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Arrivals and Departures

Rajat Prakash and Venugopal V. Veeravalli, Fellow, IEEE

Abstract—A dynamic-user model for centralized wireless net-
works is studied, where users arrive with a certain file size and de-
part when the file is served by a central server. Although the exact
analysis of dynamic-user systems can be complicated, it is shown
that an approximate analysis can be performed in a time-scale sep-
aration regime where the file size is much larger than the time
scale of service process fluctuation. A first-order approximation
result is derived that shows that when file sizes are large, a com-
plicated service process can be replaced by a simple constant-rate
service process. The accuracy of the approximation is further im-
proved through a second order approximation result that incor-
porates the effect of service variability. Variability in the service
process is shown to reduce the effective service rate, leading to a
quantification of the conventional heuristic that service variability
degrades system performance.

Index Terms—Blocking probability, cellular networks, fading
channel, mean delay, offered load, queueing systems, steady-state
distribution.

I. INTRODUCTION

I N a centralized wireless data network many users share
the services of a central unit or base station. Depending on

whether the number of users in the system varies or remains
fixed, centralized wireless systems can be divided into two
broad categories. The first category consists of systems with a
fixed number of users, where each user has an infinite backlog
of information to transmit. For such fixed-user systems, the
most important performance metric is the throughput attainable
by each user. There is a vast body of work about the computing
and optimizing the throughput for fixed-user systems. See, for
example, [1], [2] for an information-theoretic overview, and [3]
for a signal processing overview.

Our focus is on a second category of centralized wireless
data systems, where the number of users varies with time. In
such systems, new users arrive according to a stochastic arrival
process, and each user has a finite sized file for transmission. A
user leaves the system when the entire file is transmitted. Due
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to the dynamic evolution with time of the number of users, we
call such systems dynamic-user systems. The operation of dy-
namic-user centralized wireless systems can be divided into two
stages: initial access and data transfer. In the initial access stage,
a new user informs the base station that he has data to transmit.
Once the base station is aware of the user’s request, it allocates a
communication resource (say a frequency slot) to the user. After
this allocation is complete, the new user enters the data transfer
stage, and transmits data to the base station using the allocated
resource.

Initial access is usually implemented through some version
of Aloha, and the initial access problem has been studied exten-
sively in the literature [4]. In contrast, there has not been much
work on the data transfer aspect of dynamic-user centralized
wireless systems, and most of the analyses rely on a fixed-user
model. In this paper, we develop a framework for the analysis
of data transfer schemes in dynamic-user systems.

The two most important performance metrics for a dynamic-
user system are the mean delay and the blocking probability.
The mean delay is the mean time between a user’s arrival and
completion of data transfer. Computation of the mean delay
allows us to plot the tradeoff between offered load (users per
second) and delay, and to determine the maximum allowable
load that can be sustained while maintaining a tolerable delay.
Using Little’s law, the mean delay can be calculated from the
steady-state distribution of the number of users, . The dis-
tribution can also be used to compute the blocking probability,
that is the probability that the number of users in the system is
more than a certain threshold . Thus, the distribution
characterizes the performance of a dynamic-user system, and
the goal of this paper is to evaluate this distribution.

The problem of evaluating for dynamic-user systems
was first studied by Telatar and Gallager [5], under the as-
sumption that the service process has a constant rate bits
per second, that depends only on the number of users in the
system (a symmetric queue model). However, the constant ser-
vice rate assumption in [5] is restrictive. In practice, the service
process in wireless systems is often stochastic, i.e., the service
rate varies with time. Reasons for the stochastic nature of the
service process include channel fading and inherent random-
ness in the communication protocol (e.g., retransmission timers
for automatic repeat request (ARQ)). Due to these complexities
of the service process, the simple model of [5] is not applicable
to many systems of interest. The exact analysis of realistic
dynamic-user systems is often complicated, and can involve
finding the steady-state distribution of a Markov chain with
a large state space (Raychaudhuri [6], Zhang et al. [7]). The
main contribution of this paper is to develop an approximation
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technique that simplifies the analysis of dynamic-user systems
with complicated Markovian service models.

To analyze a given dynamic-user system, we first construct
a set of fixed-user systems by blocking the arrival and depar-
ture of users in the given dynamic-user system. For this set of
fixed-user systems, we evaluate the first- and second-order sta-
tistics of the service process, this evaluation being considerably
simpler than the analysis of the original dynamic-user system.
Then, we approximate the performance of the dynamic-user
system in terms of statistics of the service in the set of fixed-user
systems. This technique allows us to break the complex problem
of dynamic-user system analysis into two simpler problems:
fixed-user system analysis, followed by symmetric queue anal-
ysis.

Our first result is a first-order approximation, where we ap-
proximate the distribution in terms of the mean of the
service of a fixed-user system with users. In an asymptotic
regime where the file sizes are much larger than the time scale
of variation of the service process, we show that the given dy-
namic-user system can be approximated by a symmetric queue
with service rate . We used this approximation earlier in [8]
and [9], and recently, such an approximation has also been used
in [10] and [11], albeit without a rigorous justification. In this
paper, we give a rigorous justification for the first-order approx-
imation.

Our second result is a second-order approximation, where, for
a certain class of dynamic-user systems, we refine the first-order
approximation in terms of the variance time constant of
the service process. We show that when the file size is large,
the dynamic-user system is well approximated by a symmetric
queue with service rate

(1)

leading to a second-order approximation for the distribution .
This approximation quantifies the effect service process vari-
ability has on the mean delay. In particular, it shows that service
process variability reduces the effective service rate, and that the
reduction is proportional to the variance of the service process.

The second-order approximation result can be contrasted
with two other results from queueing that relate variability with
service time. For the M/G/1/FCFS queue with constant service
rate, it is well known that the mean delay increases linearly with
file size variance. On the other hand, for the M/G/1/PS queue
with constant service rate, it is known that the mean delay is not
a function of file size variance. The second-order approximation
implies that for an M/G/1/PS queue with nonconstant service
rates, the mean delay increases with service rate variance.
Note that the second-order approximation provides a reduced
effective service rate for each values in the M/G/1/PS, and is
not equivalent to considering an increased effective file size.

Our first- and second-order approximations say that as viewed
from a higher layer perspective, a complex physical layer can be
modeled by a constant-rate data pipe with appropriately selected
rates. This constant-rate data pipe model is related to [12], where
large deviations and the theory of effective bandwidths are used.
However, the technique in [12] is applicable only to single-user
systems, and their main objective is to bound the probability of
buffer overflow at the queue of this single user.

Although not directly related with our work, we also men-
tion the following stream of work that seeks to reconcile
queueing and physical layer considerations. For systems with
a fixed number of users, a random packet arrival process, and
a randomly varying channel, the issue of deciding which user
transmits in a given slot (the scheduling problem) has been
considered in [13]–[18]. Our analysis is different from these
works because we allow the number of users in the system to
vary.

The rest of the paper is organized as follows. An overview
of the time-scale separation results, without the formal defini-
tions, is presented in Section II. A detailed system model and
statement of results is given in Section III. Section V contains
the proof of time-scale separation, and uses two lemmas for the
proof. These lemmas, in turn, are proved in Section VI. Finally,
conclusions are given in Section VIII.

II. OVERVIEW OF RESULTS

In this section, we present an overview of our results on the
asymptotic analysis of dynamic-user systems. Our approxima-
tion results take the form of approximating the given dynamic-
user system by a symmetric queue, which is described next.

A. Symmetric Queue Model

The symmetric queue model was used for the analysis of cen-
tralized wireless systems by Telatar and Gallager [5]. In a sym-
metric queue, users arrive into the system according to a con-
tinuous time Poisson process with rate users per second. An
arriving user is blocked if the number of users reaches an admis-
sion threshold . The file size of each user is independent and
identically distributed with a typical file size bits. When there
are users in the system, data is transmitted at a constant rate
of bits per second. This data rate is divided equally among
all users, giving rate bits per second to each user. A user
leaves the system when the entire file has been transmitted.

For the symmetric queue, a key quantity of interest is the
steady-state distribution of the number of users in the system,
and is denoted by users in system . The steady-
state distribution can be used to compute the mean delay
using Little’s law

(2)

Also, using the Poisson arrivals see time averages (PASTA)
property [19], the blocking probability can be computed as

.
For the symmetric queue, can be computed in closed

form, and it can be shown that depends on and only
through the offered load .

(3)

where is a normalizing constant and is the indicator func-
tion. Although (3) is valid irrespective the distribution of the file
size (see [20, Sec. 3.3] for details), in the special case of ex-
ponentially distributed file sizes,(3) can be interpreted as arising
from the Markov chain in Fig. 1.
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Fig. 1. Markov chain model for number of users u for a symmetric queue with exponential file sizes.

B. First-Order Approximation

The symmetric queue model of the previous section requires
a constant service rate assumption. For more general Markov
modulated service models, such as may be found in realistic dy-
namic-user systems, the complexity of the Markov state space
makes it difficult to analytically evaluate the steady-state distri-
bution of the number of users. We denote this steady-state dis-
tribution by (to distinguish it from the symmetric queue
distribution ). We will show that when the average file size
is much larger than the time scale of variation of the service
process, a time-varying service process can be effectively re-
placed by a constant-rate service process with the same mean.
Although we consider general Markov modulated models for
the service process, we continue to make two symmetry assump-
tions inherent in the model of [5].

• Symmetric Users: All users have statistically identical
channels and file size distributions. In the context of
cellular systems, this means that all users are subjected to
the same slow fading (that does not change over the time
period of interest), with the fast fading being statistically
identical for all users. If the slow-fading terms are not the
same (due to varying distances from the base station), we
can satisfy the symmetric users condition by using power
control to compensate for the slow fading.

• Symmetric Resource Allocation: Service is provided to
each user with equal priority. Symmetric resource alloca-
tion rules out the use of residual file size based resource
allocation. It is known that file size based prioritization
of users can reduce the average delay seen by a user. For
example, smallest remaining processing time (SRPT) [21]
can result in a reduction in the mean delay. Some of these
issues are addressed by Telatar in [22].

We call a dynamic-user system to be separable if it satis-
fies both of the preceding symmetry properties. For nonsepa-
rable systems, the analysis of dynamic-user systems is difficult
even for a constant service rate. In this paper, our focus is on
extending the analysis of [5] to stochastic or discrete service
models, and we do not consider the problem of relaxing the sym-
metry assumption (a discussion of the asymmetric users case is
given in [23])

The first-order approximation will be applicable to separable
systems. To model systems with large file sizes, consider a
sequence of dynamic-user systems indexed by , where each
system has the same service process statistics. For system- , let
the average file size be bits, and the arrival rate be
users per second (giving the same offered load bits per second
for each system in the sequence). Further, let the steady-state
distribution of the number of users for system- be .

To characterize the statistics of the general service process,
we construct a fixed-user system by disallowing arrivals and
setting the file size of each user to infinity in the given dynamic-
user system. For such a fixed-user system with users, let
be the service given to user in time , and let the average service
rate be

(4)

Note that the symmetric users assumption is reflected in the
above equation because each user has the same average service
rate.

When the file size is large ( is small), each user will be in the
system for a long time. Then, we can use the limit in (4) to argue
that each user sees a nearly constant service rate . Thus,
for large file sizes, we should be able to approximate the given
system by a symmetric queue with service rate and steady-
state distribution . This heuristic is stated in the following
first-order approximation result.

Result 1: The steady-state distribution of a separable dy-
namic-user system can be approximated by the steady-state dis-
tribution of an equivalent symmetric queue, i.e.,

(5)

A formal statement of this result is given in Section III. This
result allows us to simplify the complexities of the physical layer
by replacing the service process by a simple constant-rate ser-
vice process that depends only on the number of users in the
system.

C. Second-Order Approximation

The second-order approximation improves the first-order ap-
proximation by using the service process variance time-constant

, that is defined as

(6)

Here, is the sum of the service provided to all users in a
fixed-user system with users. Such a time constant will exist
for a large variety of service processes, including the class of
service processes that are governed by a Markov chain.

The second-order approximation is applicable to a class of
systems that satisfy the following conditions: independent ser-
vice, stationary arrival state, exponential file sizes, and negli-
gible discreteness. The exact definitions of these conditions are
provided in Section III-D, and the conditions are informally de-
scribed as follows.

• Independent Service: The independent service condition
is a technical condition that is described in precise form
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in Section III-D. This condition depends on the physical
layer, and is satisfied for most physical layer scenarios
when the channel fading is uncorrelated across time slots.
When the channel is correlated in time, the independent
service condition is satisfied by time-division multiple
access (TDMA) and frequency-division multiple access
(FDMA), but not by channel condition based scheduling
schemes.

• Stationary Arrival State: The stationary arrival state
condition is a technical condition that is described in
precise form in Section III-D. The stationary arrival state
condition requires that the fading state of an arriving
user is distributed according to the marginal distribution
of fading. This is a reasonable assumption for wireless
systems because the arrival process (governed by the
application layer) can be modeled as being independent of
the channel state.
The exact statement of the independent service and inde-
pendent arrival state conditions is given in Section III-D.

• Exponential File Sizes: This condition means that the file
size of arriving users is exponentially distributed.

• Negligible Discreteness: The difference between the dy-
namic-user system and the symmetric queue is caused by
the deviation of the dynamic-user service process from a
constant rate. This deviation is , and it can
be looked upon as having two distinct components, one
discrete and the other stochastic. The discrete component
of the service process arises due to the fact that service
is provided in chunks proportional to the slot length ,
rather than as a continuous flow. The stochastic compo-
nent of the service process, on the other hand, arises due
to fading induced variations in the service process, and is
represented by the variance time constant . The neg-
ligible discreteness condition is said to hold when is sig-
nificantly smaller than a (a motivation for
this condition is provided when the condition is discussed
formally).
Unlike the independent service and exponential file size
conditions, the negligible discreteness condition is not a
fundamental property of the system, but rather depends on
the numerical parameters of the system. The exact nature
of this dependence on numerical parameters is considered
when the second-order approximation is discussed for-
mally (Section III-D). Numerical examples demonstrating
the role of negligible discreteness are given in [23].

To approximate for a dynamic-user system that satisfies
the above three conditions, we consider a symmetric queue with
modified service rates

(7)

and corresponding steady-state distribution . The following
result links the distribution of interest with the distribu-
tion .

Result 2: For a separable dynamic-user system, that satisfies
the independent service, stationary arrival state, negligible dis-
creteness, and exponential file size conditions, an improved ap-

TABLE I
GLOSSARY

proximation for is given by the steady-state distribution
of a modified symmetric queue

(8)

For a formal statement of the second-order approximation re-
sult, see Section III-D. The second-order approximation result
means that variance in the service process results in a reduction
in the effective service rate according to (7). From Little’s law
and the structure of the symmetric queue, we can compute the
increase in delay caused by service variability. Further, from
the form of (7), it follows that the increase in delay is larger
for smaller file sizes. This is so because users with smaller file
sizes experience less averaging of the service variability, and
their delay can be adversely effected by small periods of poor
service.

III. DETAILED SYSTEM MODEL AND RESULTS

In this section, we give a formal definition of the system
model and formally state the first- and second-order approxi-
mation results of Section II. A glossary of notation is given in
Table I.
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A. A General Dynamic User Model

In this subsection, we describe a system model that is required
to prove the first- and second-order approximation results. Our
system model is general in the sense that it can be used to de-
scribe various service schemes at the physical layer. The model
uses slotted time, and we assume that the users are provided
service only at boundaries of slots with length seconds. To
simplify the notation, we assume that the file sizes are exponen-
tially distributed. The model can be extended to accommodate
nonexponential files (Section VII), but in that case, as stated in
Result 2, only the first-order approximation result holds.

The details of the dynamic-user model are as follows. The
number of users arriving in any given slot is , and has
a Poisson distribution with mean (giving an arrival rate of

users per second, as motivated in Section II-B). An arriving
user is blocked if there are users in the system. 1 The file sizes
of arriving users are independent and identically distributed with
exponential random variable denoting the typical file size. The
mean of the random variable is . This gives the effective
arrival rate as bits per second. The service provided to user

from time to time is , and a user departs when the
service exceeds the file size.

We define general dynamic-user systems through a general
Markov chain . The state vector for this Markov chain
contains information about the number of users in the system,
the channel state of each user, and possibly protocol specific
information, such as the active user index for a TDMA system.

Dynamic-User System: A dynamic-user system is defined by
a Markov chain with state vectors in a space such that
the following properties hold.

1) There is a partition such that
implies that there are users in the system. For analytical
ease, assume that the is finite for each , and that
has only one element.

2) The service for user in slot is given by

Here, interpret the state as containing the channel state
information of the system, and function as a map from
channel state to the service level.

3) A Bernoulli random variable denotes the departure of
user in slot , with

w.p.
w.p. .

(9)

The random variables are independent across for a
fixed . This form of follows from the exponential file
size distribution and the symmetric service assumption.

4) The number of new users arriving in slot is , and has
a Poisson distribution with mean . The arrivals are in-
dependent across slots.

5) The distribution of the new state is given by a kernel

1The case where u = 1 is discussed in [23].

This kernel does not depend on or . Further, the kernel
is such that the number of users never exceeds . The
kernel describes the stochastic evolution of the channel
states and protocol specific information contained in the
state vector.

The preceding description forces the dynamic-user system to
obey the symmetric resource allocation and exponential file size
conditions. This follows from the definition of departures in part
3, which states that, irrespective of the system state, the residual
file size is exponential with mean . Thus, the system state
is not allowed to contain the residual file size of the users in the
system, and service prioritization based on residual file sizes
is not allowed. Apart from these two restrictions (exponential
file sizes and symmetric resource allocation), the description of
dynamic-user systems we use in this paper is quite general. An
extension to nonexponential file sizes is described in Section
VII. Asymmetric resource allocation schemes are considered in
[23].

B. The Fixed-User System

To develop the time-scale separation approximation, we de-
fine a fixed-user system that is obtained by blocking arrivals and
departures in the dynamic-user system. This fixed-user system
is relatively easy to analyze, and its analysis, coupled with the
time-scale separation result, yields a good approximation to the
performance of the given dynamic-user system.

Definition 1: A fixed-user system with users is a Markov
chain (in state space ) that is obtained by disallowing
arrivals and departures in the probability transition kernel to give
a new kernel

The service for user in slot is given by ,
with cumulative service for user being denoted by

and cumulative service for all users being denoted by

C. First-Order Approximation

The first-order approximation of Section II-B required that
the time average of the service process converge to a constant

for each user in the system. When the fixed-user Markov
chain is ergodic, it follows from the theory of Markov
chains ([19, Sec. 3.5] or [24, Theorem 1.1]) that the time average
service for each user converges to a constant. User symmetry
requires that the averaged service rate be the same for each user,
i.e., in each slot, each user is served an average of bits.
This requirement, and some technical conditions are stated in
the following definition of separability.
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Definition 2: Separable System: A dynamic-user system is
said to be separable if the corresponding fixed-user system with

users is ergodic with stationary distribution such that

The first-order approximation aims to compute the steady-
state distribution of the number of users in the dynamic-user
system, and we argue next that a steady-state distribution exists
for separable dynamic-user systems because the Markov chain

is ergodic when the fixed-user system is separable.
Ergodicity: First, we note that ergodicity of the fixed-user

system is a reasonable assumption because in the examples we
will consider, the state vector will represent the channel
state, and ergodicity of the channel is a reasonable assumption.

We argue now that when the fixed-user system is ergodic, the
dynamic-user system Markov chain is also ergodic. First,
we argue that can be reached from any . This will be
demonstrated if we can show a path from to for
all . Consider sample paths where there are no arrivals.
Then, by ergodicity of the fixed-user system, the service process
is nonzero for at least some sample path. For this sample path,
the probability of departure is nonzero, giving a path to .
Second, we argue that every can be reached from every

. This follows by considering sample paths with no
arrivals and departures, and using the fact that the fixed-user
system is ergodic. Third, by definition of the arrival process, it
follows that for every it is possible to reach some state
in . The above three arguments together imply that is
irreducible. Further, the time spent in (which is a singleton)
can take any value, making the chain aperiodic. This concludes
the argument for the ergodicity of the dynamic-user system.

If is ergodic, there is a steady-state distribution
on , such that for all initializations , the distribution
of converges to for large . With this definition of

, the steady-state probability of users being present in the
system is . The following theorem states that
can be approximated by the steady-state distribution of an equiv-
alent symmetric queue.

Theorem 1 (First-Order Approximation) : Consider a sepa-
rable dynamic-user system with limiting service rate . Let

be the steady-state distribution of a symmetric queue with
service rate and offered load . Then

(10)

Proof: See Section V.

The proof uses multiplicative ergodicity, and exploits the link
between the dynamic-user system and the symmetric queue. The
theorem can also be proved by using the theory of time-scale de-
composition of Markov chains [25], and a heuristic argument
using this theory is as follows. Under our model, transitions
within the sets take place much faster than transitions across
the boundaries of the sets . Thus, we can assume that the state
distribution within is (the steady-state distribution of the
fixed-user system). Using the definition of a separable system,

the mean service rate under the distribution is . Thus,
downward transitions ( to ) have a rate . Further,
by definition of the arrival process, upward transitions have a
rate . Thus, the sets can be replaced by the elements
of the symmetric queue, giving a justification for the first order
approximation.

D. Second-Order Approximation

The second-order approximation of Result 2 in Section II-C
required the existence of a variance time constant in the limit
of (6). From the theory of Markov chains [26, Theorem 17.5.3],
we know that this limit exists, i.e., the process has a time-
average variance constant that satisfies for all initial conditions

(11)

In the preceding equation, the variance time constant is denoted
by to ensure consistency with the variance time constant

of the continuous-time service process in (6).
In Section II-C, we stated that the second-order approxima-

tion requires the independent service and independent arrival
state condition. Next, we define these conditions precisely in
terms of the way transitions occur from to or .
The independent service condition says that if is initialized
with the distribution , and a departure occurs in slot , then the
resulting state in is distributed according to . Simi-
larly, the stationary arrival state condition says that in case of
an arrival, the resulting state in is distributed according to

. We define systems that satisfy both these conditions to be
nicely separable.

Definition 3: Nice Separability: A separable dynamic-user
system is said to be nicely separable if it has independent service
and stationary arrival state. When is initialized in distribu-
tion , i.e., , the independent service
condition is that the following is satisfied:

(12)

and the stationary arrival state condition is that the following is
satisfied:

(13)

where and are the number of arrivals and departures,
respectively, in slot .

A discussion of physical layer schemes that satisfy the nice
separability condition is given in Section IV.

To proceed with the second-order approximation for a nicely
separable system, we define the service discreteness parameter

, where

(14)

(15)

where we have used Definition 2 in the second step.
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The following theorem says that nicely separable dynamic-
user systems are approximated well by a symmetric queue with
effective service rates given by (7), with the error in the approx-
imation being small when the discreteness parameter defined
above is small.

Theorem 2 (Second-Order Approximation): For a nicely sep-
arable dynamic-user system with exponential file sizes, and a
symmetric queue with effective service rates

(16)

where the constant in the term is a particular term
that depends only on the parameters of the symmetric queue
(and not on and the structure of the Markov chain ).

Proof: See Section V.

Relation with Result 2: We argue next that Theorem 2 leads to
Result 2. In order to show that the second-order approximation
provides an improvement over the first-order approximation, we
will show that is much smaller than

Consider the difference . By definition of
in (7) and (3), it can be shown that this term is of the order

.2

Next, consider that is described in The-
orem 2. The first term on the right-hand side is and for
small enough , is much smaller than . For
the second term, we will show that is much smaller than

. Assuming that the service provided in one
time slot of duration (the quantity ) is related to the slot
duration , we have that defined in (14) satisfies

where is the maximum instantaneous service rate possible
in the system. Also, from Theorem 2, we know that is an

term that depends only on the symmetric queue, giving
for small enough

where depends only on the parameters of the symmetric
queue. Putting the two equations above together

From the negligible discreteness condition, we have that is
suitably smaller than . The suitably small re-
quirement should be met to the extent that

This immediately gives .
This completes the demonstration of result 2.

IV. THE NICE-SEPARABILITY CONDITION

The nice-separability condition of the previous section had
a technical form. In this section, we show that the nice-separa-

2It may be possible study the effect of � (u) through a tighter function, but
we select this summation for simplicity.

bility condition is satisfied by several physical layer schemes of
interest.

A. Model Overview

To model a physical layer scheme, let the state vector
contain the number of users in the system, and the channel states
of each user in the system, i.e.,

(17)

where is the fading level of user at time . For simplicity
of notation, we will assume that takes values through

, with marginal distribution . Also, define
, and the product distribution

Let the fading for each user evolve according to a Markov
process with transition from state to state occurring
with probability . Further, let the fading process
evolve independently across users, i.e.,

(18)

To complete the description of the physical layer, let the service
received by user in slot depend on the channel state through
a function .

Under these conditions on the channel, itself forms a
Markov chain, with the state transition described by the defi-
nition of the dynamic-user system in Section III-A. The state
transition rules of Section III-A can be summarized as follows.
Consider an initial state . Then, the new state

is determined as follows.
First, determine the service received by each of the users

using . Then, determine if user departs in slot by gener-
ating a random variable that is distributed according to (9).
Repeat the process for all users to generate through .
Finally, for the users that remain in the system, determine the
new channel state according to the Markov model for channel
evolution. Then, determine the new arrivals in the system by
generating a Poisson random variable . If there is a new ar-
rival, generate its channel state according to the marginal distri-
bution of fading. This process generates the new channel state

.
To further define the state evolution, assume that if users are

present and user departs, then users through have their
user index reduced by one. Similarly, if a user arrives, assume
that this arriving user is inserted at position , with uniformly
distributed between and . Users after position have their
user indices increased by one.

For the state evolution described above, it can be seen that
the stationary arrival state condition (13) is satisfied due to the
assumption that the channel state of new users is distributed
according to the marginal distribution.

The independent service condition (12) requires a more
elaborate treatment, and the rest of this section is devoted to
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establishing that the following three interesting physical layer
schemes satisfy the independent service condition.

(i) The function is arbitrary, and fading is independent
across time, i.e., .

(ii) The service received by user depends only on the
channel state of user , and not on the channel states of
other users. Thus (with some abuse of notation)

Further, the channel is correlated across time slots. This
includes the case of FDM sharing of resources by users.

(iii) Users share the channel using TDMA, with channel cor-
relation across time slots. In case of TDMA, the state of
(17) needs to be enlarged to accommodate the round-robin
nature of TDMA.

For cases (i) and (ii), the steady-state distribution for the
fixed-user system with users is given by

(19)

This is because the fixed-user system has no arrivals and depar-
tures, and has independent fading across users, with marginal
fading distribution .

B. Case (i)

The independent service condition is easy to satisfy when
fading is independent across time slots. Instead of initializing

by the distribution , as required in the definition of in-
dependent service, we will initialize at , and
show independent service

and stationary arrival state

When there is no arrival, and one departure, from the indepen-
dence of fading across time, it follows that the new state is drawn
independently of the past, following the distribution . Since

and are identical, the independent service condition
is established. Similarly, using the fact that an arriving user has
fading levels distributed according to the marginal distribution
, the stationary arrival state condition can be verified. Note that

in case (i), the requirements of nice separability are met exactly,
with no error term.

C. Case (ii)

Initialize the state according to the steady-state distri-
bution . Then, the special structure of case (ii) gives us the fol-
lowing independent and identically distributed Markov chains
(in the notation of [1]):

(20)

We will now evaluate the distribution of conditioned on
the event that user does not depart from the system at time

This probability can be simplified, using Bayes rule, to give

The distribution of is given by the definition of dynamic-
user systems, and we know, from the structure of the function
in case (ii), that

This, together with reduces the proba-
bility of interest to

Since in the denominator sums to one, we get

(21)

With the aid of the preceding equation, we are ready to show
that (12) and (13) are satisfied in case (ii).

To check (12), first consider the case when the departing user
has index . Then, we wish to compute the distribution of the
channels of the remaining users

where equals one when and zero otherwise. From the
independence structure in (20), it follows that the above expres-
sion is equal to

From the Markov evolution of the channel states, this is equal to

However, we know from (21) that

is close to the steady-state distribution of the transition
matrix . Thus

This gives the quantity of interest in the independent service
condition as
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Also, by symmetry, we get a similar result when the departing
user has index

(22)
To prove (12), we need to average the above expression over the
index of the departing user , and evaluate

Now, the event can be written as a union of disjoint
events as . Further, from (22), we know that
conditioned on each of these constituent events, the probability
of interest is the same (up to ). Thus, we get

To understand the step from (22) to the above equation more
closely, observe that we have used simple conditional proba-
bility definitions, as illustrated below for dummy events and

When the terms are the same for all , we get

This completes verification of the independent service condition
for case (ii).

To verify the stationary arrival state condition, first modify
the above proof to show that when there are no departures, the
channel states of the existing users are distributed according to

, i.e.,

Then, use the fact that the arriving user has state independent of
the other users to show

D. Case (iii)

In the case of TDMA, the state vector needs to be modified to

(23)

where is the index of the user to be served in slot . The
evolution follows when

, and otherwise.
The steady-state distribution for TDMA is the distribution

for the channel states , multiplied by a uniform distribution
between and for

For the independent service condition, we are required to
show

(24)

We will evaluate this probability by first conditioning on
, and showing

(25)

To prove the above, observe that for the TDMA case, only
user receives service. Thus, the event

is independent of the channel states of the
remaining users at time , i.e.,

Also, we know from the channel-state transition rule (18) that
when the channel is initialized in the steady state , the channel
after one time step is also in steady state. This proves (25). Also,
under steady state, departure is equally likely to occur for each
user, giving

Using the above equation, and (25), we can prove the desired
result (24).

The stationary arrival state condition can be verified exactly
as for case (ii). The state of the new arrival is distributed in-
dependent of other users, and thus the stationary arrival state
condition (13) is satisfied for the channel state part of the state
vector. The condition is also satisfied for TDM because the ar-
riving user is inserted at a random position at arrival. This ver-
ifies the stationary arrival state condition for the entire state
vector (23).

V. PROVING TIME-SCALE SEPARATION RESULTS

The first-order approximation result (Theorem 1) can be
proven by using the theory of time-scale decomposition (for
an overview of time-scale decomposition, see [25]). Results
similar to our second-order approximation (involving an
approximation error) have been considered in [25], [27]–[31].
However, these references are devoted either to very specific
problems, or to general numerical techniques, and are not
readily applicable to our problem. For this reason, we do not
use the standard time-scale decomposition theorems, but rather,
develop a unified proof for the first- and second-order approx-
imation results. Our proof technique focuses on the structure
of the service process and gives insight about the role of
service variability.
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Our proof relies on relating the dynamic-user system with
the symmetric queue. First, we give a jump chain representa-
tion of the symmetric queue, and determine the holding times
and transition probabilities for the jump chain. Then, we give
two lemmas that link the holding times and transition probabil-
ities of the symmetric queue with corresponding quantities for
the dynamic-user system. Finally, we use the similarity of the
holding times and transition probabilities of the two systems to
prove the first- and second-order approximation theorems.

A. Jump Chain for the Symmetric Queue

As we argued in Section II-A, in a symmetric queue the
number of users at time forms a Markov process . The
steady-state distribution of this Markov process is , and
can be computed using (3). To prove the time-scale separation
theorems, we give an alternative characterization of in
terms of a jump chain. Our treatment effectively involves
treating the given Markov process as a semi-Markov process
(which is defined in [19, Sec. 4.8]).

To distinguish the symmetric queue from the dynamic-user
system, we will use the “bar” notation (for example, ) to de-
note quantities associated with the symmetric queue. Consider
a symmetric queue with offered load , average file size , and
service rates . Let the jump instants (corresponding to ar-
rivals or departures) be , and the jump chain be , i.e.,
is the state immediately after the jump. Further, conditioned on

, let the holding time in state be denoted by the
random variable . Then, forms a jump Markov chain with
transition probabilities given by matrix

otherwise.

(26)

Further, the random variables have an exponential distribu-
tion with mean for ,
and the means at the extreme points given by and

. Let the steady-state distribution of be .
Then, is the solution to

(27)

The theory of semi-Markov processes tells us that the steady-
state distribution of the continuous-time Markov process
is

(28)

Further, let the holding times and transition probabilities for
the modified symmetric queue be and , respectively,
and let the distribution of the jump chain be . Then,
satisfies

(29)

Also, satisfies

(30)

B. Holding Time and Transition Probability Lemmas

In this subsection, we give two lemmas that show that for
separable dynamic-user systems, the sets are analogous to
the states in the symmetric queue. In particular, the transition
probabilities and the holding times of the sets are similar to
those for the symmetric queue.

Define the jump instants to be the slots where an arrival
or departure occurs, and define the jump chain

. Define the steady-state distribution of the jump chain to be
, i.e.,

(31)

Next, we link the holding times in the symmetric queue and
the given dynamic-user system. When the system is initialized
at , define random variable to be the first time slot when
an arrival or departure occurs. Then, is the holding time in
set , with initialization at , and the mean holding time can
be defined as .

Now, consider the mean holding time in set ,
when initialization is according to the jump chain distribution.
By the following argument, can be computed from

and . Transitions into take place according to
the distribution of the jump chain . In particular, the prob-
ability of a jump into reaching state is .
Thus, the mean holding time in the set is the average of

over the distribution , giving

We show that after scaling by the file size, the mean holding
time in each is roughly the same as the mean holding
time in state of the symmetric queue, i.e.,

By definition of , this immediately implies

For the second-order approximation, we require a finer char-
acterization of . In particular, we are interested in a result
that has accuracy. Unfortunately, the difference

is strictly . However, we are able to show that for nicely
separable systems, averaging across cancels the terms
in the difference . This result is stated in the
following lemma.

Lemma 1: (Holding Times) For a separable system, with
, the mean holding time satisfies

(32)
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and for a nicely separable system it satisfies

(33)

Proof: See Section VI-C.

Next, we are interested in the transition probability for the
jump chain . The transition probability is .
As we argued for the holding time lemma, the quantity of in-
terest is the mean transition probability from into when
the initial state in is distributed according to . We want this
mean transition probability to be close to the transition proba-
bility of the separable system (26). The following lemma
gives an accurate result for the mean transition probability
for separable systems, and an result for the transition prob-
ability of nicely separable systems.

Lemma 2 (Transition Probability): For a separable system,
with , the transition probability satisfies

(34)

and for a nicely separable system it satisfies

(35)

Proof: See Section VI-D.

With these two lemmas, we are ready to prove the first- and
second-order approximation results.

C. Proving Time-Scale Separation

The proof of time-scale separation relies on the following
proposition about the jump chain :

Proposition 1: For any set , the steady-state distribu-
tion and the transition probabilities are linked
by the flow balance relation

(36)

Further, the steady-state distribution of is linked with
the mean holding times by

(37)

Proof: Initialize according to the jump chain’s sta-
tionary distribution . The flow balance relation (36) follows
immediately from the stationarity of the jump chain distribu-
tion .

To see (37), let be initialized at some , and let the
jump chain evolve over jumps. Further, let be visited
times. Then

Further, the jump chain is renewed at each visit to , and thus
the holding times following each visit to are independent. Let

the total holding time after visits to state be . Then, by
the law of large numbers, satisfies

or equivalently

Further, the total time spent in is
and satisfies

The quantity of interest in (37) is , which is the fraction
of time spends in in the limit of large . This fraction
of time can be computed from the above equation, proving (37).

With the above proposition, and the holding time and tran-
sition probability lemmas, we are ready to prove the first-order
approximation result.

Proof of Theorem 1: Consider the flow balance relation
in (36), with . The probability in this
equation is given by the transition probability lemma. Using the
fact that the sum of a finite number of terms remains ,
(36) simplifies to

We also know that

Thus, satisfies the same set of linear equations as
in (27), with the exception of the term. This leads to

(38)

Next, consider property (37) of the jump chain. Using the
holding time lemma (Lemma 1), and the fact that the linear com-
bination of a finite number of remains , we can sim-
plify (37) to

(39)

Combining the above equation with (38) and the property (28)
of gives the desired result

Proof of Theorem 2: The method of proof is similar to the
proof for the first-order approximation. Combining the flow bal-
ance relation (36) with the transition probability lemma for the
nicely separable system gives

(40)
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In addition, sums to one, showing that satisfies a
system of linear equations similar to (29) for the modified sym-
metric queue, giving

(41)

The following comment about the term is in order here.
Recall that was defined earlier as an term where the
constants depend only on the symmetric queue. In solving the
system of linear (40), the error term is multiplied by
the inverse of the matrix . However, this matrix depends
only on the symmetric user system, and thus, the result of the
multiplication remains .

Continuing with the proof of Theorem 2, the quantity of in-
terest, , is given by (37). The holding time lemma re-
duces (37) to

Using (41) simplifies this to

Comparing this with property (30) of the symmetric queue gives
the desired result

VI. PROVING HOLDING TIME AND TRANSITION PROBABILITY

LEMMAS

This section is dedicated to proving the holding time and tran-
sition probability lemmas. The proofs rely on a link between
dynamic-user and fixed-user systems, which is outlined in Sec-
tion VI-A, and multiplicative ergodic theory, which is summa-
rized in Section VI-B. The proofs of the lemmas themselves are
given in Section VI-C and VI-D.

A. Link Between Dynamic-User and Fixed-User Systems

The holding time lemma deals with , the holding time. In
this subection, we show that the distribution of is linked to
the service process in the fixed-user system. First, consider a
simple model where the service process is constant rate, with
service for each user in each slot when the number
of users is . Then, the probability of turns out to be
simply the probability that there are no arrivals and departures
in slots through . This probability can be written as

However, for the general service model we are interested in,
the preceding expression will not be valid. The probability of
interest will depend on the service statistics and on the initial
state. This dependence takes the following form.

Proposition 2 (Departure Probability): For a given dynamic-
user system, the distribution of the holding time is given by

Proof: We use the following notation: and
, respectively, are the number of arrivals and de-

partures in slots to . The event denotes
, and denotes . Further, for

, we define , making the
sum of the service provided to all users in slot .

The probability of interest can be simplified, using the defi-
nition of , as

The second probability can be evaluated using the Poisson ar-
rivals property, and to prove the proposition, it remains to be
shown that

(42)

Let the initial state belong to . Then, given , the
event is equivalent to the event that are in
for all , giving

Let denote a -dimensional vector in ,
and let denote the -fold product of with itself. Further,
let denote the distribution of conditioned
on and

Then, the probability of interest is

(43)

Recall that is the probability of no departures occur-
ring during times through , while is the prob-
ability of no arrivals occurring during times through .
The distribution can be constructed from the description of
state transition probabilities for the Markov chain (see
(9)). Consider the special case of transition from
to , conditioned on there being no arrivals. The prob-
ability of this transition is given by part 5 of the description of
dynamic-user systems. When there are no arrivals, both
and can belong to only when there is no departure in slot

. This gives

The probability of no departure in slot is

This gives the transition probability
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Now, observe that the transition probability above is the same
as the transition probability for a fixed-user system (Definition
1) multiplied by a correction term

For a fixed-user system initialized at , let denote the
distribution of . For , the above equation
gives

(44)

This simplifies (43) to

Writing the summation as an expectation, and using the defini-
tion of the cumulative service process (Definition 1) verifies
(42). This completes the proof of Proposition 2.

B. Multiplicative Ergodicity Basics

In Proposition 2 in the previous section, we argued that de-
partures in the dynamic-user system are characterized by the
fixed-user system service process , through the quantity

(45)

The service process is determined by the fixed-user Markov
chain with state transition probability matrix with

.
The theory of multiplicative ergodicity deals with the be-

havior of the quantity (45). Results on multiplicative ergodicity
are given by Balaji and Meyn [24], and Kontoyiannis and Meyn
[32]. For our application, the technical conditions required in
[24], [32] will be simplified considerably due to our assumption
that is finite. The results required for proving the holding
time and transition probability lemmas are given below.

The log moment-generating function of is defined by

This result suggests that we can approximate the quantity of
interest as

A more accurate form of the above approximation is given by
[32, Theorem 4.1], which says that there are constants and

, and a function such that

(46)

The function precisely determines the dependence of the
quantity of interest on the initial state .

The time-scale separation argument deals with the limit of a
small . Next, we describe and for small values

of . From [24, Theorem 6.2], the derivatives of at are
related to the service process through the mean service rate by
(see Definition 2)

and to the variance by (see (11))

These properties of can be combined to get

(47)

It can also be verified [32, Proposition 4.9] that the derivative
of with respect to at is well defined. Let this
derivative be denoted by . Also, it can be verified easily
from the definition of in [32, Theorem 4.1] that

, giving

(48)

This completes the description of and for small
values of .

The function is a solution to Poisson’s equation

(49)

and is known as the relative value function. Further, from [32,
Proposition 4.9], has the property

(50)

and

(51)

Next, we describe a result that allows us to generalize (46). From
[32, Theorem 4.1], for a given function

(52)

where is a distribution on that satisfies ([32, Proposi-
tion 4.9])

With these results on multiplicative ergodicity, we are ready
to prove the holding time and transition probability lemmas.

C. Holding Times

The holding time lemma for nicely separable systems in-
volves the steady-state distribution of the jump chain. In
proving the the second part of the lemma (relating to nicely sep-
arable systems), we will use the following result about the struc-
ture of .
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Lemma 3 (Jump Chain Distribution): For a nicely separable
system, and a given

Proof: See Section VI-E.

Proof of Lemma 1: The quantity of interest in the holding
time lemma is , which is defined to be . The
expected value of is given by . Thus, to
prove the lemma, it will be enough to show the following two
results:

(53)

Further, for a nicely separable system, it will be enough to prove

(54)
To prove the above two equations, observe that Proposition 2

shows that

(55)

Multiplying both sides of the multiplicative ergodicity result
(46) by and gives

(56)

Consider the right-hand side of the above inequality. Since
is a constant, and from (47), is negative for small

enough , we have

Further, the second term on the left of (56) can be summed to
give

By combining the above two equations, the quantity of interest
in (53) can be written as

Using the expansion of in (47) and the expansion of
in (48), this can be simplified to

(57)

Equation (53) immediately follows from the above.

To verify (54), we only need to consider the first two terms in
the above equation (the last two terms are negligible). From the
definition of it immediately follows that

Also, from the property of in the jump chain distribution
lemma, and the property of the relative value function in (50),
it follows that

This completes the proof of (54).

D. Transition Probabilities

We are interested in the probability where
. For and , we know that

, and proving the transition probability lemma re-
quires showing that is small. This is established
through the following lemma, which says that the probability of
two or more events in a slot is negligible.

Lemma 4 (Negligible Events): For any initial state , the
probability of two or more arrival and departure events hap-
pening in slot is negligible

Proof: See Appendix II

From the preceding lemma, it follows that

(58)

To prove the transition probability lemma, it remains to prove
(34) and (35) for and .

The case of : We are interested in the probability
. To simplify the calculation, we consider in-

stead, the probability . We make use of the fact
that the probability of two or more events in a slot is negligible,
to get

Then, proving (34) requires us to show

(59)

and proving (35) requires us to show

(60)
Next, we simplify . By definition of ,
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Expanding this out by conditioning over all possible values of
gives

(61)

However, the arrival process is independent of the past, giving

Substituting back in (61), and noting that the term above can be
reduced to gives

Combining this with (53) gives

which proves (59).
Further, applying (54) gives

which proves (60).

The case of : We have already established (34) and
(35) for all . The first-order result for
follows immediately by combining result (58) with the fact that
the probabilities must sum to one (over ). The probability of
interest for the second-order result can be written as

Using (58) and the result for the case (which we have
already proved) gives the desired result (35) for . This
completes the proof of the transition probability lemma.

E. Finer Structure of the Jump Chain Distribution

In this subsection, we prove the jump chain distribution
lemma. This lemma is applicable exclusively to nicely sepa-
rable systems, and is not used in the proof of the first-order
result. For nicely separable systems, we wish to show for

, that

The proof of the lemma involves three steps. The first step
is to find the distribution of the state for , i.e.,
the states before transition. The second step is the use the nicely
separable condition to find the distribution of the state after tran-
sition. The third step is to tie the above two results together to
prove the jump chain distribution lemma.

For the first step, we show that for , the probability
is nearly the same as the fixed-user system’s

steady-state distribution . This is stated in the following
proposition.

Proposition 3: Conditioned on there being no arrivals and
departures for , the distribution of is close to ,
i.e.,

(62)

Proof: The result follows from (52). In the notation of the
theory of multiplicative ergodicity, the result follows from the
fact that the “twisted transition probability” or the taboo proba-
bility is nearly the same as the original transition probability for
small values of . See Appendix I for details of the proof.

Proposition 3 says that the state before a transition is nearly
distributed according to . For a nicely separable system,
we know that if the state before a transition event is distributed
according to , then the state after transition is distributed
according to or depending on whether the
transition event was an arrival or departure. Thus, we argue that
irrespective of the initial state , the state after transition is dis-
tributed according to . This is formalized in the following
proposition.

Proposition 4: For and in either or

(63)
Proof: First, consider the case when , and the

event of interest is a downward transition. The method of proof
is identical for the other case, when , and the event
of interest is an upward transition. From the Markov structure
of , and the definition of the jump times , the above
probability can be reduced to

(64)

Since the mean file size is , and the arrival rate is , it can
be argued that

(65)

For a more detailed argument, see the proof of the first part of
the holding time lemma. Further, we will prove for
that

(66)

This equation, together with (65) will complete the proof of
(63). To prove (66), observe that from the negligible discrete-
ness condition, it will be enough to show

(67)
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Further, by definition , we have

(68)

This can be simplified to

(69)

The numerator can be simplified further as

However, from Proposition 3, we know that the second term is
away from (because the initial state is in ,

and ). This allows us to further simplify the numerator
of (69) to

(70)

Now, we use the nice-separability condition of Definition 3 to
simplify the above summation. Apply the independent service
condition for a departure from to

(71)

The numerator in the above expression can be written as

We will now establish that the expressions in (69) and (71) are
close, in the sense that both the numerators and the denomina-
tors differ by .

The numerator of (71) differs from (70) only in the time
index, and an term. Thus, by time homogeneity of the
system, we can see that the numerator of (71) differs from (70)
only by .

Further, the denominator of (69) is nothing but the sum of the
numerator for different values of , and thus, the denominator
of (69) differs from the denominator of (71) only by . This
proves that the expression in (69) differs from the expression in
(71) only by . This proves (66), and completes the proof
of Proposition 4.

With the aid of Proposition 4, we are ready to prove the jump
chain distribution lemma.

Proof of Lemma 3: The important part of the proof is con-
tained in Proposition 4, which says that when we initialize the
system in , and the state after transition is in or ,
then the state is distributed according to the desired distribution

or , respectively. To prove Lemma 3, we will rely on
the fact that transitions to other sets have low probability, and

thus, the state after a transition is always distributed according
to

Consider the jump chain , initialized at its steady-state
distribution , and recall that for all , the distribution

satisfies (36). Further, when , we know from the
negligible events lemma that only and
make a significant contribution to the summation in (36), giving

Now, substitute to get

(72)
Also, substitute , and use the fact that
implies to get

(73)

Use Proposition 4 to rewrite the above equation as

The term inside the parenthesis is given by (72), completing the
proof of Lemma 3.

This completes the proof of our main time-scale separation
results.

VII. FIRST-ORDER APPROXIMATION FOR NONEXPONENTIAL

FILE SIZES AND OTHER EXTENSIONS

Until now, we have considered dynamic-user systems with
exponentially distributed file size . In this section, we briefly
describe a technique to extend the first-order approximation to a
more general class of file size distributions. Numerical examples
and additional details about these extensions can be found in
[23].

Kelly [20] gives a technique for the analysis of symmetric
queues with general file size distributions. The analysis makes
use of the fact that any distribution can be approximated by a
mixture of a finite number of gamma distributions. Let the file
size distribution be a mixture of gamma distributions, with
gamma distribution corresponding to the sum of expo-
nential random variables, each with mean . Let the proba-
bility associated with gamma distribution be , with

. Then, the mean file size is related to the means of the
constituent exponential random variables by

(74)

This model for the file sizes can be interpreted as dividing
users into types, where a type user wishes to sequentially
transfer files, each exponentially distributed with mean .
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In this case, the number of users in the symmetric queue
does not form a Markov process, and the state needs to be en-
larged to a multidimensional Markov process in a finite
state-space . Details about the structure of be found in [20].

Returning to the dynamic-user system, earlier we considered
exponentially distributed . The method of proof for the first-
order approximation result relied on splitting the state space
into a partition , with , where corresponds to
state for the symmetric queue.

With a general distribution for , the definition of dynamic-
user systems in Section III-A needs to change. In particular, for a
nonexponential dynamic-user system, the state space should
be split into a partition , where lies in the set . For this
partition of the state space, a new version of the holding time
and transition probability lemmas can be proved to show that
transitions probabilities and mean holding times for the sets
are well approximated by the transition probabilities and mean
holding times of states in the symmetric queue. These new
lemmas can be used to modify the proof of the first-order ap-
proximation theorem to prove that the steady-state distribution
of the sets is the same as the steady-state distribution of the
Markov process . In this manner, the first-order approxima-
tion can be extended to nonexponential dynamic-user systems.

A. Other Extensions

Several extensions to the results presented in this paper are
given in [23], but are not included in this paper for brevity. These
are itemized below.

• Numerical examples for the validity of the first- and
second-order approximations.

• Extension of the second-order approximation to systems
with dependent service. This extension is considerably
more complicated than the second-order approximation
for independent service systems, and has a detailed depen-
dence on the structure of the Markov chain .

• Extension of the second-order approximation to nonexpo-
nential file sizes. For this case, a heuristic is provided and
numerical results are presented.

• Use of the second-order approximation to construct a new
power control scheme for a simple on–off channel. Some
details may also be found in [33].

VIII. CONCLUSION

We presented a time-scale separation technique for analyzing
dynamic-user centralized wireless systems. We showed that the
physical layer design affects the queueing level performance
only through an effective service rate. Furthermore, under some
reasonable conditions, the effective service rate depends only
on the mean throughput and the variance of the ser-
vice process. Thus, our technique simplifies the analysis of dy-
namic-user wireless systems by decoupling the analysis of the
physical layer and user dynamics into two separate problems.

From the broader perspective of interlayer interaction in com-
munication systems, our analysis shows that the data rate offered
by the physical layer to the higher layers is not necessarily the
same as the mean data rate of the physical layer. Rather, the ef-
fective data rate depends on the service variability (a physical

layer parameter), as well as the file size (an application layer
parameter). Thus, time-scale separation offers a way to study
interlayer interaction.

APPENDIX I
PROVING PROPOSITION 3

Proof: The proof will rely on the multiplicative ergodicity
result (52) and the notation developed in Section VI-A. The
probability of interest is, after some manipulation

(75)

The denominator is evaluated in Proposition 2. Applying (46)
and (48) shows that the denominator satisfies

(76)

To evaluate the numerator, we rely on (44). We can show that

This can be simplified to

Applying (52) with gives

The probability of interest in (75) is then given by dividing the
above equation by (76), giving the desired result (62).

APPENDIX II
PROBABILITY OF TWO EVENTS IN A SLOT

We wish to show that the probability of is
for all initial conditions . We evaluate the probability

by considering three events: ,
and . We show that the probability of the first two
events is , while the probability of the third event is

. Thus, using (14) we conclude that the probability of
more than one event in a slot is .

Two Arrivals: Let be the first slot after slot when an
arrival occurs. The probability that more than one arrival event
occurs at time is (if is Poisson with mean , consider

)

We are interested in the probability of . Since
implies that , we have

giving
Arrival and Departure: Next, consider the event

. By expanding this probability over different
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values of , (and keeping in mind the definition of the events
and ), we get

The last term in the above summation is simply the probability
of one or more arrivals in a slot, and can be written as

This gives (using the identity )

(77)

Consider the first term in the summation. We know that

giving . The distribution of
is given in Proposition 3, and can be used to obtain the

following bound:

(78)

In evaluating the summation in (77), first consider the error term
(the last term in the above equation). Using Proposition 2, the
error term is

The summation can be computed using (53) to show that the
error term is .

Next, consider the first term on the right in (78). We have (by
Definition 2)

The quantity of interest in (77) can then be written as

Equation (53) can be used to show that this term is .

Two Departures: The probability that two departures occur
in slot can be simplified, following the first equation in the
previous section, to give

(79)
Our approach to evaluating the above summation will be similar
to the one for the summation in (77). First, we use (62) to bound
the first term in the summation. By definition of the departure
events in (9), we get

Some manipulation of the above summation, using
, gives

The probability of two or more departures in slot , conditioned
on no arrivals or departures till time can then be bound using
(62). This gives

From the above equation, and (53), it can be shown that

This shows .

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[2] S. Verdu and S. Shamai (Shitz), “Spectral efficiency of CDMA with
random spreading,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp.
622–640, Mar. 1999.

[3] S. Verdú, Multiuser Detection. Cambridge, U.K.: Cambridge Uni.
Press, 1998.

[4] J. M. Massy, Ed., “Special Issue on Random Access Communication,”
IEEE Trans. Inf. Theory, vol. 31, no. 2, Mar. 1985.
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