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Abstract—The popular criteria of optimality for quickest change
detection procedures are the Lorden criterion, the Pollak crite-
rion, and the Bayesian criterion. In this paper, a robust version of
these quickest change detection problems is considered when the
pre-change and post-change distributions are not known exactly
but belong to known uncertainty classes of distributions. For un-
certainty classes that satisfy a specific condition, it is shown that
one can identify least favorable distributions (LFDs) from the un-
certainty classes, such that the detection rule designed for the LFDs
is optimal for the robust problem in a minimax sense. The condi-
tion is similar to that required for the identification of LFDs for the
robust hypothesis testing problem originally studied by Huber. An
upper bound on the delay incurred by the robust test is also ob-
tained in the asymptotic setting under the Lorden criterion of op-
timality. This bound quantifies the delay penalty incurred to guar-
antee robustness. When the LFDs can be identified, the proposed
test is easier to implement than the CUSUM test based on the Gen-
eralized Likelihood Ratio (GLR) statistic which is a popular ap-
proach for such robust change detection problems. The proposed
test is also shown to give better performance than the GLR test in
simulations for some parameter values.

Index Terms—CUSUM test, least favorable distributions, min-
imax robustness, quickest change detection, Shiryaev test.

I. INTRODUCTION

T HE problem of detecting an abrupt change in a system
based on observations is a dynamic hypothesis testing

problem with a rich set of applications. Such problems of change
detection were first studied by Page over 50 years ago in the con-
text of quality control [2]. In its standard formulation, there is
a sequence of observations whose distribution changes at some
unknown point in time, referred to as the ’change-point’. The
goal is to detect this change as soon as possible, subject to a false
alarm constraint. Some applications of change detection are in-
trusion detection in computer networks and security systems,
detecting faults in infrastructure of various kinds, and spectrum
monitoring for opportunistic access to wireless networks.
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Most of the past work in the area of change detection has
been restricted to the setting where the distributions of the
observations prior to the change and after the change are known
exactly (see, e.g., [3]–[6]; for an overview of the work in this
area, see [7]–[9].). The three most popular criteria for opti-
mizing the tradeoff between detection delay and false alarm rate
are the Lorden criterion [4] and the Pollak criterion, in which
the change-point is a deterministic quantity, and Shiryaev’s
Bayesian formulation [10], in which the change-point is mod-
eled as a random variable with a known prior distribution. In
this paper, we study all these three versions of change detection,
under the setting where the pre-change and post-change distri-
butions are not known exactly but belong to known uncertainty
classes. We pose a minimax robust version of the standard
quickest change detection problem wherein the objective is to
identify the change detection rule that minimizes the maximum
delay over all possible distributions. This minimization should
be performed while meeting the false alarm constraint for
all possible values of the unknown distributions. We obtain a
solution to this problem when the uncertainty classes satisfy
some specific conditions. Under these conditions we can iden-
tify least favorable distributions (LFDs) from the uncertainty
classes, and the optimal robust change detection rule is then the
optimal (nonrobust) change detection rule for the LFDs. These
conditions are similar to those given by Huber [11] for robust
hypothesis testing problems. We also discuss related results on
robust sequential detection [11], [12] later in the paper.

Although there has been some prior work on robust change
detection, these approaches are distinctly different from ours.
The maximin approach of [13] is similar in that they also iden-
tify LFDs for the robust problem. However, their result is re-
stricted to asymptotic optimality (as the false alarm constraint
goes to zero) under the Lorden criterion. A similar formula-
tion is also discussed in [14, Sec.7.3.1]. Some other approaches
to this problem (e.g., [15], [16]) are aimed at developing al-
gorithms for quickest change detection with unknown distribu-
tions. These works study the asymptotic performance of the pro-
posed tests under different distributions but do not seek to guar-
antee minimax robustness over a given class of distributions.

A closely related problem is the composite quickest change
detection problem. In general, these problems also address the
setting where the pre-change and post-change distributions are
unknown. However, unlike the robust problem, in composite
problems one seeks to identify a change detection procedure that
is simultaneously optimal under all possible values of the un-
known distributions. Exact solutions to these problems are often
intractable and hence most results are restricted to asymptotic
optimality. One such solution to a composite change detection
problem is discussed in [4] when only the post-change distri-
bution is unknown. In [4], a test is given that is asymptotically
optimal under the Lorden criterion for all possible values of the
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unknown post-change distribution in a one-dimensional expo-
nential family of distributions. This test is also referred to as
the Generalized Likelihood Ratio Test (GLR Test), and was also
studied in [17] and [18]. An alternate asymptotically optimal so-
lution for the setting in which both pre-change and post-change
distributions are unknown was studied in [19].

We provide a performance comparison of our proposed ro-
bust test with the GLR test. Although the GLR test asymptot-
ically performs as well as the optimal test with known distri-
butions, we show via simulations that our robust test can give
improved performance over the GLR test for moderate values
of the false alarm constraint. The GLR test is also often prohib-
itively complex to implement in practice, while the proposed
robust CUSUM test admits a simple recursive implementation.

For the asymptotic version of the problem, we also provide an
analytical upper bound on the delay incurred by our robust test
and use it to provide an upper bound on the drop in performance
of our test relative to the optimal nonrobust test.

The rest of the paper is organized as follows. We first state
the problem that we are studying in Section II. In Section III
we describe the robust solution and present some analysis. We
discuss some examples in Section IV and conclude in Section V.

II. PROBLEM STATEMENT

In the online quickest change detection problem, we are given
observations from a sequence taking values
in a set . There are two known distributions ,
where is the set of probability distributions on . Ini-
tially, the observations are drawn i.i.d. under distribution .
Their distribution switches abruptly to at some unknown time

so that for and for .
The observations are stochastically independent conditioned on
the change-point. The objective is to identify the occurrence of
change with minimum delay subject to false alarm constraints.
We use to denote the expectation operator and to de-
note the probability law when the change happens at and
the pre-change and post-change distributions are and re-
spectively. The symbols are replaced with and when
the change does not happen. Similarly, if the pre-change and
post-change distributions are some and , respectively, and
the change happens at time , we use to denote the expec-
tation operator and the probability law. We further use
to denote the sigma algebra generated by .

A sequential change detection procedure is characterized by
a stopping time with respect to the observation sequence. The
design of the quickest change detection procedure involves op-
timizing the tradeoff between two performance measures: de-
tection delay and frequency of false alarms. There are various
standard mathematical formulations for the optimal tradeoff. In
the minimax formulation of [4] the change-point is assumed to
be an unknown deterministic quantity. The worst-case detection
delay is defined as

where . This quantity captures the worst-case
value of the expected detection delay over all possible
locations of the change-point and all possible realizations

of the pre-change observations. The false alarm rate is defined
as,

Here, can be interpreted as the mean time to false alarm.
Under the Lorden criterion, the objective is to find the stopping
rule that minimizes the worst-case delay subject to an upper
bound on the false alarm rate

(1)

It was shown by Moustakides [3] that the optimal solution to
(1) is given by the cumulative sum (CUSUM) test proposed by
Page [2]. We describe this test later in the paper.

An alternate formulation of the change detection problem was
studied by Pollak [5]. Even here the change point is modeled
as a deterministic quantity. But the delay to be minimized is
no longer the worst-case delay but a worst-case average delay
(also referred to as supremum average detection delay by some
authors) defined by

The Pollak criterion of optimality of a stopping rule for change
detection is given by

(2)

where the minimization is over all stopping times such that
is well-defined. Pollak [5] established the asymptotic

optimality of the Shiryaev-Roberts-Pollak (SRP) stopping rule
for (2).

Another approach to change detection is the Bayesian for-
mulation of [6], [10]. Here, the change-point is modeled as a
random variable with prior probability distribution,

, . The performance measures are the
average detection delay (ADD) and probability of false alarm
(PFA) defined by

where represents the expectation operator and the prob-
ability law when the pre-change and post-change distributions
are and respectively. For a given , the optimiza-
tion problem under the Bayesian criterion is

(3)

When the prior distribution on the change-point follows a geo-
metric distribution, the optimal solution to the above problem is
given by the Shiryaev test [10].

The robust versions of (1), (2) and (3) are relevant when one
or both of the distributions and are not known exactly, but
are known to belong to uncertainty classes of distributions, ,

. The objective is to minimize the worst-case delay
amongst all possible values of the unknown distributions, while
satisfying the false-alarm constraint for all possible values of the
unknown distributions. Thus, the robust version of the Lorden
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criterion is to identify the stopping rule that solves the following
optimization problem:

(4)

Similarly, the robust version of the Pollak criterion is

(5)

and the robust version of the Bayesian criterion is

(6)

The optimal stopping rule under each of the robust criteria
described above has the following minimax interpretation. For
any other stopping rule that guarantees the false alarm con-
straint for all values of unknown distributions from the uncer-
tainty classes, there is at least one pair of distributions such that
the delay obtained under will be at least as high as the max-
imum delay obtained with over all pairs of distributions from
the uncertainty classes. In the rest of this paper we provide solu-
tions to the robust problems (4), (5) and (6) when the uncertainty
classes satisfy some specific conditions.

III. ROBUST CHANGE DETECTION

A. Least Favorable Distributions

The solution to the robust problem is simplified greatly if
we can identify least favorable distributions (LFDs) from the
uncertainty classes such that the solution to the robust problem
is given by the solution to the nonrobust problem designed with
respect to the LFDs. LFDs were first identified for a simpler
problem—the robust hypothesis testing problem—by Huber
and Strassen in [11] and [20]. It was later shown in [21] that if
the uncertainty classes satisfy a joint stochastic boundedness
condition, one can identify these LFDs. Before we introduce
this condition, we need the following notation. If and
are two real-valued random variables defined on a probability
space such that

then we say that the random variable is stochastically larger
than [21] the random variable . We denote this relation via
the notation . Equivalently, if and , we
also denote .

Definition 1 (Joint Stochastic Boundedness) [21]: Consider
the pair of classes of distributions defined on a mea-
surable space . Let be some pair

of distributions from this pair of classes such that is abso-
lutely continuous with respect to . Let denote the log-like-
lihood ratio between and defined as the logarithm of
the Radon-Nikodym derivative . Corresponding to each

, we use to denote the distribution of when
, , 1. Similarly we use (respectively ) to de-

note the distribution of when (respectively ).
The pair is said to be jointly stochastically bounded by

if for all ,

Loosely speaking, the LFD from one uncertainty class is the
distribution that is nearest to the other uncertainty class. This
notion can be made rigorous in terms of Kullback-Leibler di-
vergence and other Ali-Silvey distances between distributions
in the uncertainty classes, as shown in [22, Corollary 1].

Huber and Strassen [20] have established a procedure to ob-
tain robust solutions to the Neyman-Pearson hypothesis testing
problem provided the uncertainty classes can be described in
terms of 2-alternating capacities. As pointed out in [21], any
pair of uncertainty classes that can be described in terms of 2-al-
ternating capacities also satisfy the joint stochastic bounded-
ness (JSB) condition (see [20, Theorem 4.1]). This observation
suggests that we can identify examples of uncertainty classes
which satisfy the joint stochastic boundedness condition using
the results in [20], [21], and [23]. These include -contamina-
tion classes, total variation neighborhoods, Prohorov distance
neighborhoods, band classes, and p-point classes. In general
it is difficult to identify the distributions and . However,
for -contamination classes, total variation neighborhoods, and
Lévy metric neighborhoods, the method suggested in [23, pp.
241–248] can be used to identify these distributions.

We show that under certain assumptions on and , the
pair of distributions are LFDs for the robust change de-
tection problem in (4), (5) and (6). Thus, the optimal stopping
rules designed assuming known pre-change and post-change
distributions and , respectively, are optimal for the robust
problems (4), (5) and (6). We use to denote the expectation
operator and to denote the probability law when the change
happens at and the pre-change and post-change distributions
are and , respectively.

We need the following straightforward result. For complete-
ness, we provide a proof in the Appendix.

Lemma III.1: Suppose is a set of mutually
independent random variables, and is another
set of mutually independent random variables such that

, . Now let be a continuous real-valued
function defined on that satisfies

for all , , and . Then we have



UNNIKRISHNAN et al.: MINIMAX ROBUST QUICKEST CHANGE DETECTION 1607

B. Lorden Criterion

When the distributions and are known, the solution to
(1) is given by the CUSUM test [3]. The optimal stopping time
is given by,

(7)

where is the log-likelihood ratio between and , and
the threshold is chosen so that, . The following
theorem provides a solution to the robust Lorden problem when
the distributions are unknown.

Theorem III.2: Suppose the following conditions hold:
(i) The uncertainty classes , are jointly stochastically

bounded by .
(ii) All distributions are absolutely continuous with

respect to . i.e.,

(8)

(iii) The function , representing the log-likelihood ratio
between and is continuous over the support of .

Then the optimal stopping rule that solves (4) is given by the
following CUSUM test

(9)

where the threshold is chosen so that, .

We prove the theorem in the Appendix. Two brief remarks are
in order. Firstly, the discussion in [14, p. 198] suggests that when
LFDs exist under our formulation, they also solve the asymp-
totic problem, as expected. Secondly, the robust CUSUM test
admits a simple recursive implementation similar to the ordi-
nary CUSUM test. Clearly,

(10)

where is the test statistic
appearing in (9). Thus, it is easy to compute the test statistic
recursively.

1) Asymptotic Analysis of the Robust CUSUM Test: In gen-
eral, for any pair of pre-change and post-change distributions

from the uncertainty classes, we expect the performance
of the robust CUSUM test to be poorer than that of the optimal
CUSUM test designed with respect to the correct distributions.
The drop in performance can be interpreted as the cost of robust-
ness. Although it is not easy to characterize this cost in general,
some insight can be obtained by performing an asymptotic anal-
ysis in the setting where the false alarm constraint goes to zero.
Our analysis uses the result of [4, Theorem 2] (also see [14, The-
orem 6.16]). We use to denote the worst-case delay
obtained by employing the stopping rule when the pre-change
and post-change distributions are given by and . Similarly,

is used to denote the same quantity when the pre-
change and post-change distributions are the LFDs.

As mentioned in the remark following [4, Theorem 2], we
can interpret the robust CUSUM test as a repeated one-sided

sequential probability ratio test (SPRT) between and . Let
denote the stopping rule of the SPRT. We apply [4, The-

orem 2] to when the true distributions are the LFDs. It
follows that

where is used as the upper threshold in the SPRT given
by . From (30), we know that

We again apply the theorem to , but with the true distri-
butions given by any and . We now have

where the expression on the right hand side denotes the expected
stopping time of the SPRT when the observations follow dis-
tribution . Now, by applying the well-known Wald’s identity
[24] as suggested in the remark following [4, Theorem 2], we
obtain

where as and

Thus

It is also known from [4, Theorem 3] that any stopping rule
that satisfies the false alarm constraint must

satisfy the lower bound

and that this lower bound is achieved by the optimal CUSUM
test between and . Thus, the worst-case delay of the robust
test is asymptotically larger by a factor no more than

when compared with the delay incurred by the optimal test. This
factor is thus an upper bound on the asymptotic cost of robust-
ness.

C. Pollak Criterion

The SRP stopping rule is asymptotically optimal for (2). Let
be a random variable with distribution supported on

and define,

(11)

When the distributions and are known the SRP stopping
rule is given by

(12)
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Asymptotic Optimality Property: The SRP test of (12) is
asymptotically optimal for (2) in the following sense [5]: For
every there exists threshold and probability mea-
sure such that the stopping rule satisfies

and for any other stopping rule that satisfies
the false alarm constraint , we have

(13)

where as .
The following theorem identifies a stopping rule that extends

the above asymptotic optimality property to the setting where
the post-change distribution is unknown.

Theorem III.3: Suppose the following conditions hold:
(i) The uncertainty class is a singleton and

the pair is jointly stochastically bounded by
.

(ii) The function , representing the log-likelihood ratio
between and is continuous over the support of .

Let denote the SRP stopping rule defined
with respect to the LFDs , with parameters and
chosen such that the asymptotic optimality property of (13) is
satisfied. Then the stopping rule is also asymptotically op-
timal for (5) in the following sense: For every and
for any stopping rule that satisfies the false alarm constraint

, we have

(14)

where as .

The result of (14) can be interpreted as follows: The differ-
ence between the worst-case values of the delays incurred by
the stopping rule and any other stopping rule approaches
zero as the false alarm constraint approaches zero.

Our proof, provided in the Appendix, is useful only when
is a singleton. It is possible that the asymptotic optimality result
may still hold even for general , although the current proof is
not applicable. We elaborate on this further in the discussion in
Section IV on the Bayesian criterion, and also in the Appendix
following the proof of the theorem.

We also note that in some cases our proof can be adapted
to obtain tests that are exactly optimal for the robust Pollak
criterion of (5). Polunchenko and Tartakovsky [25] study the
Shiryaev-Roberts procedure (SR- ) which is identical to the
SRP procedure described earlier, except for the fact that is
not random but fixed at some constant . In [25, Theorem 2],
the exact nonasymptotic optimality of the SR- procedure for
detecting a change in distribution from to is
shown, where refers to an exponential distribution with
mean . Using that result, the proof of Theorem III.3 can be
adapted to obtain the exact robust solution to the optimization
problem in (5). In particular it can be shown that the SR- pro-
cedure for detecting change from to given in
[25, Theorem 2] is also optimal for (5) when
and .

D. Bayesian Criterion

When the distributions and are known and the prior
distribution of the change-point is geometric, the solution to (3)
is given by the Shiryaev test [10]. Denoting the parameter of the
geometric distribution by , we have

The Shiryaev stopping rule is based on comparing the posterior
probability of change to a threshold

It can be equivalently expressed as

(15)
where the threshold is chosen such that

. The following theorem, proved in the Appendix, iden-
tifies a solution to the robust Shiryaev problem (6).

Theorem III.4: Suppose the following conditions hold:
(i) The uncertainty class is a singleton and

the pair is jointly stochastically bounded by
.

(ii) The prior distribution of the change-point is a geometric
distribution.

(iii) The function , representing the log-likelihood ratio
between and , is continuous over the support of .

Then the optimal stopping rule that solves (6) is given by the
following Shiryaev test:

(16)
where the threshold is chosen so that .

We note that our results under the Bayesian and Pollak criteria
are applicable only when the pre-change distribution is known
exactly and hence these results are weaker than our result under
the Lorden criterion. Suppose is not a singleton and
is jointly stochastically bounded by . In this case, the
stopping rule defined with respect to is not optimal
for the robust Bayesian criterion (6). In particular, when the pre-
change distribution is and the post-change distribution
is , it can be shown that the average detection delay

of the stopping rule is in general higher than
the average detection delay when the pre-change
and post-change distributions are . This is because the
likelihood ratios of the pre-change observations appearing in
(16) are stochastically larger under than under . This leads
to a stopping time that is stochastically smaller under
than under . Hence, there is no reason to believe that
solves the robust problem (6).

Even in the case of the Pollak criterion studied in
Section III-C, our robust result holds only when is a
singleton and the JSB condition holds. However, unlike in the
Bayesian case, we do not have a simple explanation for why the
result cannot be extended to the setting where the pre-change
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distribution is not known exactly. It is possible that for some
specific choices of the uncertainty classes, the stopping rule de-
signed with respect to may be asymptotically optimal
for the robust problem of (5), although we do not expect this to
be true in general.

However, such a problem does not arise for the robust
CUSUM test we studied in Section III-B, since the worst-case
detection delay of the robust CUSUM depends
only on the support of the pre-change distribution when
post-change distribution is kept fixed at .

Comparison With Robust Sequential Detection: It is inter-
esting to compare our results with some known results on ro-
bust sequential detection. We have shown that provided the JSB
condition and other regularity conditions hold, change detec-
tion tests designed with respect to the LFDs exactly solve the
minimax robust change detection problem under the Lorden and
Bayesian criteria. However, the known minimax optimality re-
sults in robust sequential detection are all for the asymptotic set-
tings—as error probabilities go to zero [11] or as the size of
the uncertainty classes diminishes [12]. Huber [11] showed that
an exact minimax result does not hold for the robust sequential
detection problem in general. He provided examples where the
expected stopping times of the SPRT designed with respect to
the LFDs are not least favorable under the LFDs. This is sim-
ilar to the reason why the robust Shiryaev test is not optimal for
the Bayesian problem when is not a singleton as explained
above.

IV. SOME EXAMPLES AND SIMULATION RESULTS

A. Gaussian Mean Shift

Here we consider a simple example to illustrate the results.
Assume is known to be a standard Gaussian distribution with
mean zero and unit variance, so that is a singleton. Let
be the collection of Gaussian distributions with means from the
interval and unit variance.

(17)

It is easily verified that is jointly stochastically
bounded by given by

1) Bayesian Criterion: We simulated the Bayesian and ro-
bust Bayesian change detection tests for this problem assuming
a geometric prior distribution for the change-point with param-
eter 0.1 and a false alarm constraint of . From the
performance curves plotted in Fig. 1, we can see that the robust
Shiryaev test gives the same average detection delay (ADD) as
the optimal Shiryaev test at which corresponds to
in the figure. This is expected since the robust test is identical
to the optimal test at . For all other values of , the
performance of the robust test is strictly better than the perfor-
mance at and hence this test is indeed minimax optimal. We
also see in Fig. 1 that the average delays obtained with the robust
test are much higher than those obtained with the optimal test,
especially at high values of the mean . The probability of false

Fig. 1. Comparison of robust and nonrobust Shiryaev tests for � � ����� for
the Gaussian mean shift example.

Fig. 2. Comparison of various tests for false alarm rate of � � ����� for the
Gaussian mean shift example.

TABLE I
DELAYS OBTAINED USING VARIOUS TESTS UNDER THE LORDEN CRITERION

FOR A FALSE ALARM RATE OF � � �����

alarm and average detection were estimated via Monte-Carlo
simulations with a standard deviation of 0.1% for the estimates.

2) Lorden Criterion and Comparison With GLR Test: Under
the Lorden criterion, we compared the performances of three
tests—the optimal CUSUM test with known , the robust
CUSUM test designed with respect to the LFDs, and the
CUSUM test based on the GLR Test suggested in [4]. The
stopping time under the GLR test is given by

(18)

where is chosen so that the false alarm constraint is met with
equality. The GLR test does not require knowledge of but
still achieves the same asymptotic performance as the optimal



1610 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

TABLE II
DELAYS OBTAINED USING VARIOUS TESTS UNDER THE LORDEN CRITERION FOR �-UNCERTAINTY CLASSES WITH � � ����� AND � � �

CUSUM test with known when the false alarm constraint goes
to zero for some choices of the uncertainty classes including the
example considered above.

Fig. 2 and Table I shows estimates of the worst-case detection
delay (WDD) obtained under the these tests designed for a false
alarm constraint of , for various values of . These
values are estimated using Monte-Carlo simulations. The delay
values have a standard deviation lower than 1% and the false
alarm value has a standard deviation lower than 3%.

From the performance curves in Fig. 2 and the values in Table I
we see that the GLR test gives better performance than our robust
solution at higher values of , and is close to optimal at these high
values of . However, the robust test gives much better perfor-
mance than the GLR test at the low values of . This is expected
since the robust solution is minimax optimal and hence is ex-
pected to perform better at the unfavorable values of .

An important difference between the two solutions is that al-
though the robust CUSUM test based on the LFDs admits a
simple recursive implementation like we described in (10), the
GLR test is in general very complex to implement. This is be-
cause the supremum in (18) may be achieved at different values
of for different . Furthermore, the optimization in (18) may
not be easy to solve for general uncertainty classes—particu-
larly nonparametric classes like the -uncertainty classes con-
sidered next.

B. -Contamination Classes

We now discuss an example in which the uncertainty class
is no longer a singleton. For some scalar , consider the
following -contamination classes:

(19)

(20)

where is the collection of all probability measures on
and denotes the probability measure corresponding to a
Gaussian random variable with mean and variance . In other
words, the distributions in uncertainty class are mixtures of
a Gaussian distribution with mean and unit variance, and an
arbitrary probability distribution on with weights given by

and , respectively.
Following the method outlined in [11], we identified LFDs

for these uncertainty classes and evaluated the performance of
the robust test. Let denote the density function of a

random variable and let denote the density function of the
least favorable distribution from . It is established in [11] that
the densities of the LFDs have the following structure:

if
if (21)

if
if

(22)

where . The scalars and are identified by the
following relation:

In order to compare the performance of the robust test with
that of the optimal test we chose the following distributions for

and :

Table II shows the values of the worst-case delay (WDD) ob-
tained when is kept fixed at and is varied. Shown
are the results obtained using the robust CUSUM test as well
as the optimal CUSUM test for and for .
We notice that the difference in performance between the ro-
bust test and the optimal test is larger for larger values of . This
matches the intuition that the cost of robustness would be higher
for a larger uncertainty class of distributions. The delay values
and false alarm rates were estimated to have standard deviations
lower than 0.1% and 1%, respectively.

Table III shows the values of worst-case delay obtained under
the optimal CUSUM tests when is kept fixed at
and is varied. The delay values and false alarm rates were
estimated to have standard deviations lower than 0.1% and 1%,
respectively. We have not included the delays obtained under
the robust test, since the delay of the robust test is invariant with

. The delay obtained under the robust test for and
are respectively 15.09 and 11.27 as shown in the third

row of Table II corresponding to .
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TABLE III
DELAYS OBTAINED USING THE OPTIMAL CUSUM TEST FOR �-UNCERTAINTY

CLASSES WITH � � ����� AND � � �

V. CONCLUSION

We have shown that for uncertainty classes that satisfy some
specific conditions, the optimal change detectors designed for
the least favorable distributions are optimal in a minimax sense.
This is shown for the Lorden criterion, the Pollak criterion, and
Shiryaev’s Bayesian criterion. However, robustness comes at a
potential cost. The optimal stopping rule designed for the LFDs
may perform quite suboptimally for other distributions from the
uncertainty class when compared with the optimal performance
that can be obtained in the case where these distributions are
known exactly. Using an asymptotic analysis, we have also ob-
tained an analytic upper bound on this cost of robustness for
the robust solution under the Lorden criterion. Nevertheless for
some parameter ranges our robust test obtains significant per-
formance improvement over the CUSUM test designed for the
Generalized Likelihood Ratio statistic, which is a benchmark
for the composite quickest change detection problem. Our ro-
bust solution also has the added advantage that it can be imple-
mented in a simple recursive manner, while the GLR test does
not admit a recursive solution in general, and may require the
solution to a complex nonconvex optimization problem at every
time instant.

APPENDIX

1) Proof of Lemma III.1: We prove this claim by induc-
tion. For , the claim holds because if is a
nondecreasing continuous function we have

Assume the claim is true for and now consider
. For any fixed , since the function is nonde-

creasing in each of its components, it follows by the proof for
that

(23)

We further have

(24)

(25)

(26)

where (24) is obtained via (23). The variables appearing in
(25) are random variables with exact same statistics as and
independent of ’s. The inequality of (26) is obtained by using
the induction hypothesis for . Thus, we have shown that,

which proves the lemma by the principle of mathematical
induction.

2) Proof of Theorem III.2:
Proof: Suppose and satisfy the conditions of the the-

orem. Since the CUSUM test is optimal for known distributions,
it is clear that the test given in (9) is optimal when the pre- and
post-change distributions are and , respectively. Hence, it
suffices to show that the values of and
obtained under any and any , are no higher
than their respective values when the pre- and post-change dis-
tributions are and . We use to denote the random vari-
able when the pre-change and post-change distributions
of the observations from the sequence are

and , respectively, and to denote the random variable
when the pre- and post-change distributions are and

, respectively. We first prove the theorem for a special case.

Case 1: is a singleton given by .
Clearly, in this case and (8) is met trivially. Further-

more, in this case, the false alarm constraint is also met trivially
since the false alarm rate obtained by using the stopping rule
is independent of the true value of the post-change distribution.
Fix the change-point to be . Now, to complete the proof for the
scenario where is a singleton, we will show that for all

(27)

which will establish that the value of , obtained
under any , is no higher than the value when the true
post-change distribution is .

Since we now have , both and have the same
distributions for and hence we assume without loss of
generality that for all , with probability one.
Under this assumption, we will show that for all integers ,
the following relation holds with probability one:

(28)

which will then establish (27). Since is a stopping time,

the event is measurable. Hence,
with probability one, (28) holds with equality for . Now
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it suffices to verify (28) for . We know by the stochastic
ordering condition on that

(29)

Now we have the following equivalence between two events:

It is easy to see that the function

is continuous and nondecreasing in each of its components as
required by Lemma III.1. Hence, for , the following hold
with probability one:

where the inequality follows from Lemma III.1 and (29), using
the fact that is a nondecreasing function with respect to its last

arguments and the fact that for . Thus, for
all integers , (28) holds with probability one and hence
(27) is satisfied. This proves the result for the case where is
a singleton.

Case 2: is any class of distributions satisfying (8).
Suppose that the change does not occur. Then we know by

the stochastic ordering condition on that, for all .
It follows by Lemma III.1 that

Since the above relation holds for all , we have

(30)

and hence the value of is no higher than for all
values of and .

Now suppose the change-point is fixed at . A useful
observation is that for any given stopping rule and
fixed post-change distribution , the random variable

is a fixed deterministic func-
tion of the random observations , irrespective
of the distribution . Thus, the essential supremum of this
random variable depends only on the support of . Applying
this observation to the stopping rule , and using the relation
(8), we have for all ,

We also know from Case 1 above that for all

Taking the supremum over , it follows from the above
two relations that the value of under any pair of
distributions is no larger than that under

. Thus, solves the robust problem (4).

3) Proof of Theorem III.3:
Proof: Let denote the SRP stopping rule

defined with respect to the LFDs satisfying the asymp-
totic optimality property of (13) as mentioned in the statement
of the theorem. It is easy to see that for any integers and

, we have

where denotes the random variable with distribution used
for initializing the iteration in (11). We follow the same steps as
in the proof of Theorem III.2. Let denote the random vari-
able when the pre-change and post-change distributions
are and respectively. Since is a stopping time the
event is measurable with respect to the pre-change
observations and hence we can represent this event as

where is the set of pre-change trajectories corresponding to
the event . Hence, for any , we can express
the conditional probability as shown in (31), at the bottom of the
page, such that for all , the function

(31)
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satisfies the requirements of Lemma III.1, and is some
real-valued function. The exact form of function can be ob-
tained from the iterations of (11) used to define the SRP stopping
rule of (12). We note that in (31) the post-change distribution
affects only the first term under the integral in the numerator.
Thus, it follows by applying Lemma III.1 that

(32)

for all . Hence, it further follows that

(33)

We also observe that for any stopping rule that satisfies the
false alarm constraint , we have

where the second relation follows from the fact that satis-
fies the asymptotic optimality of (13) when the true post-change
distribution is , and the last equality follows from (33). This
completes the proof of the theorem.

We note that if the robust SRP stopping rule is used
when is not a singleton, the crucial step of (32) does not
hold for and . Thus, our proof of optimality of
the robust SRP stopping rule does not hold when the pre-change
distribution is unknown.

4) Proof of Theorem III.4:
Proof: The proof is very similar to that of Case 1 in The-

orem III.2. Since the Shiryaev test is optimal for known distri-
butions, it is clear that the test given in (16) is optimal under
the Bayesian criterion when the post-change distribution is .
Also, from the definition of , it is clear that the proba-
bility of false alarm depends only on the pre-change distribution
and hence the constraint in (6) is met by the stopping time .
Hence, it suffices to show that the value of obtained
under any , is no higher than the value when the true
post-change distribution is .

Let us first fix . We know by the stochastic ordering
condition that conditioned on , for all , we have

where and are as defined in the proof of
Theorem III.2. As before, the function

is continuous and nondecreasing in each of its components as
required by Lemma III.1. Using these facts, we can show the fol-

lowing by proceeding exactly as in the proof of Theorem III.2:
Conditioned on

Thus, we have and by av-
eraging over , we get
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