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Abstract: In the standard formulation of the quickest change-point detection problem,
a sequence of observations, whose distribution changes at some unknown point in time,
is available to a decision maker, and the goal is to detect this change as quickly as
possible, subject to false alarm constraints. In this paper, we study the quickest change
detection problem in the setting where the information available for decision-making is
distributed across a set of geographically separated sensors, and only a compressed version
of observations in sensors may be used for final decision-making due to communication
bandwidth constraints. We consider the minimax, uniform, and Bayesian versions of the
optimization problem, and we present asymptotically optimal decentralized quickest change
detection procedures for two scenarios. In the first scenario, the sensors send quantized
versions of their observations to a fusion center where the change detection is performed
based on all the sensor messages. In the second scenario, the sensors perform local change
detection and send their final decisions to the fusion center for combining. We show that
our decentralized procedures for the latter scenario have the same first-order asymptotic
performance as the corresponding centralized procedures that have access to all of the
sensor observations. We also present simulation results for examples involving Gaussian and
Poisson observations. These examples show that although the procedures with local decisions
are globally asymptotically optimal as the false alarm rate (or probability) goes to zero, they
perform worse than the corresponding decentralized procedures with binary quantization at
the sensors, unless the false alarm rate (or probability) is unreasonably small.
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442 Tartakovsky and Veeravalli

1. INTRODUCTION

An important application area for distributed sensor systems is environment
surveillance and monitoring. Specific applications include intrusion detection in
computer networks, intrusion detection in security systems, chemical or biological
warfare agent detection systems to protect against terrorist attacks, detection of
the onset of an epidemic, and failure detection in manufacturing systems and large
machines. In all of these applications, the sensors monitoring the environment take
observations that undergo a change in statistical distribution in response to the
change in the environment. The goal is to detect this change-point as quickly as
possible, subject to false alarm constraints.

In the standard formulation of the change-point detection problem, there is a
sequence of observations whose distribution changes at some unknown point in time
and the goal is to detect this change as soon as possible, subject to false alarm
constraints (see, e.g., Basseville and Nikiforov, 1993; Lai, 1995, 1998; Lorden, 1971;
Moustakides, 1986; Pollak, 1985, 1987; Shiryaev, 1978; Tartakovsky, 1991). In this
paper, we are interested in the generalization of this problem that corresponds to
the multisensor situation where the information available for decision-making is
distributed. The observations are taken at a set of N distributed sensors as shown
in Figure 1. The statistical properties of the sensors’ observations change at the
same time. If the sensor observations (or sufficient statistics) can be conveyed
directly to a fusion center, then we are faced with a centralized change detection
problem, which is equivalent to the standard formulation with vector observations.
In this case a globally optimal solution with the best possible performance can be
obtained. However, in most applications, due to communication constraints, the
sensor observations cannot be transmitted directly to the fusion center and therefore
the centralized solution is infeasible, in which case we need to consider decentralized
approaches where the sensors send either quantized versions of their observations
or local decisions to the fusion center. Nevertheless, the centralized solution may be
used as a benchmark for comparing decentralized solutions based on compressed
data from the sensors.

We consider both the conditional (minimax and uniform) problem formulation,
in which the change-point is considered to be deterministic but unknown

Figure 1. Change detection with distributed sensors.
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(see, e.g., Basseville and Nikiforov, 1993; Lai, 1995, 1998; Lorden, 1971;
Moustakides, 1986; Page, 1954; Pollak, 1985, 1987; Tartakovsky, 1991), and the
Bayesian problem formulation in which the change-point is treated as a random
variable with a known prior distribution (see, e.g., Baron and Tartakovsky,
2006; Shiryaev, 1963, 1978; Tartakovsky, 1991; Tartakovsky and Veeravalli, 2005).
We begin with a study of centralized detection procedures for these problems, i.e.,
procedures where all the sensor observations are directly available to the fusion
center for decision–making. Because the centralized problem is equivalent to the
standard formulation with vector observations corresponding to the concatenation
of the sensors’ observations at each time, the CUSUM and Shiryaev–Roberts
procedures are optimal for the minimax formulation (Lai, 1995, 1998; Lorden,
1971; Moustakides, 1986; Pollak, 1985, 1987) and Shiryaev’s test is optimal for
the Bayesian formulation (Baron and Tartakovsky, 2006; Shiryaev, 1963, 1978;
Tartakovsky, 1991; Tartakovsky and Veeravalli, 2005), when the observations are
independent and identically distributed (i.i.d.) in time before and after the change, as
well as for more general non-i.i.d. stochastic models. We summarize the asymptotic
performance of these centralized procedures in the i.i.d. case in the setting where the
false alarm rate (or probability) goes to zero. This asymptotic performance serves
as a benchmark in the comparison of decentralized detection procedures.

We then present asymptotically optimal decentralized quickest change detection
procedures for two scenarios. In the first scenario, the sensors send quantized
versions of their observations to the fusion center where the change detection is
performed based on all the sensor messages. In the second scenario, the sensors
perform local change detection and send their final decisions to the fusion center
for combining. We show that our decentralized procedures for the latter scenario
have the same first-order asymptotic performance as the corresponding centralized
procedures that have access to all of the sensor observations. We also present Monte
Carlo simulation results for examples involving Gaussian and Poisson observations.
These examples show that although the procedures with local decisions are
globally asymptotically optimal as the false alarm rate (or probability) goes to
zero, they perform worse than the corresponding decentralized procedures with
binary quantization at the sensors, unless the false alarm rate (or probability) is
unreasonably small.

2. PROBLEM FORMULATION AND CENTRALIZED
DETECTION PROCEDURES

Consider a distributed N -sensor system in which one observes an N -component
stochastic process X�n� = �X1�n�� � � � � XN �n��. The component Xi�n�, n = 1� 2� � � �
corresponds to observations obtained from the ith sensor Si, as shown in Figure 1.
We begin by studying the centralized fusion problem where the sensors do not
quantize their observations or make local decisions, i.e., Ui�n� = Xi�n�. At an
unknown point in time � (� = 1� 2 � � � ), an event occurs and all of the components
change their distribution. The observation sequences �X1�n��� �X2�n��� � � � � �XN �n��
are assumed to be mutually independent, conditioned on the change-point.
Moreover, we assume that at a particular sensor, the observations are i.i.d. before
and after the change (with different distributions). If the change occurs at � = k,
then in sensor Si the data Xi�1�� � � � � Xi�k− 1� follow the distribution F

�0�
i with a
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444 Tartakovsky and Veeravalli

density f
�0�
i �x�, whereas the data Xi�k�� Xi�k+ 1�� � � � have the common distribution

F
�1�
i , with a density f

�1�
i �x� (both with respect to a sigma-finite measure ��x�).

To be more specific, let �� (correspondingly ��) stand for the probability
measure (correspondingly expectation) when the change does not occur (� = �),
and let �k (correspondingly �k) be the probability measure (correspondingly
expectation) when the change occurs at time � = k, k < �. Write Xn

i =
�Xi�1�� � � � � Xi�n�� and Xn = �Xn

1� � � � �X
n
N � for the concatenation of the first n

observations from the ith sensor and from all N sensors, respectively. Then, under
��, the density of Xn is

p0�X
n� =

N∏
i=1

n∏
j=1

f
�0�
i �Xi�j�� for all n ≥ 1

and, under �k, the density of Xn is

pk�X
n� =

N∏
i=1

[ k−1∏
j=1

f
�0�
i �Xi�j��

n∏
j=k

f
�1�
i �Xi�j��

]
for k ≤ n

and pk�X
n� = p0�X

n� for k > n.
Furthermore, let

Zi�n� = log
f
�1�
i �Xi�n��

f
�0�
i �Xi�n��

(2.1)

be the log-likelihood ratio (LLR) between the change and no-change hypotheses for
the nth observation from the ith sensor, and let

�i = �1Zi�1� =
∫

log
(
f
�1�
i �x�

f
�0�
i �x�

)
f
�1�
i �x���dx� (2.2)

be the Kullback–Leibler (K–L) information number (divergence between the
densities f �1�

i �x� and f
�0�
i �x�).

A centralized sequential change-point detection procedure is identified with a
stopping time 	 for an observed sequence �X�n��n≥1, i.e., 	 is an extended integer-
valued random variable, such that the event �	 ≤ n� belongs to the sigma-algebra
�n = 
�Xn� generated by the first n observations from all the sensors. A false alarm
is raised whenever the detection is declared before the change occurs, i.e., when
	 < �. A good detection procedure should guarantee a stochastically small detection
delay 	− � provided that there is no false alarm (i.e., 	 ≥ �), whereas the rate of
false positives should be low.

2.1. Bayesian Formulation

We first consider the Bayesian formulation of the change-point optimization
problem, where the change-point � is assumed to be random with prior probability
distribution

�k = ��� = k�� k = 0� 1� 2� � � � �
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Quickest Change Detection in Distributed Systems 445

where �0 is the probability that the change occurs before observations become
available. The goal is to detect the change as soon as possible after it occurs, subject
to constraints on the false alarm probability.

In what follows, �� stands for the average probability measure, which is
defined as

���•� =
�∑
k=0

�k�•��k

and �� denotes the expectation with respect to ��.
In the Bayesian setting, a reasonable measure of the detection lag is the average

detection delay (ADD)

ADD��	� = ���	− � � 	 ≥ ��� (2.3)

whereas the false alarm rate can be measured by the probability of false alarm

PFA��	� = ���	 < �� =
�∑
k=0

�k�k�	 < k�� (2.4)

An optimal Bayesian detection procedure is a procedure for which ADD is
minimized while PFA�	� is set at a given level �, 0 < � < 1. Specifically, define the
class of change-point detection procedures


B��� = �	 � PFA��	� ≤ ���

for which the false alarm probability does not exceed the predefined number �.
The optimal Bayesian change-point detection procedure is described by the stopping
time

�B = arg inf
	∈
B���

ADD��	��

2.2. Minimax Formulation

In the minimax formulation of the change-point detection problem, the change-
point � is assumed to be deterministic but unknown. In this case, the false alarm
rate (FAR) can be measured by the average run length (ARL) to false alarm

ARL�	� = ��	�

As a measure of the detection lag, we will use the supremum average detection delay
(SADD) proposed by Pollak in mid 1970s

SADD�	� = sup
1≤k<�

�k�	− k � 	 ≥ k��

An optimal minimax detection procedure is a procedure for which SADD�	� is
minimized while ARL�	� is set at a given level �, � > 1. Specifically, define the class
of minimax change-point detection procedures


m��� = �	 � ARL�	� ≥ ��
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446 Tartakovsky and Veeravalli

for which the ARL exceeds the predefined positive number �. The optimal minimax
change-point detection procedure is described by the stopping time

�m = arg inf
	∈
m���

SADD�	�� (2.5)

2.3. Uniform Formulation

Although the Bayesian and minimax formulations are reasonable and can be
justified in many applications, it would be most desirable in applications to
guarantee small values of the conditional average detection delay CADDk�	� =
�k�	− k � 	 ≥ k� uniformly for all k ≥ 1 when the FAR is fixed at a certain level.
However, if the FAR is measured in terms of the ARL to false alarm, i.e., it
is required that ARL�	� ≥ � for some � > 1, then a procedure that minimizes
CADDk�	� for all k does not exist. It is only possible to find minimax detection
procedures that minimize SADD�	� = supk ADDk�	� in the worst case scenario, as
we discussed in the previous section. More importantly, the requirement of having
large values of the mean time to false alarm ��	 generally does not guarantee small
values of the local probability of false alarm (PFA) ���k ≤ 	 < k+ T� in a time
interval of the fixed length T ≥ 1 for all k ≥ 1 or small values of the corresponding
conditional local PFA ���	 < k+ T � 	 ≥ k�, k ≥ 1. Indeed, the condition ��	 ≥
� only guarantees the existence of some k (that possibly depends on �) for which
���	 < k+ T � 	 ≥ k� < T/� (cf. Tartakovsky, 2005). This means that, for a given
0 < � < 1, the PFA constraint

sup
k≥1

���	 < k+ T � 	 ≥ k� ≤ � for a certain T ≥ 1 (2.6)

is stronger than the ARL constraint ��	 ≥ �.
At the same time, for many practical applications, including computer intrusion

detection and a variety of surveillance applications such as target detection and
tracking, it is desirable to control the supremum local PFA, which is given by
PFAT �	� = supk≥1 ���	 < k+ T � 	 ≥ k�, at a certain (usually low) level �.

For this reason, we introduce the class of detection procedures that
satisfy (2.6):


T
u ��� = �	 � PFAT �	� ≤ ���

i.e., for which PFAT �	� does not exceed a predefined value 0 < � < 1 for some
T ≥ 1.

The goal is to find a uniformly optimal change-point detection procedure that
is described by the stopping time

�u = arg inf
	∈
T

u ���
CADDk�	� for all k ≥ 1� (2.7)

Although we do not address the solution to this optimization problem here, we
discuss asymptotically uniformly optimal solutions in the following section.
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Quickest Change Detection in Distributed Systems 447

2.4. CUSUM and Shiryaev–Roberts Centralized Detection Tests:
Minimax and Uniform Optimality

It is known that the asymptotic performance of an optimal minimax centralized
detection procedure that has access to all data Xn is given by

inf
	∈
m���

SADD�	� = log �
�c

tot
�1+ o�1��� as � → �� (2.8)

where �c
tot =

∑N
i=1 �i, with �i being defined by (2.2). See, e.g., Basseville and

Nikiforov (1993), Lai (1995, 1998), Pollak (1987), Tartakovsky (1991), and
Tartakovsky and Veeravalli (2002). This performance is attained for the centralized
CUSUM and Shiryaev–Roberts tests that use all available data, which are defined as

	c�h� = min�n ≥ 1 � Wc�n� ≥ h� and 	̂c�h� = min�n ≥ 1 � logRc�n� ≥ h�� (2.9)

where the (centralized) CUSUM and Shiryaev–Roberts statistics Wc�n� and Rc�n�
are given, respectively, by the recursions

Wc�n� = max
{
0�Wc�n− 1�+

N∑
i=1

Zi�n�

}
� Wc�0� = 0� (2.10)

Rc�n� = �1+ Rc�n− 1�� exp
{ N∑

i=1

Zi�n�

}
� Rc�0� = 0� (2.11)

where Zi�n� is defined in (2.1) and threshold h is chosen so that ARL�	c�h��= �
and ARL�	̂c�h�� = � (at least approximately). The Shiryaev–Roberts test will be
introduced and discussed in more detail in Section 2.5 in connection with the
Bayesian problem setting.

It is also known that ARL�	c�h�� ≥ ARL�	̂c�h�� ≥ eh, and hence, h = log �
guarantees ARL�	c�h�� ≥ ARL�	̂c�h�� ≥ �. See, e.g., Lorden (1971), Pollak (1987),
and Tartakovsky (1991). The latter choice is usually conservative but useful for
preliminary estimates and first-order asymptotic analysis. Substantial improvements
can be obtained using corrected Brownian motion approximations (Siegmund, 1985)
and the renewal theory arguments (Pollak, 1987; Tartakovsky, 2005). In particular,
the following asymptotic approximations to the ARL are fairly accurate even for
moderately low threshold values (cf. Pollak, 1987; Tartakovsky, 2005):

ARL�	c�h�� = eh

v2�tot

�1+ o�1��� ARL�	̂c�h�� = v−1eh�1+ o�1�� as h → ��

(2.12)

where constant v depends on the pre- and postchange distributions and can be
computed using renewal-theoretic argument (see, e.g., Siegmund, 1985; Woodroofe,
1982).

If instead of the ARL constraint (i.e., the class 
m���) and the minimax setting
(2.5) we are interested in the uniform optimality setting (2.7), then the asymptotic
performance of a uniformly optimal centralized detection procedure that has access
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448 Tartakovsky and Veeravalli

to all data Xn is given by

inf
	∈
T

u ���
CADDk�	� =

� log ��
�c

tot
�1+ o�1��� as � → 0� (2.13)

which follows from Tartakovsky (2005).
The asymptotic performance (2.13) is attained again for the centralized

CUSUM and Shiryaev–Roberts tests given in (2.9), with the thresholds h chosen
so that PFAT �	

c�h�� = � and PFAT �	̂
c�h�� = �. To this end, we may use the

results of Pollak and Tartakovsky (2008a) and Tartakovsky (2005), which state
that the distributions of the suitably standardized stopping times 	c�h� and 	̂c�h�
are asymptotically exponential as h → �. More specifically, 	c�h�e−hv2�c

tot and
	̂c�h�e−hv converge weakly to Exponential(1) and the moment generating functions
to that of Exponential(1) when h goes to infinity. Therefore, for sufficiently large
h, PFAT �	

c�h�� ≈ 1− �1− e−hv2�c
tot�

T and PFAT �	̂
c�h�� ≈ 1− �1− e−hv�T , and by

selecting h� = log�Tv2�c
tot/�� for the CUSUM test and h� = log�Tv/�� for the

Shiryaev–Roberts test, we guarantee PFAT �	
c�h��� ≈ PFAT �	̂

c�h��� ≈ �. The latter
approximations are asymptotically accurate. Furthermore, because for every k ≥ 1,

CADDk�	
c�h�� = h/�c

tot�1+ o�1�� and

CADDk�	̂
c�h�� = h/�c

tot�1+ o�1�� as h → ��

it follows form (2.13) that with this choice of thresholds, for every k ≥ 1,

inf
	∈
T

u ���
CADDk�	� ∼ CADDk�	̂

c�h��� ∼ CADDk�	
c�h��� ∼

� log ��
�c

tot
as � → 0�

i.e., these detection procedures are indeed uniformly asymptotically optimal in the
class 
T

u ���.

2.5. Shiryaev and Shiryaev–Roberts Centralized Tests:
Bayesian and Quasi-Bayesian Optimality

Let pn = ��� ≤ n �Xn� be the posterior probability that the change occurred before
time n. It follows from works of Shiryaev (1961, 1963, 1978) that if the distribution
of the change-point is geometric (i.e., �k = �1− �0���1− ��k−1, k ≥ 1), then the
optimal centralized detection procedure is the one that raises an alarm at the first
time such that the posterior probability pn exceeds a threshold A,

��A� = min�n ≥ 1 � pn ≥ A�� (2.14)

where the threshold A = A� should be chosen in such a way that PFA����A�� = �,
where

PFA���� = �1− �0�
�∑
k=1

��1− ��k−1�k�� < k�

is the average probability of false alarm (see (2.4)). However, it is difficult to find a
threshold that provides an exact match to the given PFA. Also, until recently there
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Quickest Change Detection in Distributed Systems 449

were no results related to the ADD evaluation of this optimal procedure (except for
the continuous-time Wiener process).

Although the exact match of the false alarm probability is related to the
estimation of the overshoot in the stopping rule (2.14), and for this reason is
problematic, a simple upper bound, which ignores overshoot, can be obtained.
Indeed, because �����A� < �� = ���1− p��A�� and 1− p��A� ≤ 1− A on ���A� < ��,
it follows that the PFA obeys the inequality

PFA����A�� ≤ 1− A� (2.15)

Thus, setting A = A� = 1− � guarantees the inequality PFA���A��� ≤ �. Note that
inequality (2.15) holds true for arbitrary (proper), not necessarily geometric, prior
distributions and for arbitrary non-i.i.d. models.

In the rest of the paper, we assume that ��� = 0� = �0 = 0 and the prior
distribution of the change-point is geometric with the parameter �, 0 < � < 1, i.e.,

�k = ��� = k� = ��1− ��k−1 for k = 1� 2� � � � � (2.16)

For k ≤ n, introduce the following two statistics

�k
n �=

d�k

d��
�Xn� =

n∏
t=k

N∏
i=1

f
�i�
1 �Xi�t��

f
�i�
0 �Xi�t��

(2.17)

and

Rc
��n� =

n∑
k=1

�1− ��k−1−n�k
n� (2.18)

Note that the statistic Rc
��n� satisfies the recursion

Rc
��n� =

1
1− �

�1+ Rc
��n− 1���n

n� Rc
��0� = 0� (2.19)

which is useful in implementation.
Considering that Rc

��n� = pn/��1− pn���, the centralized Shiryaev stopping rule
given in (2.14) can be written in the following form

�c�B�� = min�n ≥ 1 � Rc
��n� ≥ B��� B� =

A

�1− A��
� (2.20)

Consequently,

B��� = �1− ��/���� implies �c�B���� ∈ 
B���� (2.21)

It is worth mentioning that the Shiryaev procedure (2.20) is optimal not only
in the i.i.d. case, but also asymptotically optimal in a non-i.i.d. scenario when �
approaches zero under fairly general conditions in both discrete and continuous
time cases, as has been recently shown by Tartakovsky and Veeravalli (2005) and
Baron and Tartakovsky (2006).
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450 Tartakovsky and Veeravalli

In addition to the Bayesian Shiryaev procedure, we will also be interested
in a related procedure, namely the Shiryaev–Roberts detection procedure.
The Shiryaev–Roberts (SR) procedure is defined by the stopping time

	̂c�B� = min�n ≥ 1 � Rc�n� ≥ B� (2.22)

(compare with (2.9)) where the statistic Rc�n� is given by

Rc�n� =
n∑

k=1

�k
n� (2.23)

Note that this statistic obeys the recursion (2.11).
It can be seen that the SR stopping rule (2.22) represents the limiting form

of Shiryaev’s stopping rule (2.20) as � → 0, i.e., for the improper uniform prior
distribution. This useful property has been previously noticed by Pollak (1985) and
can be used for establishing an exact optimality property of the SR procedure with
respect to the integral average detection delay IADD�	� = ∑�

k=1 �k�	− k�+. To be
specific, let the threshold B = B� be chosen so that ��	̂c�B�� = � (exactly). Then the
SR procedure minimizes the integral average detection delay in the class 
m��� (for
every � > 1):

inf
	∈
m���

�∑
k=1

�k�	− k�+� (2.24)

The intuition behind this statement is as follows. First, taking the limit in (2.18),
it is easy to see that Rc�n� = lim�→0 R

c
��n�. Second, the threshold in the Shiryaev rule

(normalized by �) is chosen as in (2.21), i.e.,

B� =
1− PFA�

�PFA� �

where PFA� → 1 as � → 0 and

1− PFA�

�
=

∑�
k=1 ��1− ��k−1�1− ����c < k��

�
=

�∑
k=1

�1− ��k−1����
c ≥ k� → ��	̂

c�

where we used the fact that �k��
c < k� = ����c < k�, since ��c < k� ∈ �k−1.

Therefore, the PFA constraint in the Shiryaev rule is replaced with the ARL
constraint in the SR rule, which shows that the SR detection test is the limit of
Shiryaev’s detection test, where instead of using the PFA constraint one has to use
a constraint on ARL = ��	.

Finally, the Bayesian average detection delay ADD��	� = ���	− � � 	 ≥ �� in
the Shiryaev procedure is replaced with the sum

∑�
k=1 �k�	− k�+ in the SR

procedure. To see this, it suffices to note that, as � → 0, ADD���c� converges to

ADD0�	̂c� =
∑�

k=1 �k�	̂
c − k � 	̂c ≥ k����	̂c ≥ k�∑�
k=1 ���	̂c ≥ k�

= 1
��	̂c

�∑
k=1

�k�	̂
c − k�+� (2.25)

Because the Shiryaev rule is optimal, this allows us to conjecture that the SR
rule is (exactly) optimal with respect to IADD�	� = ∑�

k=1 �k�	− k�+. A rigorous
proof with all details can be found in Pollak and Tartakovsky (2008b).
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Quickest Change Detection in Distributed Systems 451

In a variety of surveillance applications such as intrusion detection in computer
networks, target detection in radar and IR systems, etc., it is of utmost importance
to detect a real change as quickly as possible after its occurrence, even at the price
of raising many false alarms (using a repeated application of the same stopping rule)
before the change occurs. This essentially means that the change-point � is very
large compared to the constant �, which, in this case, defines the mean time between
consecutive false alarms. It also means that the cost of making false detections is
relatively small to the cost of the detection delay, which of course may be realistic
only if an independent mechanism (or algorithm) is available for filtering/rejection
false detections.

To be more specific, let 	̂c1�B��� 	̂
c
2�B��� � � � be sequential independent repetitions

of the SR stopping time 	̂c1�B�� defined in (2.22). Therefore, the SR statistic is
renewed from scratch after each alarm. Note that ��	̂ci �B�� = � for i ≥ 1. Let
(for j ≥ 1) Qj = 	̂c1�B��+ 	̂c2�B��+ · · · + 	̂cj �B�� be the time of the jth alarm, and
let J� = min�j ≥ 1 � Qj ≥ ��, i.e., QJ�

is the time of detection of a true change that
occurs at � after J� − 1 false alarms have been raised. Figure 2 illustrates this
scenario.

The previous optimality result given in (2.24) is useful in showing that the
repeated SR procedure defined by QJ�

is asymptotically (as � → �) optimal with
respect to the expected delay ���QJ�

− �� in the class of detection procedures 
m���.
See Theorem 2 in Pollak and Tartakovsky (2008b). Note that this result is not
asymptotic with respect to the ARL: it holds for every � > 1. This result has been
first proven by Shiryaev (1961, 1963) in continuous time for the problem of detecting
a change in the drift of Brownian motion.

In addition, it follows from the discussion in Section 2.4 that the centralized SR
test (along with the CUSUM test) is asymptotically minimax optimal in the class

m��� as � → � (i.e., subject to the ARL constraint) and asymptotically uniformly
optimal in the class 
T

u ��� as � → 0 (i.e., subject to the local supremum false alarm
probability constraint).

However, both SR and CUSUM change-point detection tests lose their
optimality property under the Bayesian criterion (in the class 
B���) as long
as the parameter � of the geometric prior distribution is not small. Indeed, as
it was established by Tartakovsky and Veeravalli (2005), for small PFA �, the

Figure 2. Detection scenario.
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452 Tartakovsky and Veeravalli

average detection delay of the optimal Shiryaev procedure allows for the following
asymptotic approximation:

ADD���c�B����� ∼
� log ��

�c
tot + � log�1− ��� as � → 0� (2.26)

On the other hand, it follows from Tartakovsky and Veeravalli (2005) that
for the SR and CUSUM tests with thresholds B� = 1/���� and h� = log�1/���,
respectively (which guarantee PFA��	̂c�B��� ≤ �, PFA��	c�h��� ≤ �), the Bayesian
average detection delays are

ADD��	̂c�B��� ∼ ADD��	c�h��� ∼
� log ��
�c

tot
as � → 0� (2.27)

Comparing (2.26) and (2.27) shows that neither the SR procedure nor the CUSUM
procedure are asymptotically optimal unless �c

tot 	 � log�1− ���. However, the latter
condition often holds, especially if the number of sensors is large enough, so that the
data have much more information (which is expressed in the value of the total K–L
information number �c

tot) compared to the prior knowledge (which is expressed via
the term � log�1− ��� in (2.26)).

The above analysis allows us to conclude that both the centralized CUSUM
and SR detection tests represent reasonable benchmark procedures in all
three considered classes of detection tests and all three performance metrics:
minimax—SADD in the class 
m���; uniform—CADDk in the class 
T

u ���; and
Bayesian—ADD� in the class 
B���.

Remark 2.1. In the present paper, we do not consider Lorden’s essential supremum
measure ESADD�	� = sup� ess sup���	− � � 	 ≥ ��X�−1�, which is often considered
to be overly pessimistic, because, obviously, ESADD�	� ≥ SADD�	� ≥ ADD��	�.
However, as has been proven by Moustakides (1986), the CUSUM detection
procedure is not only asymptotically but exactly optimal with respect to ESADD�	�

in the class 
m��� (i.e., for all � > 1) whenever threshold h = h� is selected in such
a way that ARL�	c�h��� = �. Such a powerful result is not available in the minimax
setting with respect to Pollak’s supremum measure SADD�	�. The detection delay
measures SADD�	� and ESADD�	� differ quite fundamentally. As it is apparent
from the previous discussion, Pollak’s measure SADD�	� is closer to Shiryaev’s
measure ADD��	� than to ESADD�	�. Indeed, because ADD��	� converges to
ADD0�	� defined in (2.25) and because the minimax procedure that minimizes
SADD�	� should be an equalizer (i.e., �k�	− k � 	 ≥ k� = �1�	− 1� for all k ≥ 1),
we obtain from (2.25) that for the minimax test ADD��	� = ADD0�	� = �1�	− 1�
for every � ≥ 0. It is therefore reasonable to assume that the SR test with a curved
threshold that increases initially and becomes constant when time goes on should
be exactly minimax in the class 
m��� for all � > 1. If, however, the point of change
� is modeled as a stopping time itself, then Lorden’s measure may be the most
appropriate detection delay metric. A detailed discussion of this issue can be found
in the paper by Moustakides (2008).
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Quickest Change Detection in Distributed Systems 453

3. DECENTRALIZED DETECTION WITH QUANTIZATION
AT SENSORS

Consider the scenario where based on the information available at sensor Si at time
n a message Ui�n� belonging to a finite alphabet of size Mi (e.g., binary) is formed
and sent to the fusion center (see Figure 1). Write U�n� = �U1�n�� � � � � UN �n�� for
the vector of N messages at time n. Based on the sequence of sensor messages, a
decision about the change is made at the fusion center. This test is identified with a
stopping time on �U�n��n≥1 at which it is declared that a change has occurred. The
goal is to find tests based on �U�n��n≥1 that optimize the trade-off between detection
delay and false alarm rate. This problem was introduced in Veeravalli (2001), and
subsequently studied in asymptotic settings in other papers, including Tartakovsky
and Veeravalli (2002, 2003, 2004), Tartakovsky and Kim (2006), Mei (2005), and
Moustakides (2006).

Various information structures are possible for the decentralized configuration
depending on how feedback and local information is used at the sensors (a detailed
concert of possibilities is described in Veeravalli, 2001). Here we consider the
simplest information structure where the message Ui�n� formed by sensor Si at
time n is a function of only its current observation Xi�n�, i.e., Ui�n� = �i�n�Xi�n��.
Moreover, because for a particular sensor Si, the sequence �Xi�n��n≥1 is assumed
to be i.i.d., it is natural to confine ourselves by stationary quantizers for which
the quantizing functions �i�n do not depend on n, i.e., �i�n = �i for all n ≥ 1. The
quantizing functions � = ��i� i = 1� � � � � N�, together with the fusion center stopping
time 	, form a policy � = ��� 	�.

Let H� be the hypothesis that the change occurs at time � ∈ �1� 2� � � � �, and let
H� be the hypothesis that the change does not occur at all. Also, let g

�j�
i denote

the probability mass function (p.m.f.) induced on Ui when the observation Xi�n� is
distributed as f �j�

i , j = 0� 1. Then, for fixed sensor quantizers, the LLR between the
hypotheses Hk and H� at the fusion center is given by

Zq�k� n� =
n∑

j=k

N∑
i=1

log
g
�1�
i �Ui�j��

g
�0�
i �Ui�j��

� (3.1)

Hereafter the superscript index q stands for quantized versions of the corresponding
variables to distinguish from the centralized case where we used the superscript c.
For fixed sensor quantizers, the fusion center faces a standard change detection
problem based on the vector observation sequence �U�n��n≥1.

3.1. Minimax and Uniformly Optimal Detection Tests Based on Quantized Data

Here the goal is to choose the policy � that minimizes SADD��� and/or
CADD���� (for all � ≥ 1) defined by

SADD��� = sup
1≤�<�

���	− � � 	 ≥ �� and CADD���� = ���	− � � 	 ≥ �� (3.2)

while maintaining the ARL to false alarm (false alarm rate) ARL��� = ��	 at a
level not less than � > 1 and/or the local probability of false alarm PFAT ��� =
supk≥1 ���	 < k+ T � 	 ≥ k� at the level not more than 0 < � < 1.
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454 Tartakovsky and Veeravalli

We can define the CUSUM and SR statistics by Wq�n� = max0≤�≤n Z
q��� n� and

Rq�n� = ∑n
�=1 e

Zq���n�, respectively, which obey the recursions:

Wq�n� = max�0�Wq�n− 1�+ Zq�n� n��� Wq�0� = 0�
(3.3)

Rq�n� = �1+ Rq�n− 1�� exp�Zq�n� n��� Rq�0� = 0�

Then the CUSUM and SR detection procedures at the fusion center 	q�h� and 	̂q�a�
are, respectively, given by

	q�h� = min�n ≥ 1 � Wq�n� ≥ h�� 	̂q�a� = min�n ≥ 1 � log�Rq�n�� ≥ a� (3.4)

where h and a are positive thresholds, which are selected so that ARL�	q� ≥ � and
ARL�	̂q� ≥ � in the case of optimizing SADD in the class 
m��� and PFAT �	

q� ≤ �
and PFAT �	̂

q� ≤ � in the case of optimizing CADD� for all � in the class 
T
u ���.

Let �q
i = �1�g

�1�
i �Ui�1��/g

�0�
i �Ui�1��� denote the K–L information number for

quantized data in the ith sensor (i.e., divergence between g
�1�
i and g

�0�
i ), and let �q

tot =∑N
i=1 �

q
i be the total K–L information accumulated from all sensors.

For the sake of brevity we first restrict our attention to the minimax problem in
the class 
m���. Similar to (2.8) we obtain that detection procedures 	q�h� and 	̂q�h�
given in (3.4), with h = a = log �, are asymptotically minimax optimal as � → �
among all procedures with ARL to false alarm greater than � (for fixed quantizers
�i). To be specific,

inf
	∈
m���

SADD�	� ∼ SADD�	q� ∼ SADD�	̂q� ∼ log �
�q

tot
as � → ��

This result immediately reveals how to choose the sensor quantizers.

Lemma 3.1. It is asymptotically optimum (as � → �) for sensor Si at time n to select
�i to maximize �q

i , the K–L information number.

By Tsitsiklis (1993), an optimal �i that maximizes �q
i is a monotone likelihood

ratio quantizer (MLRQ), i.e., there exist thresholds a1� a2� � � � � aMi−1 satisfying
−� < a1 ≤ a2 ≤ · · · ≤ aMi−1 such that

�i�opt�Xi� = bi only if abi
< Zi�Xi� ≤ abi+1� (3.5)

where Zi�Xi� = log�f �1�
i �Xi�/f

�0�
i �Xi�� is the LLR at the observation Xi (at sensor Si).

Note that function �i�opt is independent of n.
Thus, the asymptotically optimal policy �opt for a decentralized change

detection problem consists of a stationary (in time) set of MLRQs at the sensors
followed by CUSUM or SR procedures based on �U�n�� at the fusion center
(as described in (3.4)).

For each i, we denote the corresponding pmfs induced on Ui�n� by g
�1�
i�opt and

g
�0�
i�opt (i.e., at the output of the stationary MLRQ �i�opt that maximizes �q

i ). Then
the effective total K–L information number between the change and no-change
hypotheses at the fusion center is given by

�q
tot�opt =

N∑
i=1

��g
�1�
i�opt� g

�0�
i�opt�� (3.6)
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Quickest Change Detection in Distributed Systems 455

Further, we denote by 	
q
opt and 	̂

q
opt, respectively, the CUSUM and SR stopping

rules at the fusion center for the case where the sensor quantizers are chosen to
be �opt = ��i�opt�. Finally, we denote by �opt = ��opt� 	

q
opt� and �̂opt = ��opt� 	̂

q
opt� the

corresponding CUSUM and SR policies, respectively, with optimal quantization.
We also need the following additional notation:

Sq�n� =
n∑

k=1

N∑
i=1

log
g
�1�
i �Ui�k��

g
�0�
i �Ui�k��

� Sq�0� = 0� �h = min�n ≥ 1 � Sq�n� ≥ h��

vq = lim
h→�

�1 exp�−�Sq��h�− h��� (3.7)

where the constant vq can be computed using renewal-theoretic arguments (see, e.g.,
Siegmund, 1985; Woodroofe, 1982).

The asymptotic performance of the asymptotically optimal solutions to the
decentralized change detection problem described above is given in the following
theorem.

Theorem 3.1. Suppose �tot�opt is positive and finite.

(i) Then h = a = log � implies that ARL�	qopt� ≥ ARL�	̂qopt� ≥ �, and moreover, the
limits lim�→��ARL�	qopt�/�� and lim�→��ARL�	̂qopt�/�� are bounded.

(ii) If, in addition, Zq�1� 1� is nonarithmetic, then

ARL�	qopt�h�� ∼ eh

v2q�
q
tot�opt

� ARL�	̂qopt�a�� ∼ ea/vq as h� a → �� (3.8)

PFAT �	
q
opt�h�� ∼ Te−hv2q�

q
tot�opt� PFAT �	̂

q
opt�a�� ∼ Te−avq as h� a → �� (3.9)

(iii) If a = h = log �, then

inf
�∈
m���

SADD��� ∼ SADD��opt� ∼ SADD��̂opt� ∼
log �
�q

tot�opt
as � → �� (3.10)

If h = h� = log�v2q�
q
tot�opt�� and a = a� = log�vq��, then ARL�	qopt�h��� ∼ � and

ARL�	̂qopt�a��� ∼ � as � → � and asymptotic relations (3.10) hold.
(iv) If h = h� = log�Tv2q�

q
tot�opt/�� and a = a� = log�Tvq/��, then PFAT �	

q
opt�h��� ∼ �

and PFAT �	̂
q
opt�a��� ∼ � as � → 0 and, for all � ≥ 1,

inf
�∈
T

u ���
CADD���� ∼ CADD���opt� ∼ CADD���̂opt� ∼

� log ��
�q

tot�opt
as � → 0�

(3.11)

Proof. Although the proof is almost apparent from our previous discussion,
we present a proof summary and certain important details.

(i) Obviously, 	
q
opt�h� ≥ 	̂

q
opt�h� for any h > 0. It is easily verified that

Rq�n�− n is a zero-mean martingale with respect to ��. Because Rq�	̂
q
opt�h��≥ eh,

applying optional sampling theorem yields ��	̂
q
opt�h� = Rq�	̂

q
opt�h�� ≥ eh. Thus,

ARL�	qopt�h�� ≥ ARL�	̂qopt�h�� ≥ eh = � for a = h = log �. Further technical details
regarding application of the optional stopping theorem may be found in Pollak
(1987) and Tartakovsky and Veeravalli (2004).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

6:
03

 2
3 

M
ay

 2
01

2 



456 Tartakovsky and Veeravalli

(ii) It follows from Pollak and Tartakovsky (2008a) (see also Tartakovsky,
2005, for the CUSUM procedure) that the limiting distributions of
	
q
opt�h�e

−hv2q�
q
tot�opt and 	̂

q
opt�a�e

−avq (as h� a → �) are Exponential(1) and that the
moment generating functions converge to that of Exponential(1), which implies
that

lim
h→�

��
(
	
q
opt�h�e

−hv2q�
q
tot�opt

) = 1� lim
a→���

(
	̂
q
opt�a�e

−avq
) = 1�

i.e., (3.8) follows. The asymptotic approximations for the local PFA (3.9) follow
from the above weak convergence in an obvious manner.

(iii) It is known that for fixed quantizers,

�1	
q�h� = h

�q
tot
�1+ o�1��� �1	̂

q�a� = a

�q
tot
�1+ o�1�� as h� a → �

whenever the K–L information number �q
tot is finite. In fact, these first-order

asymptotic approximations may be deduced from Lorden (1971) and Pollak
(1987) and follow directly from Tartakovsky (1998b). Because SADD�	q�h�� =
�1	

q�h�− 1 and SADD�	̂q�a�� = �1	̂
q�a�− 1, taking a = h = log � or h = h� =

log�v2q�
q
tot�� and a = a� = log�vq��, we obtain

SADD�	q� ∼ SADD�	̂q� ∼ log �
�q

tot
as � → �� (3.12)

Next, by Lai (1998) and Tartakovsky (1998b),

inf
	∈
m���

SADD�	� ≥ log �
�q

tot
�1+ o�1�� as � → ��

which implies that any asymptotically optimal change detection policy �= ��� 	�
should maximize the total K–L information �q

tot = ∑N
i=1 �

q
i , i.e., each K–L

information number �q
i . As discussed above, such a maximizer exists: it is the

MLRQ given by (3.5). If it is being used, then the latter lower bound becomes

inf
��	∈
m���

SADD��� ≥ log �
�q

tot�opt
�1+ o�1�� as � → ��

and, by (3.12),

SADD��opt� ∼ SADD��̂opt� ∼
log �
�q

tot�opt
as � → ��

which along with the previous inequality yields (3.10).

(iv) It follows from Tartakovsky (2005) that the CUSUM test 	q�h� with
threshold h� = log�Tv2q�

q
tot/�� is asymptotically uniformly optimal in the class 
T

u ���
as � → 0, and in just the same way it can be shown that the same is true for the SR
test 	̂q�a� with threshold a = a� = log�Tvq/��, i.e., for all � ≥ 1,

inf
	∈
T

u ���
CADD���� ∼ CADD��	

q�h��� ∼ CADD��	̂
q�a��� ∼

� log ��
�q

tot
as � → 0�

(3.13)
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Quickest Change Detection in Distributed Systems 457

Again, the MLRQ given by (3.5) maximizes the total K–L information number �q
tot,

which shows in just the same way as in the proof of (iii) that the MLRQ followed
by the CUSUM and SR procedures are asymptotically uniformly optimal policies,
i.e., (3.11) follows from (3.13) and the argument given above. �

Remark 3.1. It can be shown (cf. Tartakovsky, 2005) that if the second moments
�1�Zq�1� 1��2 and ���Zq�1� 1��2 are finite and Zq�1� 1� is nonarithmetic, then,
as h→�, the following higher order approximations hold

CADD1�	
q
opt�h�� = 1

�q
tot�opt

�h+ κq + �q�− 1+ o�1��

(3.14)

CADD��	
q
opt�h�� = 1

�q
tot�opt

�h+ κq − �q�− 1+ o�1�� � → ��

where the values of �q = �1�minn≥0 S
q�n��, �q = ���maxn≥0 S

q�n��, and κq =
limh→� �1�S

q��h�− h� can be computed numerically. Similar approximations hold
for the SR detection procedure with different constants �q and �q that are difficult
to compute.

Remark 3.2. The condition that the LLR Zq�1� 1� is nonarithmetic is imposed due
to the necessity of considering certain discrete cases separately in renewal theorems.
Because the data at the output of quantizers are discrete, it may happen that the
LLR does not obey this condition. If Zq�1� 1� is arithmetic with span d > 0, the
results of Theorem 3.1(ii) and approximations (3.14) hold true as h → � through
multiples of d (i.e., h = kd, k → �). We stress, however, that even in discrete cases
where the data are arithmetic, the LLR is usually nonarithmetic. A typical example
is a binary (Bernoulli) case where the sum

∑n
k=1 Xk is arithmetic but the LLR, which

is a weighted sum, is almost always nonarithmetic.

We now continue by considering the simplest case where Ui�n� = �i�Xi�n�� are
the outputs of binary quantizers and specify previous results for this case. Also, in
the rest of this section we will consider only the CUSUM detection procedure with
understanding that analogous results hold for the SR procedure. It follows from
Theorem 3.1 that the optimal binary quantizer is the MLRQ that is given by

Ui = �i�X� =
{
1 if Zi�X� = log�f �1�

i �X�/f
�0�
i �X�� ≥ ti�

0 otherwise�

where ti is a threshold that maximizes the K–L information in the resulting Bernoulli
sequence.

To be precise, for j = 0� 1, let g
�j�
i denote the probability induced on Ui�n�

when the observation Xi�n� is distributed as f
�j�
i . Let g0�i = g

�0�
i �Ui�n� = 1� and

gi = g
�1�
i �Ui�n� = 1� denote the corresponding probabilities under the normal and

the anomalous conditions, respectively. The resulting binary (Bernoulli) sequences
�Ui�n�� i = 1� � � � � N�, n ≥ 1 are then used to form the binary CUSUM statistic
similar to (3.3) as

Wq�n� = max
{
0�Wq�n− 1�+

N∑
i=1

Z
q
i �n�

}
� Wq�0� = 0 (3.15)
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458 Tartakovsky and Veeravalli

where

Z
q
i �n� = log

g
�1�
i �Ui�n��

g
�0�
i �Ui�n��

is the partial LLR between the change and no-change hypotheses for the binary
sequence, which is given by

Z
q
i �n� = ciUi�n�+ c0�i�

Here

ci = log
gi�1− g0�i�

g0�i�1− gi�
� c0�i = log

1− gi
1− g0�i

�

Then the CUSUM detection procedure at the fusion center is given by the
stopping time 	q�h� defined in (3.4). In what follows this detection procedure will be
referred to as the binary quantized CUSUM test and the abbreviation BQ-CUSUM
will be used throughout the paper.

It follows from Theorem 3.1 that the BQ-CUSUM procedure with h = log � is
asymptotically optimal as � → � in the class of tests with binary quantization in the
sense of minimizing the SADD in the class 
m���. More specifically, SADD�	q� =
�1�	

q − 1� and the trade-off curve that relates SADD and ARL for the large ARL is

SADD�	q� ∼ log�ARL�∑N
i=1�gici + c0�i�

� (3.16)

Note that probabilities gi = gi�ti� and g0�i = g0�i�ti� depend on the value of
threshold ti. To optimize the performance, one should choose thresholds t1� � � � � tN
so that the denominator in (3.16) is maximized, i.e.,

t0i = arg max−�<ti<+��q
i �ti�� i = 1� � � � � N� (3.17)

where �q
i �ti� = gi�ti�ci�ti�+ c0�i�ti� is the K–L information number for the binary

sequence in the ith sensor. It follows from (3.16) and (3.17) that the tradeoff curve
for the optimal binary test is

SADD�	q� ∼ log �
�q

tot
� � → �� (3.18)

where �q
tot = ∑N

i=1 maxti �gi�ti�ci�ti�+ c0�i�ti��.
The asymptotic relative efficiency (ARE) of a detection procedure 	� with

respect to a detection procedure ��, both of which meet the same lower bound � for
the ARL, will be defined as

ARE�	�� ��� = lim
�→�

SADD�	��

SADD����
�

Using (2.8) and (3.18), we obtain that the ARE of the globally asymptotically
optimal test � (e.g., for the centralized CUSUM and SR tests) with respect to the
BQ-CUSUM test 	q is

ARE��� 	q� = lim
�→�

inf	∈
m��� SADD�	�

SADD�	q�h���
= �q

tot

�c
tot
� (3.19)
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Quickest Change Detection in Distributed Systems 459

Obviously, the same result holds for CADD� in the class 
T
u ��� and for the SR

detection procedure. Specifically,

ARE��� 	q� = ARE��� 	̂q� = lim
�→0

inf	∈
T
u ���

CADD��	�

CADD��	
q�h���

(3.20)

= lim
�→0

inf	∈
T
u ���

CADD��	�

CADD��	̂
q�a���

= �q
tot

�c
tot

for all � ≥ 1�

Because the centralized K–L information number �c
tot is always larger than �q

tot,
it follows from (3.19) and (3.20) that the value of ARE < 1. However, our study
presented below shows that certain decentralized asymptotically globally optimal
tests may perform worse in practically interesting prelimit situations when the false
alarm rate is moderately low but not very low.

Remark 3.3. It can be shown that for the three particular models, namely Gaussian
� �0� 1� → � ��� 1�, Poisson ��1� → ����, and Exponential Exp�1� → Exp���, the
ARE is a monotone function of � in the interval �2/�� 1�, and lim�→0 ARE��� =
2/� for the Gaussian model and lim�→1 ARE��� = 2/� for the other two models.
See Tartakovsky and Polunchenko (2008). Also, lim�→� ARE��� = 1 for all three
models. Therefore, we expect that in the worst case scenario (for close hypotheses)
the loss due to binary quantization is about 36%, and it is small for far hypotheses.
This is confirmed by simulations.

3.2. Bayes-Optimal Detection Tests Based on Quantized Data

In the Bayesian setting, the goal is to choose the policy � that minimizes
ADD���� = ���	− � � 	 ≥ ��, while maintaining the average probability of false
alarm PFA���� = ���	 < �� = ∑�

k=1 �k���	 < k� at a level not greater than �.
Although all the results may be generalized for an arbitrary prior distribution

�k as in Tartakovsky and Veeravalli (2005), for the sake of simplicity, in this paper
we are considering only the geometric prior distribution given in (2.16).

Define the Shiryaev statistic based on the quantized data as

Rq
��n� =

n∑
k=1

�1− ��k−1−n exp�Zq�k� n��� (3.21)

or recursively,

Rq
��n� =

1
1− �

�1+ Rq
��n− 1�� exp�Zq�n� n��� Rq

��0� = 0� (3.22)

(cf. (2.19)), where Zq�k� n� is the cumulative LLR after quantization from all sensors
given in (3.1). Then the Shiryaev procedure at the fusion center has a stopping time

�q�B�� = min�n ≥ 1 � Rq
��n� ≥ B��� (3.23)

where B� is a positive threshold, which is selected so that �q�B�� ∈ 
B���.
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460 Tartakovsky and Veeravalli

Following the same steps as those used in Section 3.1 above (see also
Tartakovsky and Veeravalli, 2003, 2005), we can conclude that the detection
procedure �q�B��, with B� = B��� = �1− ��/����, is asymptotically optimal as
�→ 0 among all procedures with PFA no greater than �. To be specific, let
�= ��1� � � � � �N� be a stationary quantizer. Then, as � → 0,

inf
	∈
B���

ADD���� 	� ∼ ADD���� �q�B����� ∼
� log ��

� log�1− ��� + �q
tot
� (3.24)

where ADD���� 	� = ���	− � � 	 ≥ �� and �q
tot = ∑N

i=1 �
q
i with �q

i being the K–L
information number for quantized data (divergence between g

�1�
i and g

�0�
i ) as in

Section 3.1. From (3.24) it is clear that Lemma 3.1 holds in the Bayesian setting
as well, and the optimal sensor quantizers are MLRQs, with MLRQ �i�opt chosen
to maximize �q

i . With this choice of MLRQs, the effective total K–L information
between the change and no-change hypotheses at the fusion center is given by �q

tot�opt

defined in (3.6).
The identical analysis can be performed for the SR and CUSUM fusion

procedures of (3.4) when applied in the Bayesian setting with thresholds h = h� =
log�1/��� and a = B� = 1/����, and with sensor MLRQs �opt, to yield (see also
(2.27)):

ADD���opt� 	̂
q�B��� ∼ ADD���opt� 	

q�h��� ∼
� log ��
�q

tot�opt
as � → 0� (3.25)

As in the centralized setting, the SR andCUSUMprocedures suffer an asymptotic loss
in efficiency due to the missing term � log�1− ��� in denominator of (3.25). If �q

tot 	
�log�1− ���, as is the case when N is large, the loss in efficiency is negligible.

Now we denote by �
q
opt, 	

q
opt, and 	̂

q
opt the Shiryaev, CUSUM, and SR stopping

rules, respectively, at the fusion center for the case where the sensor quantizers
are chosen to be �opt. Further, we denote by �

�
opt = ��opt� �

q
opt�, �opt = ��opt� 	

q
opt�,

and �̂opt = ��opt� 	̂
q
opt�, respectively, the corresponding Shiryaev, CUSUM, and SR

policies with optimal quantization. The asymptotic performance of these procedures
is given in the following theorem.

Theorem 3.2. Suppose �q
tot�opt is positive and finite.

(i) Then B��� = �1− ��/���� implies that PFA���
q
opt� ≤ � and

inf
�∈
B���

ADD���� ∼ ADD���
�
opt� ∼ � log ��

�q
tot�opt + � log�1− ��� as � → 0� (3.26)

(ii) Furthermore, h� = log�1/��� and B� = 1/���� imply that PFA��	
q
opt� ≤ � and

PFA��	̂
q
opt� ≤ �, and

ADD���opt� ∼ ADD���̂opt� ∼
� log ��
�q

tot�opt
as � → 0� (3.27)

Proof. (i) It follows from Theorem 4 in Tartakovsky and Veeravalli (2005) that,
for any fixed sensor quantizer, B��� = �1− ��/���� implies that PFA���q� ≤ � and

inf
	∈
B���

ADD���� ∼ ADD���q� ∼ � log ��
�q

tot + � log�1− ��� as � → 0�
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Quickest Change Detection in Distributed Systems 461

Therefore, an optimal quantizer must maximize the K–L information �q
tot =∑N

i=1 �
q
i , i.e., K–L numbers �q

i in each sensor. Because such a quantizer exists and
is the MLRQ, (3.26) follows.

(ii) We prove (3.27) only for the SR test. For the CUSUM test the proof is
essentially the same.

Note first that the event �	̂q < n� belongs to the sigma-algebra �n−1, and hence,

PFA�	̂q� =
�∑
n=1

�n�n�	̂
q < n� =

�∑
n=1

�n���	̂
q < n��

Because Rq�n�− n is a zero-mean ��-martingale, the statistic Rq�n� is a
��-submartingale with mean ��Rq�n� = n. Applying Doob’s submartingale
inequality, we obtain that for any B > 0

���	̂
q�B� < n� = ��

{
max
1≤k≤n

Rq�k� ≥ B

}
≤ n/B� (3.28)

which yields

PFA�	̂q�B�� =
�∑
n=1

�n���	̂
q�B� < n� ≤ B−1

�∑
n=1

n��1− ��n−1 = 1/�B���

Thus, B� = 1/���� implies PFA��	̂q�B��� ≤ � for any fixed quantizer, including the
MLRQ.

Now, it follows form Theorem 6 in Tartakovsky and Veeravalli (2005) that for
any fixed sensor quantizer and any 0 < � < 1

ADD��	̂q�B��� ∼
� log ��
�q

tot
as � → 0

whenever �q
tot < �. Therefore, again the optimal quantizer is the MLRQ and

(ii) follows. �

Thus, the AREs of the optimal centralized solutions with respect to their
corresponding decentralized solutions with quantization are given by:

ARE��c�B����� �
q
opt�B����� = lim

�→0

ADD���c�B�����

ADD���
q
opt�B�����

= �q
tot�opt + � log�1− ���
�c

tot + � log�1− ���
and

ARE�	c�h��� 	
q
opt�h��� = ARE�	̂c�B��� 	̂

q
opt�B��� =

�q
tot�opt

�tot

�

Quantization results in loss in efficiency due to the fact that �q
tot�opt < �tot, but

as stated in Remark 3.3 the loss may not be large in many practical cases.
In Section 4.2, we give constructions of two decentralized detection procedures,
with sensors performing local change detection, for which the first-order asymptotic
performance is the same as that for the centralized SR procedure. We will see
in Section 5.2 that the BQ-SR test performs better than these globally first-order
asymptotically optimal tests as long as the PFA is not extremely small.
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462 Tartakovsky and Veeravalli

4. DECENTRALIZED DETECTION BASED ON LOCAL
DECISIONS AT SENSORS

4.1. Minimax Problem Setting

We now consider three detection schemes that perform local detection in the sensors
and then transmit these local binary decisions to the fusion center for optimal
combining and final decision-making. The abbreviation LD-CUSUM will be used
for procedures that perform CUSUM tests in sensors and use local decisions. The
study in this section follows the work by Tartakovsky and Kim (2006).

4.1.1. Asymptotically Optimal Decentralized LD-CUSUM Test

Let

Wi�n� = max�0�Wi�n− 1�+ Zi�n��� Wi�0� = 0

be the CUSUM statistic in the ith sensor, where, as before, Zi�n� =
log�f �i�

1 �Xi�n��/f
�i�
0 �Xi�n��� is the LLR for the original sequence, and let

Ui�n� =
{
1 if Wi�n� ≥ �ih

0 otherwise�

where �i = �i/�tot = �i/
∑N

i=1 �i (�i = �1Zi�1�) and h is a positive threshold.
The stopping time is defined as

Tld�h� = min
{
n ≥ 1 � min

1≤i≤N
�Wi�n�/�i� ≥ h

}
� (4.1)

In other words, binary local decisions (1 or 0) are transmitted to the fusion
center, and the change is declared at the first time when Ui�n� = 1 for all sensors
i= 1� � � � � N .

It follows from Mei (2005) that if �1�Zi�1��3 < �, then

��Tld�h� ≥ eh for every h > 0�

Under an additional Cramér-type condition (see Theorem 4.1 below), it follows
from Dragalin et al. (2000) that

SADD�Tld�h�� =
h

Itot
+ CN

√
h

�tot

+ c + o�1� as h → �� (4.2)

where c is a computable constant that depends on the model and

CN = � max
1≤i≤N

{

i

�i

Yi

}
� (4.3)

Y1� � � � � YN are independent standard Gaussian random variables; 
i =
√
Vari�Z1�i��;

Vari is the operator of variance under f �i�
1 .
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Quickest Change Detection in Distributed Systems 463

Therefore, if h = log �, then

inf
	∈
m���

SADD�	� ∼ SADD�Tld�h�� ∼
log �
�tot

� as � → �� (4.4)

and the detection test Tld�h� is globally asymptotically optimal (AO), i.e.,
ARE�Tld� 	c� = 1. This result has been first established by Mei (2005).
Correspondingly, we will use the abbreviation AO-LD-CUSUM for this test in the
rest of the paper.

However, because the second term in the asymptotic approximation (4.2) is on
the order of the square root of the threshold, it is expected that the convergence
to the optimum is slow. Furthermore, the performance degradation compared to
the optimal centralized test is expected to be more and more severe with growth
of the number of sensors, because the constant CN given by (4.3) increases with N .
Note that for the optimal centralized CUSUM and SR tests and for the
decentralized CUSUM and SR tests with binary quantization, the residual terms are
constants (see (3.14) in Remark 3.1). We therefore expect that for moderate false
alarm rates typical for practical applications, the procedures with quantization may
perform better. This fact is confirmed by MC simulations for Gaussian models in
Mei (2005). In Section 5.1, this conjecture is verified for the Poisson model.

Remark 4.1. Results similar to (4.2) and (4.4) are not available for LD-SR
detection test (where local voting is done based on the SR statistics Ri�n� in place
of the CUSUM statistics Wi�n�) in the class 
m���. It turns out that the renewal
property of the CUSUM statistics Wi�n� plays a crucial factor under the ARL to
false alarm constraint (as well as under the local PFA constraint). See Mei (2005)
for a more detailed discussion. However, as will be made more apparent in Section
4.2, the LD-SR detection test can be effectively constructed in a Bayesian setting (in
the class 
B���).

4.1.2. Decentralized Minimal and Maximal LD-CUSUM and LD-SR Tests

Let 	i�h� = min�n � Wi�n� ≥ h� denote the stopping time of the CUSUM test in the
ith sensor. Introduce the stopping times

Tmin�h� = min�	1� � � � � 	N � and Tmax�h� = max�	1� � � � � 	N ��

which will be referred to as minimal LD-CUSUM (Min-LD-CUSUM) and maximal
LD-CUSUM (Max-LD-CUSUM) tests, respectively. Similarly, we may define Min-
LD-SR and Max-LD-SR tests based on the SR stopping times in sensors 	̂i�h� =
min�n � logRi�n� ≥ h�. Below we focus on CUSUM-based tests keeping in mind
that the results hold for SR-based tests as well.

Consider first the false alarm rate for these detection tests. Clearly, ��Tmax ≥
��	i for every i = 1� � � � � N . Since ��	i ≥ eh, it follows that

ARL�Tmax� ≥ eh for every h > 0�

We now show that

ARL�Tmin� ≥ N−1eh for every h > 0�
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464 Tartakovsky and Veeravalli

Indeed,

Tmin = min
{
n � max

i
Wi�n� ≥ h

} ≥ min
{
n � max

i
Ri�n� ≥ eh

}
≥ min�n � GN�n� ≥ eh/N� = ��

where GN�n� = N−1 ∑N
i=1 Ri�n�. Because GN�n�− n is a zero-mean ��-martingale

and because GN��� ≥ eh/N , it follows from the optional sampling theorem that
��Tmin ≥ ��� = GN��� ≥ eh/N .

However, these inequalities are usually very conservative. For large threshold
values, asymptotically sharp approximations can be derived as follows. It follows
from Pollak and Tartakovsky (2008a) and Tartakovsky (2005) that, as h→�, under
the no-change hypothesis, the stopping times 	i, i = 1� � � � � N are exponentially
distributed with mean values eh/�v2i�i�, where vi are constants that are defined by
(3.7), replacing Sq��h� by

∑�h
k=1 Zi�k�. These constants can be computed numerically

for any particular model using renewal arguments. Therefore, for a large threshold,
Tmin�h� is approximately exponentially distributed with mean

ARL�Tmin� ∼ eh/cN �

where cN = ∑N
i=1 v

2
i�i, whereas the mean of the stopping time Tmax is

ARL�Tmax� ∼ eh/c′N as h → ��

where c′N < cN can be easily computed for any N . In particular, for N = 5 and in
the symmetric case, c′5 = �60/137�v2� ≈ 0�44v2� and c5 = 5v2� .

In order to derive an asymptotic approximation for SADD�Tmin�, note that
�1Tmin�h� ≤ �1	i�h� for all i = 1� � � � � N and, hence,

�1Tmin ≤
h

min1≤i≤N �i

�1+ o�1��� as h → ��

because �1	i�h� ∼ h/�i.
To derive an approximation for SADD�Tmax�, introduce the stopping time

��h� = min
{
n ≥ 1 � min

1≤i≤N
Wi�n� ≥ h

}

and note that ��h� ≥ Tmax�h�. Because Wi�n� =
∑n

k=1 Zi�k�−min1≤k≤n Zi�k� and the
second term is a slowly changing sequence, applying Theorem 2.3 of Tartakovsky
(1998a) yields

�1��h� ∼
h

min1≤i≤N �i

� as h → ��

which implies that

�1Tmax ≤
h

min1≤i≤N �i

�1+ o�1��� as h → ��
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Quickest Change Detection in Distributed Systems 465

It follows that

SADD�Tmin� ≤
h

max1≤i≤N �i

�1+ o�1��� SADD�Tmax� ≤
h

min1≤i≤N �i

�1+ o�1���

Therefore, taking the thresholds h = log��cN � in the Min-LD-CUSUM and
h= log��c′N � in the Max-LD-CUSUM, we obtain bounds for the trade-off curves
that relate the SADD and the ARL, as � → �:

SADD�Tmin� ≤
log �

max1≤i≤N �i

�1+ o�1��� SADD�Tmax� ≤
log �

min1≤i≤N �i

�1+ o�1���

It follows that in the symmetric case where �i = � , the asymptotic relative efficiency
of these detection tests compared to the optimal centralized test is

ARE�Tmin� 	c� ≥ ARE�Tmax� 	c� ≥ N�

Note that although based on the first-order asymptotics it may be expected
that in the symmetric case the Max-LD-CUSUM test may perform as well as the
Min-LD-CUSUM test, Monte Carlo simulations in Section 5.1 show that the Min-
LD-CUSUM test performs better even in the symmetric case. The same conclusion
has been reached by Moustakides (2006) based on the analysis of a two-sensor
continuous-time Brownian motion model.

4.2. Bayesian Problem Setting

In the Bayesian setting, for the sake of brevity, we only consider LD tests based
on SR statistics at the sensors. Similar results can be obtained for LD tests based
on CUSUM statistics. To this end, let Ri�n� =

∑n
k=1

∏n
�=k e

Zi��� be the SR statistic in
sensor Si based on the original, nonquantized data �Xi�1�� � � � � Xi�n��. Clearly, Ri�n�
obeys the recursion

Ri�n� = �1+ Ri�n− 1�� exp�Zi�n��� Ri�0� = 0�

We now introduce the local stopping times in the sensors,

	̂i�Bi� = min�n ≥ 1 � Ri�n� ≥ Bi�� i = 1� � � � � N (4.5)

based on which we can define three fusion rules as in the minimax setting.
For the first fusion rule, at time n, local binary decisions Ui�n� = 0 or 1 are

transmitted to the fusion center, where Ui�n� = 1 if Ri�n� ≥ Bi, and 0 otherwise. In
this case, the stopping time at the fusion center is given by

	̂all = first n ≥ 1 such that Ui�n� = 1 for all i = 1� � � � � N�

Note that this stopping time can be rewritten as

	̂all = min
{
n ≥ 1 � min

1≤i≤N
�Ri�n�/Bi� ≥ 1

}
� (4.6)
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466 Tartakovsky and Veeravalli

For the second fusion rule, we stop monitoring the ith sensor once the
exceedance has occurred and transmit the decision Ui = 1 at time 	̂i to the fusion
center. At the fusion center the decision in favor of the change hypothesis is made
once all the sensors “vote” for this hypothesis. This fusion procedure is equivalent
to the stopping time

	̂max = max
1≤i≤N

	̂i� (4.7)

Note that 	̂all is greater than 	̂max (almost surely).
We can also define the procedure 	̂min that corresponds to the fusion center

stopping at the first time a sensor decision is in favor of the change. This fusion
procedure is equivalent to the stopping time

	̂min = min
1≤i≤N

	̂i�

Clearly, 	̂max is greater than 	̂min (almost surely).
Unlike in the minimax setting, in the Bayesian setting we can show that

the procedure 	̂max has the same first-order asymptotic performance as 	̂all within
the class 
B���, which can be shown to be globally asymptotically optimal
(see Theorem 4.1 below). This optimality is not shared by 	̂min, and therefore we
focus on 	̂all and 	̂max in the following.

To bound the PFA of 	̂all and 	̂max, we use the following argument. Because,
under ��, the local stopping times 	̂1� � � � � 	̂N are independent and, by (3.28),

���	̂i < n� ≤ n/Bi� n ≥ 1�

setting Bi = h�i with �i = �i/�tot and h > 0, we obtain

PFA��	̂max� =
�∑
n=1

�n

N∏
i=1

���	̂i < n� ≤
N∏
i=1

h−�i

�∑
n=1

nN��1− ��n−1�

Noting that
∑N

i=1 �i = 1 and
∑�

n=1 n
N��1− ��n−1 = �N yields PFA��	̂max� ≤ �N/h,

where �N = �N��� is the N th moment of the geometric random variable with
parameter �. Therefore, h� = �N/� guarantees the inequality PFA��	̂max� ≤ �.
Clearly the same bound holds for 	̂all as well, because 	̂all is greater than 	̂max almost
surely.

Furthermore, we prove below that

ADD��	̂max� ∼ ADD��	̂all� ∼ max
1≤i≤N

logBi

�i

�

as mini Bi → �. Now, because

log h� = � log �� + log �N = � log �� + O�1��

it follows that

ADD��	̂max� ∼ ADD��	̂all� ∼
� log ��
�tot

as � → 0� (4.8)

The following theorem formalizes the asymptotic performance of the these two
LD procedures.
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Quickest Change Detection in Distributed Systems 467

Theorem 4.1. Let 	̂all and 	̂max be as in (4.6) and (4.7), respectively. If Bi =
��N/��

�i/�tot , i = 1� � � � � N , then PFA��	̂all� ≤ PFA��	̂max� ≤ � and, as � → 0,

CADDk�	̂max� ∼ CADDk�	̂all� ∼
� log ��
�tot

∀k ≥ 1�

(4.9)

ADD��	̂max� ∼ ADD��	̂all� ∼
� log ��
�tot

�

Suppose, in addition, that �1�Zi�1��3 < �, and the Cramér condition
lim supt→� �1 exp� · t�Zi�1�− �i�� < 1 for the characteristic function of Zi�1�− �i is
satisfied. Let Bi = h�i . Then

ADD��	̂max� ≤ ADD��	̂all� =
log h
Itot

+ CN

√
log h
�tot

+ c + o�1�� as h → �� (4.10)

where CN is defined in (4.3) and c is another constant.

Proof. A detailed proof of this theorem is tedious. We present only the major ideas
and a proof sketch.

It can be shown that the stopping time 	̂all can be represented in the following
form

	̂all = min
{
n ≥ 1 � min

1≤i≤N

�tot

�i

( n∑
k=1

Zi�k�+Gi�n�

)
≥ log h

}
�

where �Gi�n��n≥1, i = 1� � � � � N are slowly changing sequences such that n−1Gi�n�
converge �1-a.s. to 0. Because n−1 ∑n

k=1 Zi�k� converges to �i �1-a.s., it follows that,
as n → �,

1
n

�tot

�i

( n∑
k=1

Zi�k�+Gi�n�

)
→ �tot �1-a.s.

and, by Theorem 2.3 of Tartakovsky (1998a),

�1	̂all ∼ �log h�/�tot as h → ��

The same asymptotic approximation holds for CADDk�	̂all� for any k, which implies
the first asymptotic formula in (4.9). The proof of the second approximation in (4.9)
requires certain additional details that are omitted.

The proof of (4.10) can be constructed based on Theorem 4 in Tartakovsky
et al. (2003) making use the fact that �Gi�n��n≥1, i = 1� � � � � N are slowly changing
sequences. The details are omitted. �

Comparing (4.9) with (2.27), we can see that the first-order asymptotic operating
characteristics of the proposed decentralized procedures are the same as those of the
SR centralized procedure in the sense that

lim
�→0

ADD��	̂max�

ADD��	̂c�
= lim

�→0

ADD��	̂all�

ADD��	̂c�
= 1�

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

6:
03

 2
3 

M
ay

 2
01

2 



468 Tartakovsky and Veeravalli

However, these decentralized procedures have somewhat worse second-order
performance, because for the SR centralized procedure the second term of expansion
of ADD is a constant, whereas for 	̂max (and 	̂all) it grows as a square root of the
threshold (see (4.10)). Thus,

ADD��	̂max�−ADD��	̂c� = O�� log ��1/2� → � as � → 0�

We remark that we were unable to obtain similar results if the optimal Bayesian
(Shiryaev) procedure is used in place of the SR procedure at the sensors. We also
note that although the procedures 	̂max and 	̂all are asymptotically almost globally
optimal, their performance for moderate values of � may be far from optimum, and
may even be inferior to the procedure that uses binary quantizers at the sensors
(see Figure 4 in Section 5.2). Finally, because 	̂all uses more information than 	̂max,
we expect it to perform better.

It is also interesting to note that although CUSUM-based Tmax and SR-based
	̂max LD procedures are by no means asymptotically optimal in the minimax sense
in the class 
m��� with the ARL to false alarm constraint, they are asymptotically
optimal in the class 
B��� with the constraint on the average PFA.

5. SIMULATION RESULTS

5.1. Example 1: Discrete Poisson Case (Minimax Setting)

In this section, we present the results of MC experiments for the Poisson example
where observations Xi�n�, n ≥ 1 in the ith sensor follow the common Poisson
distribution ���i� in the prechange mode and the common Poisson distribution
���i� after the change occurs, i.e., for m = 0� 1� 2� � � � and � = k,

�k�Xi�n� = m� =



��i�

m

m! e−�i for k > n�

��i�
m

m! e−�i for k ≤ n�

where without loss of generality we assume that �i > �i.
Write Qi = �i/�i. It is easily seen that the LLR statistic in the ith senor has the

form

Zn�i� = Xi�n� log�Qi�− �i�Qi − 1�� (5.1)

and the K–L information numbers

�i = �i logQi − �i�Qi − 1�� i = 1� � � � � N� (5.2)

It follows from (2.8), (5.2) and the above discussion that the centralized
CUSUM and AO-LD-CUSUM tests with the thresholds h = log � are first-order
globally asymptotically optimal and

inf
	∈
m���

SADD�	� ∼ SADD�	c� ∼ SADD�Tld� ∼
log �∑N

i=1��i logQi − �i�Qi − 1��
� (5.3)
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Quickest Change Detection in Distributed Systems 469

This means that the ARE of these detection tests with respect to the globally optimal
test is equal to 1.

In order to evaluate the ARE of an optimal test � (e.g., the centralized CUSUM
test 	c or the SR test 	̂c) with respect to the BQ-CUSUM test 	q defined in (3.4), we
use (3.19), which yields

ARE��� 	q� =
∑N

i=1 maxti �gi�ti�ci�ti�+ c0�i�ti��∑N
i=1��i logQi − �i�Qi − 1��

� (5.4)

where the probabilities g0�i�ti� and gi�ti� are given by:

g0�i�ti� =
�∑

k=�ti


�k
i e

−�i

k! � gi�ti� =
�∑

k=�ti


�ki e
−�i

k! �

Note that because the LLRs are monotone functions of Xi�n�, it is equivalent to
quantize the observations. Here and in the following the thresholds ti are set in the
space of observations rather than in LLR space.

The optimal values of t0i that maximize the K–L numbers (3.17) are easily
found based on these formulas. Consider a symmetric case where �i = 10 and
�i = 12 for all i = 1� � � � � N . Then �i = � = 0�1879, the optimal threshold is
t0i = 12, and the corresponding maximum K–L information number for the binary
sequence �q

i �t
0
i � = �q = 0�119. Therefore, the loss in efficiency of the BQ-CUSUM

test compared to the globally asymptotically optimal detection procedure is
ARE��� 	q� = 0�119/0�1879 = 0�63, i.e., for large ARL we expect about a 37%
(compare with Remark 3.3) increase in the average detection delay compared to
the centralized CUSUM (C-CUSUM). The following MC simulations show that for
the practically interesting values of the ARL (up to 13,360) the gain of the optimal
C-CUSUM test is even smaller, whereas the AO-LD-CUSUM test performs worse
than the BQ-CUSUM test due to the reasons discussed in Section 4.1.1.

Figure 3. Operating characteristics of detection procedures.
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470 Tartakovsky and Veeravalli

Table 1. Operating characteristics of detection procedures

log(ARL) 3.5 4.5 5.5 6.5 7.5 8.5 9.5
ARL 33 90 245 665 1808 4915 13360
SADD for C-CUSUM 1.82 2.79 3.81 4.85 5.90 6.94 8.00
SADD for AO-LD-CUSUM 3.87 5.79 7.72 9.68 11.52 13.28 15.06
SADD for Min-LD-CUSUM 4.47 7.28 10.46 13.75 17.50 20.84 24.17
SADD for Max-LD-CUSUM 8.30 13.91 21.39 28.95 36.38 43.65 51.37
SADD for BQ-CUSUM 2.75 4.21 5.77 7.40 9.01 10.65 12.28

MC simulations have been performed for the above symmetric situation
(i.e., �i = � = 10 and �i = � = 12) with N = 5 sensors. We used 105 MC replications
in the experiment. The operating characteristics of the five detection tests (SADD
versus log�ARL�) are shown in Figure 3 and Table 1. It is seen that the
BQ-CUSUM test substantially outperforms the AO-LD-CUSUM test for the entire
false alarm rate range used in simulations. This result confirms our conjecture. It is
also seen that both Min-LD-CUSUM and Max-LD-CUSUM perform worse than
both BQ-CUSUM and AO-LD-CUSUM tests, especially the Max-LD-CUSUM
test.

Table 2 shows the relative efficiency of the BQ-CUSUM procedure with
respect to the four other detection procedures, which is defined as the ratio of
average detection delays for the same ARL: SADD�	q�/SADD���, where � is a
corresponding detection test, i.e., � = 	c, Tld, etc. It follows from the table that
for the BQ-CUSUM the increase in the SADD compared to the globally optimal
centralized CUSUM is 34% for high false alarm rate, 35% for moderate and low
false alarm rate, and 37% for very low false alarm rate. Note that the last column
presents the ARE given by (5.4), which according to Remark 3.3 is expected to be
approximately �/2 ≈ 1�57 and in reality turns out to be 1�59 for the parameters
considered. On the other hand, the BQ-CUSUM outperforms the AO-LD-CUSUM
for all range of tested ARL values, from 33 to 13,360. The gain is 30% for high false
alarm rate and slowly reduces to 18% for low false alarm rate.

5.2. Example 2: Gaussian Case (Bayesian Setting)

Consider the problem of detecting a nonfluctuating target using N geographically
separated sensors. The observations are corrupted by additive white Gaussian noise
that is independent from sensor to sensor. The sensors preprocess the observations
using a matched filter, matched to the signal corresponding to the target.

Table 2. Relative efficiency of the decentralized BQ-CUSUM test

log(ARL) 3.5 4.5 5.5 6.5 7.5 8.5 9.5 �
ARL 33 90 245 665 1808 4915 13360 �
Test Relative efficiency of the decentralized BQ-CUSUM test
C-CUSUM 1.51 1.51 1.51 1.53 1.53 1.53 1.54 1.59
AO-LD-CUSUM 0.71 0.73 0.75 0.76 0.78 0.80 0.82 1.59
Min-LD-CUSUM 0.62 0.58 0.55 0.54 0.51 0.51 0.51 0.316
Max-LD-CUSUM 0.33 0.30 0.27 0.26 0.25 0.24 0.24 0.316
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Quickest Change Detection in Distributed Systems 471

The output of the matched filter at sensor Si at time n (when the time of appearance
of the target is �) is given by Xi�n� = �i�n� if n < � and Xi�n� = �i + �i�n� if
n≥ �, where ��i�n�� n = 1� 2� � � � � is a sequence of i.i.d. zero-mean Gaussian random
variables with variance 
2

i . Therefore, the LLR at sensor Si at time n is given by

Zi�n� = log
f
�1�
i �Xi�

f
�0�
i �Xi�

= �iXi�n�


2
i

− �2
i

2
2
i

�

From this LLR sequence, we can compute the centralized Shiryaev statistic Rc
��n�,

the centralized SR statistic Rc�n�, and the SR statistics for the individual sensors
Ri�n� for the LD tests 	̂all and 	̂max.

Next, consider the tests based on quantization at the sensors. Note that the
LLR is a monotonically increasing function of the observation, and hence we can
characterize the optimal stationary sensor quantizers in terms of thresholds on
the observations. For binary quantization (BQ) at the sensors, the quantizers are
characterized by a single threshold, i.e., Ui�n� = 1 if Xi�n� ≥ ti and 0 otherwise.
The distributions induced on Ui�n� by this quantizer are given by

g
�j�
i �0� = 1− g

�j�
i �1� = �

(
ti − j�i


i

)
� j = 0� 1�

where ��·� is the cumulative distribution function of a standard Gaussian random
variable.

The optimal value of ti, i.e., the one that maximizes �q
i = ��g

�1�
i � g

�0�
i �, is easily

found based on this formula. Then we can compute the decision statistics Rq
��n�

and Rq�n�, respectively, for the Shiryaev and SR fusion rules based on the optimal
binary quantized sensor outputs.

The operating characteristics in an example with three sensors having identically
distributed observations are illustrated in Figure 4. The parameter values are

Figure 4. Operating characteristics for an example with three sensors with identically
distributed Gaussian observations.
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472 Tartakovsky and Veeravalli

�= 0�1, �i = 0�4, and 
2
i = 1. The K–L information number for the sensor

observations is 0�08. The threshold that maximizes the K–L information number
at the output of the sensor is ti = 0�32, i = 1� 2� 3, and the corresponding
maximum K–L information number is 0�0509. Estimates of PFA� and ADD�

are obtained using MC methods with the number of trials being 1000/�. As we
expect, for the optimal (Shiryaev) centralized policies, the plot of ADD� versus
− log�PFA�� is roughly a straight line with slope that is approximately equal
to 1/�3�c + � log�1− ���� ≈ 2�89. Interestingly, the SR centralized policy has very
similar performance even though the asymptotic slope in this case is 1/�3�c� ≈
4�17. This justifies the use of the SR policy at the sensors in constructing 	̂max

and 	̂all. The decentralized policy with binary sensor quantizers and a Shiryaev
fusion rule (BQ-Shiryaev) has a trade-off curve with slope that is roughly equal to
1/��q

tot�opt + � log�1− ���� ≈ 3�87, as expected from Theorem 3.2. The decentralized
policy of course suffers a performance degradation relative to the centralized policy.
However, the bandwidth requirements for communication with the fusion center are
considerably smaller in decentralized setting, especially with binary quantizers.

Figure 4 also shows the trade-off curves for the procedures 	̂max and 	̂all,
where the sensors perform local change detection. It is seen that 	̂max performs
worse than 	̂all. Further, it is interesting to see that both of these procedures have
performances that are far from that of the centralized SR procedure. Thus, the
asymptotic results of Theorem 4.1 appear to hold only for PFA much smaller than
10−4 (the smallest value of PFA considered in our simulations).1 In particular, 	̂max

performs even worse than the BQ-Shiryaev policy, whereas 	̂all is slightly better than
the BQ-Shiryaev policy for sufficiently small PFA. These results clearly point to the
need for further research on designing procedures that perform local detection at
the sensors.

6. CONCLUSIONS

1. We presented a comprehensive asymptotic analysis of centralized Shiryaev,
Shiryaev–Roberts, and CUSUM change detection procedures in three problem
settings—minimax, uniform, and Bayesian in the classes of detection tests with
constraints imposed, respectively, on the ARL to false alarm, on the local PFA in
a fixed time interval, and on the average PFA. All three tests serve as benchmarks
for a comparative study of decentralized change detection procedures in distributed
sensor systems.

2. We proposed two types of decentralized detection procedures that use
compressed data. These compressed data are transmitted to the fusion center
for making the final decision. The first class uses data quantization at sensors.
The second uses local (binary) decisions at sensors, which are then transmitted
to a fusion center for combining and making a final decision. For both types
of decentralized detection procedures, the required bandwidth for communication
with the fusion center is minimal, especially if the quantization is binary. The
decentralized procedures with quantized data have the further advantage that they
do not require any processing power at the sensors.

1Note that Figure 4 shows the natural logarithm of PFA.
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Quickest Change Detection in Distributed Systems 473

3. We have found asymptotically optimal decentralized quickest change
detection procedures in both classes. In the case of quantization-based procedures,
we have shown that it is optimal for the sensors to use likelihood ratio quantizers
that maximize the K–L information divergence between the post- and prechange
distributions at the sensor outputs. The fusion center then simply implements a
standard change detection procedure based on the quantized data. In the case of
local decision-based procedures, we have found procedures that have the same
first-order asymptotic performance as the corresponding centralized procedures that
have access to all of the sensor observations. In the minimax setting, we found one
procedure, Tld, that has this global optimality property, whereas in the Bayesian
setting, we found two procedures, 	̂all and 	̂max, that are globally asymptotically
optimal.

4. We presented simulation results that compare the performances of the
local decision (LD)-based tests and the binary quantization (BQ)-based tests.
Our results show that the globally asymptotically optimal LD tests may actually
perform worse than the corresponding BQ tests in both the minimax and Bayesian
settings at moderate levels of false alarms. Furthermore, the loss in performance
due to binary quantization relative to centralized procedures is generally small
for Gaussian, Poisson, and Exponential models as we discussed in Remark 3.3.
Thus, our results recommend the use of decentralized procedures based on binary
quantization at the sensors. Our results also point to the need for further research
on designing procedures that perform local detection at the sensors that provide
good performance at moderate levels of false alarms.

5. In our study, we assumed complete information about the prechange and
the postchange models. However, in a variety of applications, including intrusion
detection in computer networks (see, e.g., Kent, 2000; Tartakovsky et al., 2005,
2006), these models are either partially known or unknown. The development of
optimal or quasioptimal decentralized detection methods for composite postchange
hypotheses and unknown distributions is a challenging problem. In the case of one-
parameter postchange families of distributions, an efficient solution to this problem
can be obtained by implementing binary quantization to M ≥ 2 isolated points with
a subsequent use of a multichart BQ-CUSUM. In particular, a specially designed
2-CUSUM test performs fairly well (see Tartakovsky and Polunchenko, 2008).
However, it is not clear how this problem can be addressed when the distributions
are not known. In centralized systems, effective rank-based approaches have been
developed in Gordon and Pollak (1994) and Pollak (2007); it is of interest to see if
these methods can be adapted to decentralized systems.
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