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Abstract—A technique is presented for jointly optimizing the
signaling in the two directions of transmission on a twisted-
pair communications channel. It is then applied to twisted-pair
channel models with monotonic channel response and crosstalk
transfer functions. While the signaling strategy presented in this
paper can achieve only a lower bound on the true channel capac-
ity, it is a significant improvement over existing signaling schemes.
In particular, in contrast with existing schemes, the maximum
information rate for the joint signaling strategy increases without
bound as the signal-to-noise ratio (SNR) approaches infinity. It is
also shown through numerical results that the proposed signaling
strategy generalizes naturally to more practical nonmonotonic
twisted-pair channel models incorporating bridge taps and other
nonidealities. Finally, the form of the optimal signaling strat-
egy suggests a relatively straightforward implementation using
multicarrier modulation.

Index Terms—Capacity, crosstalk, digital subscriber loops,
multicarrier modulation, twisted-pair channel.

I. INTRODUCTION

RECENT WORK has shown thattwisted-pairdigital sub-
scriber loops (DSL’s) are capable of supporting very

high data rates—in excess of 1.6 Mb/s within the standard
carrier serving area(CSA), which typically covers a radius of
about 12 000 ft around the central office [1]–[4]. In this paper
we show that further significant increases in the capacity of
twisted-pair loops can be achieved by jointly optimizing the
signaling strategies for the two directions of transmission on
the loops.

The following is a description of a typical DSL. Each
twisted pair in a DSL is capable of supporting transmissions
in both directions simultaneously, using an echo canceler
[5]–[10]. Suppose there are twisted pairs in one binder
cable ( usually equals 50). Then, each twisted pair has

neighboring pairs which are transmitting information
in both directions. At each end of a twisted pair, the received
signal is corrupted by various noise sources, such as thermal
noise from the electronics at the receiver, impulse noise
from electromechanical switching devices at the central office,
residual echo from the echo canceler, quantization noise, etc.
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For simplicity, these noise sources are modeled jointly as
an additive white Gaussian noise (AWGN) source, whose
power is chosen conservatively to compensate for possible
inaccuracies in the model [3]. In addition, there is near-end
crosstalk (NEXT) from the neighboring twisted pairs,
which have transmitters that are physically close to the desired
receiver and are sending information in the direction opposite
to that of the received signal. There is also far-end crosstalk
(FEXT), which is due to the transmission of information in
the same direction as the received signal, that is, information
sent by transmitters that are physically far from the desired
receiver (see Fig. 1).

In asymmetrical digital subscriber line (ADSL) systems,
each twisted pair has a low data-rate signal that is transmitted
in a direction opposite to that of the main high data-rate
signal. In such systems FEXT is significant and thus needs
to be considered. However, the effects of FEXT are negligible
compared to NEXT [4], [3] in most systems that support full-
duplex transmission, such as high bit-rate digital subscriber
lines (HDSL’s), assuming that the loops are not too short. In
this paper we will focus on the latter full-duplex DSL’s.

In studying the information capacity of DSL’s, all of the
twisted pairs in a binder group can be considered jointly as
a multiuser interference channel [11]. Obtaining the capacity
region1 of such a multiuser interference channel is, however,
still an open problem even for the simplest case of two users,
discrete time and additive Gaussian background noise [11].
To make the problem tractable, we focus on the portion of
the capacity region corresponding to equal information rates
for each of the users. The equal rate assumption is valid in
the HDSL context since all users will have the same rate
requirements.

Since signals that are transmitted in the same direction have
negligible crosstalk between them, in the maximization of the
bit rate, it is reasonable to assume that the power spectral
densities (PSD’s) of all of the signals transmitted in the same
direction are equal to the same optimal PSD. An additional
assumption that is made in much of the previous work on
capacity calculations for twisted pairs is that the PSD’s used
in both directions of transmission are identical [12], [3], [13],
[2]. The optimization to obtain the maximum bit rate for
each twisted pair can then be performed over a single PSD.
The capacity of each twisted-pair channel under the equal
PSD (for both directions of transmission) constraint, and the

1The capacity region of a multiuser channel is the set of all possible
combinations of achievable user rates.
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Fig. 1. Schematic representation of NEXT and FEXT in a DSL.

corresponding maximizing signal PSD have been derived [12],
[3]. However, as noted in these papers, the capacity of each
twisted pair under the equal PSD constraint converges to a
finite constant value as the signal-to-(background)noise ratio
(SNR) goes to infinity. This fact is an indication that the equal
PSD constraint is too restrictive. If, for example, the signals
in the two directions of transmissions are chosen to have
PSD’s that occupy disjoint frequency bands in the available
bandwidth, the capacity of each twisted pair will be unbounded
as the SNR approaches infinity.

In recent work, Lechleider [14] notes that the equal PSD
constraint leads to decreased capacity and further calculates
the capacity without this constraint. However, in the analysis
in [14] it is assumed that the PSD’s have the same support—an
assumption that rules out the possibility that the signals have
disjoint spectra. The results given in [14] show only a slight
improvement in capacity over the equal PSD case.

In this paper we show that significant gains in capacity
can be obtained by removing the equal PSD constraint. The
capacity obtained with the optimal signaling strategy can be
far larger than the equal PSD capacity; furthermore, it goes to
infinity as the SNR approaches infinity.

This paper is organized as follows. In Section II the capacity
problem is formulated as the maximization of the bit rate
over the PSD’s for the two directions of transmission. The
optimal signal PSD’s and corresponding capacity are obtained
for a simplified channel model in Section III. This result is
then extended to a general channel model in Section IV, and
numerical results that corroborate the analysis are given in
Section V. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

As mentioned in Section I, we assume that each direction of
transmission will have its own PSD, say and . Let
direction 1 refer to the direction of transmission using
as its PSD, and let direction 2 refer to the other direction.
The channel is assumed to have transfer function , and
two sources of noise: AWGN with one-sided spectral density

, and NEXT with crosstalk transfer function . For
the purposes of capacity calculations, it is shown in [15]
that crosstalk can be modeled as Gaussian noise without
substantial error. We use the Gaussian crosstalk assumption
in our analysis. Under these assumptions, it is easily shown
that the capacity for direction 1, in bits per second, is given
by (see [12], [3], [14])

(1)

where the supremum is taken over all and such
that

for

and where is the PSD of direction , and the latter
inequality corresponds to an average power constraint.

The capacity for direction 2 is given by the analogous ex-
pression. Of course, when designing the transmission scheme
for both directions, it becomes necessary to consider them
simultaneously. As can be seen from (1), when only direction
1 is considered, is achieved when , which
implies that . The same problem arises when only
direction 2 is considered. Therefore, a joint optimization needs
to be performed. There are three ways in which this can be
done

maximize subject to the constraint (2)

maximize (3)

maximize (4)

Let

Then the capacities resulting from the joint optimization are
given by
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where and are chosen according to one of the
three criteria given in (2)–(4).

All three approaches to joint optimization are analytically
intractable without constraints on the PSD’s. An approach to
solving for and that appears in much of the literature
is to assume that the PSD’s are the same in both directions of
transmission, i.e., . Under this constraint, the
joint optimization problem to obtain capacity [under all three
criteria given in (2)–(4)] reduces to [12], [3]

(5)

However, as discussed in Section I, the equal PSD assumption
is too restrictive, and significant gains in capacity are possible
by removing this assumption. The main idea of this paper is
to make and “symmetric,” in some sense, thus
reducing the optimization problem for direction 1 to

(6)

where is symmetric to . Despite the fact that
it is difficult to rigorously define the concept of symmetry,
generally speaking, it implies that is small where

is large, and vice versa, so that
. Hence, under the symmetry assumption,

the three criteria for joint optimization given in (2)–(4) are
equivalent.

The second idea is to parameterize so that the
maximization is taken over the parameters that now describe

. Both of these ideas are first described for a simplified
channel model.

III. SIMPLIFIED CHANNEL

This section considers a simple channel with a constant
channel transfer function and a constant crosstalk transfer
function. The objective is, after finding the optimal and

for this channel, to extend the result to the generalized
twisted-pair channel.

Assume a channel with

if
otherwise

if
otherwise.

Consider the class of and defined as follows:

if

if

otherwise
(7)

if

if

otherwise.

(a)

(b)

Fig. 2. Simplified channel: variations of (a)S1(f) and (b)S2(f) with �.

where (see Fig. 2). In this configuration
corresponds to using equal PSD’s for the two

directions and corresponds to using frequency-
division signaling (FDS). By construction of and

,
. Therefore, and , as defined

above, are symmetric in the sense described in Sec-
tion II. It is easily verified that and
satisfy the power constraint. The resulting capacity for
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direction 1 becomes

where .
Due to the symmetry of and , will be equal

to for any value of . Therefore, it is only necessary to
maximize . Taking the derivative with respect to

where is always a positive quantity.
Therefore, is the only stationary point. If it is

a maximum, it is optimum to use equal PSD’s for the two
directions of transmission. If it is a minimum, then
achieves the maximum, which means that it is optimum to use
FDS for the two directions.

For all , the derivative of with respect to
will be negative if and only if .

This implies that is a maximum if and only if
. Similarly, is a minimum if and

only if . Thus, since ,
it follows that

(8)

where denotes using equal PSD’s for the two directions
of transmission and denotes using frequency division.

It should be noted that the capacity of the channel obtained
by using and according to (8) is only a lower
bound on the true capacity of the channel since we are
constraining the form of and according to (7).
However, there are indications that the threshold test given
in (8) achieves the global maximum more generally. For
example, if the constraint that and have to be
symmetric is relaxed, a new class of and can be

(a) (b)

(c) (d)

Fig. 3. C1 + C2 as a function of�1 and�2, for four different values of
SNR. (a)SNR = 1. (b) SNR = 100. (c) SNR = 1000. (d) SNR = 1e+05.

defined as follows:

if

if

otherwise

if

if

otherwise.

(9)

That is, both and have the form shown in Fig.
2, however, they are not forced to be coupled; that is,is
not set to be equal to , as in (7). In this case, when
maximizing the sum of the capacities of directions 1 and 2,
it can be shown that is the only stationary
point and thus can be a maximum, a minimum, or a saddle
point. If it is a maximum, then using equal PSD’s for the two
directions is optimal. If it is not a maximum, the maximum
will be achieved at one of the corner solutions, i.e., at

or , which corresponds to using FDS
( and can easily be shown to
not achieve the maximum). Therefore, only equal PSD’s and
FDS can be optimal, which leads to the same threshold test
as in (8). Fig. 3(a) and (b) plots the sum of the capacities
of directions 1 and 2, versus all possible combinations of
and , for a given channel and for four different values of
SNR. Notice how the point changes from a
maximum to a saddle point as the SNR increases.

As a second example, we consider changing the form of
and , while keeping the constraint that and
are symmetric. That is, we consider the class of
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Fig. 4. Simplified channel: variation ofS1(f) with �.

and defined as follows:

if

otherwise

if

otherwise

where (see Fig. 4). In this configuration
corresponds to using equal PSD’s for the two directions of
transmission and corresponds to using FDS. It can
easily be shown that, as defined above, and are
symmetric. That is, for all values of . Fig. 5 plots
the capacity of directions 1 and 2, as a function of, for a
given channel and for four different values of SNR. Notice
how the point changes from a maximum to a minimum
as the SNR increases from a value less than
to a value greater than , indicating that the
threshold test in (8) still applies.

IV. GENERALIZED CHANNEL

Consider a channel that is bandlimited to but
is no longer restricted to being constant over this frequency
range. The frequency range is divided2 into

equal-width bins ( parallel independent subchannels).
Within each bin, both and will be approximately
constant, given that is sufficiently large. Also, any capacity-
maximizing scheme will have to decide how much power to
allocate for each bin. Therefore, using the results from the

2Since the capacity formula in (1) involves only positive frequencies, only
the frequency range0 � f �W will be considered henceforth.

previous section, it follows that in theth bin (with center
frequency ), the optimum power allocation rule is given by

(10)

where
. Therefore, the capacity of this channel is

given by the solution to the following optimization problem:

s.t.

(11)

where

if

if

(12)

Alternatively, the problem can also be posed as follows:

s.t.

(13)

where is the set of indexes of the bins that will employ
equal PSD and is the power allocated to this collection of
bins. Also, denotes the capacity of a channel
whose transfer function consists of only the bins included in
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Fig. 5. C1 (andC2) as a function of�, for four different values of SNR. In this example,((H � 2X)=X2) = 80.

, when the power constraint is , and when equal PSD’s
are used for both directions of transmission. It is evident that
the remaining bins, included in , will employ frequency
division and use a total power equal to . The
capacity of a channel whose transfer function consists of only
the bins included in , has a power constraint equal to , and
employs FDS for both directions of transmission, is denoted
by . This channel effectively suffers only from
AWGN. Both and are well studied
and well described in the literature [12], [3].

Unfortunately, as increases, the optimization problems
described by (11) and (13) both become prohibitively compu-
tationally complex. In fact, the problem described in (13) falls
under the category of mixed-integer programming, which is
still an open research area.

There are cases, though, when the problem in (13) can
be reduced to a significantly simpler one. This occurs, for
example, when is a decreasing function of and

is an increasing function of . A decreasing
and an increasing result in a decreasing

, which implies that is a
decreasing function of. Thus, if there exists an such that

, then
. Since for all , it follows that

, which in turn implies that FDS is
always optimum for all bins after (and including) theth bin,
according to (10).

Therefore, the capacity-maximizing scheme must use FDS
. Assume that as decreases from to , the strategy

changes from frequency division to equal PSD’s. That is, ,
in the range , such that equal PSD’s are used in
the th bin and frequency division is used in all bins to the
right of the th bin. Theorem 1 shows that, in such a case,

the capacity-maximizing scheme will use equal PSD’s for all
bins from to .

Lemma 1: Let

if

if

otherwise

if

if

otherwise.

Assume that there is a power constraint on the transmitted
signal. Then, if for , , and

, a higher capacity is always achieved when using
equal PSD’s in bin 1 and FDS in bin 2 than when using FDS
in bin 1 and equal PSD’s in bin 2.

The proof of Lemma 1 is lengthy and involved and does
not permit inclusion in this paper. However, the proof can be
found in [16].

Theorem 1: Let be a decreasing and an
increasing function of . Consider the class of all -bin
transmission schemes, that is, schemes that consist of dividing
the given frequency range into bins and, within each
bin, deciding to perform equal PSD’s or FDS. The capacity-
maximizing scheme will use equal PSD’s for binsto ,
and frequency division for bins to , for some

.
Proof: First, it is convenient to define to indicate that

equal PSD’s will be used in bin, and to define to indicate
that FDS will be used in bin.
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As was argued previously, the capacity-maximizing scheme
will have the following form:

for some . The transmission strategies for
bins to are yet to be determined. Assume that as

decreases from to , the strategy changes from equal
PSD’s to FDS. That is, assume that for some ,
the following is true about the capacity-maximizing scheme:

(14)

Then, capacity can always be increased by switching the
transmission strategy in bins and while keeping the total
power in both bins the same. That is, the following scheme:

has a higher capacity due to Lemma 1. However, this leads
to a contradiction because the scheme described in (14) was
assumed to maximize capacity. Thus, there is no

such that the transmission strategy changes from equal
PSD’s to FDS, which implies that the capacity-maximizing
scheme will have the following form:

This result is quite intuitive—let both directions of transmis-
sion utilize the “good” parts of the channel (where crosstalk
is low), and use frequency division to eliminate crosstalk in
portions of the channel where the crosstalk is high.

Therefore is as given in (15), shown at the
bottom of the page. As mentioned previously, techniques for
computing both and have been given by other
researchers [12], [3]. However, closed-form expressions for

and are not obtainable in general. Therefore,
the maximization in (15) can, in general, only be performed
numerically. Examples of this maximization are given in
Section V. Note also that is only a lower bound
on the true capacity of the channel since we are constraining
the form of and .

A. Bridge Taps

In practical twisted-pair channels, bridge taps and other
nonidealities introduce nulls at certain parts of the spectrum
and violate the assumption of monotonic channel and crosstalk
transfer functions. A system designer could, of course,require
the system to not have bridge taps, and could alleviate the other
nonidealities, thus achieving monotonicity of the channel and

crosstalk transfer functions. In such a case, Theorem 1 would
be directly applicable.

However, even if we have no control over a system with
nonmonotonic transfer functions, the analysis carried out so far
can be used in a constructive manner. Firstly, it is clear that, if
we use a monotonic channel model that uniformly bounds the
actual channel transfer functions, we obtain an upper bound
on the actual capacity. Secondly, and more significantly, even
though a result corresponding to Theorem 1 for nonmonotonic
channels is at present elusive, the form of the capacity-
maximizing scheme in Theorem 1 allows us to conjecture a
solution structure for the nonmonotonic channels. The key idea
in Theorem 1 is that equal PSD’s should be used in the bins
where the channel is “good” and frequency division should
be used where the crosstalk becomes a problem. Therefore,
we would expect to see the following behavior for a general
nonmonotonic channel as the SNR varies. At low SNR’s, all
bins with positive will employ equal PSD’s,
whereas bins where this quantity is negative will employ
frequency division. As the SNR increases, we expect to see
the equal PSD regions interspersed by pockets of frequency-
division bins. These pockets will form in the parts of the
spectrum where the nulls in the channel transfer function are.
As the SNR increases even further, these pockets of frequency-
division bins will become wider and wider until all but the
“best” bins will employ frequency division. Numerical results
in Section V show that this is indeed the case.

V. NUMERICAL RESULTS AND DISCUSSION

The capacity was numerically calculated, using
(15), for two monotonic twisted-pair channels: one studied in
[12] and one studied in [3]. The model of the twisted-pair
channel used in [12] is

where , the length of the channel is ft, is
the reference length of 18 000 ft, andis a constant of the
physical channel and is equal to . Also,

where . In the above expressions, refers to
frequency in kilohertz. The capacity of this channel was
calculated using ft, MHz, and

. The values used for and correspond to the ones
depicted in [12], and the value used for was chosen
such that no significant change in calculated capacity resulted
from increasing it. The resulting capacity, along with the
corresponding threshold frequency , are shown in Fig.
6 as functions of the SNR, which is defined as

.

s.t.

(15)
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Fig. 6. Capacity calculations for twisted-pair model from [12]. The solid line corresponds to using the optimum transmission scheme (as described inSection
IV), the star-dot line corresponds to using equal PSD’s for the two directions of transmission (as assumed in [12]), and the dashed line corresponds to
using FDS in all bins. The threshold frequencyfM corresponding to each value of SNR is shown at the top of this figure. (The value offi , where
(Hi � 2Xi)=X2

i
becomes negative, is 18.8 MHz.)

For the model of the twisted-pair channel used in [3]

(16)

where is defined as in the previous model andrepresents
the attenuation at . Also

where . In the above expressions refers to
frequency in hertz.

It is important to note that a closed-form expression for
was not given in [3]. However, the parameters

and , in (16), were selected so that the resulting
matched the plot given in [3] as closely as possible. The fact
that the model of used in this example is notexactly
equal to the one used in [3] is not important, since it is the
approach to achieving capacity that is being tested, and this
can accomplished using any monotonic model for .
The capacity of this channel was calculated using
kHz and . The value used for corresponds to
the one depicted in [3] and the value used forwas chosen
such that no significant change in calculated capacity resulted
from increasing it. The resulting capacity, along with the
corresponding threshold frequency , are shown in Fig. 7
as functions of the SNR.

The curves plotted in Figs. 6 and 7 show the capacity
under three different transmission schemes: the first uses equal

PSD’s for all bins (just as in [12] and [3]), the second uses
frequency division in all bins, and the third is the optimal,
that is, it uses equal PSD’s for the first bins (for some

) and frequency division for the remaining bins.
These correspond to the plots of ,

, and , respectively, versus
SNR. The value used for in both plots is 110 dBm/Hz,
which, as mentioned in [3], is a conservative value for AWGN
power and is meant to account for a possible mismatch
between the AWGN model and the actual distribution of the
additive noise in the channel.

There are several observations that one can make about
both figures. First, is larger than the other two for
all values of SNR, as expected. More importantly,
always increaseswith SNR, unlike , which has a
maximum value no matter how large the SNR becomes, as
was also observed in [12] and [3].

Also, for low values of SNR, approaches
and approaches , implying that it is optimum to use
equal PSD’s in all bins that have a positive .
In addition, for high values of SNR, approaches
and approaches zero, implying that it is optimum to use
FDS in all bins. This result should be expected because at
low SNR, crosstalk is not an important source of interference
and thus both directions of transmission can use all of the
frequency spectrum that has a positive value for
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Fig. 7. Capacity calculations for twisted-pair model from [3]. The solid line corresponds to using the optimum transmission scheme (as described in Section
IV), the star-dot line corresponds to using equal PSD’s for the two directions of transmission (as assumed in [3]), and the dashed line corresponds to
using FDS in all bins. The threshold frequencyfM corresponding to each value of SNR is shown at the top of this figure. (The value offi , where
(Hi � 2Xi)=X2

i
becomes negative, is 287.5 kHz.)

. On the other hand, at very high SNR,
crosstalk becomes a problem at all frequencies, implying that
it should be eliminated using frequency division.

Finally, if is compared to , it
can be seen that it is not significantly larger at any SNR.
In fact, the largest improvement that offers over

is roughly 20%–30%, and this occurs at
moderate values of SNR. Therefore, if a 30% difference is not
very important to the designer, the transmission system can be
designed by calculating only and and using the
scheme that offers higher capacity, thus saving computational
time and effort.

It is important to discuss the results of [14], because it is
the only work that questions the assumption that has
to be equal to when deriving capacity of a twisted-pair
channel. In [14] it is assumed that , that is, the only
source of noise is NEXT. It is also assumed that and

have the same support. Therefore, the resulting capacity
is

(17)

for some . It is clear that , as defined in (17), is a
finite quantity because . According to
[14], this formula for capacity holds with no power constraints
on the transmitted signals.

However, from (10) it follows that if the frequency range
is divided into bins, then FDShasto be used in

all bins. Thus, each direction of transmission faces a channel
with no noise. Since [14] assumes no power constraints on the
transmitted signals, the resulting capacity is infinite.

It appears that this result is in contradiction with [14], where
it was shown that the capacity is not only finite but only
slightly better than the capacity when is assumed to be
equal to . The reason for this discrepancy may be that
while [14] does not constrain and to be equal,
it does constrain them to have the same support, a constraint
we have not imposed.

A. Bridge Taps

As mentioned earlier, if the twisted-pair channel has bridge
taps and other nonidealities, the channel and crosstalk transfer
functions will, in general, not be monotonically decreasing
and increasing, respectively. Therefore, Theorem 1 does not
apply, implying that we need to solve the optimization problem
described in either (11) or (13). For small values of,
both approaches are computationally viable. However, as

increases, they both become computationally prohibitive,
especially the approach in (13). Interestingly, though, just as
in the monotonic channel case, it is the approach in (13) that
can be reduced to a significantly simpler problem. This will
be shown via numerical examples.
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(a)

(b)

Fig. 8. (a) Channel and crosstalk transfer functions of the five-bin channel.
(b) Signaling strategies as a function of the SNR. At each value of SNR,
equal PSD’s are used in all of the frequency ranges (bins) that are shaded, and
frequency division is used in the remaining frequency ranges (bins). Also, the
value of(Hc(f)� 2Hx(f))=H2

x
(f) as a function of frequency is depicted

as a solid line.

For the purposes of understanding the properties of optimal
signaling strategies for nonmonotonic channels, we first look
at a simple channel that consists of five piecewise constant

segments. The channel and crosstalk transfer functions are de-
picted in Fig. 8(a). The capacity of this channel was calculated
using both (11) and (13). What is of interest is not the capacity
of this fictitious channel but the resulting pattern of signaling
schemes used in each bin, as a function of the SNR. This
pattern is shown in Fig. 8(b).

A second channel that was studied was the one in [3],
however with a null artificially added to the channel transfer
function at 60 kHz. For , the optimization problem
described in (11) is still solvable, though extremely time-
consuming. Again, what is of interest is not the capacity of this
channel but the resulting pattern of signaling schemes used in
each bin, as a function of the SNR. This pattern is shown in
Fig. 9.

We see in Figs. 8 and 9 that the optimal signaling strategies
exhibit the following behavior. At very low SNR’s, all bins
with a positive employ equal PSD’s and all
bins where this quantity is negative employ frequency division.
As the SNR increases, we see that the equal PSD regions
become interspersed by pockets of frequency-division bins.
These pockets form in the parts of the spectrum where the nulls
in are. As the SNR increases even further,
these pockets of frequency-division bins become wider and
wider until all bins employ frequency division. This behavior
was also observed in numerous other examples that were
tested but are not included here. Such behavior suggests a
methodology for solving the general optimization problem
posed in (13). For example, if has
only one null, then (15) can be easily extended as given in
(18), shown at the bottom of the page.

That is, compared to the monotonic channel case, we have
added two more points where the signaling strategy changes, to
account for the null. Although, the computational complexity
of this problem is slightly larger than that of (15), it is
significantly smaller than that of (13). Unfortunately, this
approach suffers from the drawback that for each additional
null found in , two additional thresh-
old points need to be added to the optimization in (18).
This not only increases the complexity of the optimization
but also introduces implementation difficulties because of the
ambiguity in the number of nulls that exist in a given channel.

These problems are alleviated if we interpret the behavior
of the optimal signaling strategies in a different way. The
behavior at very low SNR’s is as described above. However, as
the SNR increases, an increasing number of bins switch their
signaling strategies over to frequency division. Moreover, this
switching seems to occur in an orderly fashion as seen in Figs.
8 and 9. That is, bins with lower values for
switch over to frequency division before bins with a higher

s.t.

(18)
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Fig. 9. Signaling strategies as a function of the SNR for the channel in [3] with a null added at 60 kHz. At each value of SNR, equal PSD’s are used in all of the
frequency ranges (bins) that are shaded, and frequency division is used in the remaining frequency ranges (bins). Also, the value of(Hc(f)�2Hx(f))=(H2

x(f))
as a function of frequency is depicted as a solid line. (The value offi , where(Hi � 2Xi)=X2

i
becomes negative, is 287.5 kHz.)

value for this quantity. Eventually, at high enough SNR’s all
bins employ frequency division. This behavior suggests an
alternative methodology for solving the general optimization
problem posed in (13). That is, we first sort
in descending order and then relabel the channel and crosstalk
transfer functions as and such that is
a decreasing function of. Thus, (15) is extended as given in
(19), shown at the bottom of the page, where and
are defined as before, except for the fact that they refer to the
relabeled channel described by and . This approach has
the advantages of having a low computational complexity [in
fact, the same as that of (15)] and of not requiring the ambigu-
ous task of determining the number of nulls in the channel.

Of course, we have not established that either of the above
approaches is optimal since we have not yet been able to prove
that the behavior of the optimal signaling strategies described
above is exhibited inall twisted-pair channels. However, they
do yield solutions which, for the examples considered, agree
with the solutions to (11), given in Figs. 8 and 9.

As as a final comment, we note that the results shown
in Fig. 9 lead us to make an even stronger statement about

the behavior of the optimal signaling strategies. Since the
shaded area in the figure follows the plot of

fairly closely, it appears that we may be able
to approximate the optimal signaling strategy, and thus obtain
a lower bound on the capacity, by requiring all bins for which

to employ equal PSD’s and
all of the remaining bins to employ frequency division. Notice
that the above condition involves thetotal SNR, and not the
SNR in the th bin, which, of course, would have been optimal.
This strategy reduces to the following simple optimization
problem:

s.t.

(20)

where is the set of indexes of all bins for which
. It turns out that the

resulting capacity is very close to the one obtained using the
optimal signaling strategy, while at the same time requiring the

s.t.

(19)
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(a)

(b)

Fig. 10. Capacity as a function of the SNR for various signaling schemes.
(a) For channel of Fig. 8. (b) For channel of Fig. 9.

solution of a problem with an extremely lower computational
complexity than either (11) or (13).

The values of the capacity versus SNR resulting from the
optimal signaling scheme, which is described in (11), and the
two suboptimal schemes described by (19) and (20), are plotted
in Fig. 10 for the two channels used in Figs. 8 and 9. It can be
seen that the results corroborate our analysis and discussion.
Notice how the capacity resulting from (19) is identical to
that resulting from (11), which is optimal. Also notice that the
capacity resulting from (20), although less than the optimal,
still follows the optimal capacity fairly closely, especially in
Fig. 10(b).

VI. CONCLUSION

We established that allowing different PSD’s for the two
directions of transmission over twisted-pair channels and per-
forming a joint optimization over these PSD’s can result
in significant increases in the information capacity. In par-
ticular, we showed that the capacity is unbounded as the
SNR goes to infinity. For monotonic channels, the optimal
signaling strategies that we derived have a simple threshold
structure–-the signal PSD’s in the two directions are identical
up to a threshold frequency, beyond which they occupy
disjoint frequency slots. Our numerical results also indicate
how the optimal strategies get modified for nonmonotonic
channels.

The optimal signal PSD’s derived in this paper may be
achieved in practice using a number of methods. However, the
structure of the signal PSD’s lends itself to a straightforward
implementation using multicarrier modulation [17]–[23]. For
example, when the channel has monotonic channel and
crosstalk transfer functions, the first carriers should
be assigned to both directions of transmission while the
remaining carriers should be assigned alternatingly to
each direction. Also, the appropriate power (and bit rate)
should be used for each carrier so that the signal PSD is
as desired.

An interesting topic for further research is the extension
of Theorem 1 to channels with nonmonotonic channel re-
sponse and crosstalk transfer functions. The results presented
in Section V should provide a starting point for this re-
search. Also of interest is the analysis of the actual bit rate
achievable by a multicarrier signaling scheme that uses the
optimal PSD’s derived in this paper. Another avenue for
further research is the capacity analysis under peak power
constraints. Finally, since the analysis here does not apply
directly to ADSL, a possibility for future work would be
the application of the approach used in this paper to ADSL
systems.
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