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Abstract-Decentralized detection problems are studied where 
the sensor distributions are not specified completely. The sensor 
distributions are assumed to belong to known uncertainty classes. 
It is shown for a broad class of such problems that a set of least 
favorable distributions exists for minimax robust testing between 
the hypotheses. It is hence established that the corresponding 
minimax robust tests are solutions to simple decentralized detec- 
tion problems for which the sensor distributions are specified to 
be the least favorable distributions. 

Index Terms-Decentralized detection, robust hypothesis test- 
ing, least favorable distributions, minimax optimization. 

I. INTBODUCTI~N 

T HE design of optimal decision rules in detection (hy- 
pothesis testing) problems requires the knowledge of the 

conditional probability distributions of the observations, given 
each hypothesis. In many applications, however, the probabil- 
ity distributions are not specified completely. In these cases, 
the probability distributions are usually specified to belong 
to classes (sets) of distributions, often termed uncertainty 
classes. One way to design decision rules when the probability 
distributions are given to belong to uncertainty classes is the 
minimax approach, where the goal is to minimize the worst 
case performance over the uncertainty classes. The decision 
rules thus obtained are said to be robust to the uncertainties 
in the probability distributions. 

Minimax robust detection problems with two hypotheses’ 
and with centralized information have been the subject of nu- 
merous papers (for a survey of results in this area, see [2]). The 
solutions to these problems invariably involve identifying a 
pair of least favorable distributions (LFD’s), and subsequently 
designing a simple hypothesis test between the the LFD’s. 

With the increasing interest in decentralized detection in 
recent years, extensions of centralized detection problems 
to their corresponding decentralized formulations have been 
studied (see [3] for a survey of recent results). An extension 
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‘Minimax robust detection problems with more than two hypotheses are 

known to be difficult and do not admit closed-form solutions [l]. 

of the minimax robust detection problem to a decentralized 
setting with two sensors and without a fusion center was 
considered by Geraniotis [4]. The problem was formulated 
in a Bayesian framework with the observations at each of 
the sensors belonging to uncertainty classes generated by 
alternating capacities of order two. The binary sensor de- 
cisions about the hypothesis were assumed to be coupled 
through a common cost function. For a specific choice of 
cost structure, it was shown in [4] that the task of finding 
LFD’s at the sensors can be decoupled into two independent 
tasks, one at each of the sensors. This implies that the 
LFD’s for the decentralized problem are the same as those 
for two independent centralized detection problems at the 
sensors. 

Minimax robust decentralized detection with a fusion center 
has also been studied. In the only existing analyses of this 
problem [5], [6], the authors restricted their study to a Bayesian 
formulation and to binary sensor decisions. They further 
limited the scope of their study by only considering the 
following special cases: 1) the case of identical sensors using 
identical decision rules, 2) the asymptotic case of a large 
number of sensors, and 3) the asymptotic case of large 
observation block lengths. 

In this paper, we attempt to find a more comprehensive 
solution to robust decentralized detection problems. We study 
both cases with and without a fusion center. For the case 
when a fusion center is present, we give a solution to the 
minimax robust detection problem for the general case of 
finite number of sensors, finite observation block length, and 
nonbinary sensor decisions. This solution covers all the block 
detection cases considered in [5] and [6]. Furthermore, our 
analysis is not restricted to Bayesian detection. For the case 
when no fusion center is present, we extend the work in [4] 
to more than two sensors and more general cost functions. 
We also give sufficient conditions for the decoupling of the 
minimax robust detection problem. 

The remainder of this paper is organized as follows. In 
Section II, we give a detailed introduction to robust centralized 
detection. The purpose of this Introduction is twofold: first, we 
believe that we have provided a framework whereby most of 
the previous results in robust centralized detection are unified; 
second, the results here are used explicitly in the solution to the 
decentralized problems in the subsequent sections. In Section 
III, we consider decentralized detection problems where a 
fusion center is present, and in Section IV, we consider the 
case where the fusion center is absent. Finally, in Section V, 
we give some concluding remarks. An Appendix containing 
the proof of one of the results is included at the end of the 
paper. 
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II. ROBUST CENTRALIZED DETEC~ON 

We begin with a description of a minimax robust detection 
problem which was first introduced by Huber [7]. The basic 
setup is as follows. Let (X, 3) be a measurable space, and 
let PO and Pr be distinct probability measures on it. Let X 
be an observation taking values in X, and let the distribution 
of X be Pa (respectively, PI) under Ha (respectively, HI). A 
decision S about the true hypothesis is to be made based on X, 
i.e., 6 = $(X). The objective here is to construct a hypothesis 
test between HO and Hi, when PO and Pi are not specified 
completely. The approach taken by Huber was to first define 
classes of allowable distributions (or uncertainty classes) under 
Ha and HI, and then solve a minimax test between this pair 
of classes. If we denote the uncertainty class under Hj by Pj, 
then the minimax robust versions of Bayesian, minimax, and 
Neyman-Pearson formulations of the hypothesis test between 
HO and HI are given, respectively, by 

a)min~[vsu~p,~p,PF(~, Po)+(l-v)su~~,~~,P~.(~, PI>] 
b) miw max {~~PP,~P,PF(A PO>, ~uP~~P,PM($, PI)} 
cl min+wp,Ep,PM(4, PI> 

subject to ~~pp,~p,P~(qb, PO) 5 a 

where PM($, PI) = Pl(S = 0) and PF(I$, ‘PO) = Po(S = l), 
and v is the a priori probability of hypothesis HO. 

The classes considered in [7] are neighborhood classes 
containing, under each hypothesis, a nominal distribution and 
distributions in its vicinity. The two types of neighborhood 
classes studied in [7] are the t contamination and the total 
variation. For each case, Huber showed [7] that a pair of 
LFD’s can be found for the minimax robust detection problems 
described above. He also gave a characterization of a least 
favorable pair in terms of the parameters of the uncertainty 
neighborhoods, and showed that the corresponding minimax 
robust tests are “censored” versions of the nominal likelihood 
ratio tests. 

Huber and Strassen [8] have shown in a later paper that pairs 
of LFD’s can be found for the cases when the neighborhood 
classes can be described in terms of alternating capacities 
of order 2. When the observation set is compact, several 
uncertainty models such as c-contamination neighborhoods, 
total variation neighborhoods, band classes, and p-point classes 
are special cases of this model with different choices of 
capacity. 

The proofs of existence of LID’s in [7] and [8] rely on the 
following property possessed by all the pairs of uncertainty 
classes considered in [7] and [S]. 

Definition 1 (Joint Stochastic Boundedness): A pair (Pa, 
Pi) of classes of distributions defined on a measurable 

space (X, 3) is said to be jointly stochastically bounded by 
(Qu, Qi), if there exist distributions &a E PO and Qi E Pl 
such that, for any (PO, PI) E PO x ‘Pi and all t 2 0, 

Po(lq(X) > t> I Qo(lq(X) > t) 

and 

P&(X) > t) 2 Q l(l,(X) > t) 

where 1, is the likelihood ratio between Qi and Qu. 0 

It can be shown [7], [S] that the distributions QO and Qi in 
Definition 1 are LID’s for minimax robust hypothesis testing 
between Pa and PI. That is, the solution to a), b), and c) 
are obtained as solutions to the following simple hypothesis 
testing problems: 

a’) min+ [~PF(~J, Qo) + Cl- ~)PM($, Qdl 
W  min+m~{(PF(d+ Qo), PM($, Qdl 
c’) min+ PM(c$, Qi) subject to PF($, Qo) <_ Q. 

In many applications, the observation X is a vector (block) 
of independent observations (Xi, . . . , X,), where the observa- 
tion X; takes values in a measurable space (X; , 3i) and has a 
distribution which belongs to the class Pj when the hypothesis 
is Hj. In this paper, the set Pj: = Pj x . . . x P; represents 
a class of distributions on (X, 3) which are products of 
distributions in Pj, i = 1, . . . n,. To further clarify this point, let 
Pj denote a typical element of Pj. The Pi : = (Pi, . . . , PT) E 
Pj represents the product distribution P; x . . . x Py. 

In the above context, we have the following result. 
Lemma 1: For each i,i = 1,. . . , n, let the pair (PA, PI) 

be jointly stochastically bounded by (Qi, Qi). Then the pair 
(PO, PI) is jointly stochastically bounded by (&a, Qi). 

The proof of Lemma 1 follows quite easily from the 
following result which is proved in the Appendix. 

Lemma2: LetZi, Za,.,. , Z, be nonnegative, independent 
random variables. Let Z; have distribution 3i under measure 
3, and have distribution 9; under measure 8. Furthermore, 
suppose that Z; is stochastically larger under 3i than under 
G;, i.e., 

Fi;(zi > t;) 2 Bi(Zi > t;), for alhi 2 0. 

Then JJy’“=, Zi is stochastically larger under 3 than under 8, 
i.e., 

,(fJzi>t) I,(EZi>t) forall t>O. 

Proof of Lemma 1: Let PO be any distribution in the set 
PO, and let PI be any distribution in the set PI. Let 1, denote 
the likelihood ratio between Qi and Qu, and let 16 denote the 
likelihood ratio between Qi and Qg. Then 

n 
Zp(X) = flZ6(Xi)e 

i=l 

By the joint stochastic boundedness property of (Pi’, Pf), 
If (Xi) is stochastically larger under Q6 than under Pj. Hence, 
by Lemma 2, 1,(X) is stochastically larger under &a than 
under PO. Thi.s proves the first condition required for the joint 
stochastic boundedness of (PO, PI) by (Qo, Ql). The other 
condition is proved similarly. 0 

Remark I: Huber [7] proved Lemma 1 for the special case 
when when Pj = P;, for i = 2, . . . , n. We note that the proof 
given here is a straightforward extension of Huber’s proof. 
Also, even for the case when Pj = Pt, for i = 2, ... , n, 
the individual members of Pj need not be vectors of identical 
distributions. That is, Huber’s result, as given in [7], applies 
to more than just independent and identically distributed 
observations; Lemma 1 is a further generalization of this result. 
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6=-7(u1,...,wJ) 
Fig. 1. Robust decentralized detection with a fusion center. 

Lemma 1 implies the following. Suppose we are given a 
minimax robust detection problem with a block of independent 
observations, and with uncertainty classes satisfying the joint 
stochastic boundedness property. Then, this problem can be 
reduced to a single observation problem without sacrificing 
the joint stochastic boundedness property. 

The above description of centralized robust detection prob- 
lems, we believe, unifies most of the results in this area. Hence, 
the material of Section II should be of independent interest to 
the reader. 

III. ROBUST DECENTRALIZED 
DETECTION WITH A FUSION CENTER 

A description of the decentralized detection system con- 
sidered in this section is given in Fig. 1. The hypothesis 
H takes values Hu and Hi. There are N sensors and one 
fusion center. The sensor Si receives an observation X; 
which is assumed to take values on a measurable space 
(X;, Fi). By virtue of Lemma 1, Xi could represent a block 
of independent observations. The observations at the sensors 
are independent, and Xi has a distribution which belongs to 
the class Pj when the hypothesis is Hj. For each i, the pair of 
uncertainty classes (Pt , Pt ) is jointly stochastically bounded 
by (Qg, Qi) (see Definition 1). Let Pj: = Pj’ x. . . x PjN. Then 
Pj = (Pj”,..., Pjfl) E Pj represents the product distribution 
Pjlx,...,xPjN. 

By Lemma 1, the pair (PO, PI) is jointly stochastically 
bounded by (Qu, Qr ). Hence, if all of the information received 
by the sensors is made available to the fusion center, then 
(Qc, Qi) are LFD’s for robust hypothesis testing between Ho 
and HI. But in the decentralized setting, only a summary of 
the sensor observations is available at the fusion center. At 
sensor S;, there is a decision function 4; which maps the 
observation vector Xi to a local decision lJi E { 1, . . . , Di}, 
and the fusion center makes a final binary-valued decision 
6 based on the information it receives from the sensors, 
i.e., S = r(Ul, ... , UN). For compactness of notation, we 
represent the set of local decision functions ($1, . . . , #JN) by 
4 

We consider here, in detail, a Bayesian formulation of the 
robust decentralized detection problem where the objective is 

to minimize the worst case error probability at the fusion 
center. The minimax and Neyman-Pearson formulations are 
discussed briefly at the end of this section. 

The hypothesis is assumed to take on values Ho and 
HI, with prior probabilities u and 1 - V, respectively. Let 
PF(P,,, $,y):= P,,(6 = 1) and PM(PI, 4, r):= P,(S = 0). 
The the problem we wish to solve is the following. 

Problem (PI ): 

In the following, we will establish that (Qc, Qi), which 
were LFD’s for the centralized problem, are LFD’s for Prob- 
lem (Pl) as well. That is, the solution to (Pl) is obtained 
as the solution to the simple decentralized detection problem 
(Pl’) given below. 

Problem (PI’): 

jn;[~h(Qo, 4, Y) + C l- ~PdQlr 4, ~11. 

Optimal decision rules for Problem (Pl’) are monotone 
likelihood ratio tests (MLRT’s) [3] of the form 

1 if Zf(X;) < Xi 

@(Xi) = d if X1-i 5 18(X;) < Xi, 
d = 2,...,Di-1 

Di if 16(X;) 2 A& 

and 

rR(k-,uN) = 
{ 

1 if Z,(Ul,.+.,UN) > t 
0 otherwise 

where 

In the above expressions, 2% denotes the generalized likelihood 
ratio between Qf and 0;. Also, Q:,,, denotes the probability 
mass function induced on Vi by Q;. 

Remark 2: Without loss of generality, we can assume 
the following: a) Qb, u(d) is strictly positive for each 
d E {1,.-e , D;-l}, and b) either Q6, u(Di) is strictly positive 
or Q i, u(D;)lQk, dDd = co. The reason is as follows. 
Suppose Qg, ?(d) = 0, for some d E (1, .. . , D;-1) (which 
implies that Qi, U(d) = 0); then the optimal test never chooses 
decision d at sensor S;. This means that the decision set at 
sensor Si can be reduced by 1 (and renumbered 1 through 
D;-1) without losing optimality. If Qd, u(D;) = 0, then 
either Qf u(D;) is zero, in which case the optimal test never 
chooses b; at S; and the decision set at S; can be reduced 
by 1 without losing optimality, or Qi, v(D;) is nonzero, in 
which case Qi, u(Di)/Qb, u(Di) = CCL 

Theorem 1: Let @ , 7R be any set of MLRT’s based on 
Q. and Qi. Then for all (PO, PI) E PO x PI, we have 

PdQo, dR, rR> 2 PdPo, 4R, rR>, 

Piw(Q1, 4R, rR> 2 PdPlr , +R, rR), 
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Before we address the proof of this result, we consider its 
implications. Suppose c$*, y* constitute a solution to (Pl’). 
Then 

for any 4, y. This means that (&a, Qr) are LFD’s for (Pl), 
and that #*, y* solve (Pl). 

We now state and prove the following lemma which will be 
used in the proof of Theorem 1. 

Lemma 3: Let X1, Aa, As, X4 be such that 0 5 Xi < Xz 5 
Xs 5 X4 < cc. Suppose that Qg(Xi < Zi(Xi) 5 Xa) > 0 and 
Qg(X3 5 Zt(Xi) 5 X4) > 0. Then 

Proofi The LHS above can be written as 

This means that the LHS is the average of Z;(x) with respect 
to the distribution Qd on the set {Xi 5 Z;(z) 5 X2}, and 
hence is in between Xi and X2. Similarly, the RHS is between 
X3 and X4. The lemma follows. q 

Proof of Theorem 1: For any (Pa, Pr) E Pa x PI, 

First, we note that 

Now, by Lemma 3 and the discussion given in Remark 2, 
Qil, .W>lQd, VW> is a nondecreasing function of U;, and 
hence, for any ti 2 0, 

for an appropriately chosen Xti. 
An application of the joint stochastic boundedness property 

of the pairs (Pi., Pj) gives us that 

Q;(Z;(Xi) > Ati) L P;(Z;(Xi) > Ati). 

This means that Q”;, U(Ui)/Qb, U(Vi) is stochastically larger 
under Qb than under Pi. Hence, by an application of Lemma 
2, h#h,-- , UN) is stochastically larger under Qc than under 
PO. The first part of the theorem follows. An analogous 
argument can be used to establish the second part. q 

The minimax and Neyman-Pearson versions of (Pl) can be 
stated as follows. 

Fig. 2. 

Common Goal 

Robust decentralized detection without a fusion center. 

Problem (P2): 

Problem (P3): 

inf SUP evf(pl> A r> 
‘h,“.r$N, Y PIEPI 

subject to ,“;p, PF(&, 4, y) I a. 
cl 0 

Just as in the simple versions of (P2) and (P3), we ex- 
tend the class of allowable decision functions to include 
jointly randomized decision rules [3]. In the class of jointly 
randomized strategies, the simple versions of (P2) and (P3) 
have solutions that are randomized tests obtained by joint 
randomization between two deterministic MLRT strategies. 
Hence, an argument similar to the one given in (1) can be 
used to show that (&a, Q  ) i are LFD’s for (P2) and (P3). The 
corresponding robust tests are then obtained as solutions to the 
simple decentralized detection problems in which the sets PO 
and Pr are replaced by the singletons &a and Qi, respectively. 

IV. ROBUST DECENTRALIZED 
DETECTION WITHOUT A FUSION CENTER 

A description of the system under consideration here is 
shown in Fig. 2, with the only differences from the system in 
Section III being that the local decisions Vi are binary and that 
there is no fusion center. This setup is useful only in a Bayesian 
framework in which we assume that ,the local decisions are 
coupled through a common cost function W(Ul, * . *, UN; H). 
The expected cost is a function of the conditional distributions 
at the sensors and the local decision functions. Thus, the 
expected cost is given by 

The Bayes minimax robust detection problem at hand is then 
the following. 
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Problem (P4): A special case of the above conditions is found in [4] where 
it is assumed that the cost function is of the form 

inf 
4 

SUP C(Po, Pl, 4). 
(8, ~l)EPO XPI 0 for VI = lJ2 = H 

If the distributions of the observations are known, i.e., if the 
W(Ul, U2; H) = e for Vi # U2 

uncertainty classes Pj are singletons, then the optimal decision 1 f > 2e for U1 = U2 # H. 

rules for (P4) are binary likelihood ratio tests (LRT’s) [3], [9]. 
Here, we have assumed that for each i, the pair (Pi, @)  

B. The Case of Fixed Symmetric Fusion Rules 

is jointly stochastically bounded (Qb, Qf). We showed in Bayesian decentralized detection problems with binary local 

Section III that (&a, Q  ) i are LFD’s for the Bayesian decen- decisions and fixed fusion rules such as the “AND’ rule and 

tralized detection problem (Pl). In the following, we show that the “OR’ rule can be posed in the framework of this section 

(&a, Qi) are LID’s for (P4), provided the cost function W with an appropriately chosen cost function W. 

satisfies certain conditions. For the “AND” rule, a final decision in favor of HI is 

The distributions (Qc, Ql) are LFD’s for (P4) if for any made whenever all the local decisions are 1; otherwise, a 

LRT’s 4R based on Qi and &a, the following inequality holds: decision in favor of HO is made. If the Bayesian criterion is 
to minimize the error probability at the fusion center, then the 

C(Qo, &I, 4R) L C(Po, 5, dam>, v(Po, PI) E PO x PI. corresponding cost function W(Ul, . . , UN; H) has the form 

(2) W(U1,. . . for vi = us = ’ . ’ = UN = 1 

Now, suppose that c,!? constitutes a solution to the following 
otherwise 

problem: and 

i;fC(Qo, &I, $1. for U, = U, = . . . = UN = 1 
otherwise 

Then, by an argument similar to one following Theorem 1, we 
can show that #* solves (P4). 

In this case, the expected cost is 

Of course, any likelihood ratio test @  at sensor S’i based 
on Qi and Qd has the form C(P0, PI, @)  = $Po”(l;(X,) 2 ti) 

i=l 

@ (Xi) = { ; 
if Ii 2 t; 
if Ii < ti. 

We now consider some special cases. 

A. The Two-Sensor Case 

Here, the expected cost has the form 

C(PO? Pl, @ , @ , 
= vW(O, 0; Ho)(l - P,‘(@I) L tl)) 

. (1 - Po2(@X2) 2 t2)) 

+ vW(O, 1; Ho>(l - P;(Z;(Xl) 2 tl)) 

4(@2) L t2) 

+ z-@'(l, 0; Ho)Po'(~;(&) 2 tl) 

. Cl- P,"(@2) 2 t2)) 

+ vW(1, 1; Ho)P;(Z;(X1) L tl) 

.P,2(@2) 2 t2> 

+ similar terms in W(i, j; HI). 

If W(0, 0; Ho) = W(l, 1; HI) = 0, then for (2) to hold, it 
is sufficient that the following conditions hold: 

W(l, 1; Ho) 2 W(0, 1; Ho) + W(1, 0; Ho) 

and 

w(O, 0; HI) L W(0, 1; HI) + W(l, o; HI). 

+(1--y) 1 - fiP;(l;(xi) > t;) . 
( i=l ) 

A straightforward application of the joint stochastic bounded- 
ness property shows that condition (2) holds. That is, (Qc, Qi) 
are LFD’s for (P4) in this case. A similar result holds for the 
“OR” fusion rule. 

Remark 3: The results of this section can be generalized 
in view of the observation that (QO, Qi) are LFD’s for 
(P4) whenever the cost function W satisfies the following 
monotonicity condition: 

W(u; Ho) 5 WV; Ho) 
lL<ll* and 

W(u; HI) 2 W(v; HI) 

where, for the vectors ‘1~ = (Ui,...,UN) and v = 
(w,... ,‘vN), we write p1 5 v to mean u; 5 Vi for each 
i= I,... , N. Note that this monotonicity condition is satisfied 
by all of the special cases considered in this section. 

V. CONCLUSION 

We studied decentralized detection problems in which the 
sensor distributions were not specified completely, i.e., the 
sensor distributions were assumed to belong to known uncer- 
tainty classes. We showed for a broad class of such detection 
problems that LFD’s exist for minimax robust testing between 
the hypotheses. These LFD’s can be obtained by previously 
known techniques [2], and the corresponding minimax robust 
tests are then obtained as solutions to simple decentralized 
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detection problems for which the sensor distributions are 
specified to be the LFD’s. 

We note that the analysis presented in this paper was 
restricted to static or block detection schemes. Robustification 
of decentralized sequential detection schemes such as those 
discussed in [lo], [l l] remains an interesting problem for 
future research. 

APPENDIX 

Proof of Lemma 2: This lemma follows straightforwardly 
from Lemma 1 of [ 12, p. 731. The details are included here 
for completeness. 

Let 15~ = log Zi. Then it is easy to see that 

To establish the lemma, we need to show that 

Let Pi(.) and Gi(.) d eno e t marginal distribution functions 
of L; under Fi and G;, respectively. Then 

Fi(x> 5 G(x), for all 2 E Iw. 

Now, by [12, Lemma 1, p. 731 there exist independent random 
variables VI, . . . , V, and nondecreasing functions fi (.) and 
g;(.) such that fi(l/i) has distribution function F;(.), g;(K) 
has distribution function G; (.) and g;(v) 5 fi(v) for all II. 
Hence, 
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