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Distributed and Recursive Parameter Estimation
in Parametrized Linear State-Space Models

S. Sundhar Ram, Venugopal V. Veeravalli, and Angelia Nedi¢

Abstract—We consider a network of sensors deployed to sense a spatio-
temporal field and infer parameters of interest about the field. We are in-
terested in the case where each sensor’s observation sequence is modeled
as a state-space process that is perturbed by random noise, and the models
across sensors are parametrized by the same parameter vector. The sen-
sors collaborate to estimate this parameter from their measurements, and
to this end we propose a distributed and recursive estimation algorithm,
which we refer to as the incremental recursive prediction error algorithm.
This algorithm has the distributed property of incremental gradient algo-
rithms and the on-line property of recursive prediction error algorithms.

Index Terms—Incremental recursive prediction error (IRPE), recursive
prediction error (RPE).

I. INTRODUCTION

We consider a network of sensors deployed to sense a spatio-tem-
poral field and infer parameters of interest about the field. We are in-
terested in the case where each sensor’s observation sequence is mod-
eled as a state-space process that is perturbed by random noise, and the
models across sensors are parametrized by the same unknown param-
eter vector. The network goal is to estimate this unknown parameter
using the sensor observations. State-space models arise in many appli-
cations, directly, or as linear approximations to non-linear models [1].

We propose a distributed and recursive estimation procedure, which
is suitable for in-network processing. Each sensor locally processes
its own data and shares only a summary of this data with other sen-
sors in each time slot. The sensors form a cycle and update incre-
mentally, whereby each sensor updates the estimate using its local in-
formation and the received estimate from its upstream neighbor, and
passes the updated estimate to its downstream neighbor. Such an in-
cremental computational model is a recognized technique to reduce
the total in-network communication and we refer the reader to [2], [3]
for implementation issues. Furthermore, the sensor updates are gener-
ated recursively from every new measurement using only a summary
statistic of the past measurements. This enables the network to have an
estimate at all times and also allows each sensor to purge its old mea-
surements reducing the memory requirements.

The estimation criterion that we use is a direct extension of the re-
cursive prediction error (RPE) criterion of [1] to the multi-sensor case.
We call it the incremental recursive prediction error (IRPE) criterion.
We propose an algorithm that builds on the incremental gradient algo-
rithm in the same way the RPE algorithm of [1] builds on the standard
gradient algorithm. We call the algorithm the IRPE algorithm.

A survey of centralized methods for estimation in linear systems is
available in [1]. A related algorithm is the parallel recursive prediction
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error algorithm proposed in [4] that updates the components of the pa-
rameter vector in parallel. This technical note extends our earlier work
[5], where we considered the problem of recursive and incremental es-
timation for non auto-regressive stationary models. Also related is the
incremental LMS algorithm discussed in [3] for fitting linear regres-
sion models.

The rest of the technical note is organized as follows. We formu-
late the problem, and introduce our notation in Section II. We then dis-
cuss the standard recursive prediction error algorithm [1] and the in-
cremental gradient algorithm of [6] in Section III. These are then used
to develop the IRPE algorithm in Section IV, where we also state our
main convergence result. We discuss the proof for the convergence of
the algorithm in Appendix A. We conclude in Section V.

II. PROBLEM FORMULATION

We consider a network of m sensors, indexed 1,. .., m, deployed
to sense a spatio-temporal diverse field to determine the value of some
quantity of interest, denoted by 2, € R”. We sometimes find it con-
venient to use Z to denote the set of sensors, i.e.,Z := {1,...,m}. We
assume that time is slotted and each sensor sequentially senses the field
once in every time slot. We denote by r; (k) the actual measurement
collected by sensor i at time slot k, and we assume that r; (k) € RP.
The goal is to use the sensor measurements to estimate .

To aid in the estimation process each sensor has an approximate
model for the dependence between its measurements and the unknown
parameter . We will use R; (k; x) to denote the model for »; (k) and
consider stochastic models in which {R;(k;x)} has the following
dynamics:

O;(k+ Li2) =D;(2)0;(k; ) + Wi(k; x)
Ri(k+ Lix) =H;0;(k+ L;2) + Vi(k+1). )

The state vector ©;(k + 1; x) is a vector of dimension ¢g. We impose
the following assumptions on the system and observation models.

A.1. The processes {W;(k; )} and {Vi(k)} are zero mean i.i.d.

random sequences and the matrix function D; () is twice differ-

entiable.

A.2. The quantities D;(x), H;, E[©;(0;2)], Cov(W;(0;x)),

Cov (W;(k;2)) and Cov (V;(k)) are available at sensor i.

A.3. At all the sensors a closed and convex set X is available such

that the system in (1) is stable, observable and controllable for all

r € X.

A.4. The sequence {r; (k)} is asymptotically mean stationary and

exponentially stable.

A.5. The joint statistics of ©;(k 4+ 1; ) and ©;(k + 1; =) are not

known.
Note that X may even be the entire space R?. Asymptotic station-
arity means that if we view the sequence {r;(k)} as the realization
of a random process then that process must in the limit exhibit sta-
tionarity. Exponential stability essentially implies that what happens
at time slot s has very little influence on what happens at time slot #,
when ¢ > s. See [1, p. 170] for the precise mathematical definitions of
asymptotically mean stationary and exponentially stable. A sufficient
condition for (A.4) is the existence of a ™ € X such that {r;(k)} can
be viewed as a sample path of {R;(k;z*)}, which additionally also
has finite fourth moments ([1, p. 172]). Assumption (A.5.) implies that
even if information about the dependencies between the random pro-
cesses is available we do not use it, with the understanding that this
is the loss in efficiency that we suffer in order to obtain a distributed
algorithm. The problem is to estimate the parameter = from the col-
lection of sensor measurements {r;(k)} with an algorithm that is: (a)
distributed, i.e., sensor ¢ does not share its raw measurements {r; (%)}
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with any other sensor, and (b) recursive, i.e., at all times, sensor ¢ stores
only a summary statistic of a constant size, i.e., size does increase with
the number of measurements collected by the sensor.

III. PRELIMINARIES

To make the technical note self contained we briefly discuss the in-
cremental gradient algorithm of [6] and the RPE algorithm of [1].

A. Incremental Gradient Descent Algorithm

The incremental gradient algorithm can be used to solve optimiza-
tion problems of the form

iy ) A

=1

when the function f; is known only to sensor ¢. In this algorithm, the
iterates are generated according to

Lk = Zm,k = 20,k+1

Zik+1 = Px [zic1e — ar1 Vfilzic k)] @)

Here, the scalar a1 > 0 is the step-size, Px denotes the projection
onto the set X and V f; denotes the gradient of the function f;. In
the k-th iteration sensor # receives the iterate z;_1 x+1 from sensor
¢ —1, incrementally updates it using the gradient of the locally available
function f; and passes the updated iterate to the sensor ¢ + 1.

B. Kalman Predictor

We write R¥(x) to denote the collection of random variables
{Ri(1;2),...,R;(k;x)}, which should be viewed as a collection
of random variables parametrized by « and not as a function of x.
Furthermore, in line with our notation, rf“ denotes the collection
{ri(1),...,7:(k)}, and #* denotes the collection {rf,..., 75 }.

For x € X, we assumed that the system in (1) is stable, observable
and controllable. The Kalman gain for the system therefore converges
to a finite time-invariant value [7]. Let G;(«) be the Kalman gain for
the state-space system in (1), which is determined from D;(z), H;,
Cov (W;(k; 2)), and Cov (V;i(k)) as the solution to the Riccati equa-
tion [1]. Define F;(x) = D;(x) — G,(x)H,;. The Kalman predictor,
ikt (z37F), is defined as

i ot (x r; ) Fi(x)oi (x rf_l) + Gi(x)ri(k)
Gi k1 (Jl 17’”) =Hi¢i k1 («l ’f) 3

with ¢i o (23 r7) = E[©;(0;2)]. For later reference we next determine
the gradient of g; k41 (x37]). Let 2 denote the (-th component of
x, and define

- ik (xrF ) OF;(x)
€3] B 1\ _ 1, » Iy (R AN 7
G (wsrt ) == YR = 5
_ Agik (zsrf ) G (x)
0 ‘k 1\ _ > v (0 v (0 — 1
’IL Kk ( r; ) - (’91(“ ] v Gz(*l) - 61.(;-) .

Thus the gradient Vg, x (3 r

Vair (m;rf:—1) _ [771(1/3 (T . 1) ) (;,;;7«5—1)}. )

By differentiating in (3), we can immediately see that

duirr (wrf)] _ [ B 0 ] [éik (eriT)
L'ffﬁﬂ C) ] B {v“)mm F, @} { 9 (= )]
Gi(z)
+ |:v(€)Gi(iL’):| ri(k)

1) is the p X d matrix
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|:ql 1 (rrf)] _ |:H,'(ar) 0 ] {@i kot ("“Tf)} (5)

’h(ek)ﬂ (r; 75) 0 H;(2) l(fk)ﬂ (T rf’)

C. RPE Criterion and Algorithm

We illustrate the RPE criterion and algorithm of [1] by using it to
estimate « only using sensor i’s measurements {r; (k) }. Thus, there is
no collaboration with the other agents. For this system, the recursive
prediction error criterion is

1 o 2
= lim — E
N—oo _[N

k=1

filx)

i (k) = gik (1:7‘5_1)

Note that under assumption (A.4) on the observation sequence {7; (k)},
the limit on the RHS of (6) depends only on « and not on {r;(k)}. The
RPE algorithm generates a sequence of iterates {x; } that converges to
a local minimum of the function f;(x). The RPE algorithm is essen-
tially a gradient projection algorithm with stochastic errors. Suppose
the standard gradient projection algorithm is used to minimize f;(zx),
then the iterates are generated according to

6

Tet1 = Px [we — ap1 Vfi(w)].

The iterates of the RPE algorithm are obtained by approximating
Vfi(xzy) to make the algorithm recursive. The approximation in-
volves: (a) an LMS-like approximation for the gradient, and (b) an
approximation to make the LMS approximations recursive. If the
model for the measurements is a simple regression model then the
LMS approximation itself is recursive and approximation (b) is not
required. Thus, the RPE generalizes the LMS algorithm to state-space
systems. We refer the reader to [1] for the details of the algorithm. The
final algorithm can be stated as follows:

|:hk+l :| - |:Hl ; :| |: wk-‘gl :|
¢ = ‘
£I(ch1 0 H; X/(<+1

€41 :T(k + 1) - hk+1

AT
2 = = ang (5231) Elt1
"
— [, (d
Tpyr = [ U1 ﬁkﬁl]
L4 =Px [£k+1]
{MH] _ { Fi(zp41) 0 } {WH]
f =
Yil) VOF (¢441) Fi(esr) ¥k+1
Gi(whtr)
r(k+1). 7
+ |:v(l)Gi(e’1’k+1) r(k+1) @)
Here!l = 1,...,d. The algorithm is initialized with values for ¢, \( )
and wo. Observe that to update x;,, the algorithm requires only r(k +
1), X;EI.L- .. ,Xi_ﬁl and g4, and therefore, it is recursive. Under

(A.1)-(A.4) and convergent ko, it is shown in [1, Theorem 4.3] that
{1} converges to a local minimum of f;(z) in (6) over the set X, with
probability 1.

IV. IRPE ALGORITHM

The direct extension of the RPE criterion in (6) to the case when all
the m sensors cooperate to estimate x is

= va:(f)
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2

ri(k) — gik (r 7'571)

m 1 N
= lim — 8
ZJ\T_N)Q N Z ( )
=1 k=1
We refer to this criterion as the incremental recursive prediction error
criterion. The function f; is potentially available only to sensor ¢. If the
incremental gradient descent algorithm is used to minimize the function

f(x), then the iterates are generated according to

Lk = Zm k = Z20,k+1

Zikt1 =Px [zicikx — a1 Vi (zici 1)) )

The IRPE can be viewed as incremental gradient descent with sto-
chastic errors that are generated when the term V f;(z;_1 1 ) is approx-
imated using the same two approximations that were used in the RPE
algorithm. The first is the LMS like approximation, and the second is
the recursive approximation to make the LMS approximation recursive.
If only the LMS approximation is made, which would be the case in a
simple linear regression problem, the IRPE algorithm simplifies to the
incremental LMS algorithm of [3].

Formally, the iterates are generated by the following relations for
t€Zandl =1,...,d

Lk = Zm,k = 20,k+1

hi k+1} |:Hz 0 } {lﬂ/‘z‘ k+1]
v = ¢ (10)
|:Ez(,lz+l 0 H; XE,Ierl
Fi’k+1 :’7“1‘(]4,‘ —|— 1) — hi,k+1 (11)
. ‘ T
25,(13-,+1 :ZEL—)LA:H — Q41 (55?-&-1) €i,k+1 (12)
T
) d
Zik+1 = [zg,kJrl e Zg,k)+1] (13)
Zigt1 = Px [z gl (14)
|:wi,k+2:| _ { Fi(zi k1) 0 } {ﬂ&mﬁ
v = 1
\EL)+2 VOF (2 k1) Fi(ziga) XE,I?:+1
Gi(Zik+1) }
+ ! ’ ri(k+1). 15
|:v(/’)G,(:l’k+1) ( ) ( )

The initial values for the recursion are fixed at zo = x5, Vi1 = ¥; s
and xfif = XEQ To see that the algorithm has a distributed and recur-
sive implementation assume sensor i — 1 communicates z;_; 41 to
sensor ¢ in slot & 4+ 1. Sensor i then uses!r; (k 4+ 1) to updates the it-
erate z; 1 k41 to generate z; 1. This is then passed to the next sensor
in the cycle. Observe that in updating z;—1,x+1, sensor ¢ requires only
XS‘II~)~+1 e Xi,dk)-,+1 and v; 41, which were calculated by sensor 7 in
the previous time slot. Thus, the algorithm is recursive and distributed.
Furthermore, note that sensor ¢ only needs to know its own system ma-
trices H;, Fi(x) and G;(z).

To establish convergence we will consider a hypothetical centralized
system and prove that the iterates generated by the IRPE are identical
to the iterates generated by the RPE algorithm when used on the hy-
pothetical centralized system. We only state the final result here and
discuss the proof in Appendix A.

Theorem 1: Let (A.1)—(A.5) hold. Moreover, let the step-size o be
such that ko converges. Then, the iterates =, generated by the IRPE
algorithm in (10)—(15) converge to a local minimum of f () in (8) over
the set X, with probability 1.

We have not included an explicit input in modeling the system. The
results immediately follow when there is a deterministic open-loop
input {u;(k)} that drives the system in (1). Of course, {u; (%)} should

'We are assuming that sensor ¢ obtains its measurement before it receives the
iterate. From an implementation perspective, each time slot can be divided into
two parts. In the first part, the sensors make measurements and in the second
part they process.
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be known to sensor ¢. Another immediate extension is to the case when
the matrix H; and noise V; (k) are also parametrized by z.

V. DISCUSSION

The IRPE algorithm ignores any information about the parameter
available in the joint statistics of the random process {O;(k; x)} and
{O;(k;2)}. A centralized system, on the other hand, can use the
joint density information to generate better estimates. Thus, there is a
trade-off between the quality of the estimates and the ’distributedness’
of the estimation scheme. For numerical simulations that capture this
trade-off and an application of the IRPE algorithm to localizing a
diffusing source, we refer the reader to [8].

To truly understand the performance of the algorithm in practical set-
tings, we need to obtain convergence results when there are communi-
cation errors. Further, we have considered a simple class of networks
where the topology is fixed. It is important to obtain an algorithm that
is similar to the IRPE for networks with a random and time-varying
topologies.

APPENDIX

Proof of Theorem 1: For positive integers a and b, let M, x4 be
the vector space of all real matrices of dimensions @ X b. A block vector
in M,y is a vector whose elements are from M, x3. The length of
a block vector is the number of block elements. In a similar manner,
block matrices in M, x5 are matrices where each element is itself a
matrix from M. 5. While writing block matrices we will allow for a
slight abuse of notation and use 0 and I to denote the zero and identity
matrices, respectively. Their dimensions can be unambiguously fixed
from the dimensions of the other blocks in the block matrix. We will
use Uy, b < m, to denote the unit block vector in M, x, of length m,
with the bth block equal to the identity matrix in M q x « and all the other
blocks equal to the zero matrix in M, x .. We allow ¢, j to take values in
the set Z = {1,...,m}. We define §[] as the Kronecker delta. Recall
that the dimension of the matrices ©;(k; 2) is ¢, the dimension of the
measurement 7; (k) is p, and the dimension of the parameter vector
is d.

Hypothetical Centralized System: Without loss of generality, as-
sume that each time slot has duration of m time units. Consider a hy-
pothetical centralized scheme where at time mk + j, sensor j com-
municates 7; (k + 1) to the fusion center over a perfect delayless link.
For i # j, sensor ¢ communicates a predetermined constant value, say
0, that does not convey any information about the value taken by the
parameter .

Denote the sequence communicated by a sensor ¢ by {7;(mk+j)},
with

Fi(mk+7) =ri(k+ 1)6[¢ — j]. (16)
Next, denote the observation sequence at the fusion center by {7(m#%+
J)}, where
F(mk 4+ j)=[7i(mk+j) Fon(mk +5)]" =Ulr;(k+1).

The model for {7(mk + j)}, which we denote by {R(mk + j;x)},
can be defined starting from {R;(k;«)} in an identical manner. We
now consider the problem of estimating « from observation sequence
{7(mk+ j)} using the RPE algorithm. To use the RPE algorithm, the
random process { R(mk + j;2)} has to be represented as the output
vector of a suitably defined state-space system. We do this next using
the model for r; (k) in (1).

State Space Model for {7#(mk + j;x)}: Observe that to use the
RPE algorithm the state and observation matrices must be fixed and
not change with time. Note that from (16), we have R;(mk + j;x) =
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R;(k+1;2)8[i — j]. Let D; () be the following m x m block matrix
in Mgxgq:

0 I 0 - -0
0 o1 . -0
Di(z) = . - . (17)
0 0o o0 - - 1T
Di(x) 0 0 - - 0

Also, define H; = H; (U‘f)T,

[, and note that H; U j’ =
H;6[j — 1]. Define ©,(0; ) =

U%0;(0;x), and

o wuiH've =

_ U! O;(k+ 1;2) ifj <1
O:(mk+j:x) = Lt LT
(mk + j;) {Ugn+1 @ik 2a) i >

Wi(mk + j;2) =ULW;(k + 1;2)8[i — 4], and
Viimk +j) =V;i(k + 1)8[i — j].
We next state the following result that describes the evolution of
{R;(n + 1;2)}. The result can be verified by substituting from the
definitions defined above and a proof is available in [8].
Proposition 1: For all n > 0, we have
O,(n+ 1;2) = Di(2)0;(n; 2) + Wi(n; 2),
Ri(n+1;2) =H,0;(n+ 1;2) + Vi(n + 1).

(18)
19
From (18) and (19), we provide evolution equations for {f?(ﬂ, z)}.
Define
F(L):dldg (Fl(.z) ..... Fm(L))

H(/L’) =diag (Hl(l') m(iv))
O(n;a) = [Ol(” x).. (" L)]T
W(n;a) = [W”l("? ) oo Wi (n; 4”)] !

Vingx) = [Vl(n; ) .o Vin(ng ‘L)] .

Using the relations in (18) and (19), we can write
(:)(n + 1)
R(n+1;z)

= D(LL’)(:)(’IL; x) + W(n; ),
=HOi(n+1;2) +V(n+1).

(20)
@n

Equations (20) and (21) describe the state-space model for the fusion
centers observation {7(n)}. To use the RPE algorithm we need to eval-
uate the Kalman predictor for the system in (21).

1) Time-Invariant Kalman Predictor for Centralized System: Letus
first obtain the time-invariant Kalman predictor for R;(n;x) in (19).
Fix n = mk + j and define

( —n— 1) _ Ug7j+1¢i,k+1 (T~7"f) ifj<:
Gin (w7, B U;iz+1*(j*i)¢i’k+2 (3 rfﬂ) ifj>ir

Goon (777 ) =giwr (k) 8l = 1)

Define G;(x) = UL, G;i(x), and F;(x) = D;(x) — G;(x)H;. The
matrix F;(z) will have the same form as D; () in (17) but with D; (z)
replaced by F;(z). Similar to Proposition 1, we can show
= Fi(,r)$i7,l (T 77,77'_1) + Gi(2)Fi(n)
Hi (w)@;i,n (.[ ,_Zl) .

We can now obtain a predictor family for ©(n: z) and {R, (z)}.
Define

Gint1 (23 F7)

Gint1 (23 ’_zn) = (22)

&17,(7::,;"_1) = I:(_/N n (T' Fl ) O‘lﬁ 17(T Fn 1)]
@(r) diag (C1(.,)A..., )
Jn (=L~ Fnil) = [gl,n(l’? 7_’1 71) <o Gmyn (l'U_’Zz 1)]1

F(r) =diag (Fi(x), .., Fn(2)).
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Furthermore, from (22) one can verify that
Gnpr (1;7") = F(2)n (2:7"7") + Gla)i(n)
Gn1 (37 )_H@n+1 (x:77). (23)

Equation (23) is the Kalman predictor for the system in (21). For all
components of #(n + 1) that are O the corresponding values in the
predictor g, +1 (x; 7™ ) is also 0. For the one component of 7(n + 1) that
will equal 7; (k + 1), for some ¢ € V/, the corresponding component is
Jik+1 (7% rf)

RPE Criterion for the Centralized System in (21): We next eval-
uate the RPE criterion for the centralized system

]

N
= \;1_11; J\ir Z E |:Hf{(n ) = gn (e, fin(;v*))
= 11m —ZZE[HR (n;2") — Gin rR"(T ||]

m
n=1 =1

e

~

~ Jim —ZZE[IIR (m3") = gon (25 Y ()]
n=1 =1
= f(z).

We make the following important remark. As a consequence of the as-
sumptions on the sequences r; (k) and the models in (1) the sequence
{7(n)} and its model in (21) satisfy the conditions of [1, Theorem 4.3]
required for the convergence of the RPE algorithm. Thus, the sequence
of iterates generated when RPE is applied to the system in (21) will
converge to a local minimum of f(x). We will next show that the se-
quence generated by the RPE algorithm when applied to the system in
(21) is identical to the sequence {z; 1} generated by the IRPE algo-
rithm in (15).

RPE Algorithm for Centralized System: Here, we use the RPE al-
gorithm to estimate = from {7(n)}. Define V) F(z) = 9F (x) /94"
and VIO G(x) = 0G(x) /02D for t = 1,...,d.

The RPE algorithm applied to the system in (21) generates the iter-
ates {@,, } as follows:

[ml} B {H o] [H}
14 - r7 ~(C
57(73»1 0 H )(573»1

En+1 ='f'(n + 1) - }Ln+1

. . T

i&ﬂ)ﬂ =7 — G (55721) Enti

,

. 1 _(d

Lpy1 = |:—E’LJ1)>1 £(nJ)rl]

-%n-‘rl :pX |:£n+1j|

[ ﬂ B { Fins) 0 ] [m}
[ = P = (t
Peu V(P)F(wnﬂ) F(ing1) ] [
G(;f?,l+1) .
+ |:V(U)é(-in 1 7.(71 + 1)'

Here, &, = ajy1 forn = mk+jforj = 1,...,m — 1. Next, we as-

sign the initial values for the recursion. Recall that the IRPE algorithm
in (15) is initialized with the values uL 1= Ui, 5,(61) = 5563 for all ¢
and ¢, and xo = x,. We let #o = @, ¥o = [41 O+ ]" and
(f) [Em 7(5)5 ]T Here 1/'7 s = Ul 5 and E(g) Uf’fffs)
for all 7 and [. /
Proof That &iv+; = Zjk+1: Fix n = mk 4 j. Recall that
;1 and yEé,z are generated in the IRPE algorithm (10)—(15). Define
forl =1,...,d

7 Ul 1t ifj <i
'wi,n = {UZ AR _’/—, . J - . and

' m+1—(j—1) Wi k+2 lfJ >

q 0) . .

‘EU) _ Ul J+1XEL+1 ifj <z

LN T (0 . .

Uerl (i—i) Xi k+2 ifj > 1.
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We next state a key lemma. We refer the reader to [8] for a detailed
proof.

Lemma 1: lLet n = mk + j. If &, = /:Jskﬂ
A 7 T () _

aﬂ((i Uit o (Y1 g Vonmt1] s X1 =
=0 =0 T y _

[X1,n+1 X nt1 ] for ¢ = L..., d’T then
fr,(,) = fj;r1,k+1,1/)n+2( : = [¢1 nt2 Ymont2] , and
i / pa— i (, _\[ T { —

Xnio = [),LnJrz )(,m’nJrz] fort =1,...,d.

We now prove Theorem 1 using the preceding lemma. Observe that
the initial values for the RPE algorithm in (24) and the IRPE algorithm
in (15) are chosen such that o = 29,1, 1/7)1 = [J}l,l zﬁmJ ]T,
and )E(if) = [;5“1 /‘?7(7?,1 T forall ¢ By using Lemma 1 and the
induction on %, we can conclude that #,,,4+; = z; k41 forall k& > 1

andi € 7.
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A Distributed Actor-Critic Algorithm and Applications
to Mobile Sensor Network Coordination Problems

Paris Pennesi and Ioannis Ch. Paschalidis

Abstract—We introduce and establish the convergence of a distributed
actor-critic method that orchestrates the coordination of multiple agents
solving a general class of a Markov decision problem. The method lever-
ages the centralized single-agent actor-critic algorithm of [1] and uses a
consensus-like algorithm for updating agents’ policy parameters. As an
application and to validate our approach we consider a reward collection
problem as an instance of a multi-agent coordination problem in a partially
known environment and subject to dynamical changes and communication
constraints.

Index Terms—Actor-critic methods, consensus, Markov decision pro-
cesses (MDP), multi-agent coordination, sensor networks.

I. INTRODUCTION

We consider a setting where a Markov Decision Problem (MDP)
problem is to be cooperatively solved by a group of agents that can
simultaneously explore the state-control space. Each agent can com-
municate and exchange information with agents in its vicinity, thus,
having the potential to modify its own policy on the basis of the infor-
mation received.

The single-agent version of the problem can in principle be solved
by stochastic Dynamic programming (DP). To combat Bellman’s curse
of dimensionality, in this technical note we focus on an Approximate
Dynamic Programming (ADP) approach: actor-critic algorithms[1]. In
these algorithms one adopts a randomized class of policies parame-
trized by a (low-dimensional) parameter vector 8 and optimizes policy
performance with respect to # by using a simulation (or a realization) of
the MDP. According to its name, the algorithm interleaves two steps: (i)
a policy improvement step at which it descends along the performance
gradient with respect to 8 (the actor part), and (i) a policy evaluation
step at which it learns an approximate value function from a sample
path that uses the current policy (the critic part).

Our main contribution is that we develop a Distributed Multi-Agent
Actor-Critic (D-AC) algorithm. Our algorithm allows us to use multiple
agents to simultaneously explore the state-control space. Each agent
maintains its own # and updates it based on local information and in-
formation received from a subset of other agents (e.g., the ones within a
certain communication range). This updating follows a consensus-like
algorithm; such algorithms and their analysis go back to [2] and have
garnered renewed interest [3], [4]. Under suitable conditions, we show
that all agents reach consensus and converge to the optimal 6. In the
algorithm we present, agents update their 8’s asynchronously.

The D-AC algorithm provides a useful framework for agent coordi-
nation in dynamic environments. What is particularly appealing is that
we solve a dynamic problem benefiting from the parallel exploration
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