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Abstract—The design of soft handoff algorithms for cellular
radio systems is considered. The design problem is posed as a
tradeoff between three metrics: the rate of handoffs, the mean
size of the active set, and the link quality. It is argued that the
algorithm that optimizes the tradeoff between these metrics is
impractical. Hence, a locally optimal (LO) handoff algorithm
is derived as a practical approximation to the optimal handoff
algorithm. The LO algorithm is shown to yield a significantly
better tradeoff than the static threshold handoff algorithm used in
second-generation code-division multiple-access (CDMA) systems.
It is also shown that the dynamic threshold algorithm, which is an
ad hoc algorithm proposed for third-generation CDMA systems,
achieves nearly the same performance as the LO algorithm. Thus,
an analytical justification is developed for the dynamic threshold
algorithm. Further, handoff algorithm design is separated into
independent design problems on the forward and reverse links.
The forward link LO algorithm is shown to be computationally
intensive but is also shown to be closely approximated by the
simpler reverse link LO algorithm.

Index Terms—Cellular systems, code-division multiple access
(CDMA), handover.

I. INTRODUCTION

T HE problem of soft handoff arises in a cellular commu-
nication system where the mobile can communicate with

multiple base stations at the same time. The set of base stations
with which the mobile communicates at a given time is called
theactive set. As the mobile position and the system traffic load
conditions change, the active set needs to be changed in order
to maintain acceptable signal quality. This change in the active
set is the soft handoff event and is governed by the soft handoff
algorithm.

For code-division multiple-access (CDMA) systems em-
ploying diversity reception, the ability to be in soft handoff,
i.e., the ability to have more than one base station in the active
set, results in added diversity and improved signal quality
[1, Section 5.5]. The consequent capacity and cell coverage
gains have been analyzed by Viterbiet al. [2] and Sendonaris
and Veeravalli [3]. However, these works do not deal with the
design of algorithms to select the active set. Our focus is on the
design of soft handoff algorithms to select the active set.

In contrast to soft handoff, the design of hard handoff algo-
rithms has received much attention. The optimal hard handoff
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algorithm design problem was studied by Rezaiifaret al. [4],
Asawa and Stark [5], and Veeravalli and Kelly [6]. Since op-
timal handoff algorithms are impractical, a locally optimal (LO)
approach was suggested [6] to get suboptimal but practical hard
handoff algorithms. In further work on LO algorithms, Prakash
and Veeravalli [7] studied the adaptation of LO hard handoff al-
gorithms to changing system parameters, and Akar and Mitra
[8] applied the LO technique to handoff delay optimization.

Optimizing soft handoff is still largely an open problem with
most of the previous work focusing onad hocanalyses. An
overview of recent work on soft handoff has been provided by
Wong and Lim [9]. The second-generation IS-95 standard [10]
recommends the use of an ad hoc static threshold soft handoff al-
gorithm. Zhang and Holtzman [11] have provided tools to study
the performance of the static threshold algorithm but have not
considered techniques for handoff algorithm design. Asawa and
Stark [5] have applied a limited lookahead approach to the de-
sign of soft handoff algorithms and demonstrated improvement
over the static threshold algorithm. To improve the performance
of the static threshold handoff algorithm, the third-generation
cdma2000 [12, Section 3.2.3.3] standard recommends thedy-
namic thresholdhandoff algorithm. In this paper, we introduce
an LO soft handoff algorithm and compare its performance with
other algorithms.

The primary objective of a soft handoff algorithm is to pro-
vide good signal quality. Signal quality can be improved by in-
cluding more base stations in the active set, but this comes at the
cost of increased use of system resources. To lower the active set
size, one option is to frequently update the active set to main-
tain, at each time instant, the smallest active set with sufficient
signal quality. However, frequent updates or handoffs bring with
them switching costs. Thus, as has been seen earlier [5], [11], a
tradeoff exists among the following three metrics: the rate of ac-
tive set updates, the mean size of the active set, and the average
signal quality.

A handoff algorithm is said to be optimal if it attains the best
tradeoff amongst the class of all handoff algorithms. The proce-
dure for the design of optimal soft handoff algorithms is similar
to that for hard handoff [5], [6] and uses a cost function that
depends on many steps into the future. The design of optimal
handoff algorithms requires a model for the future trajectory of
the mobile. We assume that information about the future trajec-
tory is not readily available, making it impractical to use optimal
algorithms. Another drawback of optimal algorithms is that their
design is computationally intractable.

In contrast to the optimal algorithms, the LO approach gives
a practical solution by minimizing a one-step lookahead cost
function. The LO algorithm has the advantage of not requiring
any complicated models for the trajectory of the mobile. This
is so because the locally optimal algorithm operates on a small
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time-scale, over which the motion of the mobile can be approx-
imated by a straight line. Simulation results show that the LO
algorithm offers significant improvement in performance over
the ad hoc static threshold algorithm of IS-95 [10]. In contrast,
the ad hoc dynamic threshold algorithm of cdma2000 [12] per-
forms close to the LO algorithm. Furthermore, the structure of
the dynamic threshold algorithm resembles that of the LO algo-
rithm. Since the LO algorithm has a theoretical basis, the above
observations give a theoretical justification for the use of the dy-
namic threshold algorithm.

Another issue we explore is the use of different active sets
on the forward and reverse links, i.e., base stations that receive
a given mobile’s signal may not transmit to it, and vice versa.
This asymmetry may be attractive because forward and reverse
link active sets require different resources, which may have dif-
ferent costs, e.g., a large forward link active set contributes to
forward link interference, but a large reverse link active set does
not influence interference. We separate the handoff algorithm
design problem into separate problems for the forward and re-
verse links. We show that although the structure of the forward
link LO algorithm is more complex than the reverse LO link
algorithm, the simpler reverse link LO algorithm gives satisfac-
tory performance on the forward link. Thus, a separate handoff
algorithm is not necessary for the forward link.

The rest of this paper is structured as follows. The channel
model and the definition of the soft handoff problem are de-
veloped in Section II. Performance metrics to measure the per-
formance of soft handoff are constructed in Section III-A. In
Section III-B, the simulation environment is described and sim-
ulation results for a static threshold soft handoff algorithm are
given. The locally optimal soft handoff algorithm for the reverse
link is developed in Section IV-A. In Section IV-B, the perfor-
mance of the LO algorithm is compared with the static and dy-
namic threshold handoff algorithms. In Section IV-C, the for-
ward link LO algorithm is constructed and its performance an-
alyzed. Conclusions and comments are presented in Section V.

II. PRELIMINARIES

In this section, we describe the channel model and define the
soft handoff problem. We adopt a discrete time model with sam-
pling time . As is usual in discrete time models, we refer to
sample instant simply as time . We consider mobile assisted
handoff, where at time, the mobile transmits the pilot signal
strength measurements of base stations in the candidate set to
the controlling base station. These measurements are the pri-
mary source of information for the soft handoff algorithm. In
addition to the pilot signal strength measurements, handoff may
also be based on the geographic traffic load pattern. Though we
do not consider handoff based on traffic load in this paper, in
Section V, we comment on how traffic-load information may be
incorporated in the handoff algorithm.

For a given mobile trajectory, we focus on the part where there
are base stations BS-1, , BS- in the candidate set. These
base stations have pilot signals strong enough to make them
potential candidates for the active set. The set of base stations
that transmit to the given mobile at timeis the forward active
set . For example, means that BS-2 and

BS-3 are transmitting to the mobile at time. Similarly, the
reverse-link active set is the set of base stations that listen
to the traffic signal of the given mobile. As stated earlier, we
allow for .

Both the reverse and forward link active sets are selected
based on the pilot signal strengths, which are influenced by
short-term and long-term fading. Handoff algorithms cannot re-
spond to short-term fading because handoff involves the set-
ting up of connections between base stations and the delay in
connection setup is often significantly more than the time scale
of short-term fading. Thus, we assume that the handoff algo-
rithm responds only to long-term fading and that the pilot signal
strength is averaged to remove the effect of short-term fading.

Let (dBm) be the averaged pilot signal strength from
BS- at time . Given the pilot source strength and the
transmitted traffic signal strength (both in dBm), the traffic
channel signal strength received by the mobile from base
station at time is

(1)

Thus, the pilot signal strength can be used to determine
the signal strength on the traffic channel from each base
station. On the forward link, maximal ratio combining [1, Sec-
tion 5.5.3] is used to combine the signals from base stations in
the active set . Given an interference level (dBm) at the
mobile, the forward link signal-to-interference ratio (SIR)
after maximal-ratio combining is given in dB by

(2)

This can be rewritten as

(3)

where

(4)

Here, can be regarded as the effective pilot signal
strength from all base stations in the forward active set. We have
assumed a rake receiver [1, Section 8.3.1] with enough fingers
for all paths to base stations in . Without this assumption,
the SIR at the mobile would depend on the algorithm for
selecting the paths to be combined at the rake receiver.

For the reverse link, if the combined interference and noise
level at BS- is (dBm), then the SIR at BS-is given by

(5)

where is the transmit power of the mobile. Typically, selec-
tion diversity is used on a frame-by-frame basis on the reverse
link, i.e., the signal at the base station with the largest is
more probably used for demodulation. Thus, the reverse link
SIR is

(6)
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This shows that the pilot signal strength can be used to determine
the signal quality on the reverse link.

The pilot signal strength from BS-undergoes shadow fading
according to the following model [1, Section 2.4]:

(7)

(8)

where (dBm) is the local mean pilot power and (dBm)
is the shadow fading at sampling time. The local mean pilot
power varies log-linearly with the distance from BS- , and

and are constants.
To further develop the statistics of the received pilot power,

we concentrate on a part of the trajectory where the mobile
is moving on a straight line with fixed velocity and use a
first-order autoregressive (AR-1) model for the autocorrelation
function of . Gudmundson [14] showed that the AR-1
model matches field measurements well. The AR-1 model has
been used earlier in the analysis of handoff algorithms [4], [6].

Under the AR-1 model, the shadow fading autocorrelation
function is given by

Here, is the shadow fadingvarianceand is the correlation
coefficient of , i.e.,

(9)

where is the shadow fadingcorrelation distance.
Under this model, it is easy to check (see, e.g., [6]) that the

distribution of conditioned on is independent of
earlier received power samples and is described completely by
its conditional mean and variance

E E

(10)

Var Var

(11)

We assume that the shadow fading processes from base stations
and are correlated in such a way that the random variables

and have correlation for .
The information available to the handoff algorithm is the in-

formation vector , which consists of all the past measured
pilot strengths , all the past active sets, and the past com-
bined interference and noise levels at the mobile as well as the
base stations, i.e.,

(12)

In practice, however, information may be available only about
the recent past (rather than the entire past), and this limited in-
formation is enough for the algorithms we study.

Fig. 1. Operation of the static threshold soft handoff algorithm. The mobile is
in soft handoff during the time intervalt to t .

The handoff algorithm selects the active set at the next time
instant using a decision function

(13)

The resulting handoff policy is the collectionof the handoff
decision functions at all sample instances. If the decision
functions do not vary with time, the handoff policy is said to be
stationary. To support different active sets on the forward and
reverse links, separate decision functions and as
well as handoff policies and can be defined for the
forward and reverse links, respectively.

An example of a soft handoff algorithm is the static threshold
handoff algorithm [10], which uses the same active set on the
forward and reverse links. This algorithm is characterized by
two parameters: an add threshold and a drop threshold

. The difference between these two parameters is the
hysteresis level. The working of this handoff algorithm is illus-
trated in Fig. 1. When the pilot from a base station goes below
the drop threshold, the base station is removed from the ac-
tive set. When the pilot from a base station goes above the add
threshold, the base station is added to the active set. For the static
threshold handoff algorithm, the decision functionsare the
same for all .

The task of the soft handoff algorithm is to select an appro-
priate handoff policy (if necessary separate policies and

) to optimize the values of the performance metrics intro-
duced in the next section.

III. M EASURING PERFORMANCE

In this section, we describe performance metrics that can be
used to characterize the performance of soft handoff algorithms.
In Section IV, we use these metrics to compare the performance
of different handoff algorithms.

A. Performance Metrics

As stated in Section I, the performance of a soft handoff
algorithm can be measured by three performance metrics: rate
of handoffs, average active set size, and the average signal
quality. The performance metrics are functions of both the
handoff policy for the link under consideration and the system
parameters (e.g., mobile velocity and shadow fading
correlation ). In case different active sets are used on the
forward and reverse links, each of the three metrics will be
replaced by two different metrics, one for each link.
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Expressions for the three performance metrics are developed
next.

1) Rate of handoffs

E (14)

where is the indicator function, which takes values of
one or zero depending on whether the argument is true
or false. A soft handoff is said to have occurred at time
if . The metric represents the switching
load associated with changes in the active set.

2) Average active set size

E (15)

The metric represents the additional channel card
and network backbone requirements of a mobile in soft
handoff. During soft handoff, signals need to be carried
between base stations in the active set, causing additional
traffic on the network backbone. In addition, because of
the extra base stations transmitting to a mobile in soft
handoff, the interference level seen by other mobiles on
the forward link can increase. If sophisticated power-con-
trol schemes are used to take advantage of the forward
link diversity gain in soft handoff, it may be possible to
reduce (instead of increase) the total interference seen by
other mobiles. However, we assume that even if a large
active set results in interference reduction, the resulting
gains do not offset the the extra cost of increased network
load and channel card usage. Thus, we use a cost function
that increases with increasing active set size.

3) Average signal quality (quantified by the rate of link
degradation events)

E

(16)

The metric measures the signal quality as the fraction
of time for which the link is in a degraded state. The link
degradation event is defined in detail next.

First, consider the forward link degradation (FLD) event. The
FLD event occurs if the SIR at the mobile rake com-
biner output is below an SIR threshold . We assume a per-
fect forward link power-control algorithm that sets the transmit
power of all base stations to a maximum level when-
ever an FLD is imminent. This is a reasonable assumption be-
cause power control operates on a much faster time-scale than
handoff. Given the forward active set , from (2) it follows
that an FLD event occurs when the effective forward link pilot
strength in (4) goes below a threshold , i.e.,

(17)

where

(18)

Note that under the assumption that interferencedoes not
vary with time, the threshold is constant in time.

A reverse link degradation (RLD) occurs if the reverse link
SIR goes below a threshold . Under a perfect reverse
link power control algorithm, the mobile transmits with peak
power whenever an RLD is imminent. Using (6), it
follows that a RLD occurs when

(19)

If the interference levels are fixed at all base stations and do not
vary with time, i.e.,

then the RLD event reduces to

(20)

where

It should be noted that the link degradation event defined
above is not the same as a frame error event. The frame duration
is typically small (e.g., 20 ms in IS-95) and frame error events
are influenced by slow as well as fast fading. This is in con-
trast with link degradation events, which depend only on slow
fading. Even though the two events are not exactly the same,
both the frame error rate and the link degradation rate are metrics
of average signal quality. As argued in Section II, the handoff
algorithm cannot respond to fast fading and must base its de-
cisions only on slow fading levels. For this reason, we use the
link degradation rate and not the frame error rate as a metric of
signal quality.

In the case where separate handoff algorithms are used on the
forward and reverse links, it can be seen that there will be three
metrics for the forward link and three separate metrics for the re-
verse link. For the forward link, the description of the three met-
rics is similar to that given in (14), (15), and (16), with, ,
and LD replaced by , , and FLD, respectively. Met-
rics for the reverse link can be obtained similarly. Further, the
metrics for one link will depend only on the handoff algorithm
being used on that link and not on the algorithm on the other
link. Thus, the analysis of the forward and reverse link handoff
algorithms can be carried out separately by studying the tradeoff
between the three corresponding metrics.

If the system architecture constrains the active set to be the
same for the forward and reverse links, the rate of handoff and
the active set size metrics will be the same for both links. The
link quality metrics, however, would be different for each link.
In this case, either the forward or the reverse link can be con-
sidered constraining for the system capacity, and the quality
of the constraining link can be considered to be the effective
link quality metric. Handoff algorithms can then be analyzed in
terms of the tradeoff among the active set size, rate of handoffs,
and effective link quality.

B. Tradeoff Surfaces and Handoff Algorithm Design

In this section, we define the tradeoff surface and demonstrate
its role in handoff algorithm design. In Section III-A, the per-
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Fig. 2. Mobile trajectory.

formance metrics ( ) were shown to be a function
of ( ). In this section, we assume that the system parame-
ters are fixed. Then, the performance metrics are a function
just of the policy . Given a handoff algorithm, the handoff
policy depends on the handoff algorithm parameters. For
example, for the static threshold handoff algorithm (Fig. 1),

determines . The tradeoff surface
describes the range of performance a given handoff algorithm
offers as the parametersare changed.

To define the tradeoff surface, we represent the performance
metrics ( ) as a point in a three-dimensional space
(each dimension corresponding to a performance metric). The
locus of operating points attained by varyingis defined to be
the tradeoff surface for the given handoff algorithm.

Given a handoff algorithm, along with parameters, the per-
formance metrics in (14)–(16) are difficult to compute analyti-
cally. In the absence of any analytical techniques, we follow pre-
vious works [5], [11] in resorting to simulations. We consider a
simulation environment where the mobile traverses a trajectory
in the vicinity of base stations arranged on the vertices
of a square (Fig. 2), with the maximum active set size limited to
three.

Fig. 3 shows a tradeoff surface for the static threshold handoff
algorithm under the simulation parameters in Table I. To repre-
sent three-dimensional surfaces on paper, we show top and side
views. The tradeoff between different metrics is illustrated by
the tradeoff surface. For example, it is possible to reduce
by exploiting greater diversity at the expense of a larger.
Also, it is possible to reduce at the expense of a larger
by frequently updating the active set to maintain the smallest
sufficient active set at each time instant.

The effect of the threshold and hysteresis levels on the oper-
ating points can be studied using the tradeoff surface. Consider
points A, B, C, and D in Fig. 3. For a high add threshold (point
C), both and are low, though at the expense of a high

. Given a low add threshold (points A, D), increasing the
hysteresis level reduces while maintaining a low and a
high . At point B, a low hysteresis level results in a low
at the expense of a high .

Fig. 3. Tradeoff surface for the static threshold soft handoff algorithm. Rates
are measured with respect to timeT required to traverse the trajectory.

TABLE I
PARAMETERS USED FOR ALL SOFT HANDOFF SIMULATIONS

Tradeoff surfaces have two important uses. Given a handoff
algorithm, the tradeoff surface may be used to select a desirable
operating point and thus select the handoff algorithm parame-
ters. A desirable operating point is one that achieves the given
system design goals, e.g., to minimize a cost function of the
three metrics, or attain a strict bound on the link quality metric
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. An ad hoc definition of a desirable operating point is the
knee region of the tradeoff surface [13]. The other use of tradeoff
surfaces is for comparing the performance of different handoff
algorithms: the lower the tradeoff surface, the better the algo-
rithm.

The definition of tradeoff surfaces we gave earlier was for
handoff algorithms with a two-dimensional internal parameter
. For higher dimensional, the locus of operating points as

is varied can cover a volume rather than a surface in the per-
formance metric space. In such a case, the tradeoff surface may
be defined to be the lower envelope of all attainable operating
points. Alternatively, a simple heuristic would be to fix all but
two parameters in to obtain a tradeoff surface. By selecting
different values for the fixed parameters, different tradeoff sur-
faces can be obtained and the “best” of these designated as the
actual tradeoff surface.

IV. DESIGN OFSOFT HANDOFF ALGORITHMS

In the previous section, we identified techniques for mea-
suring the performance of soft handoff algorithms. In this sec-
tion, we consider the design of soft handoff algorithms. As was
mentioned in Section III-A, we have independent design prob-
lems on the forward and reverse links. We begin with handoff
algorithm design for the reverse link.

A. The LO Soft Handoff Algorithm for the Reverse Link

For hard handoff, the LO algorithm was developed as an alter-
native to the impractical optimal hard handoff algorithm [6]. In
the same spirit, we first consider the optimal soft handoff algo-
rithm and focus on the reverse link in this section. The Bayesian
cost function for soft handoff has two (relative) cost parameters

and . Parameter is the cost of maintaining one extra
member in the active set, while is the cost of handoff. These
costs are relative to a cost of one unit for a link degradation
event. The Bayes cost under a policy and system parame-
ters is given by

(21)

The optimal soft handoff algorithm is one that minimizes the
Bayes cost and can be obtained using dynamic programming
(DP). To solve the DP problem, the active set at timeshould be
selected to minimize the cost incurred several time steps into the
future. Since the cost function depends on the trajectory of the
mobile, computation of the DP solution requires a (stochastic or
deterministic) model for the mobile’s future trajectory [4], [6].
Such a model may not be available in the system. Furthermore,
numerical solution of the DP problem is difficult because the
size of the state vector is large (equal to the number of entries
in the candidate set). For these reasons, the optimal algorithm is
impractical.

The LO algorithm overcomes the deficiencies of the optimal
algorithm by minimizing an incremental cost function ,
which is in effect a one-step lookahead Bayes cost, i.e.,

(22)

The goal of the LO algorithm at timeis to select an active set to
minimize the expectation of the incremental cost function, i.e.,

E

(23)
Thus, the LO algorithm does not need a model for the mobile’s
future trajectory; and, as we will show below, it is easily imple-
mentable.

The implementation of the LO algorithm involves the evalu-
ation of the expectation in (23) for all possible . The
number of possibilities may be large depending on the value
of . The following guidelines help to narrow down the pos-
sibilities. An incoming base station must be the strongest of
those in the neighbor list, and an outgoing base station must be
the weakest one in the active set. In addition, system constrains
may further reduce the number of possible choices that
need to be considered. For example, hard handoff from BS-1 to
BS-2, i.e., an event where the active set changes from {1} to
{2} may be disallowed. Any such system constraints can be in-
corporated into the LO algorithm by considering only the valid

choices in the minimization (23).
To give a concrete form to the objective function of the min-

imization (23), consider each of the terms in (22) individually.
The conditional expectation of the last two terms is evaluated
immediately from the knowledge of and . For
the term corresponding to the RLD event (20), we are interested
in evaluating the expectation

(24)

The distribution of , conditioned on can be obtained
using (10) and (11). The probability in (24) takes the following
values for different active set sizes.

1) When the active set size is one, e.g., , then
(24) reduces to

(25)
where . The equation
above is obtained in a manner similar to the LO hard
handoff algorithm [6].

2) When the active set size is two, e.g., , then
(24) reduces to

(26)

Here, the function is the cumulative distribution func-
tion for bivariate Gaussian random variables

where
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Tables and evaluation methods forfunctions can be
found in the literature [15], [16]. We evaluate thefunc-
tions numerically.

3) When the active set size is three, e.g., ,
(24) reduces to

P (27)

This probability is evaluated numerically using the distri-
bution function of trivariate Gaussian random variables
[15, ch. 36].

The expected incremental cost need not be evaluated for
larger active sets because the maximum allowed active set size
in our simulations is three. In the case where larger active sets
are allowed, numerical evaluation of the link degradation prob-
ability is difficult. A possible approximation can be obtained
by assuming independence between the fading on different
base stations.

The evaluation of the reverse link degradation probabilities
in (25)–(27) requires the statistics of the Gaussian random vari-
able conditioned on . These statistics are given by
(10) and (11); however, and may be unknown,
making it impossible to evaluate the required statistics perfectly.
To get around this problem, we use as an estimator for

and construct the estimatorsand for
and , respectively. These estimators were originally developed
for hard handoff algorithms [7], [17], where their accuracy was
studied.

For completeness, we give the following expressions that
show that the estimatorsand can be constructed from a size

history of pilot signal strength samples

where and are given by

with .
Note that the nature of the LO algorithm allows for the use of

any other estimators. In this paper, the focus is not on the design
of estimators, but rather on the design of the handoff algorithm.
Therefore, we use the estimators from [7] in our simulations.

Next, we determine the decision regions for the reverse link
LO algorithm. The decision region is the region in the signal
strength space where the handoff algorithm generates a handoff.
A handoff algorithm is completely specified by decision regions
for all possible transitions to . Fig. 4 shows the decision
region boundary for two handoff scenarios: the addition of one
base station to an active set with size one and the removal of one
base station from an active set with size two. If more than two
base stations are involved in the handoff, the decision region is
higher dimensional and difficult to represent on paper.

To implement the LO algorithm, the decision rule (23) need
not be evaluated at each decision instant. The stored decision

Fig. 4. Decision region boundaries for the reverse link LO algorithm and the
static and dynamic threshold handoff algorithms,c = 0:23, c = 0:22,
�

p
1� a = 5 dB.

region can be used to find the handoff decision instead. Fur-
ther simplification can be achieved by storing a piecewise linear
approximation to the decision region. Since the decision re-
gion boundary is smooth, such a piecewise linear approximation
would be easy to construct.

An important aspect of the LO reverse link decision regions
is their scalability. Consider a normalized decision region cor-
responding to and . A decision re-
gion for an arbitrary set of system parameters can be obtained
by shifting the normalized decision region by and scaling
it by a factor . Thus, it is enough to compute the de-
cision region for one set of system parameter values and use its
scaled version when the system parameters change.

The decision regions obey the following commonsense
“rule”: as the signal quality offered by the current active set
improves, the addition of a new base station to the active set
should be discouraged and the dropping of a base station from
the active set should be encouraged. The LO add and drop
thresholds in Fig. 4 obey this rule. In contrast, the ad hoc static
threshold algorithm (decision region shown in Fig. 4) does not
obey the rule; and, as shown in the next section, it results in
inferior performance.

B. Reverse Link Performance

We now examine the improvement in performance that
the LO algorithm offers over the static threshold algorithm.
Tradeoff curves for both of the algorithms are shown in Fig. 5.
The results are obtained by simulation under the environment
described in Section III-B. It is immediately clear from Fig. 5
that the LO algorithm offers a significantly better tradeoff than
the static threshold algorithm, i.e., for the same and ,
the LO algorithm results in a much lower . This is because
the LO algorithm follows the rule described earlier. Simulations
show that the superior performance of the LO algorithm is
maintained when a timer is included with the drop threshold of
the static threshold algorithm.

The dynamic threshold handoff algorithm of cdma2000 [12]
improves on the static threshold algorithm by adopting the
heuristic rule discussed in Section IV-A. The decision region
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Fig. 5. Comparison of the tradeoff surfaces of the LO and static threshold soft
handoff algorithms (reverse link).

of this improved algorithm is shown in Fig. 4. In contrast to
the static threshold and LO algorithms, the dynamic threshold
algorithm has more than two parameters (the slopes and the
intercepts of the decision region boundary for both the add
and the drop thresholds constitute four additional parameters).
Sample tradeoff surfaces for the dynamic threshold handoff
algorithm are obtained by varying only two parameters and
fixing the slope and intercept parameters. Such sample surfaces
are obtained for various values of the fixed parameters, and
the surface that is lowest in the knee region is designated as
the tradeoff surface. Our judgment about the lowest surface is
somewhat subjective, but in the absence of any analytical tools,
it is the only option available.

The tradeoff surfaces for the dynamic threshold and LO al-
gorithms are compared in Fig. 6. The two algorithms result in
comparable performance. The match is particularly good in the
knee region of the curve, where the operating point is most likely
to be selected. The reason for this match may stem from the sim-
ilarity in the shapes of the decision regions of the two algorithms
(Fig. 4). The dynamic threshold algorithm’s decision region can
be considered as a first-order approximation to the LO algorithm
decision region.

The dynamic threshold algorithm was originally developed
as an ad hoc improvement over the static threshold handoff al-

Fig. 6. A comparison of the tradeoff surfaces of the LO and dynamic threshold
handoff algorithms (reverse link).

gorithm, while the LO algorithm is developed here using pre-
cise analytical tools. The match in the performance of the two
algorithms and the similarity of their decision regions together
provide an analytical justification for the use of the dynamic
threshold algorithm.

C. Forward Link LO Soft Handoff Algorithm

The forward link LO algorithm is derived as an approxima-
tion to the forward link optimal handoff algorithm. The objec-
tive of the forward link LO algorithm is to select to
minimize the expected value of the following forward link in-
cremental cost

(28)

giving

E (29)

The expectation of the last two terms in (29) can be evaluated
easily, but the first term corresponding to the FLD event defined
in (17) presents a challenge because the power sum in
(2) is difficult to study analytically. Santucciet al. [18] have
studied the sum of correlated lognormal random variables in
the context of computing interference statistics in cellular radio.
One of the methods they consider is Wilkinson’s approximation
method, which models the sum of log-normal random variables
as a log-normal random variable with appropriately matched
mean and variance (see [18] for details).

Fig. 8 compares the exact and Wilkinson approximation de-
cision regions for the forward link LO algorithm. It can be seen
that the two methods result in nearly the same decision region.
Thus, Wilkinson’s method can be used for simulation without
significant loss of accuracy. As with the reverse link, the estima-
tors required to implement the forward link handoff algorithm
are borrowed from the hard handoff analysis [7], [17].

For implementation purposes, there is a significant difference
between the reverse and forward link LO algorithms. Unlike the
reverse link LO algorithm, the forward link LO algorithm’s de-
cision region does not scale with changes in and .
This can be seen from the structure of the sum of log-normal sta-
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Fig. 7. Forward link performance of the reverse and forward link LO
algorithms.

Fig. 8. Accuracy of Wilkinson’s approximation (c = 0:23, c = 0:22,
�
p
1� a = 5 dB). The add threshold corresponds to the handofffig !

fi; jg, and the drop threshold corresponds to the transitionfi; jg ! fig.

tistics. Thus, implementation will involve either storage of the
decision region for a large set of possible and
values or evaluation of the statistics of the sum of log-normals
each time the system parameters change.

Implementation of the forward link LO algorithm presents the
following two difficulties. The exact decision region is difficult
to compute, and the decision region does not scale with system
parameters in a simple manner. Since the reverse link LO algo-
rithm is relatively simple to implement, as an approximation,
we consider using the reverse link LO algorithm on the forward
link. We consider the reverse link LO algorithm with set
equal to and use the corresponding decision rule to select
the forward link active set.

Under the simulation parameters of Table I the forward link
performance of both the forward and reverse link LO algorithms
is shown in Fig. 7. It can be seen that both the algorithms achieve
nearly the same performance. For brevity, simulation results are
given for only one set of parameter values (Table I). The result
was also seen to hold for a range of mobile velocities (10, 20,
40 m/s) and values (0 and 10 dBm).

From these results, it is demonstrated that in spite of the dif-
ferent handoff region shapes of the forward and reverse link
LO algorithms, the algorithms actually perform quite similarly.
Therefore, the simpler reverse link LO algorithm can be used to
decide the forward link active set.

The following issue must be stressed. We have not shown
that the decision functions and can be made the same.
When or the relative cost parameters and
are different on the forward and reverse links, we will actually
require that . What we have shown is that
can be implemented using a decision function with the same
structural form as the reverse link LO algorithm, but with the
forward link parameters in place of the corresponding reverse
link parameters.

To understand why the reverse link algorithm works well on
the forward link, consider the decision region boundary asymp-
totes. For the case of handoff from , the reverse
link LO decision region is shown in Fig. 4. Under the estimator
of choice ( ), the boundary of the reverse
link LO region satisfies

(30)
where . To obtain the horizontal asymptote, we
set , and to obtain the vertical asymptote, we set

. The resulting reverse link asymptotes are

(31)

For the forward link, the decision region is shown in
Fig. 8. Though the decision region boundary depends on the
complicated statistics of the sum of log-normals, the asymp-
totes are relatively simple to evaluate using the following
fact. Let be the power
sum of Gaussian random variables (r.v.’s) and . Then

is equal to zero when either or has
infinite mean and equal to when .
It can be verified from the above fact that when ,
the decision region asymptotes on the forward link are the same
as that on the reverse link (31). This equivalence can also be
verified for the handoff .

When three base stations are involved in the handoff, the deci-
sion region lies in a three-dimensional space and the asymptotes
are not the same for the forward and reverse links. This, along
with the difference in handoff region shapes, may account for
the slight difference in performance between the LO algorithms
designed for the two links.

V. CONCLUSIONS

We developed a LO soft handoff algorithm and showed that it
outperforms the static threshold handoff algorithm. Further, we
showed that the ad hoc dynamic threshold algorithm is a good
approximation to the LO algorithm. This provides an analytical
justification for the use of the dynamic threshold algorithm.

For the forward link, we developed an LO algorithm and
showed that its structure is complicated. However, the simpler
reverse link LO algorithm gives nearly the same performance as
the forward link LO algorithm. Thus, we have shown that there
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is no need to design separate LO handoff algorithms for the for-
ward link.

An issue deserving further exploration is the adaptation of the
LO soft handoff algorithm to varying system parameters, along
the same lines as the adaptation of the LO hard handoff algo-
rithm [7]. In particular, adaptation to varying traffic load is a
topic of interest. The traffic load directly influences the interfer-
ence levels at the mobile and the base station. The interference
levels in turn influence the link degradation thresholds and

[see (17) and (20)]. This dependence allows for some de-
gree of adaptation to changing traffic patterns. For example, for
a heavily loaded cell, the SIR thresholds will be low, resulting in
easier dropping of the cell from the active set. Similarly, a lightly
loaded cell will be more likely to be added into the active set.
Although handoff based on traffic conditions is not the focus of
our work, the argument above shows that the LO algorithm may
be able to accommodate such considerations by adjustment of
the link degradation thresholds.
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