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Abstract—The capacity regions are investigated for two relay
broadcast channels (RBCs), where relay links are incorporated
into two-user broadcast channels to support user cooperation. In
the first channel, the partially cooperative RBC, only one user in
the system acts as a relay. An achievable rate region is derived
based on the relay using the decode-and-forward scheme. An
outer bound on the capacity region is derived and is shown to
be tighter than the cut-set bound. For the special case where the
partially cooperative RBC is degraded, the achievable rate region
is shown to be the capacity region. Two Gaussian cases of the
partially cooperative RBC are studied. For the system where the
additive white Gaussian noise (AWGN) term at one receiver is a
degraded version of the other, which we refer to as the D-AWGN
partially cooperative RBC, the capacity region is established. For
the system where the AWGN term at one receiver is independent
of the other, which we refer to as the AWGN partially cooperative
RBC, inner and outer bounds on the capacity region are derived
and are shown to be close. Furthermore, it is shown that feedback
does not increase the capacity region for the degraded partially
cooperative RBC, but that it improves the capacity region for
the nondegraded version. In particular, feedback improves the
capacity region for the AWGN partially cooperative RBC. In
the second channel model being studied in the paper, the fully
cooperative RBC, both users can act as relay nodes. All the
results for the partially cooperative RBC are correspondingly
generalized to the fully cooperative RBC. In particular, capacity
regions are established for the degraded and D-AWGN fully
cooperative RBCs. The capacity region is also established for the
fully cooperative RBC with feedback. It is further shown that the
AWGN fully cooperative RBC has a larger achievable rate region
than its partially cooperative counterpart. The results illustrate
that relaying and user cooperation are powerful techniques for
improving the capacity of broadcast channels.

Index Terms—Cut-set bound, degraded channel, feedback ca-
pacity, Gaussian channel, rate region, user cooperation, wireless
downlink.

I. INTRODUCTION

COOPERATIVE relaying of information between users
is emerging as a powerful technique for improving the

reliability and throughput of wireless networks. The building
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block of such relay networks, the three-terminal relay channel,
was first introduced by van der Meulen [1], and was com-
prehensively studied by Cover and El Gamal [2]. Recently,
this channel has been further studied in a variety of contexts
including Gaussian relay channels (e.g., [3], [4]), fading relay
channels (e.g., [5]–[12]), relay channels with complexity con-
straints [13], relay channels with multiple antennas (e.g.,[7],
[8]), and relay channels with orthogonal components (e.g.,
[14], [9], [15]–[19]). More complicated relay networks have
also been studied including relay networks with multiple relay
nodes simultaneously relaying information to the destination
(e.g.,[7], [20]–[23]), relay networks with multiple levels of
relay nodes forwarding information from one level to next
(e.g.,[24]–[26], [7], [27]), and relay networks with multiple
cooperative sources or destinations (e.g., [24], [28]–[30]).
Furthermore, these information-theoretic studies of relay net-
works have motivated practical relaying protocols and coding
design to achieve user-cooperative diversity (e.g., [31], [17],
[32]–[34]).

For centralized networks, to date much of the work on this
topic has focused on the uplink (from the users to a base station
or access point). Cooperative diversity schemes, where one user
may share another user’s resources to improve its transmission
rate, have been explored in a number of recent works (see, e.g.,
[5], [6], [14]). The use of a relay node to assist all the users in
a multiple-access channel has been studied in [35], [7], [36],
[37], and bounds on the corresponding capacity regions have
been derived.

In cellular and WiFi data networks, mobile users have been
demanding increasingly higher data rates on the downlink. This
application motivates us to study the downlink or broadcast
channel that exploits the techniques of relaying and user coop-
eration to achieve higher throughput. We introduce and study
two such systems of relay broadcast channels (RBCs), where
relay links are incorporated into the standard broadcast channel
[38], [39] to assist broadcast transmission. These RBC models
represent the most fundamental user-cooperative downlink
systems and capture the essential roles of user cooperation in
downlink communications. We focus on the two-user case of
these RBCs, and study the gains in capacity region offered by
relaying and user cooperation.

We first study the partially cooperative relay broadcast
channel, which is based on the standard two-user broadcast
channel with one source attempting to transmit both common
and private information to two users. In addition, user 1 acts
as a standard relay node [1], [2] and transmits cooperative
information to user 2 through a relay link (see Fig. 1). A pos-
sible motivation for studying this channel is that in a two-user
broadcast system usually one user (denoted by user 1) has a
“better” channel from the source than the other user (denoted
by user 2), and hence user 1 may decode the information
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Fig. 1. Partially cooperative RBC.

Fig. 2. Fully cooperative RBC.

intended for user 2 in addition to its own information. In this
case, user 2 should benefit from having a relay link from user 1.
Such user cooperation is particularly useful when a mobile user
experiences a deep fading state, where it may be possible to
maintain reliable communication only with the help of another
user (the relay node).

We further study the partially cooperative RBC with feed-
back, where, as in the relay channel with feedback [2, Sec. V],
the outputs at user 2 are provided to user 1 and the outputs at
both users 1 and 2 are provided to the source, all through per-
fect feedback links. Our motivation for studying this feedback
channel is not only because feedback is a natural topic in the
study of broadcast channels [40]–[42] and relay channels [2],
but also because the study of feedback channels provides useful
insights into the type of information that is useful for user coop-
eration. Furthermore, the proof of the converse for the capacity
region of a feedback channel suggests a way to obtain a tighter
outer bound than the cut-set bound on the capacity region for
the corresponding relay broadcast channel without feedback.

We then move on to study a more general model, the fully co-
operative relay broadcast channel, where both users can transmit
cooperative information to each other through relay links (see
Fig. 2). In this channel, both users can potentially gain in ca-
pacity due to this cooperative relaying, which we illustrate via
a Gaussian example. We also study the fully cooperative RBC
with feedback and derive results that are parallel to those for the
partially cooperative RBC.

For both the partially and fully cooperative RBCs, we spe-
cialize our results for two Gaussian cases. The first is the de-
graded case, where the outputs at the two receivers are cor-
rupted by (physically) degraded AWGN (D-AWGN) Gaussian
noise terms, i.e., if the random noise terms are denoted by
and , then , and and are independent
Gaussian random variables. Such degraded channel models are
of information-theoretic interest, because we can usually es-
tablish the capacity regions for these models. Furthermore, the
proofs of the converse for the capacity regions of these degraded
models suggest techniques for obtaining outer bounds on the
capacity regions for the corresponding nondegraded channels.
The second Gaussian case is the more practically relevant one,
where the outputs at the two receivers are corrupted by indepen-
dent AWGN terms.

We note that a model of the broadcast channel with coop-
erating receivers was simultaneously studied in [43] (further

studied in [44]) with the conference version of this paper [45].
The model studied in [43], [44] is a special case of the fully
cooperative RBC being studied in this paper in that the relay
links for user cooperation are orthogonal to the original broad-
cast channel. We also note that a related relay broadcast channel
model, where an additional relay node is introduced to broad-
cast systems to assist all users, has been introduced and studied
in [7], [45], [46].

We now summarize the main results of this paper. For the
discrete memoryless partially and fully cooperative RBCs, we
derive inner and outer bounds on the capacity regions, and we
show that the outer bounds that we derive are tighter than the
cut-set bounds. We then establish the capacity regions for the
degraded partially and fully cooperative RBCs, where the pre-
vious inner and outer bounds match. We further establish the
capacity regions for the partially and fully cooperative RBCs
with feedback. We show that feedback does not increase the ca-
pacity regions for these RBCs, but that it improves the capacity
regions for their nondegraded counterparts.

For the Gaussian partially and fully cooperative RBCs, we
show that the D-AWGN partially and fully cooperative RBCs
(with/without feedback) have the same capacity region. How-
ever, we show that the achievable rate region of the AWGN fully
cooperative RBC is larger than the achievable rate region of the
AWGN partially cooperative RBC. In particular, we show that
the outer bounds on the capacity regions of the AWGN partially
and fully cooperative RBCs are contained in the capacity re-
gions of the corresponding channels with feedback. This indi-
cates that feedback improves the capacity regions for the AWGN
partially and fully cooperative RBCs.

We also summarize our main results in Tables I and II for
easy reference. The notation in the two tables (also throughout
the paper) is described as follows. We use to denote the ca-
pacity region. The subscripts “ ” and “ ” denote partially and
fully cooperative RBCs, respectively. The subscripts “ ” and
“ ” denote partially and fully cooperative RBCs with feed-
back, respectively. The subscript “ ” denotes degraded cooper-
ative RBCs, and “ ” denotes AWGN cooperative RBCs. Hence,
the subscript “ ” denotes D-AWGN cooperative RBCs. We
use to denote the inner bound and use to denote the
outer bound.

The notation in this paper mainly follows the following rules.
Upper case letters indicate random variables, and lower case let-
ters indicate deterministic variables or realizations of the cor-
responding random variables. There are some exceptions, but
these will be clarified where they appear in the paper. We use
or to indicate the vector , and use to indicate
the vector . We define two functions:
and . We adopt the notation in [47] and use

to denote the entropy of , to denote the differen-
tial entropy of , and to denote the mutual information
between and . Throughout the paper, the logarithmic func-
tion is to the base .

In Sections II–VII, we first present the results for the partially
cooperative RBC and the results for this channel with feedback.
We then present the results for the fully cooperative RBC and
the results for this channel with feedback. We finally discuss
and compare the achievable regions for the AWGN case of these
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TABLE I
RESULTS ON DISCRETE MEMORYLESS PARTIALLY AND FULLY COOPERATIVE RBCS

TABLE II
RESULTS ON GAUSSIAN PARTIALLY AND FULLY COOPERATIVE RBCS

Fig. 3. Partially cooperative RBC.

RBCs with all nodes being subject to a total power constraint.
We end the paper with some concluding remarks.

II. PARTIALLY COOPERATIVE RELAY BROADCAST CHANNELS

In this section, we first introduce the channel model for the
partially cooperative RBC, and then present the main results. We
further illustrate the results via two Gaussian channel examples.

A. System Model

Definition 1: A partially cooperative RBC (see Fig. 3) con-
sists of three messages , a source input
with being a finite alphabet set, a relay input with

being a finite alphabet set, two channel outputs
and with and being two finite alphabet sets, and
two message estimate pairs and . The
channel transition probability distribution is .

We note that in the above definition, indicates the
common message that needs to be decoded at both users, and

and are private messages that need to be decoded
at users 1 and 2, respectively. We also note that the channel
input–output relationship is similar to that of the relay channel
[2], but now the relay node (user 1) also has its own message

to decode. We assume throughout the paper that the channel is
memoryless.

Definition 2: A code for a partially
cooperative RBC consists of the following.

• Three message sets: ,
, and .

• An encoder: , which maps each
message tuple to a
codeword .

• A set of relay functions such that

• Two decoders: one at user 1, , which maps
a received sequence to a message pair

; and the other at user 2, , which
maps to a message pair .

The probability of error when the message tuple
is sent is defined as

or (1)
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and the average probability of error is defined by assuming that
the message is uniformly distributed over

and is given by

(2)
The rate tuple is said to be achievable for

the partially cooperative RBC if there exists a sequence of
codes with average error probability

as goes to infinity.

Definition 3: A partially cooperative RBC is degraded if the
channel satisfies

(3)

B. Discrete Memoryless Partially Cooperative RBCs

A motivation for the study of the partially cooperative RBC is
that in many cases one user in the broadcast channel has the ca-
pability to decode at higher rate than the other user. Hence, this
user may also decode the message for the other user in addi-
tion to the message for itself, and then forward this information
to the other user. The following achievable rate region for the
partially cooperative RBC is based on this idea, where the relay
(user 1) employs the decode-and-forward relaying scheme [2,
Sec. II] to help user 2.

Theorem 1: An inner bound on the capacity region of the
partially cooperative RBC is given by

(4)

where the auxiliary random variable is bounded in cardinality
by .

Proof: See Appendix I for an outline of the proof.

The achievable region based on the decode-and-forward
scheme in Theorem 1 serves as an example to show that re-
laying from user 1 to user 2 indeed helps to enlarge the capacity
region of the original broadcast channel. This will be further
demonstrated by Gaussian channels later. More importantly, we
will show that this achievable region gives the capacity region
of the degraded RBC, and we hence derive the capacity regions
of the degraded Gaussian channel and feedback channel. Even
for the nondegraded Gaussian channel, we will show that
this achievable rate region is close to the outer bound on the
capacity region.

Other achievable regions can also be derived based on the
relay node (user 1) using other relaying schemes to assist user 2,
for example, the estimate-and-forward scheme [2, Sec. IV], the
amplify-and-forward scheme (e.g., see [21], [20]), or combina-
tions of these schemes. The derivations of these achievable rate

regions follow steps that are similar to those used in deriving
the achievable rates based on these relaying schemes for the
three-terminal relay channel as in [2], [7], [21], [20]. Which
scheme results in the largest achievable rate region depends
on the particular channel of interest. In general, none of these
schemes provides the capacity region.

For the general discrete memoryless partially cooperative
RBC, we provide the following outer bound on the capacity
region.

Theorem 2: An outer bound on the capacity region of the
partially cooperative RBC is given by

(5)

where the random variables satisfy two Markov chain condi-
tions: and . The auxil-
iary random variables and are bounded in cardinality by

and , respectively.
Proof: See Appendix II.

Remark 1: The outer bound given in Theorem 2 is tighter than
the outer bound based on the general max-flow min-cut theorem
[47, Theorem 14.10.1] (the cut-set bound).

To compare the two outer bounds, we first write the cut-set
bound as follows:

(6a)

(6b)

(6c)

for some joint distribution .
We now show that the outer bound given in (5) in Theorem 2

is contained in (tighter than) the cut-set bound given in (6).
The third bound in (5) implies (6a) because

(7)

The first bound in (5) implies (6b) because

(8)

Finally, the first and second bounds in (5) imply (6c) because

(9)

where we have used the Markov property:
in the last equality. Therefore, the outer bound given
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in Theorem 2 is at least as tight as the cut-set bound. In fact,
one can find an example partially cooperative RBC (e.g., the
D-AWGN partially cooperative RBC we study in Section II-C)
for which the outer bound given in Theorem 2 is strictly con-
tained in the cut-set bound, and is hence tighter than the cut-set
bound.

The inner and outer bounds given in Theorems 1 and 2 may
not be tight for the general partially cooperative RBC. How-
ever, for the degraded partially cooperative RBC, which satisfies
the condition given in Definition 3, we immediately see that the
outer bound (bounds on and ) given in Theorem 2
reduces to a form that matches the inner bound given in The-
orem 1. Thus, we have the following capacity region.

Theorem 3: The capacity region of the degraded partially co-
operative RBC that satisfies the condition given in Definition 3
is given by

(10)

where is bounded in cardinality by .
Proof: The achievability is given by Theorem 1. To show

the converse, we apply Theorem 2.
The first bound in (5) implies the first bound in (10) because

(11)

where follows from the degradedness con-
dition given in Definition 3.

The second bound in (5) implies the second bound in (10)
because

(12)

where also follows from the degraded-
ness condition given in Definition 3. This concludes the proof
of the converse.

Remark 2: The bounds on and on in (5) are not
necessary for the degraded channel. They are still useful for the
nondegraded channels as we will demonstrate in Section II-C
via the AWGN partially cooperative RBC.

C. Gaussian Partially Cooperative RBCs

We study two Gaussian partially cooperative RBCs, where
the outputs at the two users are corrupted by AWGNs.

We first define what it means for one Gaussian noise variable
to be degraded with respect to another, and then define the two
Gaussian partially cooperative RBCs with degraded noise terms
and independent noise terms, respectively.

Definition 4: The Gaussian random variable is (physi-
cally) degraded with respect to the Gaussian random variable

if can be expressed as , where is a
Gaussian random variable that is independent of .

Definition 5: The D-AWGN partially cooperative RBC is a
partially cooperative RBC with the channel outputs being cor-
rupted by degraded Gaussian noise terms, i.e., the channel out-
puts at the two users are given by

(13)

where and are independent real Gaussian random vari-
ables with variances and , respectively, where

. The channel input sequences and are subject
to the average power constraints and , respectively, i.e.,

and (14)

Definition 6: The AWGN partially cooperative RBC is the
partially cooperative RBC with the channel outputs being cor-
rupted by independent Gaussian noise terms, i.e., the channel
outputs at the two users are given by

(15)

where and are independent real Gaussian random vari-
ables with variances and , respectively. The channel
input sequences and are subject to the power
constraints given in (14).

Note that the D-AWGN partially cooperative RBC is de-
graded (satisfies the condition given in Definition 3) due to
the degraded Gaussian noise terms at the two outputs. For the
D-AWGN partially cooperative RBC, we have the following
theorem for the capacity region.

Theorem 4: The capacity region of the D-AWGN partially
cooperative RBC is given by (16) at the bottom of the page,
where , , and , as
defined at the end of Section I.

(16)
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In (16), the parameter indicates the fraction of source power
that is used to transmit information intended for user 1, and is
the correlation coefficient between the source and relay signals.

Proof: The proof of the achievability follows by evaluating
the mutual information terms in Theorem 1 using the following
input distributions: , ,

, where , , are independent. Furthermore, we

let and .
The proof of the converse follows directly from the proof of

the converse for the D-AWGN partially cooperative RBC with
feedback (proof given in Appendix IV), because the feedback
channel provides an outer bound on the capacity region for the
original channel without feedback.

We now study the property of the boundary of the capacity
region of the D-AWGN partially cooperative RBC. In the fol-
lowing discussion, we let for convenience. In (16), the
optimization over can be evaluated by considering the fol-
lowing two cases.

Case 1: If , then achieves the maximum
in (16) for any , and the capacity region is defined by
the rate pairs that satisfy

(17)

Note that in this case , and hence, the
boundary of the capacity region is a straight line. The capacity
region for the D-AWGN partially cooperative RBC hence, co-
incides with the capacity region of a broadcast channel where
the two users have symmetric channels (both have noise levels

). This means that if the relay power is large enough, user 2
effectively sees the same level of noise as user 1 due to relaying.
Also note that the value is a threshold on beyond
which the capacity region will not be further enhanced by re-
laying.

Case 2: If , then define

The optimizing will depend on the value of compared to .
(i) If , then achieves the maximum in (16) and

again the rate pair given in (17) defines one part of the
boundary of the capacity region corresponding to

. It is clear that this part of the boundary is straight
line.

(ii) If , then that achieves the maximum
satisfies the following equation:

(18)
Hence, the other part of the boundary of the capacity re-
gion corresponding to is defined by the
rate pairs that satisfy

(19)

We summarize the properties of the boundary of the capacity
region in the following proposition.

Proposition 1: If , the boundary of the ca-
pacity region of the D-AWGN partially cooperative RBC is a
straight line defined by (17). If , the boundary of
the capacity region of the D-AWGN partially cooperative RBC
consists of one straight-line segment defined by (17), where

; and one curved segment defined by (19), where
.

We now compare the capacity region for the D-AWGN par-
tially cooperative RBC with the capacity region for the Gaussian
broadcast channel without user cooperation. The capacity re-
gion of the latter channel is given by [47, Ch. 14.6]

(20)

for some . In Fig. 4, we plot this region with the
dashed curve as its boundary. We also plot the capacity regions
(boundaries with solid lines) for the D-AWGN partially coop-
erative RBC under different relay signal-to-noise ratios (SNRs)

. Note that for simplicity, we only plot the region for the case
where . It is clear from the figure that the D-AWGN
partially cooperative RBC has a larger capacity region, and the
improvement becomes more significant as increases. How-
ever, as suggested by discussion under Case 1, no further im-
provement is possible for values of greater than 14.54 dB.
Thus, the outer most solid line with 15 dB defines the best
capacity region.

We now consider the AWGN partially cooperative RBC de-
fined in Definition 6, where the noise terms at the two outputs
are independent. This channel does not satisfy the degraded-
ness condition given in Definition 3. We consider the case where

in the following analysis, and only comment on the
case where at the end of this section. An achievable
rate region for this channel can be derived, which is exactly the
same as the capacity region for the D-AWGN partially cooper-
ative RBC.

Corollary 1: An inner bound on the capacity region of
the AWGN partially cooperative RBC is given by the capacity
region of the D-AWGN partially cooperative RBC given
in Theorem 4, i.e.,

(21)

Hence, the boundary of the region has the properties de-
scribed in Proposition 1.

The proof follows the steps that are the same as those in the
achievability proof for Theorem 4.

The achievable region given in Corollary 1 may not be a tight
inner bound on the capacity region for the AWGN partially co-
operative RBC. In the following, we further provide an outer
bound on the capacity region for this channel.

Theorem 5: An outer bound on the capacity region of the
AWGN partially cooperative RBC is given by (22) at the bottom
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Fig. 4. Comparison of the capacity regions for the Gaussian broadcast channel and the D-AWGN partially cooperative RBCs.

of the page, where , , and
as defined at the end of Section I.

Proof: The proof is relegated to Appendix V since part
of the proof is similar to the proof of Theorem 7 given in Ap-
pendix IV.

In Fig. 5, we plot the inner bound on the capacity region
(achievable region) of the AWGN partially cooperative RBC
with dot-dashed line as its boundary and the outer bound on the
capacity region with the solid line as its boundary. We plot the
region for the case where for simplicity. It is clear from
the figure that the outer and inner bounds are very close. The
gap between the two bounds varies with the particular SNRs
chosen for the transmission links in the system. In Fig. 5, we
also plot the capacity region of the original broadcast channel
with dashed line as its boundary. It is clear that the AWGN par-
tially cooperative RBC has a significantly larger capacity region
than the broadcast channel.

Remark 3: For the AWGN partially cooperative RBC, we
have restricted our attention to the channel where

, i.e., the channel from the source to the relay (user 1)
is better than the channel from the source to user 2. This is
a case for which it is reasonable to introduce a relay trans-
mission from user 1 to user 2. Nevertheless, even if the relay
(user 1) has a weaker channel from the source than user 2, i.e.,

, it can still assist user 2. However, under this

condition, the relay needs to use schemes other than the de-
code-and-forward scheme. For example, the relay can employ
the estimate-and-forward scheme [2, Sec. VI] to assist user 2,
and an achievable rate region based on this scheme is given as
follows:

(23)

It is clear that the above achievable region is larger than the ca-
pacity region of the original broadcast channel. This achievable
rate region can be viewed as a special case of the region given in
Theorem 14, with the roles of user 1 and user 2 being switched,
and the corresponding notations for rates and noise variances
also being switched.

III. PARTIALLY COOPERATIVE RBCS WITH FEEDBACK

In this section, we study the partially cooperative RBC with
feedback, where the outputs at user 2 are provided to user 1 and
the outputs at both users 1 and 2 are provided to the source all
through perfect feedback links (see Fig. 6). Note that this defi-
nition for feedback channel follows the definition for the relay
channel with feedback [2, Sec. V]. We will show that feedback

(22)
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Fig. 5. Inner and outer bounds on the capacity region of the AWGN partially cooperative RBC.

Fig. 6. Partially cooperative RBC with feedback.

in general may improve the capacity region for the partially co-
operative RBCs, but does not affect the capacity region for the
degraded partially cooperative RBCs.

For a distribution on the message set , the fol-
lowing joint distribution is induced for a partially cooperative
RBC with feedback:

(24)

A. Discrete Memoryless Partially Cooperative RBCs With
Feedback

From the definition for the degraded partially cooperative
RBC given in Definition 3, it is clear that the partially coopera-

tive RBC with feedback is degraded. For this channel, we have
the following capacity theorem.

Theorem 6: The capacity region of the partially cooperative
RBC with feedback is given by

(25)

where is bounded in cardinality by .
Proof: Theorem 1 provides the achievability with

replacing as the output at user 1. The proof of the converse
follows steps that are similar to those in the proof for Theorem 2,
and is hence only outlined in Appendix III.

Remark 4: From the above achievability proof, it is clear that
in the capacity region achieving scheme, the source need not
exploit the feedback information from the two users. However,
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the relay (user 1) makes use of the feedback information from
user 2 to improve on its decoding and relaying.

It is clear that if the original partially cooperative RBC is de-
graded, then the capacity region given in Theorem 6 is the same
as the capacity region for the original channel without feedback.

Corollary 2: Feedback does not increase the capacity region
for the degraded partially cooperative RBC, i.e.,

where denotes the capacity region of the degraded par-
tially cooperative RBC with feedback, and is given in The-
orem 3.

This result is intuitive. Since the original channel is degraded,
the output at user 2 does not provide user 1 with more in-
formation other than the information already contained in the
output at user 1. Hence, feedback of to user 1 does not help.
The reason that feedback of and to the source does not help
follows from the result in [40] that feedback does not increase
the capacity for the physically degraded broadcast channel.

B. Gaussian Partially Cooperative RBCs With Feedback

In this subsection, we consider two Gaussian feedback chan-
nels: the D-AWGN and AWGN partially cooperative RBCs with
feedback. We study how feedback affects the capacity regions
of these Gaussian channels.

For the D-AWGN partially cooperative RBC with feedback,
we have the following theorem, which is consistent with the
result given in Corollary 2 for the discrete memoryless channel.

Theorem 7: Feedback does not increase the capacity
region for the D-AWGN partially cooperative RBC, i.e.,

, where denotes the capacity region
of the D-AWGN partially cooperative RBC with feedback, and

is given in Theorem 4.
Proof: The achievability proof is the same as that for the

D-AWGN partially cooperative RBC. The proof for the con-
verse is provided in Appendix IV.

We note that in the definition for the D-AWGN partially coop-
erative RBC, the output at user 1 is not affected by the input
signal transmitted by user 1 to user 2. In practice, may
cause interference to . We hence define the following self-in-
terfered D-AWGN partially cooperative RBC model:

(26)

where is a real constant number indicating how strong the
interference is, and and are independent real Gaussian
random variables with variances and , respectively.

The self-interfered D-AWGN partially cooperative RBC is
degraded. It is also easy to check that the self-interference does
not affect the capacity region of the D-AWGN partially coop-
erative RBC with/without feedback. This result is summarized
in the following corollary, and it will be useful in proving the
capacity region for the AWGN partially cooperative RBC with
feedback given in Theorem 8.

Corollary 3: The capacity region for the self-interfered
D-AWGN partially cooperative RBC with/without feedback is
the same as the capacity region of the D-AWGN partially coop-
erative RBC with/without feedback, and is given in Theorem 4.

We now consider the second Gaussian feedback channel:
the AWGN partially cooperative RBC with feedback. For this
channel, we have the following capacity theorem.

Theorem 8: The capacity region of the AWGN partially co-
operative RBC with feedback is given by (27) at the bottom of
the page.

Proof: The idea of the proof is to follow the argument in
[42, Ch. 3.2.2] to change the AWGN partially cooperative RBC
with feedback to an equivalent D-AWGN partially cooperative
RBC with feedback, with being replaced by .

We first define

(28)

and note that the mapping from to is one-to-one.
Hence, the channel with the outputs being and is
equivalent to the channel with the outputs being and .

We now want to show that given , is independent
of , i.e., is a degraded version of . We express in the
following form:

(29)

where . We can express as

(30)

where .

It is clear that is independent of and , and it is easy
to check that is independent of . Hence, is independent
of . Therefore, given , is independent of .

(27)
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Now, for the equivalent channel with outputs being
and , we have

(31)

where and are independent real Gaussian random vari-
ables with variances and , respectively.

This is a self-interfered D-AWGN partially cooperative RBC
with feedback, and hence Corollary 3 can be applied to obtain
the capacity region.

Corollary 4: Feedback enlarges the capacity region for the
AWGN partially cooperative RBC, i.e.,

This corollary can be shown by comparing the capacity region
of the AWGN partially cooperative RBC with feedback

given in Theorem 8 with the outer bound on the capacity
region of the AWGN partially cooperative RBC given in The-
orem 5. This result is reasonable because for the AWGN par-
tially cooperative RBC, the output at user 2 is not a degraded
version of the output at user 1, and hence, feedback of
to user 1 provides further information and results in an enlarge-
ment of the capacity region.

C. Comparison With Results on Broadcast Channels With
Feedback

At this point, it is instructive to compare the results on the
capacity regions for broadcast channels with feedback (see [39]
for a review) with our results on the capacity regions of the par-
tially cooperative RBCs with feedback.

We have obtained the capacity region of the general discrete
memoryless partially cooperative RBC with feedback in The-
orem 6. However, the capacity region is still not known for
the general discrete memoryless broadcast channel with feed-
back. We have shown that feedback does not enlarge the ca-
pacity region for the degraded partially cooperative RBC and
its Gaussian example in Corollary 2 and Theorem 7. This result
is consistent with the result obtained in [40], [41] that feedback
does not enlarge the capacity region for the physically degraded
broadcast channel.

We have obtained the capacity region of the AWGN partially
cooperative RBC with feedback in Theorem 8. However, the ca-
pacity region of the AWGN broadcast channel with feedback is
still not known. We have shown that feedback enlarges the ca-
pacity region for the AWGN partially cooperative RBC. This is
consistent with the result in [48]–[50] that feedback enlarges the
capacity region for the AWGN broadcast channel. However, the
reasons for the enlargement are different for the two channels.
For the AWGN partially cooperative RBC with feedback, the
source does not make use of the feedback information. It is user
1 that utilizes the feedback information from user 2 to improve
on its decoding and relaying. Such a strategy achieves the ca-
pacity region. Whereas for the broadcast channel with feedback,
the source needs to make use of the feedback information to im-
prove the encoding. In [48]–[50], the authors provided example

encoding schemes for the source to exploit feedback informa-
tion to improve the capacity region. However, the optimal en-
coding scheme that achieves the capacity region for the AWGN
broadcast channel with feedback is still not known.

We finally note that the structure of feedback in partially co-
operative RBCs is different from that in broadcast channels. In
partially cooperative RBCs with feedback, the output at user
2 is also fed back to user 1, but this feedback is not available
in broadcast channels with feedback. Hence, obtaining the ca-
pacity region for the partially cooperative RBCs with feedback
does not necessarily imply obtaining the capacity region for the
broadcast channel with feedback.

IV. FULLY COOPERATIVE RELAY BROADCAST CHANNELS

In the previous sections, we studied the partially cooperative
RBC where one user (usually the user with “better channel”
from the source) in the broadcast system helps the other user by
sending relay signals. In this case, we have seen that the partially
cooperative RBC has a larger capacity region than the original
broadcast channel due to user cooperation. It is then natural to
explore whether the capacity region can be further enlarged if
we allow both users to help each other by sending cooperative
signals through relay links.

In this section, we study the fully cooperative RBC, where not
only user 1 serves as a relay to help user 2, but user 2 serves as a
relay to assist user 1 as well. We will first describe the channel
model, and then present our main results. We further illustrate
the results on achievable rate/capacity regions via Gaussian ex-
amples, and compare these regions with those of the partially
cooperative RBC.

A. System Model

Definition 7: A fully cooperative RBC (see Fig. 7) consists
of three messages , a source input with

being a finite-alphabet set, two relay inputs and
with and being two finite-alphabet sets, two

channel outputs and with and being
two finite-alphabet sets, and message estimate pairs
and . The channel transition probability distribution
is .

Definition 8: A fully cooperative RBC is degraded if it either
satisfies the condition

(32)

i.e., is independent of , conditioned on , and ; or
satisfies the condition

(33)

i.e., is independent of , conditioned on , and .

Without loss of generality, in this paper we consider only the
degraded channel that satisfies the first condition.

The definition for a code for the fully
cooperative RBC is similar to that for the partially coopera-
tive RBC, except that it includes another set of relay functions

such that

(34)
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Fig. 7. Fully cooperative RBC.

B. Discrete Memoryless Fully Cooperative RBCs

To derive an achievable rate region for the fully cooperative
RBC, we first need to choose relaying schemes for user 1 and
user 2 to assist each other. A simple choice is one where one
of the users employs the decode-and-forward scheme, and the
other user always sends a single codeword (that may vary ac-
cording to the target rate tuple) which results in the best achiev-
able rate region. We obtain the following achievable rate region
which is the union of two achievable rate regions derived by
switching these two relaying schemes for the two users.

Theorem 9: An inner bound on the capacity region of
the fully cooperative RBC is given by the convex hull of the
union of the following two rate regions and :

(35)

(36)

where and are bounded in cardinality by

and

respectively.

The proof is similar to the proof for Theorem 1 and is omitted.
The achievable rate region given in Theorem 9 will be shown

to give the capacity region of the degraded fully cooperative
RBC in Theorem 12. However, this achievable rate region may
not be tight for a general fully cooperative RBC. For example,
for the AWGN fully cooperative RBC which we will consider
later, this achievable rate region is not tight, and the relay node
that sends a single codeword does not help at all. This relay
needs to employ a better relaying scheme, for example, the es-
timate-and-forward scheme [2, Sec. VI], to be of help. Hence,
motivated by the AWGN fully cooperative RBC, we provide the

following achievable rate region which is based on the scheme
where one user in the system employs the decode-and-forward
scheme and the other user in the system employs the estimate-
and-forward scheme to relay information.

Theorem 10: An inner bound on the capacity region of
the fully cooperative RBC is given by the convex hull of the
union of the following two rate regions and :

(37)

(38)

Proof: See Appendix VI for an outline of the proof.

The achievable rate region given in Theorem 10 serves as
an example to demonstrate that the fully cooperative RBC can
achieve larger rate region than the partially cooperative RBC
due to an additional relay link. This will be clear when we apply
Theorem 10 to the AWGN fully cooperative RBC in the next
subsection.

There are other relaying schemes that the system can choose
for the two users to assist each other, and each of these relaying
schemes results in an achievable rate region. In general, these
achievable regions are not tight.

In the following theorem, we provide an outer bound on the
capacity region for the fully cooperative RBC. Note that this
outer bound is tighter than the cut-set bound.

Theorem 11: An outer bound on the capacity region of the
fully cooperative RBC is given by (39) at the top of the fol-
lowing page, where the random variables satisfy the Markov
chain conditions: and
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(39)

. Furthermore, the auxiliary random variables and are
bounded in cardinality by and

, respectively.

The proof for Theorem 11 is similar to the proof for The-
orem 2, and is hence omitted.

For the special case of the degraded fully cooperative RBC,
we have the following capacity theorem.

Theorem 12: The capacity region of the degraded fully co-
operative RBC is given by

(40)

where is bounded in cardinality by .
Proof: The achievability is given by in Theorem 9. The

converse proof follows by applying the degraded condition (32)
to the first two bounds in (39) given in Theorem 11.

Remark 5: Theorem 12 includes Theorem 1 in [43], [44]
as a special case, because the model studied in [43], [44] is
a special case of the fully cooperative RBC. In fact, if we let

and , define the channel prob-
ability distribution to be , as-
sume that and are deterministic probability
distributions, i.e., having values either or , and further as-
sume and , then the fully cooper-
ative RBC reduces to the channel studied in [43], [44]. For this
channel, given in Theorem 12 reduces to the following re-
gion

(41)

which is the capacity region given in Theorem 1 in [43], [44].

Note that for the degraded fully cooperative RBC, the output
at user 2 is a degraded version of the output at user 1, and it
does not receive any more information than user 1. Hence, user
2 does not need to relay any information for user 1, and all it does
is to send a single codeword (may vary according to the target
rate tuple) which results in the best achievable rate region. The
converse for Theorem 12 shows that this scheme is optimal.

C. Gaussian Fully Cooperative RBCs

As for the partially cooperative RBC, we study two Gaussian
channels for the fully cooperative RBC: the D-AWGN and
AWGN fully cooperative RBCs.

For the D-AWGN fully cooperative RBC, the channel outputs
at the two users are given by

(42)

where and are independent real Gaussian random vari-
ables with variances and , respectively, where

. The channel input sequences , and are
subject to the average power constraints , and , respec-
tively, i.e.,

and

(43)

Note that the D-AWGN fully cooperative RBC satisfies the con-
dition (32), and is hence degraded. The following theorem pro-
vides the capacity region for the D-AWGN fully cooperative
RBC.

Theorem 13: The capacity region of the D-AWGN
fully cooperative RBC is the same as the capacity region
of the D-AWGN partially cooperative RBC given in Theorem
4, i.e.,

Proof: The proof of the achievability is straightforward
based on the proof of the achievability for the partially coop-
erative RBC with user 2 being silent. The proof of the converse
follows similarly as the proof of the converse for Theorem 7.

Remark 6: The relay link from user 2 to user 1 does not help
to enlarge the capacity region for the D-AWGN fully coopera-
tive RBC.

The intuition behind Theorem 13 is as follows. For the
D-AWGN fully cooperative RBC, user 2 receives a degraded
version of the output at user 1, and hence, cannot provide
further information for user 1 other than the information that
user 1 already has. This result is also consistent with Theorem
7 that feedback does not increase the capacity region for the
D-AWGN partially cooperative RBC, i.e., perfectly providing
the output at user 2 to user 1 cannot enlarge the capacity
region for the D-AWGN partially cooperative RBC. It is then
reasonable that sending information based on the output at user
2 to user 1 through a noisy channel cannot enlarge the capacity
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region for the D-AWGN partially cooperative RBC. This is
exactly what Theorem 13 concludes.

However, Theorem 13 is not necessarily true for the discrete
memoryless degraded fully cooperative RBC. First of all, it is
clear that the fully cooperative RBC achieves at least the ca-
pacity region for the corresponding partially cooperative RBC
with user 2 “being silent” (sending a fixed alphabet symbol). We
now explore whether the degraded fully cooperative RBC can
achieve a better rate region. Although for the discrete memory-
less degraded fully cooperative RBC, user 2 still cannot provide
further information to user 1 through the relay link, it can af-
fect the channel by sending a predetermined codeword (this is
not the case for the D-AWGN fully cooperative RBC, because
the channel noise term is independent of the input of user 2).
Hence, user 2 can send a single codeword through the relay link
to result in the best achievable region. Therefore, the relay input
from user 2 can assist in enlarging the capacity region for the
discrete memoryless partially cooperative RBC.

This fact can also be seen from the following simple example
depicted in Fig. 8. For the partially cooperative RBC, we as-
sume that the source node transmits to user 1 only and user 1
transmits to user 2 over an orthogonal link. We further assume
that both links are deterministic with link capacities and ,
respectively. It is clear this channel is degraded. The capacity
region follows from Theorem 3 and is given by

(44)

For the fully cooperative RBC, we assume that the channel input
from user 2 is binary taking values or . If , the

channel is the same as the above partially cooperative RBC,
and if , the channel differs from the above partially
cooperative RBC only in that the link from user 1 to user 2 has
capacity . It is clear that for the fully cooperative RBC, it is
optimal to always set the input which results in the
following capacity region

(45)

It is clear that given in (45) is larger than given in
(44).

We now consider the AWGN fully cooperative RBC where
the Gaussian noise terms at the two receivers are independent.
For this channel, the outputs at the two users are given by

(46)

where and are independent real Gaussian random vari-
ables with variances and , respectively, where .
The channel input sequences , , and are
subject to the power constraints given in (43).

Fig. 8. Example partially and fully cooperative RBCs.

It is clear that the AWGN fully cooperative RBC can achieve
the rate region of the AWGN partially cooperative RBC given in
Corollary 1 by using the same coding scheme and keeping user
2 silent. Can it achieve a better rate region? Since the outputs
at user 1 and user 2 are corrupted by stochastically independent
noise terms, user 2 indeed receives some additional information
other than the information received at user 1. Hence, potentially
user 2 can assist in enlarging the rate for user 1 by sending this
additional information to user 1 through the relay link. Although
user 2 cannot decode this additional information (receiver noise
level at user 2 is higher than that at user 1), it can first compress
this information and then forward it to user 1, i.e., user 2 can
employ the estimate-and-forward relaying scheme.

We provide an achievable rate region for the AWGN fully
cooperative RBC based on user 1 employing the decode-and-
forward relaying scheme and user 2 employing the estimate-
and-forward relaying scheme in the following theorem.

Theorem 14: An inner bound on the capacity region of the
AWGN fully cooperative RBC is given by (47) at the bottom of
the page, where “Convex” indicates the convex hull of the rate
region.

Proof: See Appendix VII.

Note that the parameter in (47) is the fraction of the relay
power at user 2 being used for relaying transmission. This pa-
rameter can be used as tradeoff between the rates and .
Enlarging sacrifices to improve . This is because larger

causes more interference to user 1 in the decoding of the in-
formation for user 2, and hence, user 1 becomes less helpful for
user 2. On the other hand, user 1 gets more benefit from user 2
due to the larger relaying power.

Remark 7: Theorem 14 shows that the AWGN fully cooper-
ative RBC indeed achieves a larger rate region than the AWGN
partially cooperative RBC. This is because the relay link from
user 2 to user 1 assists in enlarging the rate region. Theorem

(47)
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Fig. 9. Comparison of rate regions for Gaussian RBCs.

14 also shows that the AWGN fully cooperative RBC achieves
a larger rate region than the D-AWGN fully cooperative RBC.
These two facts will be demonstrated by the numerical results
at the end of this section.

We further provide an outer bound on the capacity region of
the AWGN fully cooperative RBC.

Theorem 15: An outer bound on the capacity region of the
AWGN fully cooperative RBC is given by (48), at the bottom
of the page.

Proof: See Appendix VIII.

We now compare the achievable rate region of the AWGN
fully cooperative RBC with the capacity region of the D-AWGN
partially/fully cooperative RBC numerically. In Fig. 9, we plot
the inner bound (boundary with solid line) and outer bound
(boundary with circled line) on the capacity region of the
AWGN fully cooperative RBC, the capacity region (boundary
with dot-dashed line) for the D-AWGN partially/fully coop-
erative RBC, and the capacity region (boundary with dashed
line) of the original Gaussian broadcast channel without relay
links. Since the capacity region of the AWGN fully cooperative
RBC lies between its inner and outer bounds, it is clear from

the figure that this capacity region is larger than the capacity
region of the D-AWGN partially/fully cooperative RBC.

In Fig. 9, we also plot the achievable region for the AWGN
partially cooperative RBC (boundary also with dot-dashed
line). It is clear from the figure that the achievable region of
the AWGN fully cooperative RBC is larger than the achievable
region of the AWGN partially cooperative RBC. Furthermore,
for the AWGN fully cooperative RBC, the maximum rates
of both users 1 and 2 are improved relative to the original
Gaussian broadcast channel. However, for the AWGN partially
cooperative RBC, the maximum rate of only user 2 is improved.
This is because user 2 in the AWGN fully cooperative RBC
helps user 1 through a relay link, which is not allowed for the
AWGN partially cooperative RBC.

V. FULLY COOPERATIVE RBCS WITH FEEDBACK

In this section, we study the fully cooperative RBC with feed-
back, where the outputs at user 2 are provided to user 1 and
the outputs at both users 1 and 2 are provided to the source all
through perfect feedback links (see Fig. 10). We study how feed-
back affects the fully cooperative RBC.

(48)
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Fig. 10. Fully cooperative RBC with feedback.

For a distribution on the message set , the fol-
lowing joint distribution is induced for the fully cooperative
RBC with feedback:

(49)

A. Discrete Memoryless Fully Cooperative RBCs With
Feedback

Since the fully cooperative RBC with feedback is degraded,
we can obtain the capacity region of this feedback channel.

Theorem 16: The capacity region of the fully cooperative
RBC with feedback is given by

(50)

where the auxiliary random variable is bounded in cardinality
by .

Proof: Theorem 9 provides the achievability with
replacing as the output at user 1. The proof of the converse is
similar to those for Theorems 2 and 6, and is hence omitted.

Remark 8: From the proof of the achievability, the source
does not exploit feedback information to achieve the capacity
region of the channel. Hence even if the channel only has feed-
back from user 2 to user 1, the capacity region is still the same
as the channel with additional feedback from both users to the
source. This is similar to what we have remarked for the par-
tially cooperative RBC with feedback.

Remark 9: For the fully cooperative RBC, since the output
at user 2 is fed back to user 1, it may seem that the relay link
from user 2 to user 1 would not serve a useful purpose. This is
indeed true for Gaussian channels as we will study in the next
subsection. However, this may not be the case for the discrete
memoryless channel. The reason is that although user 2 does
not need to forward any information to user 1, the relay input
sent by user 2 may still affect the channel. Hence, user 2 can
send a single codeword through the relay link to result in the
best achievable region.

Note that if the original fully cooperative RBC is degraded,
the capacity region given in Theorem 16 is the same as the ca-
pacity region of the same channel without feedback given in
Theorem 12.

Corollary 5: Feedback does not increase the capacity region
of the degraded fully cooperative RBC, i.e.,

where indicates the capacity region of the degraded fully
cooperative RBC with feedback, and is given in The-
orem 12.

B. Gaussian Fully Cooperative RBCs With Feedback

In this subsection, we study two Gaussian fully cooperative
RBCs with feedback: the D-AWGN and the AWGN cases.

We first have the following capacity theorem for the
D-AWGN fully cooperative RBC with feedback.

Theorem 17: Feedback does not increase the capacity region
for the D-AWGN fully cooperative RBC, i.e.,

where indicates the capacity region of the D-AWGN
fully cooperative RBC with feedback, and is given in
Theorem 13.

Proof: The proof of the achievability is given by that for the
D-AWGN fully cooperative RBC without feedback. The proof
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of the converse is similar to that for the D-AWGN partially co-
operative RBC with feedback, which is given in Appendix IV.

Note that for the D-AWGN partially cooperative RBC, we
have studied a self-interfered channel, which is a reasonable
model from a practical point of view. Similarly, it is of interest
to study the following self-interfered D-AWGN fully coopera-
tive RBC model, where the outputs at users 1 and 2 are given by

(51)

where and are independent real Gaussian random vari-
ables with variances and , respectively, and param-
eters , , and are real numbers.

Note that the self-interfered D-AWGN fully cooperative RBC
is also degraded. Theorem 17 still holds for this channel with
feedback.

Corollary 6: The capacity region of the self-interfered
D-AWGN fully cooperative RBC with/without feedback is the
same as the capacity region of the D-AWGN fully cooperative
RBC with/without feedback, and is given in Theorem 17.

We now consider the AWGN fully cooperative RBC with
feedback. The following theorem provides the capacity region
for this channel.

Theorem 18: The capacity region of the AWGN fully coop-
erative RBC with feedback is the same as the capacity region
for the AWGN partially cooperative RBC with feedback given
in Theorem 8, i.e.,

Proof: The proof follows similarly as that for Theorem 8, and
is briefly summarized as follows.

We define

(52)

and the mapping from to is one-to-one. Hence,
the channel with the outputs being and is equivalent
to the channel with the outputs being and .

We express and in the following form:

(53)

(54)

where and .

It is clear that is independent of , and , and is also
independent of . Hence, is independent of . Therefore,
is independent of , given , i.e., is a degraded
version of .

Now, for the equivalent channel with outputs being
and , we have

(55)

where and are independent real Gaussian random vari-
ables with variances and , respectively. This is a
self-interfered D-AWGN fully cooperative RBC defined in (51)
with feedback, and hence Corollary 6 can be applied to yield the
capacity region.

We have the following remarks for the capacity region of the
AWGN fully cooperative RBC with feedback.

Remark 10: Theorem 18 implies that feedback effectively
changes the AWGN fully cooperative RBC with feedback to a
D-AWGN fully cooperative RBC with feedback but with noise
variance being replaced by .

Remark 11: For both D-AWGN and AWGN fully cooper-
ative RBCs with feedback, their capacity regions are the same
as the corresponding partially cooperative RBCs with feedback.
Hence, for these two Gaussian channels with feedback, the relay
link from user 2 to user 1 does not help, because all the useful
information at user 2 has been conveyed to user 1 through feed-
back.

We now compare the capacity region of the AWGN fully co-
operative RBC with feedback given in Theorem 18 with the
outer bound on the capacity region of the AWGN fully coopera-
tive RBC given in Theorem 15. It is clear that the capacity region
of the AWGN fully cooperative RBC with feedback contains the
outer bound on the capacity region of the AWGN fully cooper-
ative RBC without feedback. In particular, for small values of
the relay power , the capacity region of the AWGN fully co-
operative RBC with feedback strictly contains the outer bound
on the capacity region of the same channel without feedback,
i.e., feedback enlarges the capacity region for the AWGN fully
cooperative RBC for these cases.

VI. COMMENTS ON POWER CONSTRAINTS

In Section II-C, we showed that the achievable region of
the AWGN partially cooperative RBC (given in Corollary
1) is larger than the capacity region of the original Gaussian
broadcast channel. This is also demonstrated by a numerical
example in Fig. 5. However, this comparison is based on the
assumption that the power constraint at the source for the
AWGN partially cooperative RBC is the same as the power
constraint at the source for the Gaussian broadcast channel, and
that there is an additional power for the relay node (user
1) to transmit relaying information. Hence, it is conceivable
that the improvement in the capacity region for the AWGN
partially cooperative RBC is due to this additional power at the
relay node. We now consider a case for the AWGN partially
cooperative RBC where the total power available for the source
and relay is the same as the power available for the source in the
broadcast channel, i.e., the source and the relay node need to
share the amount of power . We explore whether the AWGN
partially cooperative RBC still has a larger capacity region than
the Gaussian broadcast channel.

In Fig. 11, we plot the achievable rate region (boundary with
solid line) for the AWGN partially cooperative RBC, where

, and where the source and the relay node share the
amount of power . We compare this achievable rate region
with the capacity region (boundary with dashed line) of the
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Fig. 11. Comparison of achievable rate region of AWGN partially cooperative RBC under total power constraint with capacity region of Gaussian broadcast
channel: case where N < N .

Fig. 12. Comparison of achievable rate region of AWGN partially cooperative RBC under total power constraint with capacity region of Gaussian broadcast
channel: case where N > N .

Gaussian broadcast channel with the power constraint for the
source. It is clear from the graph that the achievable region of
the AWGN partially cooperative RBC is larger than the capacity
region of the Gaussian broadcast channel. Clearly, this enlarge-
ment is not due to the additional power at the relay node any
more. The gain comes from the fact that the source and relay
can coherently transmit information to user 2. Of course this
gain due to coherent combining is limited by how much infor-
mation the source can forward to the relay node before the two
nodes can actually cooperate. Hence the stronger the link from
the source to relay is, the larger the coherent combining gain
that can be achieved. Since we have assumed that ,
which means that the source can forward more information to
the relay than to user 2 through the direct link from the source

to user 2, the coherent combining gain always exists even if it
may be small.

We next consider the AWGN partially cooperative RBC
where , i.e., where the relay has a worse channel
from the source than user 2. We note that when the relay has
an additional power , the achievable region given in (23)
is larger than the capacity region of the original Gaussian
broadcast channel. Now even when the source and relay are
subject to a total power constraint , the achievable rate region
based on the estimate-and-forward scheme for the AWGN
partially cooperative RBC is larger than the capacity region
of the original broadcast channel (see Fig. 12). However, this
improvement is not due to coherent combining between the
source and the relay as in the case where . The reason
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for the improvement is that in this case the source needs to split
some power for the relay and hence the source signals cause
less interference at the relay. Thus, the relay is able to decode
at a higher rate. Fig. 12 also suggests that this improvement is
small, and that the maximum rate of user 2 is not improved.
This suggests that in the case where the relay has a worse
channel from the source than user 2, the relay transmission
may not help much in enlarging the capacity region unless an
additional amount of power is available at the relay. On the
other hand, in this case, letting user 2 be the relay node makes
the relaying more helpful, because now the relay (user 2) has
a better channel from the source than user 1, and coherent
combining helps to enlarge the capacity region.

Similarly, the achievable rate region of the AWGN fully coop-
erative RBC, where the source and two users share the amount
of power , is larger than the capacity region of the original
Gaussian broadcast channel with the source subject to power
constraint . In the AWGN fully cooperative RBC, the relay
node with a better channel from the source helps more toward
enlarging the capacity region due to coherent combining. The
relay node with a worse channel from the source helps only a
little due to less interference in decoding as in the preceding dis-
cussion.

VII. CONCLUDING REMARKS

We performed a comprehensive information-theoretic study
of two relay broadcast channels, the partially cooperative RBC,
and the fully cooperative RBC. We derived bounds on the ca-
pacity region for these channels, and established the capacity
region for the special cases of degraded channels. We demon-
strated via Gaussian examples that these RBCs have significant
gains in capacity region compared to standard broadcast chan-
nels. Our results suggest that cooperative relaying is a powerful
technique in achieving high-speed communication for wireless
downlink systems and other networks that include broadcast
transmissions.

In analyzing the capacity regions of RBCs, we provided an al-
ternative to the cut-set bound approach to obtain outer bounds.
We showed that our outer bounds are tighter than those based on
the cut-set bound, and that they are close to the corresponding
inner bounds in Gaussian examples. We believe that our tech-
nique for deriving these outer bounds is applicable more gener-
ally, and may be useful in deriving tighter outer bounds than the
cut-set bound in other network information theory problems.

For the RBCs studied in the paper, the relay is allowed to
transmit and receive at the same time in the same frequency
band. In practice, models where the relays transmit and receive
in orthogonal channels may be of interest. These RBCs have
been studied in recent papers from an information-theoretic
viewpoint [44], [43], and in the fading channel context [51].

In this paper, we have focused purely on the information-the-
oretic aspect of the RBCs. Further studies on this topic from
coding and networking viewpoints will allow for the implemen-
tation of relaying and user cooperation in future wireless net-
works.

APPENDIX I
OUTLINE OF PROOF FOR THEOREM 1

We assume that the source uses the superposition coding
which is optimal for the degraded broadcast channel [47,
Ch. 14.6 ]. We also assume that the relay (user 1) uses the
decode-and-forward relaying scheme [2, Sec. II ]. We adopt
the regular encoding/sliding-window decoding strategy [52]
for the decode-and-forward scheme which is different from
the irregular encoding/successive decoding strategy used in [2,
Sec. II ]. A review of three decode-and-forward strategies can
be found in [7, Sec. I ].

We first prove that without common message , the fol-
lowing rate pair is achievable:

(56)

Then, from the following proof, it is easily seen that user 1 de-
codes the messages for both users 1 and 2. We can hence view
part of the rate to be the common rate , and the rate region
given in Theorem 1 is achievable.

We consider a transmission over blocks, each with
length . At each of the first blocks, a message pair

is encoded and sent
from the source, where denotes the index of the block, and

. The rate pair ap-
proaches as .

We use random codes for the proof. Fix a joint probability
distribution of

(57)

where is an auxiliary random variable that stands for the in-
formation being carried by the source input that is intended for
user 2. In the following, we use to denote the
strongly jointly -typical set (see [53, Sec. 1.2 ] for definition)
based on the joint distribution (57).

Random Codebook Generation: We generate two statistically
independent random codebooks 1 and 2 by the following same
steps.

1. Generate independent and identically distributed
(i.i.d.) each with distribution . Index ,

.
2. For each , generate i.i.d. each with distribu-

tion . Index , .
3. For each and , generate i.i.d.
each with distribution .

Index , .
Encoding: We encode messages using codebooks 1 and 2, re-

spectively, for blocks with odd and even indices. This is because
some of the following decoding steps are performed jointly over
two adjacent blocks, and having independent codebooks makes
the error events corresponding to these blocks independent, thus
making the probabilities of these error events easy to calculate.

At the beginning of block , let be the new
message pair to be sent from the source in block , and

be the message pair being sent from the
source in previous block . The source encoder then sends

.
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TABLE III
CODEWORDS BEING SENT IN THE FIRST THREE BLOCKS TO ACHIEVE THE RATE

REGION C WITH R = 0

At the beginning of block , user 1 (relay node) has decoded
the message transmitted from the source in previous
block . It then sends the codeword .

For convenience, we list the codewords that are sent in the
first three blocks in Table III.

Decoding: The decoding procedures at the end of block are
as follows.

1. User 1, having known , declares the message is
sent if there is a unique such that

It can be shown that the decoding error in this step is small for
sufficiently large if

(58)

2. User 1, having known and , declares the mes-
sage is sent if there is a unique such that

It can be shown that the decoding error in this step is small for
sufficiently large if

(59)

3. User 2, having known , decodes based on the
information received in blocks and . It declares that the
message is sent if there is a unique such that

and

It can be shown that the decoding error in this step is small for
sufficiently large if

(60)

Combining (58)–(60), we conclude that the rate region given in
(56) is achievable.

Finally, the cardinality of can be bounded by applying stan-
dard techniques (e.g., see [53, Lemma 3.4 ]).

APPENDIX II
PROOF OF THEOREM 2

The proof uses techniques that are used in proving the con-
verse of the capacity region of the degraded broadcast channel
[47, Ch. 14, Problem 11], and in proving the upper bound on the
capacity region for the relay channel [2, Sec. III ].

We consider a sequence of codes for a

partially cooperative RBC with . Then the probability

distribution on the joint ensemble space
is given by

(61)

By Fano’s inequality, we have

(62)

(63)

Note that as if as .
We first consider

(64)

where we define . Note
that form a Markov chain, and

also form a Markov chain.
We then consider
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(65)

where follows from the fact that conditioned on
, is independent of . We pro-

ceed to bound and obtain

(66)

We next consider (67) at the bottom of the page, where fol-
lows from the same reasoning as in the steps from to in
(65).

We now consider

(68)

We proceed to bound and obtain

(69)

where follows from the same reasoning as in the steps from
to in (65). We define .

Note that form a Markov chain, and
also form a Markov chain.

We finally consider (70) at the top of the following page,
where follows from the same reasoning as in the steps from

to in (65).
Now in order to change the upper bounds that we have de-

rived in to single-letter characterizations, we introduce a random
variable which is independent of , , , , ,

, , and is uniformly distributed over . De-
fine , , , ,

, and . Clearly, we have Markov chains:
, , and

. By using the above definitions, (64), (66), (67), (69),
and (70) become

(71)

(67)
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(70)

(72)

(73)

(74)

(75)

This concludes the proof.

APPENDIX III
PROOF OF THE CONVERSE FOR THEOREM 6

The proof is similar to that for Theorem 2 given in Ap-
pendix II. We hence provide only an outline, which will be
useful in the following proof for the Gaussian case in Ap-
pendix IV.

We consider a sequence of code with
. Then the probability distribution on the joint en-

semble space is given
by

(76)

By Fano’s inequality, we have

(77)

where if . The proof for the following
two bounds follows steps that are identical to those in (64) and
(66) in Appendix II.

(78)

(79)

We now consider

(80)

where we omitted the steps that are identical to those in (67) in
Appendix II.



LIANG AND VEERAVALLI: COOPERATIVE RELAY BROADCAST CHANNELS 921

APPENDIX IV
PROOF OF THE CONVERSE FOR THEOREM 7

The techniques in the proof of the converse for the capacity
of the physically degraded Gaussian relay channel [2, Sec. IV]
are useful here, but are not sufficient. In particular, the parame-
ters and need to be carefully chosen. Moreover, this proof
applies the entropy power inequality to the components of the
two random vectors, which is different from applying the en-
tropy power inequality to two independent random vectors as
in the proof of the converse for the capacity region of the de-
graded Gaussian broadcast channel. A similar idea has been
used in establishing the capacity region of the physically de-
graded Gaussian broadcast channel with feedback [41].

For the D-AWGN partially cooperative RBC, the power con-
straints at the source and relay imply that the codewords satisfy

(81)

We apply the degradedness condition in Definition 3 to the
bounds (78)–(80) in Appendix III and obtain the following
bounds:

(82)

(83)

(84)

We now apply the bounds (82)–(84) for the D-AWGN par-
tially cooperative RBC. We start with (83), and obtain

(85)

For the second term in (85), we have

(86)

On the other hand

(87)

where we used that given , is independent of .

Combining (86) and (87), we establish that there exists some
such that

(88)

For the first term in (85)

(89)

On the other hand, we know that

(90)

where we have used (88).
Combining (89) and (90), we obtain

(91)

and hence

(92)

where . Therefore, there exists some such
that

(93)

where .
We plug the preceding equation in (89), and obtain

(94)
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We plug (88) and (94) in (85), and obtain

(95)

We next consider the bound (82), and obtain

(96)

The first term in (96) can be bounded

(97)
For the sum in the preceding equation, we have

(98)

Hence, we obtain

(99)
The second term in (96) can be expressed as

(100)

We now use the entropy power inequality, and obtain

Then

Hence

where follows because is a convex function of .
We plug the preceding equation in (100), and obtain

(101)

where also follows because is a convex function
of , and follows from (88).

We plug (99) and (101) in (96), and obtain

(102)

We now consider (84), and obtain

(103)

Therefore, (95), (102), and (103) provide the converse for
Theorem 7.
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APPENDIX V
OUTLINE OF PROOF FOR THEOREM 5

The proof uses the techniques in proving Theorem 8 and tech-
niques in Appendix IV.

In the proof for Theorem 8, we have shown that the mapping
from to is one-to-one, where

(104)

where and are independent real Gaussian random vari-
ables with variances and , respectively. We have
also shown that given , is independent of .

From (64)–(69) in Appendix II, we have the following upper
bounds:

(105)

(106)

(107)

(108)

where and follow because the mapping from
to is one-to-one, and and follow because given

and , is independent of and .
We further bound (105)–(107) by following similar steps in

bounding (82)–(84) in Appendix IV with being replaced by
, and being replaced by . We then obtain the fol-

lowing bounds:

(109)

(110)

(111)

where parameters and are defined by

(112)

We now further bound (108), and obtain

We proceed to bound and obtain

(113)

Therefore, the bounds given in (109)–(111) and (113) provide
the outer bound given in Theorem 5.

APPENDIX VI
OUTLINE OF PROOF FOR THEOREM 10

We assume that the source uses the superposition coding [47,
Ch. 14.6 ]. We also assume that user 1 employs the decode-
and-forward relaying scheme [2, Sec. II ], and user 2 employs
the estimate-and-forward relaying scheme [2, Sec. VI ]. As in
Appendix I, we adopt the regular encoding/sliding-window de-
coding strategy [52] for the decode-and-forward scheme. We
also use the regular encoding/sliding-window decoding strategy
for the estimate-and-forward scheme, which is different from
the irregular encoding/successive decoding strategy originally
used in [2, Sec. VI ].

We first prove that the rate region is achievable for the case
where (without common message ). It is then easily
seen from the following proof that user 1 decodes the messages
for both users 1 and 2. Hence, we can always view part of the rate
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TABLE IV
CODEWORDS BEING SENT IN THE FIRST FOUR BLOCKS TO ACHIEVER IN THEOREM 10 WITH R = 0

to be the common rate . Therefore, we will have proven
that the rate region given in Theorem 10 is achievable. The
achievability of can be shown by the following steps similar
to those used in proving the achievability of with the roles
of user 1 and user 2 being switched.

We consider a transmission over blocks, each with
length . At each of the first blocks, a message pair

is encoded and sent
from the source, where denotes the index of the block, and

. The rate pair ap-
proaches as .

We use a random coding argument. Fix a probability distri-
bution

(114)

and we use to denote the jointly -typical
set based on the joint distribution (114).

Random Codebook Generation: We generate three statisti-
cally independent random codebooks by following the same
steps.

1. Generate i.i.d. each with distribution
. Index , .

2. For each , generate i.i.d. each with distribu-
tion . Index , .

3. For each and , generate i.i.d.
each with distribution . Index

, .
4. Generate i.i.d. each with distribution

. Index , .
5. For each , generate i.i.d.
each with distribution

where the distribution is induced by the joint dis-
tribution given by (114). Index , .

Encoding: We encode messages using codebooks 1, 2, and 3,
respectively, for adjacent three blocks. This is because some of
the following decoding steps are performed jointly over two
or three adjacent blocks, and having independent codebooks
makes the error events corresponding to these blocks indepen-
dent, thus making the probabilities of these error events easy to
calculate.

At the source, let be the new message pair to be
sent in current block , and let be the message
pair being sent in previous block . The source then sends

.

At the beginning of block , user 1 should have an estimation
of the message sent in the previous block .

It then sends .
At the beginning of block , user 2 should have an estimation

of the index of the compressed signal . It then sends
.

For convenience, we list the codewords sent in the first four
blocks in Table IV.

Decoding: The decoding procedures at the end of block are
as follows.

1. User 1, having known , declares message is sent
if there is a unique such that

The decoding error in this step is small for sufficiently large if

(115)

2. User 1, having known and , deter-
mines that indexed by is picked to compress
by user 2 based on the information received in blocks and
. User 1 declares the index to be if there is a unique

such that

and

The decoding error in this step is small for sufficiently large if

(116)

3. User 1, having known and , deter-
mines that the message is sent based on the information
received in block . It declares the index to be if there
is a unique such that

The decoding error in this step is small for sufficiently large if

(117)
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4. User 2, having known , , and , determines
that the message is sent based on the information re-
ceived in blocks and . It declares the index to be
if there is a unique such that

and

The decoding error in this step is small for sufficiently large if

(118)
5. User 2, having known , , and , declares

that the estimate signal for is indexed by if

there is a unique such that

There exists such a with high probability for sufficiently
large if

(119)

Combining (116) and (119), we obtain

(120)

which is exactly the constraint given in in Theorem 10.
Combining (115), (117), (118), and (120), we obtain the rate

region .

APPENDIX VII
OUTLINE OF PROOF FOR THEOREM 14

Let where the variance of is denoted by
that will be determined later in the proof.

We compute the achievable rate region given in Theorem
10 based on the following distributions and relationships for
those random variables in the expression of :

(121)

where the random variables , , , are independent.

It is straightforward to compute the following two mutual in-
formation terms that provide the expression for :

(122)

To derive , we first have

(123)
To determine in the preceding equation, we use the fol-

lowing constraint which is given in the expression of :

(124)

We evaluate the mutual information terms in (124), and have

(125)

We plug the three mutual information terms given in (125) into
(124), and derive the following constraint on :

(126)

We now plug the preceding bound on in the expression (123),
and obtain

(127)

which concludes the proof.

APPENDIX VIII
OUTLINE OF PROOF FOR THEOREM 15

In the proof for Theorem 18, we have shown that the mapping
from to is one-to-one, where

(128)

where and are independent real Gaussian random vari-
ables with variances and , respectively.

We define the following two auxiliary random variables:

(129)



926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

We follow the steps similar to those in Appendix II, and derive
the following upper bounds:

(130)

(131)

(132)

(133)

(134)

(135)

where for (131), (132), (134), and (135), we have used the fact
that the mapping from to is one-to-one and the
fact that given , is independent of ,
and .

We further bound (130)–(132) by following similar steps in
bounding (82)–(84) in Appendix IV with being replaced by
and being replaced by . We then obtain the following
bounds:

(136)

where parameters and are defined by

(137)

We also obtain the following intermediate bound which will be
useful for the rest of the proof:

(138)
We now further bound (133)

(139)

For the sum in the preceding equation, we have (140) at the top
of the following page. Hence, we have

(141)
We next bound (134), and obtain

(142)

For the second term in (142), we have

(143)
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(140)

and

(144)

Hence, there exists a such that

(145)

We apply (138) and (145) to (142) and obtain

(146)

We finally bound (135), and obtain

(147)
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