
THEORY PROBAB. APPL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 49, No. 3, pp. 458–497

GENERAL ASYMPTOTIC BAYESIAN THEORY OF
QUICKEST CHANGE DETECTION∗

A. G. TARTAKOVSKY† AND V. V. VEERAVALLI‡

Abstract. The optimal detection procedure for detecting changes in independent and identically
distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s. However, the
analysis of the performance of this procedure in terms of the average detection delay and false alarm
probability has been an open problem. In this paper, we develop a general asymptotic change-point
detection theory that is not limited to a restrictive i.i.d. assumption. In particular, we investigate the
performance of the Shiryaev procedure for general discrete-time stochastic models in the asymptotic
setting, where the false alarm probability approaches zero. We show that the Shiryaev procedure is
asymptotically optimal in the general non-i.i.d. case under mild conditions. We also show that the
two popular non-Bayesian detection procedures, namely the Page and the Shiryaev–Roberts–Pollak
procedures, are generally not optimal (even asymptotically) under the Bayesian criterion. The results
of this study are shown to be especially important in studying the asymptotics of decentralized change
detection procedures.

Key words. change-point detection, sequential detection, asymptotic optimality, nonlinear
renewal theory
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1. Introduction. The problem of detecting abrupt changes in stochastic pro-
cesses arises in a variety of applications including biomedical signal processing, quality
control engineering, finance, link failure detection in communication networks, intru-
sion detection in computer systems, and target detection in surveillance systems [1],
[4], [12], [19], [30]. A typical problem is target detection in multisensor systems (radar,
infrared, sonar, etc.) [30], [35], [39], where the target appears randomly at an unknown
time. The goal is to detect the target as quickly as possible, while maintaining the
false alarm rate at a given level. Another application area is intrusion detection in
distributed computer networks [4], [12], [39]. Large-scale attacks, such as denial-of-
service attacks, occur at unknown points in time and need to be detected in the early
stages by observing abrupt changes in the network traffic.

The design of the quickest change detection procedures usually involves optimizing
the trade-off between two kinds of performance measures, one being a measure of
detection delay and the other being a measure of the frequency of false alarms. There
are two standard mathematical formulations for the optimum trade-off problem. The
first of these is a minimax formulation proposed by Lorden [17] and Pollak [21], in
which the goal is to minimize the worst-case delay subject to a lower bound on the
mean time between false alarms. The second is a Bayesian formulation, proposed by
Shiryaev [25], [26], [27], in which the change point is assumed to have a geometric
prior distribution, and the goal is to minimize the expected delay subject to an upper
bound on false alarm probability. The asymptotic performance of various change-
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 459

point detection procedures is well understood in the minimax context for both the
discrete- and continuous-time cases (see [1], [3], [7], [9], [17], [18], [20], [21], [22], [23],
[28], [30], [31], [32], [34], [39], [43], [44]). However, there has been little previous work
on the asymptotics of Bayesian procedures. An exception is the work by Lai [16] in
which the asymptotic properties of Page’s cumulative sum (CUSUM) procedure were
studied in a Bayesian (as well as minimax) context for general stochastic models. (See
also Beibel [3] for continuous-time Brownian motion and Borovkov [5, Lemma 5] for
i.i.d. data models.) Our goal is to provide a general Bayesian asymptotic theory for
change-point detection.

The paper is organized as follows. In section 2, we formulate the problem. In
section 3, we study the behavior of the Shiryaev detection procedure for general, non-
i.i.d. data models and prove that it is asymptotically optimal under mild conditions
when the false alarm probability goes to zero. We show not only that this proce-
dure is asymptotically optimal with respect to the average detection delay, but also
that it is uniformly asymptotically optimal in the sense of minimizing the conditional
expected delay for every change point. Moreover, we study the behavior of higher
moments of the detection delay and show that under certain general conditions the
Shiryaev procedure minimizes moments of the detection delay up to a given order. In
section 4, we find the asymptotic operating characteristics of the Shiryaev change de-
tection procedure in the i.i.d. case when the false alarm probability goes to zero. The
use of nonlinear renewal theory allows us to obtain sharp asymptotic approximations
for the false alarm probability and the average detection delay up to vanishing terms.
In section 5, we analyze the asymptotic performance of other well-known change de-
tection procedures (Page’s procedure and the Shiryaev–Roberts–Pollak procedure) in
the Bayesian framework. The results of this section allow us to conclude that, while
being optimal in the minimax context, these procedures may lose their optimality
property (even asymptotically) with respect to the Bayesian criterion, depending on
the structure of the prior distribution. In section 6, we consider an example of detect-
ing a change in the mean value of an autoregressive process that illustrates general
results. In section 7, we consider two additional examples related to detecting changes
in distributed multisensor systems. We study the implications of the asymptotic re-
sults in decentralized quickest change detection problems, assuming that the sensors
send quantized versions of their observations to a fusion center (central processor),
where the change detection is performed based on all the sensor messages. Finally, in
section 8, we conclude the paper by giving several remarks.

The results of this paper were presented in part at the 2002 IEEE International
Symposium on Information Theory [36], the 2002 IEEE Information Theory Work-
shop [37], and at the Sixth International Conference on Information Fusion, 2003 [38].

2. Problem formulation. In the conventional setting of the change-point de-
tection problem, one assumes that the observed random variables X1, X2, . . . are
i.i.d., until a change occurs at an unknown point in time λ, λ ∈ {1, 2, . . . }. After
the change occurs, the observations are again i.i.d. but with another distribution. In
other words, conditioned on λ = k, the observations X1, X2, . . . are independent with
Xn ∼ f0 for n < k and Xn ∼ f1 for n � k, where f0(x) and f1(x) are, respectively,
the prechange and postchange probability density functions (PDFs) with respect to
a sigma-finite measure μ. For the sake of brevity, in what follows, this case will be
referred to as the “i.i.d. case.”

In a Bayesian setting, the change-point λ is assumed to be random with prior
probability distribution πk = P{λ = k}, k = 0, 1, 2, . . . . The goal is to detect
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460 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

the change as soon as possible after it occurs, subject to false alarm probability
constraints.

In mathematical terms, a sequential detection procedure is identified with a
stopping time τ for an observed sequence {Xn}n�1, i.e., τ is an extended integer-

valued random variable, such that the event {τ � n} belongs to the sigma-algebra
FX

n = σ(X1, . . . , Xn). A false alarm is raised whenever the detection is declared before
the change occurs, i.e., when τ < λ. A good detection procedure should guarantee a
“stochastically small” detection lag τ − λ, provided that there is no false alarm (i.e.,
τ � λ), while the rate of false alarms should be low.

Let Pk and Ek denote the probability measure and the corresponding expectation
when the change occurs at time λ = k. In what follows, Pπ stands for the “average”
probability measure, which is defined as Pπ(Ω) =

∑∞
k=0 πkPk(Ω), and Eπ denotes

the expectation with respect to Pπ.
In the Bayesian setting, a reasonable measure of the detection lag is the average

detection delay (ADD)

ADD(τ) = Eπ(τ − λ | τ � λ) =
Eπ(τ − λ)+

Pπ{τ � λ}

=
1

Pπ{τ � λ}

∞∑
k=0

πkPk{τ � k}Ek{τ − k | τ � k},(2.1)

and the false alarm rate can be measured by the probability of false alarm (PFA)

PFA(τ) = Pπ{τ < λ} =

∞∑
k=1

πkPk{τ < k}.(2.2)

Here and henceforth, we use the traditional notation x+ = max(0, x) for the positive
part of x.

An optimal Bayesian detection procedure is a procedure for which ADD is min-
imized, while PFA is constrained to be below a given (usually small) level α, where
α ∈ (0, 1). Specifically, define the class of change-point detection procedures Δ(α) =
{τ : PFA(τ) � α} for which the PFA does not exceed the predefined number α. The
optimal change-point detection procedure is described by the stopping time

ν = arg inf
τ∈Δ(α)

ADD(τ).

Obviously, if PFA(ν) = α, then ν also minimizes Eπ(τ − λ)+.
Let Xn = (X1, . . . , Xn) denote the concatenation of the first n observations, let

FX
n = σ(Xn) be a sigma-algebra generated by Xn, and let pn = P{λ � n | FX

n } be
the posterior probability that the change occurred before time n. For the i.i.d. case,
Shiryaev [25], [26], [27] proved that if the distribution of the change point is geometric,
i.e., P{λ = 0} = π0, πk = (1 − π0) ρ(1 − ρ)k−1, k � 1 (0 < ρ < 1, 0 � π0 < 1), then
the optimal detection procedure is the one that raises an alarm at the first time such
that the posterior probability pn exceeds a threshold A, i.e.,1

ν(A) = inf{n � 1: pn � A},(2.3)

where the threshold A = Aα should be chosen so that PFA(ν(A)) = α. A general-
ization of this result for an arbitrary prior distribution has been stated in [5], albeit

1Hereafter we use the convention that inf ∅ = ∞, i.e., ν(A) = ∞ if no such n exists.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 461

without proof (see [5, Theorem 8]). However, except for the case of detecting the
change in the drift of the Wiener process observed in continuous time, it is difficult
to find a threshold that provides an exact match to the given PFA. Also, there are
no results related to the ADD evaluation of this optimal procedure, again, except for
the continuous-time Wiener process [27] with exponential prior distribution, and for
i.i.d. data models with a geometric prior distribution when ρ → 0 (see [5, Lemma 5]).

While the exact match of the PFA is related to the estimation of the overshoot in
the stopping rule (2.3), and for this reason is problematic, a simple upper bound, which
ignores overshoot, can be obtained. Indeed, since Pπ{ν(A) < λ} = Eπ{1−pν(A)} and
1− pν(A) � 1−A on {ν(A) < ∞}, we obtain that the PFA defined in (2.2) obeys the
inequality

PFA
(
ν(A)

)
� 1 −A.(2.4)

It follows that setting A = Aα = 1 − α guarantees the inequality PFA(ν(Aα)) � α.
Note that inequality (2.4) holds true for arbitrary (proper), not necessarily geometric,
prior distributions.

More generally, assume that observations are non-i.i.d. in the prechange and
postchange modes. Specifically, let P∞ stand for the probability measure under which
the conditional density of Xn given Xn−1 = (X1, . . . , Xn−1) is f0,n(Xn |Xn−1) for ev-
ery n � 1 (i.e., λ = ∞). Furthermore, for any λ = k, 1 � k < ∞, let Pk stand for the
probability measure under which the conditional density of Xn is f0,n(Xn |Xn−1)
if n � k − 1 and is f1,n(Xn |Xn−1) if n � k. Therefore, if the change occurs
at time λ = k, then the conditional density of the kth observation changes from
f0,k(Xk |Xk−1) to f1,k(Xk |Xk−1).

The log-likelihood ratio (LLR) for the hypothesis that the change occurred at the
point λ = k and at λ = ∞ (no change at all) is

Zk
n := log

dPk

dP∞
(Xn) =

n∑
t=k

log
f1,t(Xt | Xt−1)

f0,t(Xt | Xt−1)
, k � n.(2.5)

In what follows, we will use the convention that before the observations become avail-
able (i.e., for n = 0), Z0

0 = log[f1,0(X0)/f0,0(X0)] = 0 almost everywhere.
In the rest of the paper, we will consider prior distributions πk = P{λ = k}

concentrated on nonnegative integers. The following two classes of prior distributions
will be covered: distributions with exponential tails for which

lim
k→∞

log P{λ � k + 1}
k

= −d, d > 0,(2.6)

and prior distributions with “heavy” tails for which

lim
k→∞

log P{λ � k + 1}
k

= 0.(2.7)

The first class will be denoted by E(d) and the second class by H.
Clearly, the geometric prior distribution with the parameter ρ,

πk = π01l{k=0} + (1 − π0) ρ(1 − ρ)k−1 1l{k�1}, 0 < ρ < 1, 0 � π0 < 1,(2.8)

belongs to the class E(d) with d = | log(1 − ρ)|. Here and henceforth, 1l{A} denotes
an indicator of the set A.
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462 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Note that a more general case, in which a fixed d is replaced with the value
of dα that depends on α and vanishes when α → 0, can also be handled in a similar
way. This more general case has been considered by Lai [16]. However, this slight
generalization does not have a substantial impact on practical applications.

For n � 0, define the likelihood ratio of the hypotheses “H1 : λ � n” and
“H0 : λ > n”:

Λn :=
dP{Xn | H1}
dP{Xn | H0}

=

∑n
k=0 πk

∏n
i=k f1,i(Xi | Xi−1)

∏k−1
i=1 f0,i(Xi | Xi−1)∑∞

k=n+1 πk

∏n
i=1 f0,i(Xi | Xi−1)

,

where f1,0(X0)/f0,0(X0) = 1 almost everywhere by the above convention.
Recall that pn = P{λ � n | FX

n } denotes the posterior probability of the event
that the change occurred before time n. Write Πn = P{λ > n}. It is easily verified
that

Λn = Λ0 + Π−1
n

n∑
k=1

πke
Zk

n and Λn =
pn

1 − pn
, n � 1,(2.9)

where Λ0 = π0/(1 − π0). Therefore, the Shiryaev stopping rule given in (2.3) can be
written in the following form that is more convenient for asymptotic study:

νB = inf{n � 1: Λn � B}, B =
A

1 −A
,(2.10)

where B > π0/(1 − π0).
Obviously, inequality (2.4) holds in the general, non-i.i.d. case too. Consequently,

Bα =
1 − α

α
implies νBα

∈ Δ(α),(2.11)

provided that α < 1 − π0.
It is worth noting that while the Shiryaev procedure (2.10) is optimal in the i.i.d.

case (if B is chosen so that PFA(νB) = α), it may not be optimal in the non-i.i.d.
scenario even if we can set the threshold to meet the PFA constraint exactly. In
fact, the properties of the Shiryaev procedure in the non-i.i.d. scenario have not been
investigated previously.

In addition to the Bayesian ADD defined in (2.1), we will also be interested in the
behavior of the conditional ADD (CADD) for the fixed change-point λ = k, which is
defined by CADDk(τ) = Ek(τ − k | τ � k), k = 1, 2, . . . , as well as higher moments of
the detection delay Ek{(τ − k)m | τ � k} and Eπ{(τ − λ)m | τ � λ} for m > 1.

In the next section, we study the operating characteristics of the Bayesian proce-
dure (2.10) for small PFA (α → 0) in the general, non-i.i.d. case. In section 4, these
results will be specialized to the i.i.d. scenario.

3. Asymptotic operating characteristics of the detection procedure νB

in a non-i.i.d. case. As we mentioned above, in general, the Shiryaev procedure νB
is not optimal even if one is able to chose the threshold B in such a way that
PFA(B) = α. However, below we show that this procedure with B = Bα = (1−α)/α
is asymptotically optimal for small PFA under some mild conditions. We will show
that in the asymptotic setting, νBα minimizes not only the ADD, but also CADDk

for all k � 1. Furthermore, under certain general conditions this procedure minimizes
higher moments of the detection delay up to a given order.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 463

3.1. Asymptotic lower bounds for moments of the detection delay. We
begin by establishing asymptotic lower bounds for moments of the detection delay, in
particular for ADD and CADD of any procedure in the class Δ(α). Later on, these
bounds will be used to obtain asymptotic optimality results.

As we will see, the derivation of the lower bounds is based on the application of
the Chebyshev inequality that involves certain probabilities, which are shown to go
to 0 when α → 0. We start with the study of the behavior of these probabilities.

Let q be a positive finite number and define Lα = Lα(qd) = | logα|/qd,

γε,α(τ) = Pπ
{
λ � τ < λ + (1 − ε)Lα

}
,

γ(k)
ε,α(τ) = Pk

{
k � τ < k + (1 − ε)Lα

}
, 0 < ε < 1,

where qd = q+d in the case of prior distributions with exponential right tail, π ∈ E(d),
and qd = q0 = q in the case of heavy-tailed prior distributions π ∈ H.

The significance of the number q is now explained in more detail. We do not
assume any particular model for the observations, and as a result, there is no “struc-
ture” on the LLR process. We hence have to impose some conditions on the behavior
of the LLR process at least for large n. It is natural to assume that there exists a
positive finite number q = q(f1, f0) such that Zk

n/(n − k) converges almost surely
to q, i.e.,

1

n
Zk
k+n

Pk-a.s.−−−−→
n→∞

q for every k < ∞.(3.1)

This is always true for i.i.d. data models, in which case q = D(f1, f0) = E1Z
1
1 is

the Kullback–Leibler information number. It turns out that the a.s. convergence con-
dition (3.1) is sufficient for obtaining lower bounds for all positive moments of the
detection delay (but is not necessary). In fact, the key condition (3.2) in Lemma 1
and Theorem 1 holds whenever Zk

n/(n− k) converges almost surely to the number q.
Therefore, this number is of paramount importance in the general change-point de-
tection theory.

Note that Pk{τ < k} = P∞{τ < k}, since {τ < k} belongs to the sigma-
field FX

k−1, and hence,

PFA(τ) =
∞∑
k=1

πkP∞{τ < k}.

The following “fundamental” lemma will be used repeatedly to derive lower
bounds for the performance indices.

Lemma 1. Let Zk
n be defined as in (2.5) and assume that for some q > 0,

Pk

{
1

M
max

0�n<M
Zk
k+n � (1 + ε) q

}
−−−−→
M→∞

0 for all ε > 0 and k � 1.(3.2)

Then, for all 0 < ε < 1 and k � 1,

lim
α→0

sup
τ∈Δ(α)

γ(k)
ε,α(τ) = 0,(3.3)

and for all 0 < ε < 1,

lim
α→0

sup
τ∈Δ(α)

γε,α(τ) = 0.(3.4)
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464 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Proof. Changing the measure P∞ → Pk, we obtain that for any C > 0 and
ε ∈ (0, 1),

P∞{k � τ < k + (1 − ε)Lα} = Ek

{
1l{k�τ<k+(1−ε)Lα} e

−Zk
τ

}
� Ek

{
1l{k�τ<k+(1−ε)Lα,Zk

τ<C} e
−Zk

τ

}
� e−CPk

{
k � τ < k + (1 − ε)Lα, max

k�n<k+(1−ε)Lα

Zk
n < C

}
� e−C

[
Pk

{
k � τ < k + (1 − ε)Lα

}
− Pk

{
max

0�n<(1−ε)Lα

Zk
k+n � C

}]
,(3.5)

where the last inequality follows trivially from the fact that for any events A and B
(with Bc being a complement to B), P(A ∩B) � P(A) − P(Bc).

Setting C = (1 − ε2) qLα, we obtain

γ(k)
ε,α(τ) � e(1−ε2)qLαP∞

{
k � τ < k + (1 − ε)Lα

}
+Pk

{
max

0�n<(1−ε)Lα

Zk
k+n � (1 − ε2) qLα

}
.(3.6)

Write

pk(α, ε) = e(1−ε2) qLαP∞
{
k � τ < k + (1 − ε)Lα

}
and

βk(α, ε) = Pk

{
max

0�n<(1−ε)Lα

Zk
k+n � (1 − ε2) qLα

}
.

By condition (3.2), for every 0 < ε < 1 and all k � 1,

βk(α, ε) = Pk

{
1

(1 − ε)Lα
max

0�n<(1−ε)Lα

Zk
k+n � (1 + ε) q

}
−−−−→
α→0

0.(3.7)

Next, for any τ ∈ Δ(α) and n � 1,

α � PFA(τ) � P{τ < n} ∩ {λ > n} = P
{
τ < n |λ > n

}
P{λ > n} = P∞{τ < n}Πn,

and, therefore,

P∞{τ < n} � α(Πn)−1, n � 1.(3.8)

It follows that the first term in inequality (3.6),

pk(α, ε) � αe(1−ε2) qLα(Πmα(k))
−1,(3.9)

where mα(k) = �k+(1−ε)Lα� is the greatest integer number � k+(1−ε)Lα. Since
α = e−qdLα and (mα(k) − k − 1)/(1 − ε) � Lα � (mα(k) − k)/(1 − ε), we obtain

pk(α, ε) �
(
Πmα(k)

)−1
exp

{
− d + ε2q

1 − ε
(mα(k) − k − 1)

}
and

log pk(α, ε)

mα(k)
� −

log Πmα(k)

mα(k)
− d + ε2q

1 − ε

mα(k) − k − 1

mα(k)
.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 465

By conditions (2.6) and (2.7),

lim
α→0

log pk(α, ε)

mα(k)
� d− d + ε2q

1 − ε
= − ε

1 − ε
(d + εq),

where d > 0 for π ∈ E(d) and d = 0 for π ∈ H. It follows that, for any π ∈ H ∪ E(d),

pk(α, ε) → 0 as α → 0 for all k � 1 and 0 < ε < 1.(3.10)

Therefore, we obtain that for every τ ∈ Δ(α) and ε > 0,

γ(k)
ε,α(τ) � pk(α, ε) + βk(α, ε),(3.11)

where by (3.7) and (3.10), βk(α, ε) and pk(α, ε) go to zero as α → 0. Since pk(α, ε)
and βk(α, ε) do not depend on a particular stopping time τ , (3.3) holds.

Let Nα = �εLα� be the greatest integer number less than or equal to εLα. Obvi-
ously,

γε,α(τ) =

∞∑
k=1

πkγ
(k)
ε,α(τ) �

Nα∑
k=1

πkγ
(k)
ε,α(τ) + ΠNα .(3.12)

Using (3.11) and (3.12), we obtain

γε,α(τ) � ΠNα +

Nα∑
k=1

πkβk(α, ε) + sup
k�Nα

pk(α, ε).(3.13)

The term ΠNα
→ 0 as α → 0. The second term goes to zero as α → 0 by condi-

tion (3.2) (see (3.7)) and Lebesgue’s dominated convergence theorem. It suffices to
show that the third term vanishes as α → 0.

By (3.9),

sup
k�Nα

pk(α, ε) � αe(1−ε2) qLα
(
Πmα(Nα)

)−1
=
(
Πmα(Nα)

)−1
exp

{
− (d + ε2q)Lα

}
,

where mα(Nα) = �Nα + (1 − ε)Lα�. Obviously, Lα � mα(Nα) � Lα + 2, and hence,

log supk�Nα
pk(α, ε)

mα(Nα)
� −

log Πmα(Nα)

mα(Nα)
− (d + ε2q)

Lα

Lα + 2
.

Since

−
log Πmα(Nα)

mα(Nα)
→ d as α → 0,

we obtain that for any π ∈ H ∪ E(d),

lim
α→0

log supk�Nα
pk(α, ε)

mα(Nα)
� −ε2q,

showing that supk�Nα
pk(α, ε) → 0 as α → 0.

Since the right-hand side in (3.13) does not depend on τ , (3.4) follows, and the
proof is complete.

In the next theorem, we derive the lower bounds for the positive moments of the
detection delay of any procedure from the class Δ(α) under the conditions postulated
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466 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

in Lemma 1. A similar bound has been obtained by Lai [16] for Eπ(τ − λ)+ and
heavy-tailed prior distributions under a slightly stronger condition with supk in (3.2).
Recall that qd = q + d when π ∈ E(d) and qd = q when π ∈ H.

Theorem 1. Let condition (3.2) hold for some positive finite number q. Then,
for every k � 1 and m > 0,

inf
τ∈Δ(α)

Ek

[
(τ − k)m | τ � k

]
�
{
| logα|
qd

}m(
1 + o(1)

)
as α → 0,(3.14)

and for all m > 0,

inf
τ∈Δ(α)

Eπ
[
(τ − λ)m | τ � λ

]
�
{
| logα|
qd

}m (
1 + o(1)

)
as α → 0,(3.15)

where o(1) → 0 as α → 0.
Proof. By the Chebyshev inequality, for any 0 < ε < 1 and m > 0,

Ek

[
(τ − k)+

]m �
[
(1 − ε)Lα

]m
Pk

{
τ − k � (1 − ε)Lα

}
.

Obviously,

Pk

{
τ − k � (1 − ε)Lα

}
= Pk{τ � k} − γ(k)

ε,α(τ).

Therefore,

(3.16)

Ek

[
(τ − k)m | τ � k

]
=

Ek[(τ − k)+]m

Pk{τ � k} � [(1 − ε)Lα]m

Pk{τ � k}

[
Pk{τ � k} − γ(k)

ε,α(τ)
]
.

Next, by (3.8), for any τ ∈ Δ(α) and α < Πk,

Pk{τ � k} = 1 − P∞{τ < k} � 1 − α(Πk)
−1.(3.17)

Using (3.16) and (3.17) yields the inequality

Ek

[
(τ − k)m | τ � k

]
�
[
(1 − ε)Lα

]m[
1 − γ

(k)
ε,α(τ)

1 − α(Πk)−1

]
,(3.18)

which holds for any τ ∈ Δ(α), 0 < ε < 1, and {k : Πk < α}. By Lemma 1, γ
(k)
ε,α(τ) → 0

as α → 0 uniformly over all τ ∈ Δ(α), which implies

inf
τ∈Δ(α)

Ek

[
(τ − k)m | τ � k

]
�
[
(1 − ε)Lα

]m(
1 + o(1)

)
as α → 0.

Since ε is arbitrary, the asymptotic lower bound (3.14) follows.
To prove the asymptotic lower bound (3.15) we again use the Chebyshev inequal-

ity, according to which, for any 0 < ε < 1 and any τ ∈ Δ(α),

Eπ
[
(τ − λ)+

]m �
[
(1 − ε)Lα

]m
Pπ

{
τ − λ � (1 − ε)Lα

}
,

where

Pπ
{
τ − λ � (1 − ε)Lα

}
= Pπ{τ � λ} − γε,α(τ).
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 467

Since Pπ{τ � λ} � 1 − α for any τ ∈ Δ(α), it follows that

Eπ
[
(τ − λ)m | τ � λ

]
=

Eπ[(τ − λ)+]m

Pπ{τ � λ} �
[
(1 − ε)Lα

]m [
1 − γε,α(τ)

Pπ{τ � λ}

]
�
[
(1 − ε)Lα

]m [
1 − γε,α(τ)

1 − α

]
.(3.19)

Since ε can be arbitrarily small and, by Lemma 1, supτ∈Δ(α) γε,α(τ) → 0 as α → 0,
the asymptotic lower bound (3.15) follows, and the proof is complete.

Remark 1. It is important to emphasize that the vanishing term o(1) in (3.14)
depends on k. For this reason, the lower bound (3.15) does not follow directly from
inequality (3.14), and an additional effort was needed to prove it.

3.2. Asymptotic performance of the procedure νB for large B. We begin
with the evaluation of the performance of the Shiryaev detection procedure νB for
large values of B regardless of the false alarm constraint.

Write

Yt = log
f1,t(Xt | Xt−1)

f0,t(Xt | Xt−1)
,

and, for every k = 1, 2, . . . and ε > 0, define the random variable

T (k)
ε = sup

{
n � 1:

∣∣∣∣∣ 1n
k+n−1∑
t=k

Yt − q

∣∣∣∣∣ > ε

}
,(3.20)

where sup ∅ = 0. Clearly, in terms of T
(k)
ε , the almost sure convergence of (3.1) may

be written as Pk{T (k)
ε < ∞} = 1 for all ε > 0 and k � 1, which implies condition (3.2).

While these conditions are sufficient for obtaining lower bounds for moments
of the detection delay (in particular, for the average detection delay), they need to
be strengthened in order to establish asymptotic optimality properties of the detec-
tion procedure νB , and to obtain asymptotic expansions for moments of the detec-
tion delay. Indeed, in general these conditions do not even guarantee finiteness of
CADDk(νB) and ADD(νB). In order to study asymptotics for the average detection
delay, one may impose the following constraints on the rate of convergence in the
strong law for Zk

k+n/n:

EkT
(k)
ε < ∞ for all ε > 0 and k � 1, and(3.21)

∞∑
k=1

πkEkT
(k)
ε < ∞ for all ε > 0.(3.22)

Note that (3.21) is closely related to the condition

∞∑
n=1

Pk

{∣∣∣∣∣
k+n−1∑
t=k

Yt − qn

∣∣∣∣∣ > εn

}
< ∞ for all ε > 0 and k � 1,

which is nothing but the complete convergence of Zk
k+n/n to q under Pk (cf. [11]).

We write this compactly as

1

n
Zk
k+n

Pk-completely−−−−−−−−−−→
n→∞

q for every k � 1.(3.23)
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468 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

The convergence condition (3.22) is a joint condition on the rates of convergence
of Zk

k+n/n for each λ = k and the prior distribution. We write this condition com-
pactly as

1

n
Zλ
λ+n

Pπ-average-completely−−−−−−−−−−−−−−−−→
n→∞

q.(3.24)

To study asymptotics for higher moments of the detection delay, the complete
convergence conditions (3.23) and (3.24) should be further strengthened. A natural
generalization is to require, for some r � 1,

Ek[T
(k)
ε ]r < ∞ for all ε > 0 and k � 1(3.25)

and

∞∑
k=1

πkEk[T
(k)
ε ]r < ∞ for all ε > 0.(3.26)

If (3.25) holds, it is said that Zk
k+n/n converges r-quickly to q (cf. [13]). If (3.26)

holds, we will say that Zλ
λ+n/n converges average-r-quickly to q. We will write these

modes of convergence compactly as

1

n
Zk
k+n

Pk-r-quickly−−−−−−−−−→
n→∞

q for every k � 1(3.27)

and
1

n
Zλ
λ+n

Pπ-average-r-quickly−−−−−−−−−−−−−−−→
n→∞

q.(3.28)

Complete and r-quick convergence conditions were previously used by Lai [14],
Tartakovsky [33], and Dragalin, Tartakovsky, and Veeravalli [8] to establish the asymp-
totic optimality of sequential hypothesis tests for general statistical models. Below
we take advantage of these results and prove that the conditions (3.23), (3.24), (3.27),
and (3.28) are sufficient for asymptotic optimality of the Shiryaev change-point de-
tection procedure.

In the following theorem, we establish the operating characteristics of the detec-
tion procedure νB for large values of the threshold B regardless of the false alarm
rate constraints for general statistical models when the r-quick convergence condi-
tions (3.27) and (3.28) hold. Hereafter XB ∼ YB as B → ∞ means that

lim
B→∞

(
XB

YB

)
= 1.

For the sake of compactness, in the rest of the paper we will write EDπ
m(τ) for

Eπ[(τ − λ)m | τ � λ] and ED
(k)
m (τ) for Ek[(τ − k)m | τ � k], respectively.

Theorem 2. (i) Let condition (3.27) hold for some positive q and r � 1. Then
for all m � r,

ED(k)
m (νB) ∼

(
logB

qd

)m

as B → ∞ for all k � 1.(3.29)

(ii) Let condition (3.28) hold for some positive q and r � 1. Then for all m � r,

EDπ
m(νB) ∼

(
logB

qd

)m

as B → ∞.(3.30)
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 469

To prove this theorem we will need two auxiliary results that we formulate in
the form of Lemmas 2 and 3 below. Lemma 2 is similar to, and to some extent is a
particular case of, Lemma 1. Lemma 3 is related to convergence of moments of one-
sided stopping times that bound the stopping time νB from above. The first lemma
will be used to obtain lower bounds for the moments of the detection delay, while the
second one will be used for deriving the corresponding upper bounds.

The following notation is used throughout this subsection:

LB = q−1
d logB,

γ(k)
ε (B) = Pk{k � νB < k + (1 − ε)LB},
γε(B) = Pπ

{
λ � νB < λ + (1 − ε)LB

}
.

Note that

γε(B) =

∞∑
k=1

πkγ
(k)
ε (B).

Lemma 2. Suppose condition (3.2) holds for some q > 0. Then

lim
B→∞

γ(k)
ε (B) = 0 for all 0 < ε < 1 and k � 1;(3.31)

lim
B→∞

γε(B) = 0 for every 0 < ε < 1.(3.32)

Proof. The proof runs along the lines of the proof of Lemma 1. It suffices to note
that Pπ{νB < λ} � 1/(1 + B) � 1/B. Therefore, replacing α with 1/B in Lemma 1
completes the proof.

We now formulate the second important result that will be used to obtain upper
bounds for the moments of the stopping time νB . Write

Sk
k+n−1 = Zk

k+n−1 + nwn,k, wn,k = n−1 log
(
πk (Πk+n−1)

−1
)
,

and, for b > 0, introduce the sequence of one-sided stopping times

ηb(k) = inf{n � 1: Sk
k+n−1 � b}, k = 1, 2, . . . .(3.33)

Lemma 3. Let m be a positive, not necessarily integer number and suppose that
for some r > 0 condition (3.25) is satisfied. Then, for all m � r,

Ek

(
ηb(k) b−1

)m → (qd)
−m as b → ∞.(3.34)

Proof. For the geometric prior distribution with π0 = 0, this lemma can be directly
derived from Theorem 4.2 of [8], since in this case (log Πn)/n = d = | log(1 − ρ)| and
wn,k = n log(1−ρ) for all n � 1. In the general case, the proof requires a modification,
which is given below.

By (3.25), Zk
k+n/n → q as n → ∞ Pk-a.s. Since, by assumptions (2.6)–(2.7),

wn,k → d as n → ∞ (d � 0), it follows that Sk
k+n/n → qd as n → ∞ Pk-a.s. for all

k � 1. Therefore,

Pk

{
1

M
max

0�n<M
Sk
k+n � (1 + ε) qd

}
−−−−→
M→∞

0 for all ε > 0 and k � 1
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470 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

and the argument identical to that used in the proof of Lemma 1 (with α replaced
by e−b) yields

Pk

{
ηb(k) � (1 − ε) b(qd)

−1
}
→ 1 as b → ∞.

Hence, Chebyshev’s inequality (for any m > 0)

Ek

[
ηb(k)

]m �
[
(1 − ε) b(qd)

−1
]m

Pk

{
ηb(k) � (1 − ε) b(qd)

−1
}

applies to show that

Ek

[
ηb(k)

]m � (b(qd)
−1)m

(
1 + o(1)

)
as b → ∞.(3.35)

To obtain the upper bound, define

T̃ (k)
ε = sup

{
n � 1:

∣∣n−1Sk
k+n−1 − qd

∣∣ > ε
}
.

It is easy to see that Sk
k+ηb(k)−2 < b and

Sk
k+ηb(k)−2 � (ηb(k) − 1)(qd − ε) on

{
ηb(k) − 1 > T̃ (k)

ε

}
.

It follows that for every 0 < ε < qd,

ηb(k) � 1 +
b

qd − ε
1l{ηb(k)>T̃

(k)
ε +1} + (T̃ (k)

ε + 1) 1l{ηb(k)�T̃
(k)
ε +1}

� T̃ (k)
ε + 2 +

b

qd − ε
.(3.36)

Since wn,k → d as n → ∞, the condition (3.25) implies Ek[T̃
(k)
ε ]r < ∞. Since ε can

be arbitrarily small, letting ε → 0 we obtain that for all m � r,

Ek[ηb(k)]m � (b(qd)
−1)m

(
1 + o(1)

)
as b → ∞,

which, along with the reverse inequality (3.35), completes the proof.
We are now ready to prove Theorem 2.
Proof of Theorem 2. (i) For b = logB, define the sequence of stopping times ηb(k)

as in (3.33). It is easily verified that the statistic log Λn can be written in the form

log Λn = Zk
n + (n− k + 1)wk+n−1,k + n,k,(3.37)

where the random variable n,k is nonnegative. Thus, for b = logB and for every
k � 1,

νB − k � ηb(k) on {νB � k}(3.38)

and

Ek

[
(νB − k)+

]m � Ek

{
[ηb(k)]m; νB � k

}
� Ek

[
ηb(k)

]m
.(3.39)

By (2.4) and (3.8), Pk{νB � k} � 1 − [(1 + B) Πk]
−1, and hence, for B >

(1 − Πk)/Πk,

ED(k)
m (νB) =

Ek[(νB − k)+]m

Pk{νB � k} � Ek[ηb(k)]m

1 − [(1 + B) Πk]−1
.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 471

Applying Lemma 3, we obtain the following estimate for the upper bound:

ED(k)
m (νB) �

(
logB

qd

)m(
1 + o(1)

)
as B → ∞ for all k � 1.(3.40)

In order to prove (3.29), it remains to show that the right-hand side of the latter

inequality is a lower bound for ED
(k)
m (νB) as B → ∞. To that end, we use Lemma 2

and the Chebyshev inequality.
Indeed, applying the Chebyshev inequality and the inequality Pk{νB � k} �

1 − [(1 + B) Πk]
−1 yields, for B > (1 − Πk)/Πk,

ED(k)
m (νB) �

[
(1 − ε)LB

]m [
Pk{νB � k} − γ(k)

ε (B)
]

�
[
(1 − ε)LB

]m[
1 − (ΠkB)−1 − γ(k)

ε (B)
]
.

Since ε is arbitrary and, by Lemma 2, γ
(k)
ε (B) → 0 as B → ∞ for every k � 1, we

obtain that the right-hand side in (3.40) is the asymptotic lower bound for ED
(k)
m (νB).

The asymptotic formula (3.29) follows.
(ii) Similar to (3.36), for every 0 < ε < qd and k � 1,

νB − k � ηb(k) � T̃ (k)
ε + 2 +

b

qd − ε
on {νB � k}.(3.41)

Applying (3.41) along with the fact that Pπ{νB � λ} � B/(1 + B) yields

EDπ
m(νB) � B + 1

B

∞∑
k=1

πkEk

(
logB

qd − ε
+ T̃ (k)

ε + 2

)m

.

Since ε can be arbitrarily small and, by the assumption of the theorem,

∞∑
k=1

πkEk[T
(k)
ε ]m < ∞,

which, as before, implies
∑∞

k=1 πkEk[T̃
(k)
ε ]m < ∞, it follows that

EDπ
m(νB) �

(
logB

qd

)m(
1 + o(1)

)
as B → ∞.(3.42)

To obtain a lower bound for EDπ
m(νB), we again use the Chebyshev inequality,

which yields

EDπ
m(νB) � Eπ

[
(νB − λ)+

]m �
[
(1 − ε)LB

]m
[Pπ{νB � λ} − γε(B)]

�
[
(1 − ε)LB

]m [
B(1 + B)−1 − γε(B)

]
,

where γε(B) → 0 as B → ∞ by Lemma 2. Recall that LB = (logB)/qd. Since ε is
arbitrary, it follows that

EDπ
m(νB) �

(
logB

qd

)m(
1 + o(1)

)
as B → ∞,(3.43)

which, along with the upper bound (3.42), proves (3.30). The proof is complete.
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472 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Remark 2. The proof suggests that (3.29) holds for all k < Kα, where Kα is such
an integer number for which P{λ > Kα} < α. From a theoretical viewpoint this does
not cause the problem, since Kα → ∞ as α → 0. However, from the point of view

of practical applications it is important to investigate the behavior of ED
(k)
m (νB) for

large values of k.

3.3. Asymptotic optimality. We are now in a position to prove the asymptotic
optimality of the detection procedure νB with the threshold B = (1 − α)/α in the
class Δ(α) for small values of the PFA α. Since everything we need has been prepared,
the proof is immediate.

Theorem 3. If B = Bα = (1 − α)/α, then the detection procedure νBα belongs
to the class Δ(α), and the following two assertions hold.

(i) Let condition (3.27) hold for some positive q and r � 1. Then for all m � r
and k � 1,

inf
τ∈Δ(α)

ED(k)
m (τ) ∼ ED(k)

m (νBα) ∼
(
| logα|
qd

)m

as α → 0.(3.44)

(ii) Let condition (3.28) hold for some positive q and r � 1. Then for all m � r,

inf
τ∈Δ(α)

EDπ
m(τ) ∼ EDπ

m(νBα) ∼
(
| logα|
qd

)m

as α → 0.(3.45)

Proof. Applying Theorems 1 and 2 yields (3.44) and (3.45).
Corollary 1. Let B = Bα = (1−α)/α. If condition (3.23) is satisfied for some

positive q, then

inf
τ∈Δ(α)

CADDk(τ) ∼ CADDk(νBα) ∼ | logα|
qd

as α → 0 for all k � 1.(3.46)

If condition (3.24) is satisfied for some positive q, then

inf
τ∈Δ(α)

ADD(τ) ∼ ADD(νBα) ∼ | logα|
qd

as α → 0.(3.47)

We stress that the detection procedure νB with the threshold B = Bα = (1−α)/α
is not only asymptotically optimal relative to the ADD, but also uniformly asymptoti-
cally optimal with respect to the conditional ADD for all values of λ = k, k = 1, 2, . . . .
We obtain this strong optimality result primarily because the constraint on false
alarms in the Bayesian formulation that we consider is averaged over all possible re-
alizations of the change point. Such a strong optimality result is not available for the
minimax formulation of the problem with the constraint on the mean time to false
alarm E∞τ [16], [17], [21], [34].

It is also interesting to observe from Theorem 3 that, for prior distributions with
exponential tail (d > 0), if q 
 d, then the observations contain more information
about the change than the prior distribution, and the performance is determined by q.
On the other hand, if q � d, then the decision about the change point can be made
based solely on the prior distribution to yield an ADD of | logα|/d. For heavy-tailed
distributions π ∈ H, prior information does not affect asymptotic performance, as
could be expected.
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Remark 3. The results of Theorem 3 remain true in a more general case, where
the r-quick convergence condition (3.27) is satisfied with an increasing function φ(n)
in place of n, i.e.,

1

φ(n)
Zk
k+n

Pk-r-quickly−−−−−−−−→
n→∞

q for all k � 1.(3.48)

In particular, if (3.48) holds with φ(n) = np, p > 0, then, similar to (3.44), the
following more general result can be proved:

inf
τ∈Δ(α)

ED(k)
m (τ) ∼ ED(k)

m (νBα) ∼
(
| logα|
qd

)m/p

as α → 0.

It is worth noting that the r-quick convergence conditions (3.27) and (3.28) are
only sufficient and by no means necessary. Indeed, the proof of Lemma 3 suggests that
the upper bound holds whenever left-sided versions of r-quick conditions are satisfied,

i.e., Ek[t
(k)
ε ]r < ∞ and

∑∞
k=1 πkEk[t

(k)
ε ]r < ∞, where

t(k)
ε = sup

{
n � 1: n−1Zk

k+n−1 − q < −ε
}
.

Moreover, even these latter conditions can be substantially relaxed into the following
condition:

limn→∞ nr−1Pk

{
n−1Zk

k+n−1 − q � −ε)
}

= 0

for all ε > 0, k � 1, and some r � 1.
(3.49)

A proof can be built upon a generalization of a “trick” exploited recently by Lai [16]
for studying the asymptotic optimality of the CUSUM and window-limited CUSUM
tests.

However, we find it natural and convenient from the methodological standpoint
to formulate conditions in terms of rates of convergence in the strong law of large
numbers for the LLR process. In addition, r-quick convergence implies the right-tail
condition (3.2), which is the key for obtaining the lower bounds.

4. Asymptotic operating characteristics of the detection procedure νB

in the i.i.d. case. In this section, we will deal with the i.i.d. case, where f0,n(Xn |
Xn−1) = f0(Xn) and f1,n(Xn | Xn−1) = f1(Xn). Then P∞ is the probability measure
under which the PDF of Xn is f0(x) for every n � 1 and for λ = k, k � 1; Pk is the
probability measure under which the PDF of Xn is f0(x) if n � k − 1 and is f1(x)
if n � k (with respect to a σ-finite measure μ(x)). The LLR defined in (2.5) is
modified to

Zk
n := log

dPk

dP∞
(Xn) =

n∑
t=k

log
f1(Xt)

f0(Xt)
, n � k,(4.1)

and the decision statistic Λn obeys (2.9) with Zk
n defined in (4.1).

Note also that in the i.i.d. case the statistic Λn satisfies the recursion

Λn =

(
Πn−1

Πn
Λn−1 +

πn

Πn

)
f1(Xn)

f0(Xn)
, n � 1, Λ0 =

π0

1 − π0
,(4.2)

which may be deployed for practical implementation and simulations.
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474 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

As mentioned in section 2, in the i.i.d. case and for the geometric prior distribu-
tion, the Shiryaev procedure (2.10) is optimal when the threshold B can be chosen in
such a way that PFA(νB) = α. Since it is difficult to meet this exact requirement, we
will study the properties of the detection procedure νB with B = (1 − α)/α, which
guarantees the inequality PFA(νB) � α. Since this choice neglects the overshoot, it
is expected that the actual PFA may be substantially smaller than α (see sections 4.2
and 6).

Let

D(f1, f0) = E1Z
1
1 =

∫
log

(
f1(x)

f0(x)

)
f1(x)μ(dx)

be the Kullback–Leibler (KL) information number between densities f1(x) and f0(x)
(also called the KL “distance”). In the i.i.d. case, the KL number D(f1, f0) plays the
role of the number q that appeared in Theorems 1–3 of the previous section.

By analogy with (3.20) we define the last entry times

T (k)
ε = sup

{
n � 1:

∣∣∣∣∣ 1n
k+n−1∑
t=k

Yt −D(f1, f0)

∣∣∣∣∣ > ε

}
.(4.3)

Since Yt, t = 1, 2, . . . , are i.i.d. random variables, T
(k)
ε have the same statistical prop-

erties for all k � 1. Therefore, Ek[T
(k)
ε ]r = E1[T

(1)
ε ]r and the condition E1[T

(1)
ε ]r < ∞

for all ε > 0 (i.e., the r-quick convergence condition of Z1
n/n to D(f1, f0) under P1)

implies

∞∑
k=1

πkEk

[
T (k)
ε

]r
= (1 − π0)E1

[
T (1)
ε

]r
< ∞ for all ε > 0.(4.4)

In the i.i.d. case, the condition E1|Z1
1 |r+1 < ∞ is both necessary and sufficient

for the r-quick convergence of Z1
n/n to D(f1, f0). Indeed, by the Baum–Katz rate

of convergence in the strong law [2], the following statements are equivalent for any
r > 0:

E1

∣∣Z1
1

∣∣r+1
< ∞ ⇐⇒

∞∑
n=1

nr−1P1

{∣∣∣∣∣
n∑

t=1

Ỹt

∣∣∣∣∣ � εn

}
< ∞ for some ε > 0,

(4.5)

⇐⇒
∞∑

n=1

nr−1P1

{∣∣∣∣∣sup
t�n

t−1Ỹt

∣∣∣∣∣ � ε

}
< ∞ for all ε > 0,

where Ỹt = Yt −D(f1, f0). Since P1{T (1)
ε > n} � P1{supt�n t

−1Ỹt � ε}, the impli-

cation E1|Z1
1 |r+1 < ∞ ⇔ E1[T

(1)
ε ]r < ∞ for all ε > 0 follows.

Applying Theorem 3, one can conclude that if the KL number D(f1, f0) is strictly
positive and the (r+1)st absolute moment of the LLR Z1

1 is finite, then the Shiryaev
detection procedure νBα

asymptotically minimizes moments of the detection delay up
to the order r. However, below we show that the Shiryaev procedure minimizes all
positive moments of the detection delay under weaker conditions. As we demonstrate,
all that is required is positiveness and finiteness of the KL numbers.

Details are given in the next subsection.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 475

4.1. Asymptotic optimality. We will impose the following mild condition on
the KL information numbers:

0 < D(f1, f0) < ∞ and 0 < D(f0, f1) < ∞.(4.6)

Positiveness of the KL information numbers is not at all restrictive, since it holds
whenever the PDFs f0(x) and f1(x) do not coincide almost everywhere, i.e., μ{x :
f0(x) �= f1(x) > 0}. If it does not hold, the LLR Z1

1 is equal to zero almost surely, in
which case the detection problem is degenerate. The second condition (finiteness) is
quite natural and holds in most cases. However, there are reasonable models for which
it does not hold. The problem of detecting a change in mean value of a rectangular
distribution may serve as a good example. In the latter case, the moments of the LLR
are infinite and the detection problem becomes degenerate at least in the asymptotic
setting. On the other hand, if the KL numbers are finite, then all the moments of the
negative part of the LLR are finite, E1{−min(0, Z1

1 )}m < ∞, since the PDFs f0(x)
and f1(x) are mutually absolutely continuous (i.e., if f0(x) = 0, then so is f1(x)),
which implies that

Ef1

f0(X1)

f1(X1)
= E1 exp{−Z1

1} = 1.(4.7)

In the rest of this section, for the sake of simplicity we will restrict our attention to
the geometric prior distribution given in (2.8), in which case d = | log(1− ρ)| and the
statistic Λn obeys the recursion

Λn =
1

1 − ρ
(Λn−1 + ρ)

f1(Xn)

f0(Xn)
, n � 1, Λ0 =

π0

1 − π0
.(4.8)

The latter recursion follows from recursion (4.2), and we observe that πn/Πn = ρ/(1−
ρ) and Πn−1/Πn = 1/(1 − ρ).

The following theorem establishes asymptotic optimality properties of νBα in the
class Δ(α) with respect to all positive moments of the detection delay.

Theorem 4. Let, conditioned on λ = k, the observations X1, . . . , Xk−1 be i.i.d.
with the PDF f0(x) and let Xk, Xk+1 be i.i.d. with the PDF f1(x). Further, let the
prior distribution of the change-point λ be geometric. Suppose that conditions (4.6)
are satisfied. If Bα = (1 − α)/α, then PFA(νBα

) � α and, as α → 0, for all m � 1,

inf
τ∈Δ(α)

EDπ
m(τ) ∼ EDπ

m(νBα) ∼
(

| logα|
D(f1, f0) + | log(1 − ρ)|

)m

,(4.9)

inf
τ∈Δ(α)

ED(k)
m (τ) ∼ ED(k)

m (νBα) ∼
(

| logα|
D(f1, f0) + | log(1 − ρ)|

)m

∀ k � 1.(4.10)

Proof. For b > 0, define ηb(k) as in (3.33) and note that in the i.i.d. case and
for the geometric prior distribution the statistic Sk

k+n−1(ρ) = Zk
k+n−1 +n| log(1− ρ)|,

n � 1, is a random walk with mean EkS
k
k (ρ) = D(f1, f0) + | log(1 − ρ)|.

By (4.6), D(f1, f0) is positive and finite, and hence

Ek{−min(0, Zk
k )}m < ∞ for all m > 0.

Indeed,

Ek exp
{
− min(0, Zk

k )
}

= Eke
−Zk

k 1l{Zk
k<0} + Ek1l{Zk

k�0} � Eke
−Zk

k + 1 = 2,
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476 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

where the last equality follows from (4.7). Therefore, Theorem III.8.1 of [10] applies
to show that for all m � 1,

Ek[ηb(k)]m =

(
b

D(f1, f0) + | log(1 − ρ)|

)m(
1 + o(1)

)
as b → ∞.

Since νB − k � ηlogB(k) on {νB � k} and Pk{νB � k} → 1 as B → ∞, it follows
that

ED(k)
m (νBα) �

(
| logα|

D(f1, f0) + | log(1 − ρ)|

)m(
1 + o(1)

)
as α → 0.

Note that in the i.i.d. case, condition (3.2) holds trivially with q = D(f1, f0),
since Zk

k+n/n converges to D(f1, f0) (Pk-a.s.) by the strong law of large numbers,
and since

Pk

{
1

M
max

0�n<M
Zk
k+n � (1 + ε)D(f1, f0)

}
does not depend on k. Thus, the lower bound follows from (3.14):

inf
τ∈Δ(α)

ED(k)
m (τ) �

(
| logα|

D(f1, f0) + | log(1 − ρ)|

)m(
1 + o(1)

)
as α → 0,

which completes the proof of (4.10).
The proof of (4.9) is quite similar and is therefore omitted.

4.2. Higher-order asymptotic approximations for ADD and PFA. In
this subsection, we use the nonlinear renewal theory developed by Woodroofe [42]
(see also [29]) to improve the first-order approximations for the ADD and PFA.

We will also suppose (with minor loss of generality) that π0 = 0, i.e., in the rest
of this subsection the “pure” geometric prior distribution, πk = ρ(1 − ρ)k−1, k � 1,
will be considered. We first observe that, in this case, CADD1(νB) � CADDk(νB)
for all k � 1. To understand why, it is sufficient to consider the recursion (4.8)
and note that, for λ = k = 1, the initial condition Λ0 = 0 while, for λ = k � 2,
0 � Λk−1 < B on νB � k. Moreover, for large B, the difference between E1(νB − 1)
and Ek(νB − k | νB � k) is a constant that is approximately equal to the mean of
the initial condition, E∞ log Λk−1 (for k = 1 this value is equal to 0). This constant
varies for different models and its calculation is usually problematic. For this reason,
we will concentrate on the evaluation of the worst-case delay CADD1(νB).

In order to apply relevant results from nonlinear renewal theory, we rewrite the
stopping time νB in the form of a random walk crossing a constant threshold plus
a nonlinear term that is “slowly changing” in the sense defined by [42] and Sieg-
mund [29]. Indeed, the stopping time νB can be written in the following form:

νB = inf
{
n � 1: Sn(ρ) + n � b

}
, b = log(Bρ−1),(4.11)

where Sn(ρ) = Zn +n| log(1−ρ)| is a random walk with mean E1S1(ρ) = D(f1, f0)+
| log(1 − ρ)| and

n = log

{
1 +

n−1∑
i=1

(1 − ρ)i
i∏

s=1

f0(Xs)

f1(Xs)

}
= log

{
1 +

n−1∑
i=1

(1 − ρ)ie−Zi

}
.(4.12)

Here and in the rest of this subsection, we write Zn in place of Z1
n.
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For b > 0, define ηb(1) = ηb as in (3.33), i.e.,

ηb = inf
{
n � 1: Sn(ρ) � b

}
,(4.13)

and let κb = Sηb
(ρ) − b (on {ηb < ∞}) denote the excess (overshoot) of the statis-

tic Sn(ρ) over the threshold b at time n = ηb. Let

G(y, ρ,D) = lim
b→∞

P1{κb � y}(4.14)

be the limiting distribution of the overshoot and let

κ(ρ,D) = lim
b→∞

E1κb =

∫ ∞

0

y dG(y, ρ,D)

denote the related limiting average overshoot. Let us also define

ζ(ρ,D) = lim
b→∞

E1e
−κb =

∫ ∞

0

e−y dG(y, ρ,D) and

C(ρ,D) = E1 log

{
01 +

∞∑
i=1

(1 − ρ)ie−Zi

}
.(4.15)

Note that by (4.11),

SνB
(ρ) = b− νB

+ χb on {νB < ∞},

where χb = SνB
(ρ) + νB

− b is the excess of the process Sn(ρ) + n over the level b
at time νB . Taking the expectations on both sides and applying Wald’s identity, we
obtain (

D +
∣∣ log(1 − ρ)

∣∣)E1νB = b− E1νB
+ E1χb.(4.16)

The crucial observations are that the sequence {n, n � 1} is slowly changing and
that n converges P1-a.s. as n → ∞ to the random variable

 = log

{
1 +

∞∑
i=1

(1 − ρ)i e−Zi

}

with finite expectation E1 = C(ρ,D). In fact, applying Jensen’s inequality yields

C(ρ,D) = E1 � log

(
1 +

∞∑
k=1

(1 − ρ)k

)
= log

(
1

ρ

)
.(4.17)

Moreover, limn→∞ E1n = C(ρ,D) due to the fact that n � .
An important consequence of the slowly changing property is that, under mild

conditions, the limiting distribution of the excess of a random walk over a fixed
threshold does not change by the addition of a slowly changing nonlinear term (see
[42, Theorem 4.1]). Furthermore, since n →  and E1n → C(ρ,D), using (4.16) we
expect that for large b,

E1νB ≈ 1

D(f1, f0) + | log(1 − ρ)|
(
b− C(ρ,D) + κ(ρ,D)

)
.

The mathematical details are given in Theorem 5 below.
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478 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

More important, nonlinear renewal theory allows us to obtain an asymptotically
accurate approximation for PFA(νB) that takes the overshoot into account. This
approximation is important for practical applications, where the value of D(f1, f0) is
moderate. (For small values of ρ and D(f1, f0) the overshoot can be neglected, and
formula (2.11) will be reasonably accurate.)

Theorem 5. Let the prior distribution of the change-point λ be geometric,
πk = ρ(1 − ρ)k−1, k � 1, and assume that Zn, n � 1, are nonarithmetic with re-
spect to P∞ and P1.

(i) If conditions (4.6) hold, then

PFA(νB) =
ζ(ρ,D)

B

(
1 + o(1)

)
as B → ∞.(4.18)

(ii) If, in addition, the second moment E1|Z1|2 is finite, then as B → ∞

E1νB =
1

D(f1, f0) + | log(1 − ρ)|

[
log

B

ρ
− C(ρ,D) + κ(ρ,D)

]
+ o(1).(4.19)

Proof. (i) Obviously,

PFA(νB) = Eπ(1 − pνB
) = Eπ(1 + ΛνB

)−1 = Eπ

[
1 + B

(
ΛνB

B

)]−1

=
1

B
Eπe−χb

(
1 + o(1)

)
as B → ∞,

where χb = log ΛνB
− b. Since χb � 0 and PFA(νB) � 1/(1 + B) < 1/B, it follows

that

Eπe−χb = Eπ{e−χb | νB < λ}PFA(νB) + Eπ{e−χb | νB � λ}
(
1 − PFA(νB)

)
= Eπ{e−χb | νB � λ} + O(B−1) as B → ∞.

Therefore, it suffices to evaluate the value of

Eπ{e−χb | νB � λ} =

∞∑
k=1

P{λ = k | νB � k}Ek{e−χb | νB � k}.

To this end, we recall that, by (3.37), for any 1 � k < ∞,

νB = {n � 1: Sk
n(ρ) + n,k � b},

where Sk
n(ρ) = Zk

n + (n − k + 1)| log(1 − ρ)|, n � k, is a random walk with the
expectation EkS

k
k (ρ) = D(f1, f0) + | log(1 − ρ)| and n,k, n � k, are slowly changing

under Pk. Since, by conditions (4.6), 0 < D(f1, f0) < ∞, we can apply Theorem 4.1
of [42] to obtain

lim
B→∞

Ek{e−χb | νB � k} =

∫ ∞

0

e−y dG(y, ρ,D) = ζ(ρ,D).

Also,

lim
B→∞

P{λ = k | νB � k} = lim
B→∞

πkP∞{νB � k}
Pπ{νB � λ} = πk.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 479

Consequently,

lim
B→∞

Eπ{e−χb | νB � λ} = lim
B→∞

Eπe−χb = ζ(ρ,D),

which completes the proof of (4.18).
(ii) The proof of (4.19) rests on Woodroofe’s Nonlinear Renewal Theorem (see [42,

Theorem 4.5]). Indeed, by (4.11), the stopping time νB is based on the thresholding
of the sum of the random walk Sn(ρ) and the nonlinear term n. Since

n
P1-a.s.−−−−→
n→∞

 and E1n −−−−→
n→∞

E1 = C(ρ,D),

n, n � 1, are slowly changing under P1. In order to apply this theorem we have to
check the validity of the following three conditions:

∞∑
n=1

P1{n � −εn} < ∞ for some 0 < ε < D;(4.20)

max
0�k�n

|n+k|, n � 1, are P1-uniformly integrable;(4.21)

lim
B→∞

bP1

{
νB � εb (D + μ)−1

}
= 0 for some 0 < ε < 1.(4.22)

Condition (4.20) holds trivially, since n � 0. The value of max0�k�n |n+k| is

equal to 2n because n, n = 1, 2, . . . , are nondecreasing, and to prove (4.21) it suffices
to show that n, n � 1, are P1-uniformly integrable. Since n �  and, by (4.17),
E1 < ∞, the desired uniform integrability follows. Therefore, condition (4.21) is
satisfied.

We now turn to checking condition (4.22). Noting that in the notation of subsec-
tion 3.2,

P1

{
νB < (1 − ε) b(Dρ)

−1
}

= γ(1)
ε (B), where Dρ = D + | log(1 − ρ)|,

and using inequalities (3.6) and (3.9) with α = e−b, we obtain

P1

{
νB < (1 − ε) b(Dρ)

−1
}

� e−yεb + β1(ε,B),

where yε > 0 for all ε > 0 and β1(ε,B) = P1{max1�n<Kε,B
Zn � (1 + ε)DKε,B},

Kε,B = (1 − ε) b(Dρ)
−1. The first term in the above inequality is o(1/b) as B → ∞.

All that remains to show is that the second term is o(1/b).
To this end, we apply Theorem 1 of [6], according to which for all ε > 0 and

r � 0,

∞∑
n=1

nr−1P1

{
max

1�k�n
(Zk −Dk) � εn

}
� Cr

{
E1

[
(Z1 −D)+

]r+1
+
[
E1(Z1 −D)2

]r}
,

where Cr is a universal constant. Recall that, by the conditions of the theorem,
E1|Z1|2 < ∞. Therefore, the sum on the left-hand side of the previous inequality is
finite for r = 1 and all ε > 0, which implies that the summand should be o(1/n).
Since

β1(ε,B) � P1

{
max

n<Kε,B

(Zn −Dn) � εD(f1, f0)Kε,B

}
,

it follows that β1(ε,B) = o(b−1). Hence condition (4.22) holds for all 0 < ε < 1.
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480 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Thus, all the conditions of Theorem 4.5 in [42] are satisfied. The use of this
theorem yields (4.19) for large B.

Remark 4. The constants κ(ρ,D) and ζ(ρ,D) are the subject of the renewal
theory. The constant C(ρ,D) is not easy to compute in general. For ρ close to 1, the
upper bound (4.17) may be useful. Obviously, this bound is asymptotically accurate
when D → 0. Monte Carlo experiments may be used to estimate C with reasonable
accuracy (see Table 1 in section 6).

The usefulness of Theorem 5 is twofold. First, it provides accurate approximations
for both the ADD and the PFA. Second, it allows us to study the important limiting
case of ρ → 0.

To analyze the latter case it is convenient to consider the statistic Rρ,n = Λn/ρ.
As ρ → 0, this statistic converges to the so-called Shiryaev–Roberts statistic Rn =
limρ→0 Rρ,n. Also, as ρ → 0, PFA tends to 1 and limρ→0{[1−PFA(νB)]/ρ} = E∞νB .
Thus, it is natural to consider asymptotics α → 1 and ρ → 0 so that the ratio (1−α)/ρ
remains constant at T , 0 < T < ∞, where T may be interpreted as a constraint on
the mean time to false alarm E∞νB . The requirement (1−α)/ρ → T as α → 1, ρ → 0
is similar to that used by Shiryaev [25] for detecting changes in stationary regimes
(for the Wiener process).

The following corollary follows directly from Theorem 5 and the above argument.
Corollary 2. Let νB = inf{n : Rρ,n � B} and B = (1−α)/(αρ). Assume that

α → 1 and ρ → 0 in such a way that (1− α)/ρ → T , where 0 < T < ∞. Then, under
the conditions of Theorem 5,

E1νT =
1

D(f1, f0)

[
log T − C(D) + κ(D)

]
+ o(1) as T → ∞,(4.23)

where νT represents νB under the above limit, and where C(D) = C(0, D) and
κ(D) = κ(0, D).

It can also be shown that under the assumptions of Theorem 5, E∞νB ∼ T as
B = Tζ(D) and T → ∞, where ζ(D) = ζ(0, D). These results generalize similar
results obtained previously by Pollak for exponential families (see [22, Theorem 3]).

5. Asymptotic performance of other detection procedures. It is known
that in the case where the observations are i.i.d. and the change point is modeled
as deterministic but unknown, the CUSUM detection procedure of Page [19] and
the randomized Shiryaev–Roberts detection procedure proposed by Pollak [21] are
optimal with respect to the minimax expected detection lag, subject to a constraint
on the mean time to false alarm.

More specifically, consider the following two detection procedures:

τ̂B = inf{n � 0: Rn � B} and τ∗B = inf{n � 1: Un � B},
where the statistics Rn and Un are defined as follows:

Rn =

n∑
k=1

eZ
k
n and Un = max

1�k�n
eZ

k
n .

If R0 = 0, the detection procedure τ̂B is the Shiryaev–Roberts procedure. Its ran-
domized version, when R0 is random with a certain distribution, has been suggested
by Pollak [21]. We will refer to this procedure as the Shiryaev–Roberts–Pollak (SRP)
test. The second test τ∗B is nothing but the CUSUM algorithm.

In 1971, Lorden [17] proposed to measure the loss due to the detection delay by the
“worst-worst” minimax risk ES(τ) = supk ess supEk{(τ − k+1)+|Xk−1} and showed
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 481

that the CUSUM procedure τ∗B with B = T is asymptotically optimal for i.i.d. models,
as T → ∞, in the class ΔT = {τ : E∞τ � T} of procedures for which the mean time
to false alarm E∞τ exceeds a predefined number T . In 1986, Moustakides [18] proved
that the CUSUM test is strictly optimal for any T > 0 with respect to the risk ES(τ)
whenever the threshold B is chosen so that E∞τ∗B = T . In 1996, Shiryaev [28]
extended this result for continuous-time processes (detecting a change in the mean of
the Brownian motion). In 1998, Lai [16] generalized previous results for a general non-
i.i.d. case showing that the CUSUM procedure is asymptotically optimal in the class
ΔT as T → ∞ with respect to both the “worst-worst” risk ES(τ) and the “average-
worst” risk (minimax delay) MD(τ) = supk Ek(τ − k | τ � k). The latter measure of
the detection speed was introduced earlier by Pollak [21].

In the mid 1980s, Pollak [21] proposed the randomized version of the Shiryaev–
Roberts procedure τ̂B , where the statistic Rn is randomized at the zero point n = 0,
i.e., R0 is a random variable (R0 = 0 for the standard Shiryaev–Roberts procedure).
Pollak proved that this randomized procedure is nearly optimal with respect to the risk
MD(τ) for i.i.d. data models. Pollak [22] also presented a comprehensive asymptotic
analysis of the procedure τ̂B for exponential families. See [1], [30], [31], [32], [33], [34],
[35], [36], [37], [38], and [39] for further extensions and details.

So, both the CUSUM and the SRP detection procedures minimize supk Ek(τ −
k | τ � k) (the expected detection delay in the worst-case scenario) in the class of
procedures for which the mean time to false alarm E∞τ exceeds a predefined number T
(at least as T → ∞).

In this section, we study asymptotic properties of these two classical change-point
detection procedures in the class Δ(α). The results of previous sections are used
to establish that they lose the asymptotic optimality property under the Bayesian
criterion for prior distributions with exponential tail E(d), but remain optimal for
heavy-tailed prior distributions H.

In order to obtain an upper bound for the PFA of the SRP procedure, we note that
the statistic Rn−n is a zero-mean P∞-martingale (with respect to FX

n ). Therefore, Rn

is a submartingale with mean E∞Rn = n. Using Doob’s submartingale inequality,
we get

P∞{τ̂B < n} = P∞

{
max

1�k<n
Rk � B

}
� nB−1,

which yields

P̂FA(B) = Pπ{τ̂B < λ} =

∞∑
n=1

πnP∞{τ̂B < n} � λB−1,

where λ =
∑∞

k=1 kπk is the mean of the prior distribution. Thus, choosing B = Bα =
λ/α guarantees τ̂Bα ∈ Δ(α).

Since τ∗B � τ̂B , for the CUSUM procedure, we obtain

P∞{τ∗B < n} � P∞{τ̂B < n} � nB−1, n � 1,(5.1)

and hence,

PFA∗(B) = Pπ{τ∗B < λ} =

∞∑
n=1

πnP∞{τ∗B < n} � B−1
∞∑

n=1

nπn = λB−1.(5.2)

It follows that B = Bα = λ/α implies τBα
∈ Δ(α).
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482 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

The following theorem, which is a prototype of Theorem 3, establishes the asymp-
totic operating characteristics of the CUSUM and SRP procedures in terms of mo-
ments of the detection delay.

Theorem 6. Let λ =
∑∞

k=1 kπk < ∞ and B = Bα = λ/α. Then both detection
procedures τ∗Bα

and τ̂Bα belong to the class Δ(α) and the following two assertions hold.
(i) If the condition (3.25) is satisfied for some r > 0, then for all m � r and k � 1

as α → 0,

ED(k)
m (τ∗Bα

) ∼ ED(k)
m (τ̂Bα) ∼

(
| logα|

q

)m

.(5.3)

(ii) If the condition (3.26) is satisfied for some r > 0, then for all m � r as α → 0,

EDπ
m(τ∗Bα

) ∼ EDπ
m(τ̂Bα) ∼

(
| logα|

q

)m

.(5.4)

Proof. We provide the proof only for the SRP procedure, since the proof for the
CUSUM procedure is essentially the same.

For any B > 0, define the one-sided sequential probability ratio test by

ηB(k) = inf{n � 1: Zk
k+n−1 � logB}, k � 1.

Our first observation is that τ̂B − k � ηB(k) on {τ̂B � k}. Consequently, for
B > k

ED(k)
m (τ̂Bα

) =
Ek[(τ̂B − k)+]m

Pk{τ̂B � k} � Ek{[ηB(k)]m; τ̂B � k}
Pk{τ̂B � k} � Ek[ηB(k)]m

1 − kB−1
,

where the latter inequality follows from (5.1). By Lemma 3,

Ek[ηB(k)]m ∼
(

logB

q

)m

as B → ∞,(5.5)

and hence,

ED(k)
m (τ̂Bα

) �
(

logB

q

)m(
1 + o(1)

)
as B → ∞.(5.6)

Next, similar to (3.41)

τ̂B − k � ηB(k) � T (k)
ε + 2 +

logB

q − ε
on {τ̂B � k}.

Applying the latter inequality along with Pπ{τ̂B � λ} � 1 − λ/B yields (for B > λ)

EDπ
m(τ̂Bα) � B − λ

B

∞∑
k=1

πkEk

(
logB

q − ε
+ T (k)

ε + 2

)m

.

Since by the assumption of the theorem,
∑∞

k=1 πkEk[T
(k)
ε ]r < ∞ and ε can be arbi-

trarily small, it follows that for m � r,

EDπ
m(τ̂B) �

(
logB

q

)m(
1 + o(1)

)
as B → ∞.(5.7)
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 483

We now proceed with deriving the lower bounds. Write

γ̂(k)
ε (B) = Pk

{
k � τ̂B < k + (1 − ε) q−1 logB

}
,

γ̂ε(B) = Pπ
{
λ � τ̂B < λ + (1 − ε) q−1 logB

}
.

An argument similar to that used in the proof of Lemma 2 shows that

lim
B→∞

γ̂(k)
ε (B) = 0 and lim

B→∞
γ̂ε(B) = 0 for every 0 < ε < 1.(5.8)

Therefore, applying Chebyshev’s inequality, we obtain

Eπ
[
(τ̂B − λ)+

]m �
[
(1 − ε) q−1 logB

]m[
Pπ{τ̂B � λ} − γ̂ε(B)

]
.

Since EDπ
m(τ̂B) = Eπ[(τ̂B − λ)+]m/Pπ{τ̂B � λ} and Pπ{τ̂B � λ} � 1 − λ/B, it

follows that, for B > λ,

EDπ
m(τ̂B) �

[
(1 − ε) q−1 logB

]m[
1 − γ̂ε(B)

1 − λB−1

]
,

where γ̂ε(B) → 0 as B → ∞ by (5.8). Since ε is arbitrary,

EDπ
m(τ̂B) �

(
logB

q

)m(
1 + o(1)

)
as B → ∞,

which, along with the upper bound (5.7), yields the asymptotic equality

EDπ
m(τ̂B) =

(
logB

q

)m(
1 + o(1)

)
as B → ∞.(5.9)

Setting B = Bα = log(λ/α) in (5.9) proves (5.4).
Analogously, for B > k,

ED(k)
m (τ̂Bα) �

[
(1 − ε) q−1 logB

]m[
1 − γ̂

(k)
ε (B)

Pk{τ̂B � k}

]
�
[
(1 − ε) q−1 logB

]m[
1 − γ̂

(k)
ε (B)

1 − kB−1

]
.

Since ε can be arbitrarily small and, by (5.8), γ̂
(k)
ε (B) → 0 as B → ∞ for every k � 1,

we can conclude that the right-hand side in (5.6) is the asymptotic lower bound

for ED
(k)
m (τ̂Bα). Thus, the asymptotic approximation (5.9) holds for ED

(k)
m (τ̂Bα).

Finally, setting B = Bα = log(λ/α) proves (5.3).
Comparing Theorems 3 and 6 shows that the CUSUM and SRP procedures are not

asymptotically optimal in a Bayesian context for π ∈ E(d) but remain asymptotically
optimal for π ∈ H. In particular, for the geometric prior distribution and i.i.d. data
models,

lim
α→0

ADD(τ̂Bα)

infτ∈Δ(α) ADD(τ)
= lim

α→0

ADD(τ∗Bα
)

infτ∈Δ(α) ADD(τ)
= 1 +

| log(1 − ρ)|
D(f1, f0)

.(5.10)

Remark 5. While the standard CUSUM algorithm is not optimal, by using the
above techniques one can show that the following “Bayesian” modification of the
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484 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

CUSUM procedure is asymptotically optimal as α → 0. Define the weighted CUSUM
detection procedure by

τB = inf

{
n � 1: max

0�k�n

[
(Πn)−1πk

n∏
i=k

f1,i(Xi | Xi−1)

f0,i(Xi | Xi−1)

]
� B

}
,

B > π0/(1 − π0). If B = Bα = (1 − α)/α, then τBα ∈ Δ(α) and Theorems 3 and 4
hold true for τBα .

6. Example 1: Change detection in the mean of the autoregressive
process. In this section, we consider an example that illustrates the results of the
previous sections. This example is focused on single-sensor or centralized detection. In
the next section, we will consider two more examples that are related to decentralized
(distributed) detection in multisensor systems. In the rest of the paper, the prior
distribution (2.8) will be assumed geometric with π0 = 0.

Consider the “signal plus noise” model, in which we assume that Xn = 1l{n�λ}θn+

ξn, n � 1, where θn is a deterministic signal that appears at an unknown point in
time λ, and {ξn, n � 1} is a Markov Gaussian sequence (noise), which obeys the
recursion

ξn = δξn−1 + wn, n � 1, ξ0 = 0.

Here w1, w2, . . . are i.i.d. Gaussian random variables with mean zero and variance σ2.
The parameters 0 � δ < 1 and σ > 0 are assumed to be known (δ is the correlation
coefficient of noise). Let ϕ(x) = (2π)−1/2 exp{−x2/2} denote the PDF of the standard
normal distribution.

For this model, the conditional PDFs f0,n(Xn|Xn−1) and f1,n(Xn|Xn−1) intro-
duced in section 2 are of the form

f0,n(Xn | Xn−1) = f0(Xn | Xn−1) =
1

σ
ϕ

(
Xn − δXn−1

σ

)
for all n � 1,

f1,n(Xn | Xn−1) = f1,n(Xn | Xn−1) =
1

σ
ϕ

(
Xn − δXn−1 − θn

σ

)
for n = λ,

f1,n(Xn | Xn−1) = f1,n(Xn | Xn−1)

=
1

σ
ϕ

(
Xn − δXn−1 − (θn − δθn−1)

σ

)
for n � λ + 1,

where X0 = θ0 = 0.
Write

X̃i = Xi − δXi−1 and θ̃i = θi − δθi−1.

It is easy to see that

Zk
n =

1

σ2

(
θkX̃k +

n∑
i=k+1

θ̃iX̃i

)
− 1

2σ2

(
θ2
k +

n∑
i=k+1

θ̃2
i

)
, 1 � k � n.

Next, conditioned on the change-point λ = k, the values of X̃n, n = 1, 2, . . . , are
independent normal random variables with variance σ2, and EkX̃n = 0 for n < k,

D
ow

nl
oa

de
d 

08
/2

3/
13

 to
 1

30
.1

26
.1

38
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 485

EkX̃n = θn for n = k, and EkX̃n = θ̃n for n > k. Therefore, conditioned on λ = k,
{Zk

n, n � k} is a Gaussian process with independent increments and parameters

EkZ
k
n = −E∞Zk

n =
1

2σ2

(
θ2
k +

n∑
i=k+1

θ̃2
i

)
, DkZ

k
n = D∞Zk

n =
1

σ2

(
θ2
k +

n∑
i=k+1

θ̃2
i

)
,

where D stands for variance.
Write

Qk,n =
1

σ2n

k+n−1∑
i=k

θ̃2
i

and assume that

lim
n→∞

Qk,n = Q for all k � 1,(6.1)

where Q characterizes the average “signal-to-noise ratio” 0 < Q < ∞. It is easily
verified that

Pk

{∣∣∣∣Zk
k+n−1 −

Qn

2

∣∣∣∣ > εn

}
= 2Φ

{
− (ε− Δk,n)

√
n√

Qk,n

}
,

where Φ(x) is the standard normal distribution function and Δk,n = (Qk,n − Q)/2.
By condition (6.1),

∞∑
n=1

nr−1Pk

{∣∣∣∣Zk
k+n−1 −

Qn

2

∣∣∣∣ > εn

}
< ∞ for all r > 0,

and hence, for all r > 0

n−1Zk
k+n

Pk-r-quickly−−−−−−−−−→
n→∞

Q

2
and n−1Zk

k+n

P∞-r-quickly−−−−−−−−−→
n→∞

−Q

2
.

Thus, condition (3.25) holds for all positive r.
Also, obviously,

∞∑
k=1

πk

( ∞∑
n=1

nr−1Pk

{∣∣∣∣Zk
k+n−1 −

Qn

2

∣∣∣∣ > εn

})
< ∞,

which implies condition (3.26).
Thus, under condition (6.1) with 0 < Q < ∞, according to Theorem 3, the

Shiryaev detection algorithm νB with B = (1 − α)/α asymptotically minimizes all
positive moments of the detection delay in the class Δ(α), and the asymptotic formu-
las (3.44) and (3.45) hold with q = Q/2.

This result can easily be generalized for the problem of detecting a change in the
mean of the pth order Gaussian autoregressive process

ξn =

p∑
j=1

δjξn−j + wn, n � 1, ξk = 0 for k � 0,

where wn, n � 1, are i.i.d. N (0, σ2). Specifically, define θ̃p,n = θn −
∑p

j=1 θn−j and
assume that

lim
n→∞

1

σ2(n− p)

n∑
k=p+1

θ̃2
p,k = Q, where 0 < Q < ∞.
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486 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Then Theorem 3 and Corollary 1 show that νB is asymptotically optimal, and asymp-
totic formulas (3.44)–(3.47) hold true with q = Q/2.

We now return to the Markov case and assume that the mean value is constant,
θn = θ �= 0. Then condition (6.1) is fulfilled with Q = θ2(1 − δ)2/σ2.

In the latter case, the results of subsection 4.2 can be applied. To show this, we
first note that the LLR Z1

n can be written in the form

Z1
n =

n∑
k=2

ΔWk +
θ

σ2
X1 −

θ2

2σ2
,

where ΔWk = θ(1 − δ) X̃k/σ
2 − θ2(1 − δ)2/(2σ2), k � 2, are i.i.d. Gaussian random

variables with parameters

E1ΔWk = −E∞ΔWk =
Q

2
, D1ΔWk = D∞ΔWk = Q.(6.2)

Therefore, by adding and subtracting the random variable ΔW1, which has the same
distribution as ΔW2,ΔW3, . . . , one can represent Z1

n in the form

Z1
n = Wn + S

with Wn = ΔW1 + · · · + ΔWn being a Gaussian random walk with the parameters
given by (6.2), and S = (θ/σ2)X1−θ2/(2σ2)−ΔW1 being a Gaussian random variable
with E1S = −E∞S = QAδ/2, where Aδ = [1 − (1 − δ)2]/(1 − δ)2.

In further calculations, including Monte Carlo experiments, the stopping time νB
will be defined as νB = inf{n � 1: Rρ,n � B} with Rρ,n = Λn/ρ.

A slight modification of the proof of Theorem 5 shows that the PFA obeys the
asymptotic formula (4.18) and, as B → ∞,

E1νB =
1

Q/2 + | log(1 − ρ)|

[
logB − C(ρ,Q) + κ(ρ,Q) − QAδ

2

]
+ o(1).(6.3)

As compared to the asymptotic expansion (4.19) for the i.i.d. case, here an addi-
tional term −QAδ/2 appears due to the random variable S in the decomposition of
the LLR.

To guarantee the given PFA α in simulations, we used the following threshold
value obtained by reverting to (4.18) in Theorem 5:

B =
ζ(ρ,Q)

αρ
.(6.4)

According to [42, Corollary 2.2.7], the constant ζ(ρ,Q) is computed from the
formula

ζ(ρ,Q) =
2

Q + 2| log(1 − ρ)| exp

{
−

∞∑
k=1

1

k
Fk(ρ,Q)

}
,(6.5)

where

Fk(ρ,Q) = Φ

(
−Q + 2| log(1 − ρ)|

2
√
Q

√
k

)
+ (1 − ρ)kΦ

(
−Q− 2| log(1 − ρ)|

2
√
Q

√
k

)
(6.6)

and Φ(x) =
∫ x

−∞ ϕ(t) dt is a standard normal distribution function.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 487

To compute the CADD, we used the following higher order (HO) approximation:

CADD1(νB) ≈ max

{
0,

2

Qρ

(
logB − C(ρ,Q) + κ(ρ,Q) − QAδ

2

)
− 1

}
,(6.7)

where, according to [42, Corollary 2.2.7],

κ(ρ,Q) =
Q2

ρ/4 + Q

Qρ
−
√
Q

∞∑
k=1

[
k−1/2ϕ

(
Qρ

√
k

2
√
Q

)
− Qρ

2
√
Q

Φ

(
−Qρ

√
k

2
√
Q

)]
.

Here we used the notation Qρ = Q + 2| log(1 − ρ)|.
Formula (6.7) follows from the HO asymptotic (6.3). Note that this formula

requires the computation of the constant C(ρ,Q) using (4.15). As we observed in
Remark 4, we usually have to resort to Monte Carlo methods to estimate C(ρ,Q).
Values of C for various choices of Q, ρ, and δ are given in Table 1. The number of
trials were such that the estimate of the standard deviation of C was within 0.5% of
the mean.

For the purpose of comparison, we also used the first order (FO) approximations
for CADD (see (3.29))

CADD1(νB) ≈ max

{
0,

2 logB

Q + 2| log(1 − ρ)| − 1

}
.(6.8)

Extensive Monte Carlo simulations have been performed for different values of Q,
ρ, δ, and α. The number of trials used for these results is given by 1000/α. Sam-
ple results are shown in Tables 2, 3, and 4. In these tables, we present the Monte
Carlo estimates of ADD along with the theoretical values computed according to (6.7)
and (6.8). The abbreviations MCADD, MCCADD1, FOADD, and HOCADD1 are
used for the ADD obtained by the Monte Carlo experiment, CADD1 obtained by
the Monte Carlo experiment, the FO approximation (6.8), and the HO approxima-
tion (6.7) for CADD1, respectively. We also list Monte Carlo estimates for the PFA.

Table 2 contains results of analysis in the i.i.d. case when the threshold B =
(1 − α)/(ρα). This threshold value is based on the general upper bound that ignores
the overshoot. It can be seen that the Monte Carlo estimates for the PFA in this
case are substantially smaller than the design values α. This leads to an increase of
the true values of the average detection delay, which is undesirable. It can also be
seen that FO approximations are inaccurate even for relatively small α, while HO
approximations are very accurate.

The results in Table 3 correspond to the i.i.d. case, where the threshold B is
set using (6.4). It is seen that the Monte Carlo estimates for the PFA match α
very closely, especially for values smaller than 0.01. Thus, (6.4) provides an accurate
method to design the threshold B to meet the PFA constraint α. It is also seen
that, as expected, MCCADD1 exceeds MCADD in all cases. The FOADD values
are not good approximations even when PFA is small. On the other hand, the HO
approximation for CADD1 (given by HOCADD1) is seen to be very accurate even for
moderate values of the PFA.

Results for the correlated case with δ = 0.5 are presented in Table 4, with the
threshold B being set using (6.4). Here again we see the accuracy of HO order
approximations for the PFA and ADD. Also, it is interesting to see that for the same
value of effective signal-to-noise ratio, Q, the ADD in the correlated case is slightly
smaller than in the i.i.d. case. On the other hand, if we fix the value of “actual”
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488 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Table 1

Values of the constant C for different Q, ρ, δ.

δ = 0 (i.i.d.)

Q ρ C

1.0 0.3 0.8366
1.0 0.1 1.2396
1.0 0.03 1.4036
1.0 0.01 1.4647
0.5 0.3 0.9949
0.5 0.1 1.5859
0.5 0.03 1.9001
0.5 0.01 2.0371
0.25 0.3 1.0913
0.25 0.1 1.8694
0.25 0.03 2.3827
0.25 0.01 2.5992
0.1 0.3 1.1630
0.1 0.1 2.1290
0.1 0.03 2.9164
0.1 0.01 3.3528

δ = 0.5

Q ρ C

1.0 0.3 0.5062
1.0 0.1 0.7538
1.0 0.03 0.8681
1.0 0.01 0.9081
0.5 0.3 0.7590
0.5 0.1 1.2211
0.5 0.03 1.5002
0.5 0.01 1.5936
0.25 0.3 0.9479
0.25 0.1 1.6444
0.25 0.03 2.1245
0.25 0.01 2.3196
0.1 0.3 1.0970
0.1 0.1 2.0009
0.1 0.03 2.7597
0.1 0.01 3.1722

Table 2

Results for i.i.d. case with B = (1 − α)/(ρα).

ρ = 0.1, Q = 0.25

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0768 9.2315 12.3424 18.5338 11.9508
0.0600 0.0464 11.1187 14.4889 20.9400 14.4484
0.0300 0.0215 14.0684 17.6605 24.0854 17.5509
0.0100 0.0070 18.7026 22.4509 28.9431 22.3195
0.0060 0.0043 20.8690 24.6155 31.1781 24.6034
0.0030 0.0024 23.7940 27.6285 34.2001 27.5586
0.0010 0.0007 28.5247 32.3746 38.9779 32.3523

ρ = 0.1, Q = 0.1

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0858 11.9405 16.4280 27.9637 15.8823
0.0600 0.0460 14.7162 19.7314 31.5316 19.4116
0.0300 0.0240 18.9581 24.2873 36.1953 24.0955
0.0100 0.0083 25.6559 31.3594 43.3981 31.2017
0.0060 0.0048 28.8515 34.6259 46.7120 34.5589
0.0030 0.0025 33.2216 39.0867 51.1929 39.0017
0.0010 0.0008 40.2447 46.1591 58.2772 46.1774

signal-to-noise ratio θ2/σ2, e.g., Q = 1 in the i.i.d. case and Q = 0.25 in the δ = 0.5
case, then we can see that the correlation slows down the change detection.

7. More examples: Decentralized quickest change detection. The results
of the previous sections are particularly useful in the analysis of the decentralized ver-
sion of the change-detection problem described in [41]. We first outline this interesting
problem and related asymptotic optimality results for i.i.d. data models. Then we give
two examples.

7.1. A decentralized detection problem. Assume that the information
about the change is available through a set of L separate sensors. At time n an obser-
vation X�,n is made at sensor S�. Conditioned on the change-point λ, the observation
sequences {X1,n}, . . . , {XL,n} are assumed to be mutually independent. Furthermore,
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 489

Table 3

Results for i.i.d. case with B = ζ(ρ,Q)/(ρα).

ρ = 0.1, Q = 1

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0914 3.9388 4.9192 5.6139 4.8214
0.0600 0.0554 4.6407 5.7084 6.4577 5.6622
0.0300 0.0293 5.7191 6.8523 7.6027 6.8195
0.0100 0.0100 7.4474 8.6344 9.4175 8.6221
0.0060 0.0059 8.2627 9.4719 10.2614 9.4494
0.0030 0.0030 9.3973 10.6116 11.4064 10.6225
0.0010 0.0010 11.1895 12.4177 13.2212 12.4328

ρ = 0.01, Q = 1

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0907 8.5173 9.9681 11.4037 9.9424
0.0600 0.0547 9.5119 11.0090 12.4052 10.9459
0.0300 0.0290 10.7933 12.2914 13.7642 12.3139
0.0100 0.0100 12.9459 14.4763 15.9181 14.4788
0.0060 0.0058 13.9602 15.4800 16.9196 15.4538
0.0030 0.0030 15.2986 16.8320 18.2786 16.8507
0.0010 0.0010 17.4523 18.9875 20.4325 18.9818

ρ = 0.1, Q = 0.25

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0915 8.4385 11.4574 17.6206 11.0010
0.0600 0.0558 10.2942 13.5159 19.8381 13.2243
0.0300 0.0284 12.9266 16.3797 22.8471 16.2042
0.0100 0.0096 17.4060 21.0897 27.6162 21.0265
0.0060 0.0060 19.4797 23.2396 29.8337 23.2110
0.0030 0.0029 22.4640 26.2587 32.8426 26.2497
0.0010 0.0010 27.1694 31.0175 37.6117 31.0254

ρ = 0.1, Q = 0.1

α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0914 11.3236 15.7955 27.2882 15.1322
0.0600 0.0549 13.8997 18.8115 30.5762 18.3927
0.0300 0.0298 17.8510 23.1455 35.0377 22.8742
0.0100 0.0097 24.3888 30.0665 42.1091 29.9915
0.0060 0.0060 27.5188 33.2905 45.3971 33.1729
0.0030 0.0030 31.9391 37.7784 49.8586 37.7489
0.0010 0.0010 38.9244 44.8407 56.9300 44.8114

throughout this section, we restrict our attention to the “i.i.d. case” where the obser-
vations in a particular sequence, say {X�,n}n�1, are independently conditioned on λ,

have a common PDF f
(0)
� before the change, and a common PDF f

(1)
� from the time

of the change. Note that we are assuming that all the sensors change distribution
at the change time λ. As in section 4, we will suppose that the prior distribution is
geometric with the parameter ρ, ρ > 0.

Based on the information available at S� at time n, a message U�,n, belonging
to a finite alphabet of size V�, is formed and sent to the fusion center. We will use
the vector notation Xn = (X1,n, . . . , XL,n) and Un = (U1,n, . . . , UL,n). Based on the
sequence of sensor messages, a decision about the change is made at the fusion center.
The fusion center picks a time τ , which is a stopping time on {Un}n�1, at which it is
declared that a change has occurred.

Various information structures are possible for the decentralized configuration
depending on how feedback and local information is used at the sensors [41]. Consider
the simplest information structure, where the message U�,n formed by sensor S� at
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490 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Table 4

Results for correlated case with δ = 0.5.

ρ = 0.1, Q = 1
α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0839 2.9519 3.3721 5.6139 3.1324
0.0600 0.0532 3.5588 4.0728 6.4577 3.9739
0.0300 0.0289 4.5526 5.1437 7.6027 5.1293
0.0100 0.0100 6.2505 6.9137 9.4175 6.9328
0.0060 0.0062 7.0655 7.7425 10.2614 7.7790
0.0030 0.0029 8.1902 8.8830 11.4064 8.9244
0.0010 0.0010 9.9847 10.6885 13.2212 10.7444

ρ = 0.1, Q = 0.25
α MCPFA MCADD MCCADD1 FOADD HOCADD1

0.1000 0.0895 7.8914 10.6258 17.6206 10.3019
0.0600 0.0568 9.7496 12.7327 19.8381 12.6246
0.0300 0.0289 12.3524 15.5596 22.8471 15.6679
0.0100 0.0098 16.7599 20.2234 27.6162 20.3995
0.0060 0.0061 18.8899 22.4150 29.8337 22.5276
0.0030 0.0030 21.8352 25.3999 32.8426 25.6374
0.0010 0.0010 26.5485 30.1661 37.6117 30.4034

time n is a function of only its current observation X�,n, i.e., U�,n = ψ�,n(X�,n).
Moreover, since for a particular  the sequence {X�,n}n�1 is assumed to be i.i.d.,

it is natural to confine ourselves to stationary quantizers2 for which the quantizing
functions ψ�,n do not depend on n, i.e., ψ�,n = ψ� for all n � 1.

The set of quantizing functions {ψ�,  = 1, . . . , L} = Ψ, together with the fusion
center stopping time τ , form a policy φ = (τ,Ψ). The goal is to choose the policy φ
that minimizes the ADD(φ) = Eπ{τ − λ | τ � λ}, or more generally the moments of
the detection delay EDπ

m(φ) = Eπ{(τ −λ)m | τ � λ} for all m � 1, while maintaining
the probability of the false alarm PFA(φ) = Pπ{τ < λ} at a level not greater than α.

Let Hk be the hypothesis that the change occurs at time λ = k ∈ {1, 2, . . . }, and
let H∞ be the hypothesis that the change does not occur at all. Since the observations
at each sensor S�, {X�,n, n = 1, 2, . . . }, are i.i.d., for stationary sensor quantizers, the

sensor outputs, {U�,n, n = 1, 2, . . . }, will also be i.i.d. Let g
(j)
� denote the PMF

(probability mass function) induced on U�,n when the observation X�,n is distributed

as f
(j)
� , j = 0, 1.
Then, for fixed stationary sensor quantizers, the LLRs between the hypotheses Hk

and H∞ at the sensor S� and at the fusion center are given by

Zk
n() =

n∑
i=k

log
g
(1)
� (U�,i)

g
(0)
� (U�,i)

and Zk
n =

L∑
�=1

Zk
n().

For fixed sensor quantizers, the fusion center faces a standard change-point detection
problem based on the vector observation sequence {Un}. Hence we can define the
average likelihood ratio statistic Λdc

n and the corresponding statistic Rdc
ρ,n = Λdc

n /ρ

with f1(Xn)/f0(Xn) now replaced by
∏L

�=1[g
(1)
� (U�,n)/g

(0)
� (U�,n)]. The index “dc” will

be used to denote parameters associated with the decentralized detection problem.

2We can prove the optimality of stationary quantizers under some mild conditions on the obser-
vations and the quantizers.
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ASYMPTOTIC THEORY OF QUICKEST CHANGE DETECTION 491

The decentralized Shiryaev detection procedure at the fusion center νdc
B is given by

νdc
B = inf{n � 1: Rdc

ρ,n � B},(7.1)

where B is a positive threshold which is selected so that PFA(νB) � α.

If D(g
(1)
� , g

(0)
� ), the KL distances between the g

(1)
� and g

(0)
� , are positive and

finite, then for fixed stationary sensor quantizers, an application of Theorem 4 gives
us that the detection procedure νdc

B given in (7.1), with B = Bα = (1 − α)/(αρ),
is asymptotically optimal as α → 0 among all procedures with the PFA no greater
than α. To be specific, let Ψ = {ψ1, . . . , ψL} be a set of stationary quantizers. Then,
as α → 0, for all m � 1

inf
τ∈Δ(α)

EDπ
m(Ψ, τ) ∼ EDπ

m(Ψ, νdc
Bα

) ∼
(

| logα|∑L
�=1 D(g

(1)
� , g

(0)
� ) + | log(1 − ρ)|

)m

,

where EDπ
m(Ψ, τ) = Eπ{(τ − λ)m | τ � λ} is the mth moment of the detection delay

for the policy (Ψ, τ).
This result immediately reveals how to optimize the sensor quantizers.
Corollary 3. It is asymptotically optimum (as α → 0) for sensor S� to use the

stationary quantizer that maximizes the KL information distance at its output; i.e.,

ψ�,opt = arg maxD(g
(1)
� , g

(0)
� ),  = 1, . . . , L.

Based on the results of Tsitsiklis [40], it is easy to show that the optimum station-
ary quantizer ψ�,opt is a monotone likelihood ratio quantizer; i.e., there exist thresholds
h�,1, . . . , h�,V�−1 satisfying 0 = h�,0 � h�,1 � · · · � h�,V�−1 � ∞ = h�,V�

such that

ψ�,opt(X) = i only if h�,i−1 <
f

(1)
� (X)

f
(0)
� (X)

� h�,i, i = 1, . . . , V�.

Thus, the asymptotically optimal policy φopt for the decentralized change de-
tection problem in the class of stationary (in time) quantizers consists of a set of
monotone likelihood ratio quantizers at the sensors followed by Shiryaev’s procedure
based on {Un}n�1 at the fusion center (as described in (7.1)).

For each , let the PMFs induced on U�,n by the optimum monotone likelihood

ratio quantizer ψ�,opt be given by g
(1)
�,opt and g

(0)
�,opt. Then the effective KL information

distance between the “change” and “no change” hypotheses at the fusion center is
given by

Dtot =

L∑
�=1

D(g
(1)
�,opt, g

(0)
�,opt).

Finally, denote by νdc
opt Shiryaev’s stopping rule at the fusion center for the case where

the sensor quantizers are chosen to be ψ�,opt, and by Φst(α) the class of policies φ with
all stationary quantizers and stopping rules at the fusion center such that τ ∈ Δ(α).

The asymptotic performance of the asymptotically optimal solution to the decen-
tralized change detection problem described above is given in the following theorem,
which follows directly from Theorem 4 and the argument given above.

Theorem 7. Suppose that

0 < D
(
g
(1)
�,opt, g

(0)
�,opt

)
< ∞ for  = 1, . . . , L.
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492 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Then Bα = (1 − α)/(αρ) implies that PFA(νdc
opt) � α and, for all m � 1,

inf
φ∈Φst(α)

EDπ
m(φ) ∼ EDπ

m(φopt) ∼
(

| logα|
Dtot + | log(1 − ρ)|

)m

as α → 0,

where φopt = (νdc
opt, {ψ�,opt}).

Theorem 5 can also be applied to the problem in question. Specifically, if in
addition to the conditions of Theorem 7, we assume that the LLR at the fusion

center Z1
1 =

∑L
�=1 log[g

(1)
�,opt(U�,1)/g

(0)
�,opt(U�,1)] is nonarithmetic, then the PFA satisfies

asymptotic formula (4.18) with B replaced by Bρ and

E1νB =
1

Dtot + | log(1 − ρ)|
[
logB − C(ρ,Dtot) + κ(ρ,Dtot)

]
+ o(1)(7.2)

with the corresponding modification of the definitions of κ(ρ,Dtot) and C(ρ,Dtot).

7.2. Example 2: Decentralized detection of a change in the mean of
a normal population. Surveillance systems, such as those used in defense, detect
and track moving targets that appear and disappear at unknown points in time. As
a result, the target detection problem can be naturally formulated as a multisensor
abrupt change detection problem as considered in subsection 7.1. We now consider
an example of interest in target detection theory. In the centralized setting, this
example is a particular case of Example 1. Here we consider the decentralized problem
discussed above.

Consider the problem of detecting a nonfluctuating target using L geographically
separated sensors. The observations are corrupted by additive white Gaussian noise
that is independent from sensor to sensor. The sensors preprocess the observations
using a filter matched to the signal corresponding to the target (see [24]). The output
of the matched filter at sensor S� at time n (when the time of appearance of the target
is λ) is given by

X�,n =

{
ξ�,n if n < λ,

μ� + ξ�,n if n � λ,

where {ξ�,n, n = 1, 2, . . . } is a sequence of i.i.d. zero-mean Gaussian random variables
with variance σ2

� . Therefore, the likelihood ratio at sensor S� is given by

Y�(x) =
f

(1)
� (x)

f
(0)
� (x)

= exp

{
μ�(x− μ�/2)

σ2
�

}
.(7.3)

Since Y� is monotonically increasing, we can characterize the optimum stationary
sensor quantizers in terms of thresholds on the observations, rather than on their
likelihood ratios. To further simplify the example, we assume that the sensor messages
are binary, i.e., V� = 2 for all . Then the quantizers reduce to binary tests that are
characterized by a single threshold, i.e.,

U�,n =

{
1 if X�,n � h�,

0 otherwise.

The distributions induced on U�,n by this quantizer are given by

g
(j)
� (0) = 1 − g

(j)
� (1) = Φ

(
h� − jμ�

σ�

)
= q

(j)
� , j = 0, 1,(7.4)
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Fig. 1. Operating characteristics for an example with five sensors with identically distributed
Gaussian observations.

where Φ(·) is the distribution function of a standard Gaussian random variable. The

optimum value of h�, i.e., the one that maximizes D(g
(1)
� , g

(0)
� ), is easily found based

on (7.4). Then we can compute the decision statistic Rρ,n at the fusion center, which
obeys the recursion (assuming that π0 = 0)

Rρ,n =
1

1 − ρ
(1 + Rρ,n−1) e

Zn
n , n � 1, Rρ,0 = 0,(7.5)

with

Zn
n =

L∑
�=1

(
U�,n log

[
1 − q

(1)
�

1 − q
(0)
�

q
(0)
�

q
(1)
�

]
− log

[
q
(0)
�

q
(1)
�

])
.(7.6)

Based on (7.6), we may also compute HO approximations for the PFA and ADD, as
given in Theorem 5, using the technique given in [42, section 2.4].

The operating characteristics in an example with five sensors having identically
distributed observations are illustrated in Figure 1. The parameter values are ρ = 0.1,
μ� = 0.4, and σ2

� = 1. The KL distance for the sensor observations is 0.08. The
threshold that maximizes the KL distance at the output of the sensor is h = 0.32,
and the corresponding maximum KL distance is 0.0509. The fusion center threshold
is set using B = (1 − α)/(ρα). Estimates for the PFA and ADD were obtained
using Monte Carlo methods with the number of trials being 1000/α. We plot ADD
versus − log PFA for the optimum decentralized detection policy and compare the
performance with that of a centralized policy that has direct access to the observations
at the sensors. As we expect, for the centralized policy, the plot of ADD versus
− log(PFA) is a straight line with a slope that is approximately equal to

1

5D(f (1), f (0)) + log(1 − ρ)
≈ 1.98.
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For the optimum decentralized policy, the trade-off curve has a slope that is roughly
equal to

1

Dtot + log(1 − ρ)
≈ 2.78

as expected from Theorem 7. The decentralized policy of course suffers a performance
degradation relative to the centralized policy. However, the bandwidth requirements
for communication with the fusion center are considerably smaller in a decentralized
setting, especially with binary quantizers. Figure 1 also shows the trade-off curve
for a centralized detection policy with a single sensor. As expected, the slope of
ADD versus − log PFA is five times larger. Furthermore, it can be seen that even if
the sensor observations are quantized to one bit, the decentralized policy with five
sensors far outperforms the single sensor centralized policy.

7.3. Example 3: Decentralized detection of a change in a Poisson se-
quence. In distributed computer networks, large-scale attacks in their final stages
can be readily identified by observing very abrupt changes in the network traffic.
However, in the early stage of an attack, these changes are hard to detect and dif-
ficult to distinguish from usual traffic patterns. In this subsection, we argue that
the Shiryaev detection algorithm can be effectively deployed for an early detection
of intrusions from the class of denial-of-service attacks. An efficient nonparametric
approach to this problem has been recently proposed by Blažek et al. [4]. Here we
consider a parametric approach with a Poisson model for the observables.

Assume that sensor observations are Poisson random variables with different
means before and after the disruption. For instance, in the network security ap-
plications, X�,n may correspond to the number of packets of a particular type (say,
TCP-packets) at sensor S� in the nth time interval of a certain length. Let the ob-
servations at sensor S� have mean μ0,� before the disruption, and mean μ1,� after the
disruption. Without loss of generality assume that μ1,� > μ0,�. Then the likelihood
ratio at S� is given by

Y�(X�,n) =

(
μ1,�

μ0,�

)X�,n

exp {−(μ1,� − μ0,�)} .

Note that the likelihood ratio is again monotonically increasing, and hence, we can
characterize the optimum stationary sensor quantizers in terms of thresholds on the
observations. For binary quantizers,

U�,n =

{
1 if X�,n � h�,

0 otherwise.

The distributions induced on U�,n by this quantizer are given by

g
(j)
� (0) = 1 − g

(j)
� (1) =

�h��∑
k=0

μk
j,� e

−μj,�

k!
= q

(j)
� , j = 0, 1.(7.7)

Here again, the optimum value of h�, i.e., the one that maximizes D(g
(1)
� , g

(0)
� ), is

easily found based on (7.7). The decision statistic at the fusion center is then given
by (7.5) and (7.6).

The operating characteristics in an example with three sensors having identically
distributed observations are illustrated in Figure 2. The parameter values are ρ = 0.1,
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Fig. 2. Operating characteristics for an example with three sensors with identically distributed
Poisson observations.

μ0,� = 10, and μ1,� = 12. The KL distance for the sensor observations is 0.1879. The
threshold that maximizes the KL distance at the output of the sensor is h = 11, and
the corresponding maximum KL distance is 0.119. The fusion center threshold is set
using B = (1 − α)/(ρα), and estimates for the PFA and ADD were obtained using
Monte Carlo methods. As in the previous example, we see that the plots of ADD
versus − log PFA in the three cases considered have the behavior predicted by the
theory.

8. Conclusions. We end by giving the following concluding remarks.
1. Most of the asymptotic optimality results remain true for stochastic processes

observed in continuous time. However, continuous-time problems have certain special
features that should be handled carefully. A general asymptotic detection theory for
continuous-time models will be presented elsewhere.

2. The general asymptotic theory that has been developed in this paper covers
only simple hypotheses and can be considered as the first step. For most practical
applications it is important to consider composite hypotheses, especially in the post-
change mode. Mixture-type and adaptive versions of the Shiryaev Bayesian rule are
excellent candidates for composite-hypothesis problems. Adaptive Bayesian modifi-
cations seem to be especially attractive for on-line implementations.

3. For the decentralized detection problem discussed in section 7, it is of interest to
extend the asymptotic analysis to non-i.i.d. observations at the sensors and to possible
correlation across sensors (conditioned on the change point). The extension to non-
i.i.d. observations is straightforward, whereas the extension to include correlation
across sensors appears to be nontrivial.

4. The results of section 7 show that fusion of data in decentralized multisensor
systems with quantizers always leads to a certain loss of information which results in
the performance degradation of the optimal decentralized policy. Specifically, for the
geometric prior distribution the asymptotic relative efficiency of the optimal central-
ized detection procedure with respect to decentralized is equal to

lim
α→0

infτ∈Δ(α) ADDc(τ)

infτ∈Δ(α) ADDdc(τ)
=

| log(1 − ρ)| +
∑L

�=1 D(g
(1)
� , g

(0)
� )

| log(1 − ρ)| +
∑L

�=1 D(f
(1)
� , f

(0)
� )

< 1.
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496 A. G. TARTAKOVSKY AND V. V. VEERAVALLI

Interestingly, it is possible to construct decentralized detection procedures with no
quantization that are asymptotically equivalent to the optimal centralized procedure
(i.e., globally asymptotically optimal) and at the same time have bandwidth require-
ments for communications between sensors and the fusion center similar to decentral-
ized policies with binary quantization. However, these procedures require significant
processing capabilities at the sensors so that they can run individual change detection
tests. Such procedures will be discussed in a separate paper.
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