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Abstract

A decision fusion problem is considered in which each one of a set of sensors receives
a sequence of observations about the state of the system. The observations are quantized at
cach time step and sent to the fusion center where a binary decision is to be made at a stopping
time. Applications of this problem setting are discussed and techniques for finding optimal
solutions are presented. 1998 The Franklin Institute. Published by Elsevier Science Ltd.
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1. Introduction

Statistical decision-making problems can be classified according to whether the
information is centralized or decentralized. In a centralized setting, all information is
available at a central processor where decisions are made according to some optima-
lity criterion. Hence, even if more than one unit is involved in collecting information,
the units can be considered together as a single decision maker. In the decentralized
setting, the units which collect information (sensors) are also involved in decision
making on some local level. However, all units are generally working towards
a common objective (they are playing a cooperative game, according to a game
theoretic definition [1, 2]).

Various sensor configurations are possible for decentralized decision-making [3]—
the most common is the decision fusion configuration where a summary message
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(belonging to a finite alphabet) is sent from each sensor to a central processor,
called the fusion center, where a final decision is made. The optimization to find
the best decision policy needs to be done jointly over sensor and fusion decision
rules.

Decision-making problems may also be classified according to whether the deci-
sions are static or dynamic. In static frameworks, each decision maker makes only one
decision. Static centralized decision-making problems are very well understood today
and a well-developed theory exists for their analysis [4, 5]. Static decision fusion
problems have also been researched over the past 15 years in various contexts, and are
useful in many applications, including radar detection, surveillance systems, and
human decision-making organizations [3, 6]. However, there is a large body of
problems where the static setting is not useful. These problems call for more dynamic
scenarios, where information is updated at certain intervals and new decisions are
constantly being made in order to optimize system performance over time. Such
dynamic problems are also known as sequential decision problems, a class of prob-
lems first introduced by Wald [7]. Centralized sequential detection and estimation
problems have been the focus of the mature field of sequential analysis [8, 9].
Research on decentralized sequential decision making problems, on the other hand, is
still in its infancy.

Our goal in this paper is to provide an introduction to a special class decentralized
sequential decision making problems, namely sequential decision fusion problems.?
Here each one of a set of sensors receives a sequence of observations. The observations
are quantized at each time step and sent to the fusion center where a decision is to be
made at a stopping time. The optimization of the decision rules needs to be done over
time, as well as over the sensors and fusion center. For simplicity, we restrict our
attention to problems where the final decision space is binary.

We consider a system with N sensors S, ..., S as shown in Fig. 1. At time
ke {l1,2,...}, an observation X{ is made at sensor S”. Further, based on the
information available at S at time k, a message U is formed and sent to the fusion
center. We include the possibility of feedback from the fusion center. In particular, at
time k the fusion center could possibly broadcast, to each sensor, all the sensor
messages it received at time k — 1. Thus, at time k, each sensor could, in the most
general case, have access to all its observations up to time k and all the messages of all
the other sensors up to time k — 1. The fusion center has access to all the sensor
messages up to time k.

Various information structures are possible for sequential decision fusion problems
of the form shown in Fig. 1.

Case A: System with neither feedback from the fusion center nor local memory. Here
the sensor message U is constrained to depend only on X"

U = gx)

2Other structures are possible for decentralized sequential detection [10,11].
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Fig. 1. General setting for sequential decision fusion.

Case B: System with no feedback but full local memory:

0] Dy )
Uk = k(X s Xi)

Case C: System with no feedback and local memory restricted to past decisions:

UP = ¢x UYL UL

303

Case D: System with full feedback and full local memory. Here UL is allowed to
depend on all the information that sensor S* has access to in the setting of Fig. 13:

W _ g0y ) N
Ui e (Xpiap Unie=1p - Ult-19)

Case E: System with full feedback but local memory restricted to past decisions:

(1) Ny, (1) (N)
Uy = (X ) U[l.k—l}e [1 k—u)

For Case E, the past (one-step delayed) information at the fusion center and at each
of the sensors is the same, and is nested at successive stages. This, together with the
fact that the final decision depends only on the sensor messages (and through them on
the observations), implies that the information structure for this case is quasiclassical.
It is known that stochastic control or team problems with such an information
structure are tractable via dynamic programming arguments [ 12-15]. As we explain
in Sections (2.2) and (2.3), the same is true for sequential decision fusion probiems.

*We use the notation [, b] to represent the set of all time indices between a and b, inclusive.
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There are two types of binary decision-making problems that have the above fusion
structure: decentralized sequential hypothesis testing and decentralized change detec-
tion. We consider both of these problems and clearly delineate their common features
and differences.

In decentralized sequential hypothesis testing, all of the observations at the sensors
come from one of two hypotheses H, or H,. The statistics of the observations are
different under the two hypotheses, and the problem is to determine the true hypothe-
sis with a certain accuracy as quickly as possible. Such a problem arises in many
applications including clinical trials, radar detection, and channel selection in cellular
communication systems.

In the channel selection application, the goal might be to determine whether
a particular communications channel is “good” or “bad” based on interference
measurements. Such a decision can be useful, for example, in dynamic channel
allocation [16], or for borrowing voice channels in Cellular Digital Packet Data
(CDPD) [17] applications. Depending on the system, these channel measurements
can be taken both at the base station and at mobiles in the cell [18]. The base station
plays the role of fusion center in these systems, while the mobiles act as sensors. The
base station instructs the mobiles to take interference measurements at some starting
time, and mobiles send back quantized versions* of these measurements (which can be
regarded as local decisions) to the base station. Then, based on the measurements, the
base station makes a decision about the channel at some stopping time.

In decentralized change detection, the statistics of the sensor observations change
abruptly at some time, and the goal is to detect the change as soon as possible while
containing the false alarm probability. Applications include machine monitoring,
surveillance systems, and failure detection in large networks.

As an example consider the problem of link failure detection in a communication
network. Information about the failure is available through measurements taken at
several nodes (sensors) in the network [19, 20]. A network manager (fusion center)
must detect the failure as soon as possible based on these measurements. The sensors,
being geographically separated from the fusion center, are constrained to send finite
alphabet messages.

The remainder of this paper is organized as follows. In Section 2, we study
decentralized sequential hypothesis testing. In Section 3, we discuss the decentralized
change detection problem. In Section 4, we provide examples of both types of
sequential decision fusion problems. In Section 5, we give our conclusions and discuss
directions for future research.

2. Decentralized sequential hypothesis testing

For this problem, the statistics of sensor observations are different under the two
hypotheses. A decision about the hypothesis is made at the fusion center at a stopping

*Given the limited bandwidth available for control information, the measurements will typically be
quantized to a small numbe. of bits.
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time. The goal is to design the fusion stopping rule, fusion decision rule and the sensor
message functions so as to strike an optimum tradeoff between decision accuracy and
delay.

2.1. Problem formulation

We denote the hypothesis by a binary random variable H, and assume that H takes
on values H, and H,, with prior probabilities v and 1 — v, respectively. Further, the
observations at each sensor S are independent with common p.d.f. /" if H; s the true
hypothesis, j = 0, 1. We also assume that the observations are independent from
sensor to sensor. The sensor message U} takes on a value d® in the finite set
{0, ..., D" —1}.

The fusion center policy y consists of selecting a stopping time 7 (that is measurable
with respect to the sequence of sigma algebras generated by {/,}), and a final decision
0 € {0, 1} based on the information up to time 7. Decision errors are assumed to be
penalized through a cost function C(d, H). Typically, the cost function C is of the form:
C(0,Hy)=C(1,H)) =0, and C(0,H;)= Lo, C(1, Hy) = L,, where Ly, and L, are
positive.

To each choice of fusion center policy and sensor quantizer functions, there
corresponds an expected decision cost E[C(J, H)] and an expected delay E[1]. Smaller
decision cost can be obtained at the expense of larger delay and hence a tradeoff must
be made. The optimum tradeoff problem may be posed in two ways:

Variational formulation: Minimize the expected delay E[t] over all admissible
choices of fusion center policy ¥ and sensor quantizers {qbf‘”}, subject to E[C(d, H)] <
a, where « is a control parameter.

Bayesian formulation (P1): Minimize the total Bayes cost E[ct + C(5, H)] over all
admissible choices of i and {4)}!)}, where the constant ¢ > 0 may be interpreted as the
cost of each time step taken for decision making.

It is not difficult to establish that the solution to the variational problem for a given
o is obtained as a solution to the Bayesian problem for some value ¢, [21]. Hence, the
optimum tradeoff curve for both formulations may be obtained by solving the
Bayesian problem for various values of c.

2.2. Information structures and tractability

The tractability of problem (P1) depends crucially on the information structure in
the system. For the information structures of cases B and D, the problem does not
allow for any simplification even under independence assumptions on the sensor
observations [22, 23]. Optimal decision rules in these cases can only be found by
exhaustive search, which is in general intractable.

For the information structures of cases A and C, it is easily shown that optimal
sensor functions are likelihood ratio quantizers [22,24] if the observations are
independent from sensor to sensor. The optimal thresholds satisfy a set of coupled
equations, which are however almost impossible to solve numerically even if we
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restrict our attention to relatively short time horizons. Further simplification would
be possible in the 1.i.d. observation case, if stationary sensor functions were optimal.
However, such a result has not yet been established. The difficulty has its roots in the
nonclassical® nature of the information in the system in these cases, which precludes
the use of powerful dynamic optimization techniques as discussed in the following.

2.3. Dynamic programming and optimal solutions

Sequential decision fusion problems can be viewed as dynamic stochastic optimiza-
tion problems, where an expected cost is to be minimized over the trajectory of
a dynamical system. The goal is to find a set of (decision) functions, sometimes called
a policy, that results in minimum cost. A powerful technique for obtaining optimal
solutions for such problems is dynamic programming [12, 13]. This technique is
applicable when the underlying system is a discrete-time dynamical system, the
random variables have a conditional independence structure, and the cost to be
minimized is additive over time. The idea behind this approach is to first find the
optimal decision functions for the last time step in the trajectory and then work
backwards, at each step minimizing the cost-to-go to the end of the trajectory. The
added complexity in the case of sequential decision fusion problems is that at each
time step, the optimization has to be done over all the decision makers in the system.

The system under consideration for decentralized sequential hypothesis testing can
be considered to be a discrete-time dynamical system with state &, that evolves as
follows. ¥, is the true hypothesis H. At time k > 0, the state &, is either H or
a termination state denoted by .7, i.e..

o S if fusion center decision UL is continue
2 S . 0) . : : S
7 if U is terminate and decide 6 =0 or 1

We do not observe the state directly, but get noisy observations at each of the sensors.
The observations {Xff)} at each sensor S* are independent with common pdff_,-(” if
H=H,j=0,1.

The cost for the Bayesian problem (P1) of Section (2.1) can be written as an additive
function over time by defining the cost of time step k to be

c if Uy = continue
g(F. UY) = Lolliyy_y, if U,” = terminate and decide 0
Lillyy_p, if U" = terminate and decide 1

where 1, is the indicator function. The total Bayes’ risk (cost) is then given by

Elct + C(6: HY] =Y g U
k

SWe refer to an information structure as nonclassical if, roughly speaking, all the decision makers in the
system do not have the same dynamic information about the past.
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and this cost needs to be minimized over all choices of sensor decision functions

d)”"kl and fusion center policy . Note that the cost is an explicit function of the
fusion center decisions and only indirectly a function of the sensor decisions. The
dynamic programming argument for this problem could proceed as follows. The
information available for decision making at the fusion center at time k is

L= {Ulx - Uit i) (1)

Let the minimum cost-to-go at time k be denoted by J,(I;). Then we can write the
backward recursion:

Jeoshe) = min Exp oy Wl UL US4 6ul P, UL
U, UL O
The above minimization would result in a sensor decision rule at sensor S’ and at
time k that would automatically depend on X" and I, ,. But such a decision rule is
not implementable unless the decision rule at sensor §" is forced to depend on exactly
X% and I,_,. This happens only when we have the quasiclassical information
structure discussed in Case E of Section 3. Within this structure, optimal solutions can
be obtained using dynamic programming arguments as we show in Theorem 1 below.
Now, although we present the optimal solution under Case E only, the form of the
optimal solution for this case may be useful in deriving good ad hoc solutions for the
other information structures.

2.4. Optimal solution to Bayesian formulation for Case E

For clarity of presentation, we now describe the optimum detector structure for
Case E for a simple two sensor problem. This solution contains all of the essential
ingredients of the general solution and the generalization should be clear. The details
of the general solution are given in [23].

Suppose there are two sensors (N = 2) each sending one bit of information (D = 2)
at each time step to the fusion center. As in Eq. (1), we define [, as

. TITRNgIES
= {Uplw Uit} (2)

Note that I is the information available for decision making at the fusion center at
time k, and I, _; is the past decision information available for sensor decision making
at time k.

The solution to (P1) is obtained using dynamic programming (DP) [13] arguments
given in the proof of Theorem 1. A sufficient statistic for the DP recursions is shown to
be the a posteriori probability of the hypothesis H, given I, ie.,

pe=P(H = Hol|I)) 3)

This one-dimensional sufficient statistic is all that the sensors and fusion center need
to store at any given time k, and it can be easily updated using the recursion given
below in Eq. (13). The complete solution to (P1) is stated below in the following
theorem.
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Theorem 1. (i) At each time k, the sensors use likelihood ratio tests with thresholds
which are functions of p,_,, i.e.,

g = {1 LYK > %)
0 otherwise

(4)

where LX) = (X )/ f8"(X ). Note that the optimum sensor policy is stationary in
time.
(i1) The optimum fusion center policy has the form:

U = terminate and decide 0 ifpv=2a
U = terminate and decide 1 ifp<b (5)
U” = continue taking observations ifb<p<a,

The optimal sensor and fusion center thresholds are derived as follows. Let J(p) be the
unique solution to the fixed point equation

J(p) = min{L,p, Lo(1 ~ p), ¢ + min W, (D, 42, P} ©
A0 e
where
W, (i, 22 p) =
g(d™", d®; A", 42, p)
J1 (1) d(ZJ S(1) ;(2)
d;, ( h(dD, &, 5, ) h(d p) )
with
2
9 =p [ IPo{LV(X®) > 2077 [Py{L(X ) < 20} 4" ®)
I=1
and
2
h=g+(1—p) H LX) > AP, (LO(XY) < A0, o)

Then the optimal sensor thresholds are given by

s p), (10)

(1) ~(2) : P
/Vopl(p) ’Lopt )} = arg min WJ(/I(I’« /1(2)

/‘.Ill. ).'ll
and b,y and a,,, are obtained from the equations
LO(I - bopl) =c+ WJ()EJ}))I( opt) Ag%)l(bopt); bopl) (11)
and

Loy = ¢ + WilASpllopds A2 (dop); ope) (12)
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Finally, the recursion for p, is given by

o gL U 0 (b 22 (i i) o= (13)
k+1 = 0=
WUy, URL: 2 (p, A (PP

where v is the a priori probability of hypothesis Hy.

Proof. See the Appendix.

The fixed point of Eq. (6) can be obtained by successive approximation using the
starting function n(p) = min{L,p, Lo(1 — p)}, as the following result shows.

Theorem 2. Let S = C[0, 1] be the set of all non-negative concave functions on [0, 1]
that are upper bounded (in sup norm) by the function

n(p) = min{L,p, Lo(1 — p)}.

Now define the mapping .7 :S +— S by

FG(p) = min {Llp, Lo(1 — p), ¢ + min Wg(A", 23 p)}, for Ge S

A 2

Then J(p) is the unique fixed point of the mapping J. Furthermore, 7 "n converges
monotonically to J as n — .

Proof. See the Appendix.

An illustrative example of the solution procedure is given in Section 4.

3. Decentralized change detection

The problem of detecting an abrupt change in a system based on stochastic
observations of the system has a variety of applications including failure detection,
quality control engineering, and channel monitoring for wireless communication
systems. The centralized version of this problem—where all the information about the
change is available at a single location—is well-understood and has been solved under
a variety of criteria since the seminal work by Page [25]. (See, for example,
[21, 26, 27].) However, there are situations where the information available for deci-
sion-making is decentralized.

A decentralized formulation of the change detection problem was considered in
[28, 29] with each of the sensors performing a CUSUM type test. Ad hoc schemes for
fault detection with multiple observers were considered in [20, 30]. A formulation of
the decentralized change detection problem with a fusion center making the final
decision about the change was given by us in [31]. Here the statistics of the sensor
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observations change abruptly at some time, and a decision about the change is made
at the fusion center at a stopping time. The goal is to design the fusion stopping rule
and the sensor message functions so as to minimize the time taken to detect the change
while containing the false alarm probability at an acceptable level.

Arguments similar to those given in Sections 2.2 and 2.3 show that only the
information structure of Case E leads to a problem that is tractable via dynamic
programming.

3.1. Problem formulation

The observations at each sensor S are independent, have a common p.d.f.
14V before the disruption, and common p.d.f. /{” from the time of disruption. Further
the observations are independent from sensor to sensor. Following the Bayesian
analysis given in [21], we assume that the prior distribution of the change time I' is
geometric and is given by

PC=0)=v and P(C =i >0)=p(l —p)i D

Based on the information received from the sensors, the fusion center must make
a decision about the change.

The fusion center policy ¥ consists of selecting a stopping time t at which it is
decided that the disruption has occurred. To each choice of fusion center policy and
sensor quantizers, there corresponds a probability of false alarm P(t <T') and an
expected delay E[t — I'lt = '] of detecting the disruption under the condition that
the alarm signal was correctly given. Here again, the optimum tradeoff problem can
be posed in two ways [21].

Variational formulation: Minimize the expected delay E[t — I'|t = I'] over all ad-
missible choices of fusion center policy ¥ and sensor quantizers {d)i)}, subject to
P(r <T') < a, where « is a control parameter.

Bayesian formulation (P2): Minimize the total Bayes cost (risk)

Re)=P(r<D)+cE[r—Tlt=2T1Pz=T)
=E[l, .+t —D1,5n]
=PI >1)+ cElitil P < )}

1

over all admissible choices of y and {¢;"}, where the constant ¢ > 0 may be inter-
preted as the cost of each unit of delay.

3.2. Optimal solution to Bayesian formulation for Case E

The solution to (P2) is obtained using techniques very similar to those used for (P1).
A sufficient statistic in this case is the a posteriori probability of the change having
happened before time k given I, ie.,

= P(I" < k(1) (14)
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where I, is as defined in Eq. (2). This one-dimensional sufficient statistic is all that the
sensors and fusion center need to store at any given time k, and it can be easily
updated using the recursion given below in Eq. (23).

Again, to simplify the presentation, we present the solution to (P2) for the special
case of two sensors (N = 2) each sending one bit of information (D = 2) at each time
step to the fusion center. The general solution is given in [32].

Theorem 3. (i) At each time k, the sensors use likelihood ratio tests with thresholds
which are functions of py -1, i.e.,

w;{ i LX) > 2%p, 1)

0 otherwise (13

where LY(X") = (X)X P). Note that the optimum sensor policy is stationary in
time.
(ii) The optimal fusion center policy has the form

U = terminate and decide in favor of change if py > a (16)
U™ = continue taking observations if pp<a

The optimal sensor and fusion center thresholds are derived as follows. Let J(p) be the
unique solution to the fixed point equation

J(p) = min{(1 — p), cp + min W, (2", i'?; p)} (17)

”l Ai 1
where
(1) 2(2).
W (2D, 23 p)

_ J g(d(“, d(Z); /'l(l), /1(2); P)
e T\ (D, dP; 290, 4, p)

)kmmwﬂhﬂ%ﬂ%p) (18)
with
2
g=[p+0—=pp][] [P{LOUXY) > 1" 1P {LOXD) < 2V} " (19
=1

and
2
h=g+ (1 —p)1 —p) ]_[ [Po{LO(X") > A”’}]"“’[PO{L“’(X”’) < AN (20)

Then the optimal sensor thresholds are given by

{AG(p), 25Up)} = arg min W), 2% p) (21

A0 a2
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and a,y satisfies the equation
(1 = dop) = oy + Wi Aot (@opr)s 2534 (@ope): o) (22)

Finally, the recursion for p, is given by
UK L U 1 A8 pa), A (pa): po)

Py = - N
WUy, U 3 250, 258 (pi)i pi)

where v is the a priori probability of the event {I' = 0}.

s Po=V (23)

Proof. See the Appendix.

The complete solution to (P2) is obtained by solving for the fixed point J(p) of
Eq. (17) by successive approximation using the starting function n(p) = 1 — p, as
stated in the following theorem whose proof is very similar to that of Theorem 2.

Theorem 4. Let S < C[0, 1] be the set of all non-negative concave functions on [0, 1]
that are bounded (in sup norm) by the function n(p) = 1 — p. We define the mapping
J S+ 8 by

JG(p) = min {(1 ~p),cp + min Wg(i'h, 13 p)}, for GeS.
Al‘l‘llll

Then J(p) is the unique fixed point of the mapping . Furthermore, 7™y converges

monotonically to J as n — o0,

4. Examples
4.1. Two sensor example of decentralized sequential hypothesis testing

Suppose there are two sensors each sending one bit of information to the fusion
center, i.e., N = D = 2. Furthermore, we assume that the observations at both sensors
are ii.d. Gaussian random variables with mean 0 and variance v under H 0, and mean
1 and variance v under H, .

Since the observations are Gaussian with the same variance, the likelihood ratio is
monotonic and hence the sensor thresholds may be considered to be thresholds on the
observations. That is,

uh = {1 if X' > Api—1)
Y =

0 if XU < A0, ) @4

The functions given in Theorem 1 simplify to

2
g p n [PO{X > ,{(l)}]d“r [P(){X < )Jl)}]l_dm
=1
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and
2
h=g+ (1 —p) [] [P{X > 291" [P {X <i¥}]
I=1

Optimal sensor thresholds (as functions of p) are obtained by minimizing
W, (2D, 2@ p) over (AV, 1¥) e R* at each stage of the successive approximation
procedure. Typical results are shown in Fig. 2. The optimal thresholds are identical
(functions of p) at the two sensors. It should be noted that the sensor threshold is
discontinuous and non-monotonic (the spikes at the end points are attributed to
quantization and finite precision). This might be surprising at first since all of the
functions involved in the optimization are smooth, but such behavior is commonly
observed in control systems where “bang-bang” control is optimal. For example, if we
consider f'(u, x) = — ux, and we wish to minimize fover u € [ — 1, 1] for each fixed x,
then the minimizing u as a function of x is sgn(x).

Optimal fusion center thresholds a,, and b, are obtained from J(p), using Egs
(11) and (12).

4.2. Two sensor example of decentralized change detection

Suppose there are two sensors each sending one bit of information to the fusion
center, i.c., N = D = 2. Furthermore, we assume that the observations at both sensors

Sensor Threshold

0.1 . r . .
0.08 - LR H .

_.0.06 : ' -

&

~0.04+ : - , ]

0.02+ /1 v ; i\

o L 1 e L L 1
ob 0.2 0.4 06 0.8 at

p

Fig. 2. Decentralized sequential detection with two sensors making binary decisions. Results for Gaussian
sensor observations with mean 0 and variance | under H,, and mean 1 and variance 1 under H,. The
parameter values are ¢ = 0.01, and L, = L; = 1.0. Results were obtained using 250 iterations of the
successive approximation procedure with 5000 points on the p-axis. The optimal thresholds are identical
{functions of p) at the two sensors. The fusion center thresholds ¢ and b are marked on the plot showing J(p).
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Fig. 3. Decentralized change detection with two sensors making binary decisions. Results for Poisson
sensor observations with mean 10 before the disruption, and mean 14 after the disruption. The parameter
values are ¢ = 0.1, and p = 0.05. Results were obtained using 250 iterations of the successive approximation
procedure with 5000 points on the p-axis. The optimal thresholds are identical (functions of p) at the two
sensors. The fusion center threshold a is marked on the plot showing J(p).

are i..d. Poisson random variable with mean pu, before the disruption and mean
i, after the disruption.

Here again the likelihood ratio is monotonic, and the sensor decision rules charac-
terized by thresholds A"’ and /'® on the observations. That is, U{" has the same form
as in Egs. (24), but with

2
g=[p+0—=pp] [T [P{X > "]V [P{X <AV
I=1
and

2
h=g+1—p)1—=pJ] [PolX > 2"} J"[Po{X <0} 4"

I=1

Typical optimization results are shown in Fig. 3. Here again it is interesting to
note that the optimal threshold is not a monotonic function. In particular, the
optimal sensor threshold progressively favors the “change” hypothesis as p in-
creases. But right before the value of p at which the fusion center would decide to
stop, the threshold takes on a large value (i.e., favors the “no change” hypothesis).
This behavior is again very similar to that observed in “bang-bang” optimal
control.
The optimal fusion center threshold «,, is obtained from J(p), using Eq. (22).
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5. Conclusions

The distinguishing feature of the decision fusion problems discussed in this paper is the
dynamic nature of the information processing and decision-making. We demonstrated
that these problems are tractable under a quasiclassical information structure (Case E).

It is of great interest to design decision-making strategies for other information
structures, particularly those described in Cases A and B of Section 1. These other
information structures may be more prevalent in practical applications. The insight
we gain from deriving the optimal strategy for Case E and the form of the optimal
solution might prove useful in deriving good suboptimal solutions for other informa-
tion structures. Some preliminary work in this direction is presented in [33].

It is also of interest to develop a better understanding of the non-monotonic,
discontinuous behavior of the optimal sensor threshold functions. It might be pos-
sible, for example, to find simple parametric models for these functions that would
facilitate implementation of the optimal solution.

Finally, although the analysis of this paper allows us to derive optimal solutions to
sequential decision fusion problems, it does not allow for a performance analysis of
these optimal tests. The expected stopping times and expected decision costs of the
optimal tests may be obtained via simulations. Nevertheless, it would be useful to
derive analytic expressions or approximations for the expected stopping times and
expected decision costs.

Appendix

Proof of Theorem 1. The general version of this proof is given in [23]. However, we
have decided to include the proof given below for the special case of N =D =2,
because we believe it illustrates more lucidly the intricacies of the steps involved in
establishing this result.

To begin we first restrict the fusion center stopping time 7 to a finite horizon, say the
interval [0, T'] (we will remove this restriction later). The minimization of the Bayes
risk E[ct + C(3, H)] over the finite horizon can be done recursively via dynamic
programming.

Since the decision about the change is made at the fusion center, the (minimum)
expected cost-to-go at time k is a function of the information available for decision
making at the fusion center at time k, i.e., I,. We denote the expected cost-to-go at
time k by J(I)). It is easily seen that

JH(14) = min {LoP(H = H\|Iy), L, P(H = Hy|I1)} (D

and for0<k < T,

JEI,) = min {LOP(H = H,|li), LiP(H = Ho|l)),

¢+ min E[jkT+l{Ik+—1)|1k]} (A2)

) 2
IV e
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with the understanding that I, is the empty set. The first (respectively, second) term in
the outer minimum is the conditional expected cost of choosing H,, (respectively, H,),
given I,.. The third term is the cost of continuing at time k. Note that the minimum
expected cost for the finite horizon optimization problem is simply J 7.

We now establish that optimal sensor decision rules are likelihood ratio tests with
thresholds that depend on I,—,. From Eq. (26) it follows that optimal {¢}", ¢{*"}
minimize

R, = E[]z‘(lk)”k—lj

We fix ¢ ; and minimize R, w.r.t. o | to find the structure of all person-by-person
optimal solutions (including the g]obally optimal one) for ¢4 ;. Towards this end, we
write

Ry = Expoxermy, , JHONX L= 1), 00 (X L2 ), L y)
= Expon, Exonma , JTHO X Lo 0, 2 (X L - 1), Li- 1)

where the conditioning with respect to X} is dropped in the inner expectation on the

last line due to the independence of the sensor observations given H. The result of the

inner expectation is a function of qf)m S 1), Ii-y, and H, say
K(o(X ;I 1), I - 1; H). Therefore,

Ry = Expy, KX L), L H)

= Exo, ZK(¢‘”X‘“ Ie- ). Lo s H)P(H = H|I_ ; X{V)

Jj=0

Minimizing R, with respect to ¢\ is equivalent to minimizing the quantity inside the
above expectation almost everywhere. Thus, the optimal decision rule at S at time
k has the form

o PH=Hi LX) K(L Ty, Ho) — K(O, Ly, Hy)
dOXW. g )= P(H=Hy|L_;X") KO Ly, H)—-K(,I,-,H)
0 otherwise

An application of Bayes’ rule gives

s,y = JU A LX) > A0
0 otherwise
where L'V(X) = f0(X7)/ f$0(X("). Similar results hold for ¢,
Next, we establish that the opt1mal sensor threshold A{" is a function of Iy only
through the sufficient statistic p, ., = P(H = Hy|I, - O To this end we first see that by
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Bayes’ rule
Px+1 = P(H = Holli+1)
= P(H = Ho|Ui4 1 U1 I

_ S WU UL o 1)
S UL

where f(-) denotes the joint p.m.f. of U}, and U ;. Now,

2
pef (U1, URIHo, 1) = pi [T [Pl LX) > 2% (T}

x [Pol LX) < A aT0}] v
= g(ULy, UL 24 (), 232 ) i)
where g is as defined in Eq. (8). Similarly,
SR LU L) = pf (UL URLIHG 1) + (1 — pd fUR 1 UL H LT
= (U 1 U (10, 242 s po)

where & is as defined in Eq. (9).
Thus,

g LU G A ), A8 p) B A3
Prr1 = WuL (2) . (1) P, Po ="V (A3)
(Up+ 1o Ue 13 A 1 (0e), 2 (L p )

Note that the RHS of Eq. (A.3) depends on I, (and not just p,), since e depends on
I, in general. However, we will establish in the following lemma that optimal
/L”H depend on I, only through p,. Thus, Eq. (A.3) is a useful recursion for p; if

optimal sensor quantizers are used.

Lemma 5. (i) The function J1(I,) of Eq. (25) can be written as a function of only py, say

JkT([’k)-
(i) Optimal sensor thresholds at time k + 1 depends on I, only through p,.

Proof. Clearly, J%(I) is a function of only py, say J1{p;). We now make the following
induction argument. Forany k,0 <k < T — 1, suppose that J{, (I, 4 ) is a function
of only py 1, say Ji+1(p+1). Then

J{ (1) = min {(1 = p) Lo, peLy, ¢ + min E[Jilpes )| Il

S ;(2)
Al a0
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. . i 2
But for a given choice of {A{} 1. 45701}

E[J[+l(pk+1)|1k:|: Z JK+1<h(d(1) d(2) 2

v LA p)

1) 3(2) 101 2y .
(d( ) d( ) igw)b/t;w’up))

xh(d(“, d(Z) iwl /1(2) )
o2y
-WJ’ ()§‘+)1, k+)19 p)

where W;;_is as defined in Eq. (7).

Thus, optimal thresholds Ay, depend on I, only through p,. Both parts of the
lemma follow from this fact.

In order to solve the original Bayesian optimization problem (P1), the restriction
that 7 belongs to a finite interval is removed by letting T — o in the finite horizon DP
equations. As a first step, we note that J{ "'(p) < JI(p), because the set of stopping
times increases with T. This together with the fact that J; is bounded below by zero
implies that for each k, the following limit is well defined:

lim Ji(p) = inf J{(p).
T-x T:T>n
Denote this limit by J (p).

Exploiting the i.i.d. nature of the sensor observations, a time-shift argument easily
shows that J; ! (p) equals J/(p). This implies that J;* is independent of k. We hence
denote the limit J;* (p) by J(p), which we will refer to as the infinite-horizon cost-to-go
function. Taking the limit as T — oo in the finite horizon DP equations, we get that
J(p) satisfies the Bellman equation

J(p) = min {Llp, ol = p), ¢ + min W, 23 )} (A.4)
AT

As described in the statement of Theorem 1, the solution to problem (P1) is obtained

from the solution to the above Bellman equation. First, the uniqueness of the solution

(established in Theorem 2) implies that optimal sensor thresholds are stationary in

time and are as given in Eq. (10). Second, the RHS of Eq. (A.4) implies that the optimal

fusion center policy is

U = terminate and decide 0 if Lip, = J(ps)
U = terminate and decide 1 if Lol — pu) = J(pi)
U" = continue taking observations otherwise
Straightforward concavity arguments (see [23]) then lead to the threshold rule given

in Eq. (5) with thresholds satisfying Eqs (11) and (12). This completes the proof. []

Proof of Theorem 2. Let G be any fixed point of .7, and let {/"(p), 1®(p)} be such
that

(A D(p), £2(p)} = argmin W2, 2%

A0 a0

:p)
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Fix po = ve [0, 1], and let py, ps, ..., be defined recursively by

A

gUN L, URL G A9 (p), A (pa); pi)
WU 1, URL G AY (), A2 (po): po)

Pr+1 =

Now define a stopping time .4” and a decision rule oy as follows:
A =min{k 2 0[n(py) < ¢+ Wal2V(pe), 22 (P P}

and

5 = 1 if Lip, <Lo(1 —p,)
MUl i Lypy> Lol —py)

From the definition of .4#" and the fact that G is a fixed point of 7, we obtain the
following relations:

G(v) = ¢ + E{G(p))}

Glp1)=c+E {G(Pz)“l}

Glpy-1)=c+E{Gp L1}
Gp) =nip.)

Substituting backwards and taking expectations, we obtain
G(v) = E{cA + WS, H)} = J(v)

where the last inequality follows from the definition of J.
To show the reverse inequality, we first note that for each pe [0, 1],

G(p) <n(p) = J{p) VT
Now fix T, and suppose that for some m < T —1, JT.| = G(p). Then

Ja(p) = min{n(p), ¢ + min W, (A" A%; p)}

i

> min{n(p), ¢ + min WA, i p)}

}'(\V.AQ»
= G(p)
By induction, it follows that for each p € [0, 1],

JI(p) = G(p), VT, and Vk<T.
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Fixing k and taking the limit as T — 20 in the above equation, we obtain
J(p) = G(p)
Thus uniqueness is established.
Now, a straightforward induction argument shows that

T" In(p) < T"n(p), for each pe [0,1]

Since 7"n(p) > 0, the above inequality implies that 7" converges monotonically to
a fixed point of .7". The uniqueness of the fixed point implies that 7" converges to
J. O

Proof of Theorem 3. The steps in the proof are nearly identical to those in the proof of
Theorem 1. The key differences are the form of the DP equations, the definition of the
sufficient statistic and its recursion equation. The finite horizon DP equations (A.1)
and (A.2) are replaced by the equations

Jily) = P(T > T|Iy), (A5)

and for0< k< T,

fﬂm=nm{HF>HMwHF<HM+ mnzﬂﬁﬂm+m&# (A-6)

(g
Pl i

where the first term in the outer minimum is the cost of stopping at time k and
deciding that a change has taken place, and the second term is the cost continuing at
time k.

The sufficient statistic for (P2) is p; = P(I" < k|I,). The recursion for p, is obtained
as follows:

Pe-1 =P <k + 11,
= ( k+ IIU;\]vL)ls ;(2171“

P(T <k + L) (UM, USLIT <k + 15 1)
fwil, ulny

Now,
P(T <k + 1|I,) = P(T < kI,) + P(TC =k + 1|I,)
=p+PC=k+ ;T =k+ DPI =k+ 11

=p+ o1 —py)
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and

2
fWUR L, UGHIT <k 110 = [ IP{LOXGN ) > 28 (1))
=1
x [Py LX) < A8 (1)) 9
and

FUR LU ) =f (UL UL T <k + VP <k + 11

F AU UR T >k + DPT > k + 1|1
Thus

g(Ui’l U ﬁ 15 /Ucll 1(Iy), 4 /~k+ f(1i); pi)
h(le, 22421, &21(11:) ;‘-;(2+1(1k) Pk)
where g and h are as defined in Egs (19) and (20).

With the above modifications, Theorem 3 can be proved using a sequence of
arguments that is identical to those given in the proof of Theorem 1. [J

Pr+1 =

O:v
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