus, it follows that with
probability 1,

∞∑
k=T

Δk+1 < ∞.

However, this is possible only if Δk = 0 for all k sufficiently large. Therefore, with
probability 1, we have xk ∈ LN for all sufficiently large k. By letting N → ∞, we
obtain (4.11).

Under Assumptions of Theorem 4.4, the function f is bounded over the set X ,
and by Fatou’s lemma, we have

E

[
liminf
k→∞

f(xk)
]
≤ liminf

k→∞
E[f(xk)] .

It follows that the estimate of Theorem 4.4 also holds for E[liminfk→∞ f(xk)] .
In the absence of errors (μk = 0 and νk = 0), the error bound in Theorem 4.4

reduces to

(4.16) f∗ +
1
2

αC2 + αTC2 + b

(
m∑

i=1

Ci

)
βT+1 max

x,y∈X
‖x − y‖.

With respect to the parameter β, the error bound is obviously smallest when β = 0.
This corresponds to uniform transition matrices P (k), i.e., P (k) = 1

mee� for all k (see
Lemma 4.1). As mentioned, the Markov randomized method with uniform transition
probability matrices P (k) reduces to the incremental method with randomization
in [22]. In this case, choosing T = 0 in (4.16) is optimal and the resulting bound is
f∗ + α

2 C2, with C = max1≤i≤m Ci. We note that this bound is better by a factor
of m than the corresponding bound for the incremental method with randomization
given in Proposition 3.1 in [22].

When transition matrices are nonuniform (β > 0), and good estimates of the
bounds Ci on subgradient norms and the diameter of the set X are available, one
may optimize the error bound in (4.16) with respect to integer T for T ≥ 0. In
particular, one may optimize the term αTC2 + b (

∑m
i=1 Ci) βT+1 maxx,y∈X ‖x − y‖

over integers T ≥ 0. It can be seen that the optimal integer T ∗ is given by

(4.17) T ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when
αC2

C0(− lnβ)
≥ 1,

⌈
(ln β)−1 ln

(
αC2

C0(− lnβ)

)⌉
− 1 when

αC2

C0(− lnβ)
< 1,

where C0 = b (
∑m

i=1 Ci)maxx,y∈X ‖x − y‖.
A similar expression for optimal T ∗ in the presence of subgradient errors can

be obtained, but it is rather cumbersome. Furthermore, such an expression (as well
as the preceding one) may not be of practical importance when the bounds Ci, the
diameter of the set X , and the bounds μ and ν on the error moments are “roughly”
known. In this case, a simpler bound can be obtained by just comparing the values
α and β, as given in the following.
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Corollary 4.5. Let the conditions of Theorem 4.4 hold. Then,

liminf
k→∞

E[f(xk)] ≤ f∗ + μ max
x,y∈X

‖x − y‖

+ α

[
1
2
(ν + C)2 + b

(
m∑

i=1

Ci

)
max

x,y∈X
‖x − y‖

]
+ δ(α, β),

where

δ(α, β) =

⎧⎨
⎩

0 if α ≥ β,⌈
ln(α)
ln(β)

⌉
− 1 if α < β.

Furthermore, with probability 1, the same estimate holds for infk f(xk).
Proof. When α > β choose T = 0. In this case, from (Theorem 4.4) we get

E[f(xk)] ≤ f∗ + μ max
x,y∈X

‖x − y‖ + α

(
1
2
(ν + C)2 + b

(
m∑

i=1

Ci

)
max

x,y∈X
‖x − y‖

)
.

When α < β we can choose T =
⌈

ln(α)
ln(β)

⌉
− 1. Then, from (Theorem 4.4),

E[f(xk)] ≥ f∗ + μ max
x,y∈X

‖x − y‖

+ α

[
1
2
(ν + C)2 + C (C + ν)

(⌈
ln(α)
ln(β)

⌉
− 1

)
+ b

(
m∑

i=1

Ci

)
max

x,y∈X
‖x − y‖

]
.

It can be seen that the error bounds in (4.17) and Corollary 4.5 converge to zero
as α → 0. This is not surprising in view of the convergence of the method with a
diminishing step-size.

As discussed earlier, the error bound in [11] is obtained assuming that there are
no errors in subgradient evaluations and that the sequence of computing agents form
a homogeneous Markov chain. Here, while we relax these assumptions, we make the
additional assumption that the set X is bounded.

A direct comparison between the bound in Corollary 4.5 and the results in [11]
is not possible. However, some qualitative comparisons on the nature of the bounds
can be made. The bound in [11] is obtained for each individual agent’s sequence
of iterates (by sampling the iterates). This is a stronger result than our results in
(4.17) and Corollary 4.5, which provide guarantees only on the entire iterate sequence
(and not on the sequence of iterates at an individual agent). However, the bound
in [11] depends on the entire network topology, through the probability transition
matrix P of the Markov chain. Thus, the bound can be evaluated only when the
complete network topology is available. In contrast, our bounds given in (4.17) and
Corollary 4.5 can be evaluated without knowing the network topology. We require
that the topology satisfies a connectivity assumption, as specified by Assumption 4,
but we do not assume the knowledge of the exact network topology.

5. Discussion. Incremental algorithms form the middle ground between selfish
agent behavior and complete network cooperation. Each agent can be viewed to be
selfish, as it adjusts the iterate only using its own cost function. At the same time,
the agents also cooperate by passing the iterate to a neighbor so that it may factor
in its opinion by adjusting the iterate using its cost function. Theorems 3.3 and 4.3
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show that a system level global optimum can still be obtained through some amount
of cooperation.

The results we have obtained are asymptotic in nature. The key step in deal-
ing with both the incremental algorithms was to obtain the basic iterate equation
(Lemmas 3.1 and 4.2). This was then combined with standard stochastic analysis
techniques to obtain asymptotic results. While we have restricted ourselves to estab-
lishing only convergence results, it is possible to combine the techniques in [21] with
the basic iterate relation to obtain bounds on the expected rate of convergence of the
algorithms. Finally, we have only listed a few possible applications for the results
in this paper. The problem of aligning and coordinating mobile agents can also be
cast in the optimization framework studied in this paper and the results obtained in
this paper, especially the results on Markov stochastic subgradient algorithms, can
be used to design suitable alignment algorithms.

An interesting extension that we plan to study in the future is an asynchronous
version of the Markov randomized incremental algorithm. For the asynchronous ver-
sion, dynamic step-size rules such as those studied in [6] are more appropriate than
the off-line diminishing step-size rules considered in this paper.

Acknowledgments. We are very thankful to two anonymous referees for their
valuable insights and suggestions that have improved this paper.
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[21] A. Nedić and D. P. Bertsekas, Convergence rate of incremental algorithms, Stochastic Op-
timization: Algorithms and Applications, (2001), pp. 223–264.
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