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Abstract—We study the problem of tracking an object that is
moving randomly through a dense network of wireless sensors. We
assume that each sensor has a limited range for detecting the pres-
ence of the object, and that the network is sufficiently dense so that
the sensors cover the area of interest. In order to conserve energy
the sensors may be put into a sleep mode with a timer that deter-
mines the sleep duration. We assume that a sensor that is asleep
cannot be communicated with or woken up. Thus, the sleep dura-
tion needs to be determined at the time the sensor goes to sleep
based on all the information available to the sensor. The objec-
tive is to track the location of the object to within the accuracy
of the range of the sensor. However, having sleeping sensors in
the network could result in tracking errors, and hence there is a
tradeoff between the energy savings and the tracking errors that
result from the sleeping actions at the sensors. We consider the de-
sign of sleeping policies that optimize this tradeoff.

Index Terms—Dynamic programming, Markov models,
POMDP.

I. INTRODUCTION

ADVANCES in technology are enabling the deployment
of vast sensor networks through the mass production of

cheap wireless sensor units with small batteries. Such sensor
networks can be used in a variety of application areas. Our
focus in this paper is on applications of sensor networks that
involve tracking, e.g., surveillance, wildlife studies, environ-
mental control, and health care.

We study the problem of tracking an object that is moving
through a network of wireless sensors as shown in Fig. 1. Each
sensor has a limited range for detecting the presence of the ob-
ject being tracked, and the objective is to track the location of the
object to within the accuracy of the range of the sensor. For such
a tracking problem to be well-posed, we need to assume that the
sensor field is sufficiently dense so that the sensors cover the en-
tire area of interest. The object follows a random path through
the sensor field whose statistics are assumed to be either known
a priori or estimated online.
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The sensor nodes typically need to operate on limited energy
budgets. In order to conserve energy, the sensors may be put into
a sleep mode. The use of sleeping sensors in sensor networks
for tracking has been studied in the past. It appears that there
have been two primary approaches. The first has been to assume
that sleeping sensors can be woken up by external means on
an as-needed basis (see, e.g., [1]–[6]). Either the method used
for this wakeup is left unspecified or it is assumed that there
is some low-power wakeup radio at each sensor dedicated to
this function. The second approach has involved modifications
to power-save functions in MAC protocols for wireless ad hoc
networks (see, e.g., [7]–[9]).

In this work, we wish to examine the fundamental theory
of sleeping in sensor networks for tracking, as opposed to the
design of protocols for this sleeping. We will assume that the
wakeup channel approach is impractical given current sensor
technology. In other words, we assume it is not feasible to
design a receiver that requires negligible power for operation.
Thus, we must consider alternatives to the wakeup channel
approach. A straightforward approach is to have each sensor
enter and exit the sleep mode using a fixed or a random duty
cycle. A more intelligent, albeit more complicated, approach is
to use information about the object trajectory that is available to
the sensor from the network to determine the sleeping strategy.
In particular, it is easy to see that the location of the object
(if known) at the time when the sensor is put to sleep would
be useful in determining the sleep duration of the sensor; the
closer the object, the shorter the sleep duration should be. We
take this latter approach in this paper in designing sleeping
strategies for the sensors.

It is clear that having sleeping sensors in the network that
cannot be woken up could result in tracking errors, and hence
there is a tradeoff between the energy savings and the tracking
error that results from the sleeping at the sensors. The sleeping
policies at the sensors should be designed to optimize this
tradeoff. In order to simplify the optimization problem, we
assume that there is a central unit that controls the sensor
network. All information about the object trajectory is stored at
this central unit and is used to determine sleep times of sensors
that come awake.

The main contributions of this paper are threefold. First, we
develop a framework for optimizing the tradeoff between energy
cost and tracking error without assuming the use of wakeup ra-
dios. The framework we develop is an example of a partially ob-
servable Markov decision process (POMDP). Second, although
we are unable to find an optimal solution, we identify two subop-
timal sleeping policies and also derive a lower bound on optimal
performance. Third, we provide simulation results that charac-
terize the performance of our suboptimal policies. The results
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Fig. 1. Object tracking in a field of sensors.

indicate that our suboptimal policies perform well relative to op-
timal performance. Furthermore, our policies significantly out-
perform more naive policies that do not make use of information
about the location of the object.

The remainder of this paper is organized as follows. In
Section II, we describe the tracking problem in mathematical
terms and define the optimization problem. We discuss the
expected benefits of our approach in Section III. In Section IV,
we outline a dynamic programming approach to finding the
optimal solution. However, we find that the size of state space
renders the optimization intractable for networks of more than
a handful of sensors. We therefore propose some practical
suboptimal solutions in Section V. In the course of deriving
these solutions, we also develop a lower bound on optimal
performance that allows us to characterize sleeping policy
performance. In Section VI, we provide some numerical results
that illustrate the efficacy of the proposed sleeping policies. We
summarize and conclude in Section VII.

II. PROBLEM FORMULATION

Notation

In this paper, we will use the following notational
conventions.

• Scalars are written in lower case (e.g., ).
• Matrices are written in upper case (e.g., ).
• All vectors are row vectors and are written in bold face

(e.g., ).
• The vector is a vector with a one in the th position and

zeros elsewhere.
• The vector is a vector with a one in every position.
• Let be a probability vector of length , let

be a set of integers, and suppose for some
. Then define to be a probability vector formed by

setting all components such that to zero and then
normalizing the vector so that the sum of the components
is 1.

• The indicator function is written as .

A. POMDP Formulation

We consider a sensor network with sensors. For simplicity,
we assume that the sensing ranges of the sensors completely
cover the region of interest with no overlap. In other words, the
region can be divided into cells with each cell corresponding
to the sensing range of a particular sensor. Each sensor can be in
one of two states: awake or asleep. A sensor in the awake state
consumes more energy than one in the asleep state. However,
object sensing can be performed only in the awake state.

The movement of the object to be tracked is described by a
Markov chain whose state is the current location of the object
to within the accuracy of a cell. However, we also append a
special terminal state, denoted as , that occurs when the object
leaves the network. Thus, there are possible states for
the object and we will refer to the terminal state as both and

. The statistics for the object movement are described by
a probability transition matrix such that

is the probability of the object being in state at the next
time step given that it is currently in state . Since the problem
remains in the terminal state once the object leaves the network,
we can write as

(1)

where is a matrix. We assume there is a path from
every state to the terminal state, which is equivalent to having

. Let denote the location of the object at
time . We can describe the evolution of the object location
stochastically as

(2)

Our model for the object movement is simplistic, but does allow
us to investigate sleeping policy design. The principles we de-
velop later in this paper should extend to more complicated ob-
ject movement models.

To provide a means for centralized control, we assume the
presence of an extra node called the central controller. The cen-
tral controller keeps track of the state of the network and assigns
sleep times to sensors that are awake. In particular, each sensor
that wakes up remains awake for one time unit during which the
following actions are taken: i) if the object is within its range,
the sensor detects the object and sends this information to the
central unit, and ii) the sensor receives a new sleep time (which
may equal zero) from the central controller. The sleep time input
is used to initialize a timer at the sensor that is decremented by
one time unit each time step. When this timer expires, the sensor
wakes up. Since we assume that wakeup signals are impractical,
this timer expiration is the only mechanism for waking a sensor.
Let denote the value of the sleep timer of sensor at time .
We call the -vector the residual sleep times of the sensors
at time . Also, let denote the sleep time input supplied to
sensor at time . We can describe the evolution of the residual
sleep times as

(3)
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The first term on the right-hand side of this equation expresses
that if the sensor is currently asleep (the sleep timer for the
sensor is not zero), the sleep timer is decremented by 1. The
second term expresses that if the sensor is currently awake (the
sleep timer is zero), the sleep timer is reset to the current sleep
time input for that sensor.

Based on (2) and (3), we see that we have a discrete-time dy-
namical model that describes our system, with control input
and exogenous input . The state of the system at time is
described by and the state evolution is defined in
(2) and (3). Unfortunately, not all of is known to the central
unit at time since is known only if the object is currently
being tracked. Thus, we have a dynamical system with incom-
plete (or partially observed) state information. If we denote the
observation available to the central unit at time by , then

, with

if and
if and
if

(4)

where denotes an unknown or “erasure” value. The total in-
formation available to the control unit at time is given by

(5)

with denoting the initial (known) state of the system.
The control input for sensor at time is allowed to be a func-
tion of , i.e.,

(6)

The vector-valued function is the sleeping policy at time .
We now identify the two costs present in our tracking

problem. The first is an energy cost of for each sensor
that is awake. The second is a tracking cost of 1 for each time
unit that the object is not observed. Note that a drawback of this
definition of tracking cost is that cost may be incurred even if
the object location is known through a process of elimination.
For example, if every sensor other than the one where the object
is located comes awake, a cost is still incurred. Our definition
of tracking cost is used so that we will later be able to easily
separate the problem into a set of simpler subproblems. Note
that not much is lost through this simplification since we require
only one additional sensor awake per unit time to maintain
zero tracking errors. If the object leaves the network ( enters
the terminal state), we assume the problem terminates and no
further cost is incurred. The alternative would be to consider
the fact that the object might return to the network, causing the
problem to never terminate. This would necessitate a discounted
cost or average cost formulation. Since we would like to use a
total cost formulation, we make our assumption of termination.
Given the above, we can write the total cost at time as

(7)

Note that is the parameter used to tradeoff energy consumption
and tracking errors.

The total cost (over a possibly infinite horizon trajectory) for
the system is given by

(8)

Since is bounded by and the expected time till the
object leaves the network is finite, the cost function well-de-
fined. The goal is to compute the solution to

(9)

The solution to this optimization problem for each value of
yields an optimal sleeping policy. The optimization problem
falls under the framework of partially observable Markov de-
cision process (POMDP).

B. Dealing With Partial Observability

Partial observability presents a problem since the informa-
tion for decision-making at time given in (5) is unbounded in
memory. To remedy this, we seek a sufficient statistic for op-
timization that is bounded in memory. We see from (4) that
depends only on , which in turn depends only on , ,
and . It is a standard argument (see, e.g., [10]) that for such
an observation model, a sufficient statistic is given by the prob-
ability distribution of the state given . Such a sufficient
statistic is referred to as a belief state in the POMDP literature
(e.g., see [11] and [12]). Since the residual sleep times portion
of our state is observable, the sufficient statistic can be written
as , where is a row vector of length that
denotes the probability distribution of given . Mathemati-
cally, we have

(10)

We can write the evolution of as

(11)

where is defined through (3) and (conditioned on )
is distributed as

(12)

To understand (11), note that if the object is observed at time
, becomes a point-mass distribution with all the

probability mass concentrated at . If the object is not ob-
served, we eliminate all probability mass at sensors that are
awake (since the object is known to not be at these locations)
and renormalize. Thus, all information from observations is in-
corporated. One example of a distribution update is shown in
Fig. 2.

We can now write our policy and cost function in terms of the
sufficient statistic. The policy defined in (6) becomes

(13)



2094 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 5, MAY 2008

Fig. 2. Distribution update. In each of the three subfigures, the large circle rep-
resents the actual object location while the smaller circles represent sensors. A
sensor whose circle has been darkened is a sensor that is awake, otherwise it is
asleep. The bars in each subfigure represent the probability mass for each pos-
sible object location. The top subfigure give the probability distribution at time
k, the middle subfigure the distribution at time k + 1 before observations have
been incorporated, and the bottom subfigure the distribution at time k+1 after
the observations have been incorporated.

The total cost defined in (8) becomes

(14)

and the optimal cost defined in (9) becomes

(15)

III. PERFORMANCE GAINS OF OUR APPROACH

We comment now on what can be gained through our ap-
proach. For the purposes of comparison, we consider a sleeping
policy that does not use information about the location of the
object called the duty cycle scheme. In this sleeping policy,
each sensor is awake for a fixed fraction of the time slots.
Whether the time slots where a particular sensor is awake are
chosen deterministically or randomly is immaterial since the re-
sultant performance is the same. For a duty cycle scheme, we see
that in order to ensure zero tracking errors (an “Always Track”
sleeping policy) we must use a value of , which means that
every sensor is awake in every time slot. In contrast, since our
scheme uses information about the location of the object, our
Always Track policy will allow many sensors in the network to
remain asleep since it will be known that the object could not
be at those locations. We surmise that using location informa-
tion in this fashion will result in a tradeoff curve between en-
ergy and tracking costs that is significantly better than those for
a duty cycle scheme. These suppositions will be confirmed in
Section VI.

We also note that our approach can result in better asymptotic
behavior as the size of the network becomes large. Note that as

becomes large, the number of sensors awake per unit time for
an Always Track duty cycle scheme grows as . In contrast,
in the Appendix we show that when the movement of the object
per time step is bounded, the number of sensors awake per unit
time for our Always Track policy grows at most as

for one-dimensional networks and at most as for two-
dimensional networks.

It may not be immediately obvious why the number of sensors
awake per unit time might grow arbitrarily large with the size of
the network, even if the number of possible locations an object
can visit in the next time step is bounded. The reason is that
when a sensor selects its sleep time it must make a worst-case
assumption about the future movement of the object in order to
ensure zero tracking errors. When this worst-case assumption
is not realized, the sensor comes awake unnecessarily. This is a
result of not allowing communication with sleeping sensors.

IV. OPTIMAL SOLUTION VIA DP

Having formulated our optimization problem in terms of the
sufficient statistic , we seek a solution using the tools of dy-
namic programming. Because of the stationarity of the under-
lying Markov chain, it can be shown via standard arguments
(see, e.g., [10]) that there exists a stationary optimal policy for
our problem (i.e., ). Such a policy and the
optimal cost can be found by solving the Bellman equation
given as

(16)

with being the minimizing value of in this equation. Note
that there are multiple functions that satisfy this equation
since adding a constant to a particular yields another so-
lution. We are interested in such that when

.
Due to the complexity of the expressions involved, we are un-

able to find an analytical solution to (16). The remaining alter-
native is to solve the equation using an iterative technique such
as value iteration or policy iteration. Let us consider value itera-
tion (also known as successive approximation). In this method,
we start with some initial estimate for (e.g., ) and re-
peatedly apply the transformation defined by the right-hand side
of (16) until the sequence of cost functions we obtain converges.
It is possible to show theoretically that value iteration converges
for this problem.

However, there are some practical issues to consider. The
state space for this problem consists of , which is uncount-
ably infinite, and , which is countably infinite. Thus, we must
either have an analytical solution for the cost function at each
iteration (which we cannot find due to the aforementioned com-
plexity of the problem) or we must quantize and truncate the
state space so that there are a finite number of states. Of course,
restricting the infinite state space to a finite state space will lead
to some loss of optimality.

Unfortunately, even with the restriction to a finite state space,
the complexity of value iteration remains intractable except for
the most trivial cases. This is because the state space grows ex-
ponentially with the number of sensors. For example, even with
seven sensors, a maximum sleep time of 10, and a probability
mass function quantized to multiples of 0.1, there are about
possible states . We conclude that we cannot find an optimal
solution to our problem and that we need other approaches to
finding near-optimal solutions. We identify other approaches in
Sections V and VI.
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V. SUBOPTIMAL SOLUTIONS

A. General Approach

Much of the complexity of our problem stems from the com-
plicated evolution of given in (11). In deriving suboptimal
solutions to our problem, we will make assumptions about the
observations that will be available in the future. These assump-
tions will allow us to simplify the evolution in (11) consider-
ably. In fact, the evolution of will no longer be affected by
the sleeping actions of the sensors. Furthermore, each sensor
will only be able to affect the energy and tracking costs that
occur at its location. The result is that the optimization problem
easily separates into simpler problems, one for each sensor.
In each of these simpler problems, we will be able to eliminate
the residual sleep times from the state since the only times
of interest will be those when the sensor comes awake. It will
then be possible to solve each of the simpler problems to find
a cost function and policy. The cost function for the original
problem is then the sum of the per-sensor cost functions while
the policy for the original problem is the per-sensor policies ap-
plied in parallel.

The assumptions we make will be inaccurate. However, the
usefulness of our assumptions must be measured in terms of how
well the resultant solutions approximate optimal performance.
Of course, we have no idea as yet what optimal performance
may be. Fortunately, in the course of our derivations we will
obtain a lower bound on optimal performance that will be useful
in later performance analysis.

We now define some additional notation. Under each assump-
tion, we will refer to an optimal cost and policy as and .
These functions may written in terms of the state ( , )
or the component parts of the state ( , ). The op-
timal cost and policy for the simpler problem for sensor will
be and respectively. These functions are written in
terms of the portion of the state ( , ).

B. FCR Solution

To generate the first cost reduction (FCR) solution, we as-
sume that we will have no future observations. In other words,
we are replacing (11) with

(17)

Note that this does not mean that it will be impossible to track
the object; we are simply making an assumption about the future
state evolution in order to generate a sleeping policy. As shown
in the Appendix, we can solve the equation

(18)

to find the cost function and policy for sensor . Note that the
three terms inside the minimization represent the tracking cost,
the energy cost, and the future cost respectively given a sleep
time of . Thus, (18) is a Bellman equation for the per-sensor
problem under the assumption of no future observations.

It is easy to verify that

(19)

is indeed a solution to (18). In other words, at each time step we
incur a cost that is the minimum of the expected tracking cost
at sensor and the expected energy cost at sensor . Define the
set as

(20)

It is then easily verified that the per-sensor policy has
the form

(21)

More simply, the policy is to come awake at the first time such
that the expected tracking cost exceeds the expected energy
cost. This is why this solution is called the first cost reduction
solution.

C. Solution

In the POMDP literature (e.g., see [11] and [12]), a
solution is one in which it is assumed that the partially observed
state becomes fully known after a control input has been chosen.
In our problem, this means assuming that we will have perfect
future observations, i.e., the location of the object will be known
in the future. In other words, we are replacing (11) with

(22)

Note that this does not mean that it will be impossible to incur
tracking errors; we are simply making an assumption about the
future state evolution in order to generate a sleeping policy. As
shown in the Appendix, we can solve the equation

(23)

to find the cost function and policy for sensor . Note that the
three terms inside the minimization represent the tracking cost,
the energy cost, and the future cost respectively given a sleep
time of . Thus, (23) is a Bellman equation for the per-sensor
problem under the assumption of perfect future observations.

Unfortunately, we are unable to find an analytical solution to
(23). However, note that if we can solve (23) for for all

, then it is straightforward to find the solution
for all other values of . We therefore concern ourselves with
finding values of and that satisfy (23) for all

. This can be achieved through policy iteration.
Policy iteration proceeds as follows.
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1) Set and for all
.

2) Compute a new value for as

(24)

for all , with the additional caveat that if
there are multiple minimizing values of , the smallest
should be chosen.

3) Solve a set of linear equations to find new values for
for all . Using the shorthand

, the linear equations are given as

(25)

for all .
4) If is different from the previous value for

for at least one value of , return to Step 1. Otherwise,
terminate and set (of course, we will then
have that ).

There are portions of this algorithm that warrant further discus-
sion. Note that the minimization in Step 2, although well de-
fined, is nontrivial since we are minimizing a non-convex func-
tion over a countably infinite set. Although we could restrict the
set of sleep times to a finite set, this could lead to loss in op-
timality. A better approach is to start with an initial guess of

for the minimizing and a minimum value equal to the
limit of the function to be minimized as . We then start at

and search for a minimum by repeatedly increasing by
1. At each step, we can compute a lower bound on the function
to be minimized over all values of such that . If the
minimum found so far is less than or equal to this lower bound,
then a global minimum has been found and the search termi-
nates. This procedure will work as long as the lower bound we
compute becomes appropriately tight as . It is frequently
possible to find such lower bounds, so this is an attractive ap-
proach. Turning our attention to Step 3 of the policy iteration
algorithm, it is easy to establish that the set of linear equations
described does have a unique and nonnegative solution. It is also
clear that if the algorithm terminates, a solution to the Bellman
equation has been found. Although we can apply policy itera-
tion to any particular tracking problem and hope for termination,
we would like to know if there are any conditions under which
termination is assured. It can be shown that one such condition
is for (the previously defined submatrix of ) to be primi-
tive, i.e., a square matrix with nonnegative elements that has a
unique maximal eigenvalue (see [13]). Note that constructing
the lower bounds discussed for Step 2 of the policy iteration al-
gorithm is made relatively simple if is primitive because the
cost function to be minimized becomes an exponential function
asymptotically.

Note that for the solution, we are assuming more
information than is actually available. Thus, the cost function
obtained under the is a lower bound on optimal per-
formance. We will use this lower bound when we present our
numerical results.

D. Point Mass Approximations

The suboptimal policies derived in the preceding sections are
considerably easier to compute than the optimal policy and can
be computed online after some initial offline computation has
been completed. However, such online computation requires
sufficient processing power and could introduce delays. It would
be convenient if the suboptimal could be precomputed and
stored either at the central controller or distributed across the
sensors themselves. The latter option is particularly attractive
since it allows for distributed implementation. But the set of
possible distributions is potentially quite large—even if quan-
tization is performed—and could make the storage requirements
prohibitive.

To make the storage requirements feasible, we consider ap-
proximating with a point mass distribution. The number of
sleep times to be stored is then only per sensor. We consider
two options for the placement of the unit point mass when com-
puting the sleep time for sensor : i) the centroid of , and ii) the
nearest point to sensor on the support of . Note that the latter
option allows for the implementation of policies without de-
tailed information about the statistics of the random walk—only
the support of the random walk is required.

VI. NUMERICAL RESULTS

In this section, we give some simulation results that illustrate
the performance of the policies we derived in previous sections.
We begin with simulation results for one-dimensional sensor
networks. In each simulation run, the object was initially placed
at the center of the network and the location of the object was
made known to each sensor. A simulation run concluded when
the object left the network. The results of many simulation runs
were then averaged to compute an average tracking cost and an
average energy cost. To allow for easier interpretation of our re-
sults, we then normalized our costs by dividing by the expected
time the object spends in the network. We refer to these normal-
ized costs as costs per unit time, even though the true costs per
unit time would use the actual times the object spent in the net-
work (the difference between the two was found to be small).

We will give results for two different one-dimensional net-
works. Network A is a one-dimensional network with 41 sen-
sors where the object moves with equal probability either one
to the left or one to the right in each time step. Thus, the
matrix for Network A can be written as a 41 41 matrix with
zeros everywhere except for values of on the diagonals
just above and below the main diagonal. Network B is a one-di-
mensional network with 61 sensors where the object can move
anywhere from three positions to the left to three positions to
the right at each time step, with the object movement being uni-
formly distributed on these seven positions. Thus, the matrix
for Network B can be written as a 61 61 matrix with zeros ev-
erywhere except for values of on the seven diagonals in
the middle of the matrix.
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Fig. 3. Cost per unit time comparisons as a function c for Network A.

Fig. 4. Cost per unit time comparisons as a function c for Network B.

In Figs. 3 and 4 we plot cost curves as a function of for
Networks A and B, respectively. In each figure three curves are
shown. The first curve is the lower bound on optimal perfor-
mance discussed in Section V-C. The second and third curves
are the costs for the and FCR policies, respectively. From
these data we can see that the policy consistently outper-
forms the FCR policy. Moreover, the cost for the policy
is extremely close to the lower bound on optimal performance
except at a few data points. We therefore suspect that the
policy is a near-optimal policy.

In Figs. 5 and 6, we now examine the tradeoff curves between
energy cost and tracking cost for Networks A and B respec-
tively. From these data, we again see that the policy out-
performs the FCR policy, although the difference does not ap-
pear as large. This does not contradict our previous results since
it is possible that if one policy achieves certain values of energy
and tracking costs at a particular value of , it is possible for an-
other policy to achieve these same energy and tracking costs at a
somewhat different value of . Note that the difference between
the performance of the policy and the lower bound on
optimal performance becomes small as the number of tracking

Fig. 5. Tradeoff curves for Network A.

Fig. 6. Tradeoff curves for Network B.

errors becomes small. This makes sense since when there are
few tracking errors, the assumption (that we will know
the object location in the future) becomes realistic.

For the moment, consider the duty cycle scheme discussed
earlier where each sensor is awake in a fraction of the time
slots. As is varied, we achieve a tradeoff curve that is a straight
line between the points (0, 1) and (where is the ap-
propriate number of sensors) in the coordinate systems used in
Figs. 5 and 6. When compared with this policy, the schemes we
have proposed result in significant improvement.

In Fig. 7, we explore the impact of using the point mass
approximations discussed in Section V-D on the performance
of the policy for Network A. Four curves are shown
in the figure. The first two are the lower bound and
tradeoff curves already seen. The third and fourth curves are
the tradeoff curves for the policy using the centroid and
nearest point point mass approximations, respectively. It can be
seen that there is indeed some loss in performance when using
point mass approximations, but this loss becomes small as the
number of tracking errors becomes small. This makes sense
since when tracking errors are infrequent, the object location is
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Fig. 7. Tradeoff curves for Network A using Q and point mass
approximations.

Fig. 8. Tradeoff curves for a two-dimensional network.

usually known exactly and so the distribution is usually already
a point mass distribution.

In Fig. 8, we consider a two-dimensional network to illustrate
that the resultant performance curves are similar to those already
seen. The network considered is a 11 11 grid (121 nodes). The
movement of the object is best described by stating that at each
time step the object starts at the center of a 3 3 grid and moves
to any of the nine spaces on that grid with equal probability. It
is seen that the results of Fig. 8 are similar to those already seen
in Figs. 5 and 6.

VII. CONCLUSION

In this paper, we formulated a tracking problem with sleepy
sensors. We found that while an optimal solution could not
be found, it was possible to design suboptimal solutions that
closely approximate optimal performance, as seen in our simu-
lation results. Our results also indicate that the tradeoff between
energy consumption and tracking errors can be considerably
improved by using information about the location of the object.

There are several avenues for future research. An easy exten-
sion is the tracking of multiple objects. Since the models for

sensing and object movement used in this paper were too sim-
plistic, more sophisticated models need to be examined. Dis-
tributed strategies for the scenario where a central controller is
not available is another area for future research. Finally, solving
the tracking problem when the statistics for object movement
are unknown or partially known presents another interesting
challenge.

APPENDIX

Asymptotic Behavior of Sensors Awake Per Unit Time: We
consider both one-dimensional and two-dimensional networks
with sensors. In the one-dimensional case, we consider uni-
formly spaced line networks with an odd number of sensors with
the distance between adjacent sensors being 1. In the two di-
mensional case, we consider square grid topologies where the
sensors are placed on a unit grid and the number of sensors is
the square of an odd number. Note that odd numbers are used
merely to ensure that each network has a center node. Given any
two sensor indexes and , we define a distance measure so
that is the Euclidean distance between the two sensors.
We assume that the object movement is restricted so that the
maximum distance the object can move per time step is .
We seek to show that the number of sensors awake per unit time
required for an Always Track policy grows at most as
in the one-dimensional case and at most as in the two-di-
mensional case.

We first suppose that the object starts at at time 0 and that
sensor is currently awake. Let denote the first time that the
object can reach sensor , and thus when sensor should next
come awake. From the boundedness of the object movement we
can write

(26)

From time 1 to time , sensor experiences a maximum of one
wakeup. We seek an upper bound to this number of wakeups for
later use. To this end, we introduce a function defined on the
nonnegative real numbers as

(27)

We can then show that

(28)

is an upper on the number of wakeups by writing

(29)

In this statement, the first inequality results from assuming
that the object moves in a direction directly opposite sensor ,
thus lower bounding the expected value. The second inequality
results from setting all terms in the summation equal to the
smallest term. The final inequality results from (26). Since the
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final result, 1, is the maximum number of wakeups sensor can
experience, we indeed have an upper bound.

A complete sample path for the movement of the object con-
sists of many intervals of the type just considered. Suppose the
total time spent in the network by the object is . The preceding
analysis yields that an upper bound for the average number of
wakeups for sensor per unit time is given as

(30)

where the expectation is taken over all sample paths such that
the object remains in the network exactly time units. By sum-
ming over we obtain an upper bound for the average number
of sensors awake per unit time as

(31)

Another upper bound can be obtained by writing

(32)

This upper bound is independent of so it applies no matter
how long the object remains in the system.

In both the one- and two-dimensional cases, the supremum in
(32) is achieved when the object is located in the center of the
network. In the one-dimensional case, we can write our upper
bound as

(33)

Using standard techniques for upper bounding a summation
with an integral, we arrive at a final upper bound for the one-di-
mensional case by writing

(34)

This upper bound clearly grows as . In the two-di-
mensional case, we can write the upper bound as

(35)

We can view each term in this summation as the value of a func-
tion on a unit cell centered at that coordinate in the two-di-
mensional plane. We can therefore upper bound the summation
by an integral in polar coordinates as

(36)

where the factor is used to ensure that the func-
tion being integrated is larger than the actual function over every
part of each cell. This upper bound clearly grows as .

Proof of Optimality for FCR Solution: We assume that
is a solution to (18) with minimizing policy and the

evolution of is as in (17). With some abuse of notation, define
for as

(37)

We seek to prove that defined through

(38)

is a solution to (16) and that defined through

(39)

is a minimizing policy. As a first step, we show that is a
solution to

(40)

with a minimizing policy of , where we have implicitly
conditioned (and will continue to implicitly condition) on

and . We then use this fact to prove the final result.
To show that is a solution to (40), we consider three

cases. The first case is for a residual sleep time of 1. Starting
from (37), for we have

(41)

(42)

(43)
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The second case is for a residual sleep time greater than 1.
Starting from (37), for we have

(44)

(45)

(46)

(47)

The third and final case is for a residual sleep time of zero.
Starting from (18), for we have

(48)

(49)

(50)

where the last equality comes from the results just shown for
residual sleep times greater than zero. To see that is the
minimizing policy in (40), we need only consider the third case
(for a residual sleep time of zero) since in the other cases the
policy has no effect. Since we have just shown the equivalence
of (18) and (40), must be the minimizing policy in (40)
since it is defined to be the minimizing policy in (18).

We can now complete the proof. We now implicitly condition
on . Starting from (38), substituting
using (40), and performing further manipulation, we can write
see equation (51)–(58)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Thus, defined in (38) is a solution to (16). It should also be
clear from the derivation that defined in (39) is the mini-
mizing policy in (16). This completes the proof.

Proof of Optimality for Solution: Almost without
exception, the proof follows along identical lines as that for the
FCR case except that we have the following replacements for

:

(59)

(60)

Note the similar difference between equations (18) and (23).
The only exception to this rule is that the derivation between
(44)–(47) proceeds differently as

(61)

(62)



FUEMMELER AND VEERAVALLI: SMART SLEEPING POLICIES FOR ENERGY EFFICIENT TRACKING IN SENSOR NETWORKS 2101

(63)

(64)

(65)
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