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Abstract—For the universal hypothesis testing problem, where
the goal is to decide between the known null hypothesis distribu-
tion and some other unknown distribution, Hoeffding proposed
a universal test in the nineteen sixties. Hoeffding’s universal test
statistic can be written in terms of Kullback–Leibler (K-L) diver-
gence between the empirical distribution of the observations and
the null hypothesis distribution. In this paper a modification of
Hoeffding’s test is considered based on a relaxation of the K-L di-
vergence, referred to as the mismatched divergence. The resulting
mismatched test is shown to be a generalized likelihood-ratio test
(GLRT) for the case where the alternate distribution lies in a para-
metric family of distributions characterized by a finite-dimensional
parameter, i.e., it is a solution to the corresponding composite hy-
pothesis testing problem. For certain choices of the alternate distri-
bution, it is shown that both the Hoeffding test and the mismatched
test have the same asymptotic performance in terms of error expo-
nents. A consequence of this result is that the GLRT is optimal in
differentiating a particular distribution from others in an exponen-
tial family. It is also shown that the mismatched test has a signif-
icant advantage over the Hoeffding test in terms of finite sample
size performance for applications involving large alphabet distri-
butions. This advantage is due to the difference in the asymptotic
variances of the two test statistics under the null hypothesis.

Index Terms—Generalized likelihood-ratio test, hypothesis
testing, Kullback–Leibler (K-L) information, online detection.

I. INTRODUCTION AND BACKGROUND

T HIS paper is concerned with the following hypoth-
esis testing problem: Suppose that the observations

form an i.i.d. sequence evolving on a set
of cardinality , denoted by . Based on
observations of this sequence we wish to decide if the marginal
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distribution of the observations is a given distribution , or
some other distribution that is either unknown or known
only to belong to a certain class of distributions. When the ob-
servations have distribution we say that the null hypothesis
is true, and when the observations have some other distribution

we say that the alternate hypothesis is true.
A decision rule is characterized by a sequence of tests

, where with representing
the th-order Cartesian-product of . The decision based on
the first elements of the observation sequence is given by

, where represents a decision in
favor of accepting as the true marginal distribution.

The set of probability measures on is denoted . The
relative entropy (or Kullback–Leibler divergence) between two
distributions , is denoted , and for a
given and the divergence ball of radius
around is defined as

(1)

The empirical distribution or type of the finite set of observations
is a random variable taking values in

(2)

where denotes the indicator function.
In the general universal hypothesis testing problem, the null

distribution is known exactly, but no prior information is
available regarding the alternate distribution . Hoeffding pro-
posed in [2] a generalized likelihood-ratio test (GLRT) for the
universal hypothesis testing problem, in which the alternate dis-
tribution is unrestricted—it is an arbitrary distribution in

, the set of probability distributions on . Hoeffding’s test
sequence is given by

(3)

It is easy to see that the Hoeffding test (3) can be rewritten as
follows:

(4)
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If we have some prior information on the alternate distribu-
tion , a different version of the GLRT is used. In particular,
suppose it is known that the alternate distribution lies in a para-
metric family of distributions of the following form:

where are probability distributions on parameter-
ized by a parameter . The specific form of is defined
later in the paper. In this case, the resulting composite hypoth-
esis testing problem is typically solved using a GLRT (see [3]
for results related to the present paper, and [4] for a more recent
account) of the following form:

(5)

We show that this test can be interpreted as a relaxation of the
Hoeffding test of (4). In particular we show that (5) can be ex-
pressed in a form similar to (4)

(6)

where is the mismatched divergence; a relaxation of the
K-L divergence, in the sense that for
any , . We refer to the test (6) as the mismatched
test.

This paper is devoted to the analysis of the mismatched di-
vergence and mismatched test.

The terminology is borrowed from the mismatched channel
(see Lapidoth [5] for a bibliography). The mismatched diver-
gence described here is a generalization of the relaxation intro-
duced in [6]. In this way we embed the analysis of the resulting
universal test within the framework of Csiszár and Shields [7].
The mismatched test statistic can also be viewed as a generaliza-
tion of the robust hypothesis testing statistic introduced in [8],
[9].

When the alternate distribution satisfies , we show
that, under some regularity conditions on , the mismatched
test of (6) and Hoeffding’s test of (4) have identical asymptotic
performance in terms of error exponents. A consequence of this
result is that the GLRT is optimal in differentiating a particular
distribution from others in an exponential family of distribu-
tions. We also establish that the proposed mismatched test has
a significant advantage over the Hoeffding test in terms of finite
sample size performance. This advantage is due to the difference
in the asymptotic variances of the two test statistics under the
null hypothesis. In particular, we show that the variance of the
K-L divergence grows linearly with the alphabet size, making
the test impractical for applications involving large alphabet dis-
tributions. We also show that the variance of the mismatched di-
vergence grows linearly with the dimension of the parameter
space, and can hence be controlled through a prudent choice of
the function class defining the mismatched divergence.

The remainder of the paper is organized as follows. We begin
in Section II with a description of mismatched divergence and
the mismatched test, and describe their relation to other con-
cepts including robust hypothesis testing, composite hypothesis
testing, reverse I-projection, and maximum likelihood (ML) es-
timation. Formulae for the asymptotic mean and variance of the

test statistics are presented in Section III. Section III also con-
tains a discussion interpreting these asymptotic results in terms
of the performance of the detection rule. Proofs of the main re-
sults are provided in the Appendix. Conclusions and directions
for future research are contained in Section IV.

II. MISMATCHED DIVERGENCE

We adopt the following compact notation in the paper: For
any function and we denote the mean

by , or by when we wish to empha-
size the convex-analytic setting. At times we will extend these
definitions to allow functions taking values in a vector space.
For and , we still use to denote the prob-
ability assigned to element under measure . The meaning of
such notation will be clear from context.

The logarithmic moment generating function (log-MGF) is
denoted

where by the notation we
introduced in the previous paragraph. For any two probability
measures , the relative entropy is expressed

if
else

where denotes absolute continuity. The following
proposition recalls a well-known variational representation.
This can be obtained, for instance, by specializing the repre-
sentation in [10] to an i.i.d. setting. An alternate variational
representation of the divergence is introduced in [11].

Proposition II.1: The relative entropy can be expressed as the
convex dual of the log moment generating function: For any two
probability measures ,

(7)

where the supremum is taken over the space of all real-valued
functions on . Furthermore, if and have equal supports,
then the supremum is achieved by the log likelihood ratio func-
tion .

Outline of Proof: Although the result is well known, we
provide a simple proof here since similar arguments will be
reused later in the paper.

For any function and probability measure , we have

On setting , this gives

If and have equal supports, then the above inequality holds
with equality for , which would lead to
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. This proves that (7) holds whenever and have equal
supports. The proof for general distributions is similar and is
omitted here.

The representation (7) is the basis of the mismatched diver-
gence. We fix a set of functions denoted by , and obtain a lower
bound on the relative entropy by taking the supremum over the
smaller set as follows:

(8)

If and have full support, and if the function class con-
tains the log-likelihood ratio function , then
it is immediate from Proposition II.1 that the supremum in (8)
is achieved by , and in this case .
Moreover, since the objective function in (8) is invariant to shifts
of , it follows that even if a constant scalar is added to the func-
tion , it still achieves the supremum in (8).

In this paper the function class is assumed to be defined
through a finite-dimensional parametrization of the form

(9)

Further assumptions will be imposed in our main results. In par-
ticular, we will assume that is differentiable as a function
of for each .

We fix a distribution and a function class of the
form (9). For each the twisted distribution
is defined as

(10)

The collection of all such distributions parameterized by is
denoted

(11)

A. Applications

The applications of mismatched divergence include those ap-
plications surveyed in Section III of [4] in their treatment of gen-
eralized likelihood ratio tests. Here we list potential applications
in three domains: Hypothesis testing, source coding, and non-
linear filtering. Other applications include channel coding and
signal detection, following [4].

1) Hypothesis Testing: The problem of universal hypoth-
esis testing is relevant in several practical applications including
anomaly detection. It is often possible to have an accurate model
of the normal behavior of a system, which is usually represented
by the null hypothesis distribution . The anomalous behavior
is often unknown, which is represented by the unknown alter-
nate distribution. The primary motivation for our research is to
improve the finite sample size performance of Hoeffding’s uni-
versal hypothesis test (3). The difficulty we address is the large
variance of this test statistic when the alphabet size is large. The-
orem II.2 makes this precise:

Theorem II.2: Let , have full supports over .

(i) Suppose that the observation sequence is i.i.d. with
marginal . Then the normalized Hoeffding test statistic
sequence has the following
asymptotic bias and variance:

(12)

(13)

where denotes the size (cardinality) of . Fur-
thermore, the following weak convergence result holds:

(14)

where the right hand side denotes the chi-squared distri-
bution with degrees of freedom.

(ii) Suppose the sequence is drawn i.i.d. under .
We then have

The bias result of (12) follows from the unpublished report
[12] (see [13, Sec III.C]), and the weak convergence result of
(14) is given in [14]. All the results of the theorem, including
(13) also follow from Theorem III.2—We elaborate on this in
Section III.

We see from Theorem II.2 that the bias of the divergence
statistic decays as , irrespective of whether the
observations are drawn from distribution or . One could
argue that the problem of high bias in the Hoeffding test statistic
can be addressed by setting a higher threshold. However, we also
notice that when the observations are drawn under , the vari-
ance of the divergence statistic decays as , which can be
significant when is of the order of . This is a more serious
flaw of the Hoeffding test for large alphabet sizes, since it cannot
be addressed as easily.

The weak convergence result in (14), and other such results
established later in this paper, can be used to guide the choice of
thresholds for a finite sample test, subject to a constraint on the
probability of false alarm (see for example, [7, p. 457]). As an
application of (12) we propose the following approximation for
the false alarm probability in the Hoeffding test defined in (4)

(15)

where are i.i.d. random variables. In this way we
can obtain a simple formula for the threshold to approximately
achieve a given constraint on . For moderate values of the
sequence length , the approximation gives a more accu-
rate prediction of the false alarm probabilities for the Hoeffding
test compared to those predicted using Sanov’s theorem as we
demonstrate below.

Consider the application of (15) in the following example. We
used Monte-Carlo simulations to approximate the performance
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Fig. 1. Approximations for the error probability in universal hypothesis testing. The error probability of the Hoeffding test is closely approximated by the approx-
imation (15).

of the Hoeffding test described in (4), with the uniform dis-
tribution on an alphabet of size 20. Shown in Fig. 1 is a semi-log
plot comparing three quantities: The probability of false alarm

, estimated via simulation; the approximation (15) obtained
from the Central Limit Theorem; and the approximation ob-
tained from Sanov’s Theorem, . It is clearly
seen that the approximation based on the weak convergence re-
sult of (15) is far more accurate than the approximation based
on Sanov’s theorem. It should be noted that the approximate for-
mula for the false alarm probability obtained from Sanov’s the-
orem can be made more accurate by using refinements of large
deviation results given in [15]. However, these refinements are
often difficult to compute. For instance, it can be shown using
the results of [15] that where constant

is given by a surface integral over the surface of the divergence
ball, .

One approach to addressing the implementation issues of the
universal test is through clustering (or partitioning) the alphabet
as in [16], or smoothing in the space of probability measures
as in [17], [18] to extend the Hoeffding test to the case of con-
tinuous alphabets. The mismatched test proposed here is a gen-
eralization of a partition in the following sense. Suppose that

are disjoint sets satisfying , and
let if . Applying (13), we conclude that
the Hoeffding test using instead of will have asymptotic
variance equal to , where for a nontrivial
partition. We have:

Proposition II.3: Suppose that the mismatched divergence
is defined with respect to the linear function class (26) using

, . In this case the mismatched test (5)
coincides with the Hoeffding test using observations .

The advantage of the mismatched test (5) over a partition is
that we can incorporate prior knowledge regarding alternate sta-
tistics, and we can include nonstandard “priors”, such as conti-
nuity of the log-likelihood ratio function between the null and

alternate distributions. This is useful in anomaly detection ap-
plications where one may have models of anomalous behavior
which can be used to design the correct mismatched test for the
desired application.

2) Source Coding With Training: Let denote a source dis-
tribution on a finite alphabet . Suppose we do not know ex-
actly and we design optimal codelengths assuming that the dis-
tribution is : For letter we let denote
Shannon’s codeword length. The expected codelength is thus

where denotes the entropy, . Let
denote the optimal (minimal) expected codelength.

Now suppose it is known that under the probability of each
letter is bounded away from zero. That is, we assume that
for some

Further suppose that a training sequence of length is given,
drawn under . We are interested in constructing a source code
for encoding symbols from the source based on these training
symbols. Let denote the empirical distribution (i.e., the type)
of the observations based on these training symbols. We assign
codeword lengths to each symbol according to the following
rule

if

else

where is the uniform distribution on .
Let denote the sigma-algebra generated by the training

symbols. The conditional expected codelength given satisfies

if
else
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We study the behavior of as a function of . We
argue in Appendix that a modification of the results from The-
orem III.2 can be used to establish the following relations:

(16)

where is the cardinality of the alphabet . Comparing with
Theorem II.2 we conclude that the asymptotic behavior of the
excess codelength is identical to the asymptotic behavior of
the Hoeffding test statistic under . Methods such as
those proposed in this paper can be used to reduce high vari-
ance, just as in the hypothesis testing problem emphasized in
this paper.

3) Filtering: The recent paper [19] considers approxima-
tions for the nonlinear filtering problem. Suppose that is
a Markov chain on , and is an associated observation
process on of the form , where is
an i.i.d. sequence. The conditional distribution of given

is denoted ; known as the belief state in
this literature. The evolution of the belief state can expressed in
a recursive form: For some mapping

The approximation proposed in [19] is based aprojection of
onto an exponential family of densities over , of the form

, . They consider
the reverse -projection

where the minimum is over . From the definition of
divergence this is equivalently expressed

(17)

A projected filter is defined by the recursion

(18)

The techniques in the current paper provide algorithms for com-
putation of this projection, and suggest alternative projection
schemes, such as the robust approach described in Section II-F.

B. Basic Structure of Mismatched Divergence

The mismatched test is defined to be a relaxation of the Ho-
effding test described in (4). We replace the divergence func-
tional with the mismatched divergence to obtain
the mismatched test sequence

(19)

where is the mismatched divergence ball of radius
around defined analogously to (1)

(20)

The next proposition establishes some basic geometry of the
mismatched divergence balls. For any function , we define the
following hyperplane and half-space:

(21)

Proposition II.4: The following hold for any , ,
and any collection of functions :

(i) For each we have , where the
intersection is over all functions of the form

(22)

with .
(ii) Suppose that is finite and nonzero. Fur-

ther suppose that for and , the supremum
in (8) is achieved by . Then is a supporting
hyperplane to , where is given in (22) with

.
Proof:

(i) Suppose . Then, for any

That is, for any , on defining by (22) we obtain
the desired inclusion .

(ii) Let be arbitrary. Then we have

Hence, it follows that supports at .

C. Asymptotic Optimality of the Mismatched Test

The asymptotic performance of a binary hypothesis testing
problem is typically characterized in terms of error exponents.
We adopt the following criterion for performance evaluation,
following Hoeffding [2] (and others, notably [17], [18].) Sup-
pose that the observations form an i.i.d.
sequence evolving on . For a given , and a given alternate
distribution , the type I and type II error exponents are de-
noted respectively by

(23)
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Fig. 2. Geometric interpretation of the log likelihood ratio test. The exponent
� � � ��� is the largest constant satisfying � �� � � � �� � � �. The
hyperplane � �� �� � ���� � ������ separates the convex sets � �� �
and � �� �.

where in the first limit the marginal distribution of is , and
in the second it is . The limit is also called the false-alarm
error exponent, and the missed-detection error exponent.

For a given constraint on the false-alarm expo-
nent , an optimal test is the solution to the asymptotic
Neyman–Pearson hypothesis testing problem

(24)

where the supremum is over all allowed test sequences . While
the exponent depends upon , Hoeffding’s
test we described in (4) does not require knowledge of , yet
achieves the optimal exponent for any . The opti-
mality of Hoeffding’s test established in [2] easily follows from
Sanov’s theorem.

While the mismatched test described in (6) is not always op-
timal for (24) for a general choice of , it is optimal for some
specific choices of the alternate distributions. The following
corollary to Proposition II.4 captures this idea.

Corollary II.1: Suppose , have equal supports.
Further suppose that for all , there exists and

such that

where is the log likelihood-ratio function .
Then the mismatched test is optimal in the sense that the con-
straint is satisfied with equality, and under the
optimal error exponent is achieved; i.e., for all

.
Proof: Suppose that the conditions stated in the corollary

hold. Consider the twisted distribution ,
where is a normalizing constant and is chosen so
as to guarantee . It is known that the hyperplane

separates the divergence balls
and at . This geometry, which is implicit in

[17], is illustrated in Fig. 2.
From the form of it is also clear that

Hence, it follows that the supremum in the variational repre-
sentation of is achieved by . Furthermore, since

for some , we have

This means that .
Hence, by applying Proposition II.4 (ii) it follows that the hy-
perplane separates and . This in par-
ticular means that the sets and are disjoint.
This fact, together with Sanov’s theorem proves the corollary.

The corollary indicates that while using the mismatched test
in practice, the function class might be chosen to include ap-
proximations to scaled versions of the log-likelihood ratio func-
tions of the anticipated alternate distributions with respect
to .

The mismatched divergence has several equivalent character-
izations. We first relate it to an ML estimate from a parametric
family of distributions.

D. Mismatched Divergence and ML Estimation

On interpreting as a log-likelihood ratio func-
tion we obtain in Proposition II.5 the following representation
of mismatched divergence

(25)

The infimum on the RHS of (25) is known as reverse I-projec-
tion[7]. Proposition II.6 that follows uses this representation to
obtain other interpretations of the mismatched test.

Proposition II.5: The identity (25) holds for any function
class . The supremum is achieved by some if and
only if the infimum is attained at . If a mini-
mizer exists, we obtain the generalized Pythagorean identity

Proof: For any we have
. Consequently

This proves the identity (25), and the remaining conclusions
follow directly.

The representation of Proposition II.5 invites the interpreta-
tion of the optimizer in the definition of the mismatched test
statistic in terms of an ML estimate. Given the well-known cor-
respondence between maximum-likelihood estimation and the
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generalized likelihood ratio test (GLRT), Proposition II.6 im-
plies that the mismatched test is a special case of the GLRT an-
alyzed in [3].

Proposition II.6: Suppose that the observations are mod-
eled as an i.i.d. sequence, with marginal in the family . Let

denote the ML estimate of based on the first samples

where indicates the observed value of the th symbol. As-
suming the maximum is attained we have the following inter-
pretations:

(i) The distribution solves the reverse I-projection
problem

(ii) The function achieves the supremum that
defines the mismatched divergence,

.
Proof: The ML estimate can be expressed

, and hence, (i) follows by the
identity

Combining the result of part (i) with Proposition II.5, we get the
result of part (ii).

From conclusions of Proposition II.5 and Proposition II.6, we
have

In general when the supremum in the definition of
may not be achieved, the maxima in the above equations are
replaced with suprema and we have the following identity:

Thus, the test statistic used in the mismatched test of (6) is ex-
actly the generalized likelihood ratio between the family of dis-
tributions and where

More structure can be established when the function class is
linear.

E. Linear Function Class and I-Projection

The mismatched divergence introduced in [6] was restricted
to a linear function class. Let denote
functions on , let , and let in
the definition (9)

(26)

A linear function class is particularly appealing because the op-
timization problem in (8) used to define the mismatched diver-
gence becomes a convex program and hence is easy to evaluate
in practice. Furthermore, for such a linear function class, the
collection of twisted distributions defined in (11) forms an
exponential family of distributions.

Proposition II.5 expresses as a difference be-
tween the ordinary divergence and the value of a reverse I-pro-
jection . The next result establishes a character-
ization in terms of a (forward) I-projection. For a given vector

we let denote the moment class

(27)

where .

Proposition II.7: Suppose that the supremum in the definition
of is achieved at some . Then,

(i) The distribution satisfies

where is defined using in (27).
(ii) , where is

given in (22) with , and .
Proof: Since the supremum is achieved, the gradient must

vanish by the first-order condition for optimality

The gradient is computable, and the identity above can thus be
expressed . That is, the first-order con-
dition for optimality is equivalent to the constraint .
Consequently

Furthermore, by the convexity of in , it follows that
the optimal in the definition of is the same for
all . Hence, it follows by the Pythagorean equality of
Proposition II.5 that
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Fig. 3. Interpretations of the mismatched divergence for a linear function class. The distribution �� is the I-projection of � onto a hyperplane� . It is also the
reverse I-projection of � onto the exponential family � .

Minimizing over it follows that is the I-projection of
onto

which gives (i).
To establish (ii), note first that by (i) and the inclusion

, we have

The reverse inequality follows from Proposition II.4 (i), and
moreover the infimum is achieved with .

The geometry underlying mismatched divergence for a linear
function class is illustrated in Fig. 3. Suppose that the assump-
tions of Proposition II.7 hold, so that the supremum in (25) is
achieved at . Let ,
and . Proposition II.4 implies that

defines a hyperplane passing through , with
. This is strengthened in the linear case by

Proposition II.7, which states that supports at the
distribution . Furthermore Proposition II.5 asserts that the
distribution minimizes over all .

The result established in Corollary II.1 along with the in-
terpretation of the mismatched test as a GLRT can be used to
show that the GLRT is asymptotically optimal for an exponen-
tial family of distributions.

Theorem II.8: Let be some probability distribution over a
finite set . Let be a linear function class as defined in (26)
and be the associated exponential family of distributions
defined in (11). Consider the generalized likelihood ratio test
(GLRT) between and defined by the following sequence
of decision rules:

The GLRT solves the composite hypothesis testing problem (24)
for all in the sense that the constraint is
satisfied with equality, and under the optimal error exponent

is achieved for all and for all
; i.e., .
Proof: From Proposition II.6 and the discussion following

the proposition, we know that is the same as the mis-
matched test defined with respect to the function class . More-
over, any distribution is of the form

for some as defined in (10). Using to denote
the log-likelihood ratio function between and , it follows
by the linearity of that for any

for some . Hence, it follows by the conclusion of Corol-
lary II.1 that the GLRT solves the composite hypothesis
testing problem (24) between and .

The above result is a special case of the sufficient conditions
for optimality of the GLRT established in [3, Thm 2, p. 1600].
From the proof it is easily seen that the result can be extended to
hold for composite hypothesis tests between and any family
of distributions of the form in (11) provided is closed
under positive scaling. It is also possible to strengthen the result
of Corollary II.1 to obtain an alternate proof of [3, Thm 2, p.
1600]. We refer the reader to [20] for details.

F. Log-Linear Function Class and Robust Hypothesis Testing

In the prior work [8], [9], the following relaxation of entropy
is considered:

(28)

where the moment class is defined in (27) with , for
a given collection of functions . The associ-
ated universal test solves a min-max robust hypothesis testing
problem.
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We show here that coincides with for a partic-
ular function class. It is described as (9) in which each function

is of the log-linear form

subject to the constraint that is strictly positive for
each . We further require that the functions have zero mean
under distribution —i.e., we require .

Proposition II.9: For a given , suppose that the log-
linear function class is chosen with functions satisfying

. Suppose that the moment class used in the definition
of is chosen consistently, with in (27). We then
have for each

Proof: For each , we obtain the following iden-
tity by applying Theorem 1.4 in [9]

Moreover, under the assumption that , we obtain

Combining these identities gives

III. ASYMPTOTIC STATISTICS

In this section, we analyze the asymptotic statistics of the
mismatched test. We require some assumptions regarding the
function class to establish these results.
Note that the second and third assumptions given below involve
a distribution , and a vector . We will make
specialized versions of these assumptions in establishing our
results, based on specific values of and . We use
to denote the support of and to denote the space of
probability measures supported on , viewed as a subset of

.
Assumptions:

(A1) is in for each .
(A2) There exists a neighborhood of , open in
such that for each , the supremum in the definition
of in (8) is achieved at a unique point .
(A3) The vectors are linearly independent
over the support of , where , and for each

(29)

The linear-independence assumption in (A3) is defined
as follows: If there are constants satisfying

a.e. , then for each . In the case
of a linear function class, the functions defined in
(29) are just the basis functions in (26). Lemma III.1 provides
an alternate characterization of Assumption (A3).

For any define the covariance matrix via

(30)

We use to denote the covariance of an arbitrary real-
valued function under

(31)

Lemma III.1: Assumption (A3) holds if and only if .
Proof: We evidently have for

any vector . Hence, we have the following equivalence:
For any , on denoting

The conclusion of the lemma follows.

We now present our main asymptotic results. Theorem III.2
identifies the asymptotic bias and variance of the mismatched
test statistic under the null hypothesis, and also under the alter-
nate hypothesis. A key observation is that the asymptotic bias
and variance does not depend on , the cardinality of .

Theorem III.2: Suppose that the observation sequence is
i.i.d. with marginal . Suppose that there exists satisfying

. Further, suppose that Assumptions (A1),
(A2), (A3) hold with and . Then,

(i) When

(32)

(33)

(ii) When , we have with

(34)

(35)

(36)

In part (ii) of Theorem III.2, the assumption that exists
implies that and have equal supports. Furthermore, if
Assumption (A3) holds in part (ii), then a sufficient condition
for Assumption (A2) is that the function

be coercive in . And, under (A3), the function is
strictly convex and coercive in the following settings: (i) If the
function class is linear, or (ii) the function class is log-linear,
and the two distributions and have common support. We
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use this fact in Theorem III.3 for the linear function class. The
assumption of the existence of satisfying
in part (ii) of Theorem III.2 can be relaxed. In the case of a linear
function class we have the following extension of part (ii).

Theorem III.3: Suppose that the observation sequence is
drawn i.i.d. with marginal satisfying . Let be the
linear function class defined in (26). Suppose the supremum in
the definition of is achieved at some .
Further, suppose that the functions satisfy the linear inde-
pendence condition of Assumption (A3) with . Then
we have

where in the first limit , and
and are defined as in (30). In the second two limits

.

Although we have not explicitly imposed Assumption (A2) in
Theorem III.3, the argument we presented following Theorem
III.2 ensures that when , Assumption (A2) is satisfied
whenever Assumption (A3) holds. Furthermore, it can be shown
that the achievement of the supremum required in Theorem III.3
is guaranteed if and have equal supports. We also note that
the vector appearing in (29) of Assumption (A3) is arbitrary
when the parametrization of the function class is linear.

The weak convergence results in Theorem III.2 (i) can be de-
rived from Clarke and Barron [12], [13] (see also [7, Theorem
4.2]), following the maximum-likelihood estimation interpre-
tation of the mismatched test obtained in Proposition II.6. In
the statistics literature, such results are called Wilks phenomena
after the initial work by Wilks [14].

These results can be used to set thresholds for a target false
alarm probability in the mismatched test, just like we did for the
Hoeffding test in (15). It is shown in [21] that such results can be
used to set thresholds for the robust hypothesis testing problem
described in Section II-F.

Implications for Hoeffding Test: The divergence can be inter-
preted as a special case of mismatched divergence defined with
respect to a linear function class. Using this interpretation, the
results of Theorem III.2 can also be specialized to obtain results
on the Hoeffding test statistic. To satisfy the uniqueness con-
dition of Assumption (A2), we require that the function class
should not contain any constant functions. Now suppose that
the span of the linear function class together with the constant
function spans the set of all functions on . This together
with Assumption (A3) would imply that , where is
the size of the alphabet . It follows from Proposition II.1 that
for such a function class the mismatched divergence coincides
with the divergence. Thus, an application of Theorem III.2 (i)
gives rise to the results stated in Theorem II.2.

To prove Theorem III.2 and Theorem III.3, we need the fol-
lowing lemmas, whose proofs are given in Appendix.

The following lemma will be used to deduce part (ii) of The-
orem III.2 from part (i).

Lemma III.4: Let denote the mismatched divergence
defined using function class . Suppose and the
supremum in the definition of is achieved at some

. Let and
. Then for any satisfying , we have

(37)

Suppose we apply the decomposition result from Lemma
III.4 to the type of the observation sequence , assumed to
be drawn i.i.d. with marginal . If there exists satisfying

, then we have . The decomposition
becomes

(38)

For large , the second term in the decomposition (38) has a
mean of order and variance of order , as shown in part
(i) of Theorem III.2. The third term has zero mean and variance
of order , since by the Central Limit Theorem

(39)

Thus, the asymptotic variance of is dominated
by that of the third term and the asymptotic bias is dominated
by that of the second term. Thus, we see that part (ii) of Theorem
III.2 can be deduced from part (i).

Lemma III.5: Let be an i.i.d.
sequence with mean taking values in a compact convex set

, containing as a relative interior point. Define
. Suppose we are given a function ,

together with a compact set containing as a relative interior
point such that:

1) The gradient and the Hessian are contin-
uous over a neighborhood of .

2) .

Let and . Then,
(i) The normalized asymptotic bias of is

obtained via

(ii) If in addition to the above conditions, the directional
derivative satisfies almost surely,
then the asymptotic variance decays as , with



UNNIKRISHNAN et al.: UNIVERSAL AND COMPOSITE HYPOTHESIS TESTING VIA MISMATCHED DIVERGENCE 1597

Lemma III.6: Suppose that the observation sequence is
drawn i.i.d. with marginal . Let be a
continuous real-valued function whose gradient and Hessian are
continuous in a neighborhood of . If the directional derivative
satisfies for all , then

(40)

where and with
.

Lemma III.7: Suppose that is an -dimensional,
random variable, and is a projection matrix.
Then is a chi-squared random variable with
degrees of freedom, where denotes the rank of .

Before we proceed to the proofs of Theorem III.2 and The-
orem III.3, we recall the optimization problem (25) defining the
mismatched divergence:

(41)

The first-order condition for optimality is given by

(42)

where is the vector valued function that defines the gradient
of the objective function in (41)

(43)

The derivative of with respect to is given by

(44)

In these formulae we have extended the definition of for
matrix-valued functions on via

. On letting , we obtain

(45)

(46)

where the definition of the twisted distribution is as given in (10)

Proof of Theorem III.2: Without loss of generality, we as-
sume that has full support over . Suppose that the obser-
vation sequence is drawn i.i.d. with marginal distribution

. We have by the

law of large numbers.

1) Proof of Part (i): We first prove the results concerning
the bias and variance of the mismatched test statistic. We
apply Lemma III.5 to the function .
The other terms appearing in the lemma are taken to be

, , ,
and . Let . It is easy to see that

and , where is
defined in (30), and is a matrix defined by

(47)

This can be expressed as the concatenation of column vectors
via .

We first demonstrate that
(48)

and then check to make sure that the other requirements of
Lemma III.5 are satisfied. The first two conclusions of Theorem
III.2 (i) will then follow from Lemma III.5, since

and similarly .
We first prove that under the assumptions of Theorem III.2 (i),

there is a function that is in a neighborhood of
such that solves (41) for in this neighborhood. Under

the uniqueness assumption (A2), the function coincides
with the function given in (A2).

By the assumptions, we know that when , (42) is satis-
fied by with . It follows that . Substituting
this into (46), we obtain , which is

negative-definite by Assumption (A3) and Lemma III.1. There-
fore, by the Implicit Function Theorem, there is an open neigh-
borhood around , an open neighborhood of , and
a continuously differentiable function that satisfies

, for . This fact together with Assump-
tions (A2) and (A3) ensure that when , the vector

uniquely achieves the supremum in (41).
Taking the total derivative of (42) with respect to , we get

(49)

Consequently, when

(50)

These results enable us to identify the first and second-order
derivative of . Applying ,
we obtain the derivatives of as follows:

(51)

(52)

When , substituting (50) in (52), we obtain (48).
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We now verify the remaining conditions required for applying
Lemma III.5:

(a) It is straightforward to see that .
(b) The function is uniformly bounded since

and
has full support.

(c) Since when , it follows by (51) that
.

(d) Pick a compact so that contains
as a relative interior point, and

. This choice of
ensures that . Note

that since is continuously differentiable on , it
follows by (51) and (52) that is on .

Thus, the results on convergence of the bias and variance follow
from Lemma III.5.

The weak convergence result is proved using Lemma III.6
and Lemma III.7. We observe that the covariance matrix of
the Gaussian vector given in Lemma III.6 is

. This does not have full rank since ,
where is the vector of ones. Hence, we can write

where is an matrix for some . In fact, since the
support of is full, we have (see Lemma III.1).
Based on this representation we can write , where

.
Now, by Lemma III.6, the limiting random variable

is given by , where
. We observe

that the matrix satisfies . Moreover,
since has rank under Assumption (A3), matrix also
has rank . Applying Lemma III.7 to matrix , we conclude
that .

2) Proof of Part (ii): The conclusion of part (ii) is derived
using part (i) and the decomposition in (38). We will study the
bias, variance, and limiting distribution of each term in the de-
composition.

For the second term, note that the dimensionality of the
function class is also . Applying part (i) of this theorem
to , we conclude that its asymptotic bias and
variance are given by

(53)

(54)

For the third term, since is i.i.d. with marginal , we have

(55)

(56)

The bias result (34) follows by combining (53), (55) and using
the decomposition (38). To prove the variance result (35), we
again apply the decomposition (38) to obtain

(57)

From (54) it follows that the limiting value of the first term on
the right hand side of (57) is 0. The limiting value of the third
term is also 0 by applying the Cauchy–Bunyakovsky–Schwarz
inequality. Thus, (57) together with (56) gives (35).

Finally, we prove the weak convergence result (36) by again
applying the decomposition (38). By (53) and (54), we con-
clude that the second term converges in mean
square to 0 as . The weak convergence of the third term
is given in (39). Applying Slutsky’s theorem, we obtain (36).

Proof of Theorem III.3: The proof of this result is very similar
to that of Theorem III.2 (ii) except that we use the decomposi-
tion in (37) with . We first prove the following general-
izations of (53) and (54) that characterizes the asymptotic mean
and variance of the second term in (37) with

(58)

(59)

where , and is defined in the statement of the
proposition. The argument is similar to that of Theorem III.2
(i): We denote , and define

. To apply Lemma III.5, we prove the
following:

(60)

(61)

and (62)

The last two inequalities (61) and (62) are analogous to (51) and
(52). We can also verify that the rest of the conditions of Lemma
III.5 hold. This establishes (58) and (59).

To prove (60), first note that the supremum in the optimiza-
tion problem defining is achieved by , and we
know by definition that . Together with the definition

, we obtain (60).
Redefine . The first-order

optimality condition of the optimization problem defining
gives . The assumption that is a

linear function class implies that is linear in . Consequently
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. By the same argument that leads to (44), we can
show that

(63)

Together with the fact that and , we
obtain

(64)

Proceeding as in the proof of Theorem III.2 (i), we obtain (61)
and (62).

Now using similar steps as in the proof of Theorem III.2 (ii),
and noticing that , we can establish the following
results on the third term of (37):

Continuing the same arguments as in Theorem III.2 (i), we ob-
tain the result of Theorem III.3.

A. Interpretation of the Asymptotic Results and Performance
Comparison

The asymptotic results established above can be used to study
the finite sample performance of the mismatched test and Ho-
effding test. Recall that in the discussion surrounding Fig. 1 we
concluded that the approximation obtained from a Central Limit
Theorem gives much better estimates of error probabilities as
compared to those suggested by Sanov’s theorem.

Suppose the log-likelihood ratio function lies in
the function class . In this case, the results of Theorem III.2
and Lemma III.4 are informally summarized in the following
approximations: With denoting the empirical distributions
of the i.i.d. process

(65)

where is i.i.d., , and is also but not
independent of the s. The standard deviation is given in
Theorem III.2. These distributional approximations are valid for
large , and are subject to assumptions on the function class
used in the theorem.

We observe from (65) that, for large enough , when the ob-
servations are drawn under , the mismatched divergence is

well approximated by times a chi-squared random variable
with degrees of freedom. We also observe that when the ob-
servations are drawn under , the mismatched divergence is
well approximated by a Gaussian random variable with mean

and with a variance proportional to and indepen-
dent of . Since the mismatched test can be interpreted as a
GLRT, these results capture the rate of degradation of the fi-
nite sample performance of a GLRT as the dimensionality of
the parameterized family of alternate hypotheses increases. We
corroborate this intuitive reasoning through Monte Carlo simu-
lation experiments.

We estimated via simulation the performance of the Ho-
effding test and mismatched tests designed using a linear
function class. We compared the error probabilities of these
tests for an alphabet size of and sequence length
of . We chose to be the uniform distribution, and

to be the distribution obtained by convolving two uniform
distributions on sets of size . We chose the basis
function appearing in (26) to be the log-likelihood ratio
between and , viz.

and the other basis functions were chosen uni-
formly at random. Fig. 4 shows a comparison of the ROCs of
the Hoeffding test and mismatched tests for different values of
dimension . Plotted on the -axis is the probability of false
alarm, i.e., the probability of misclassification under ; shown
on the -axis is the probability of detection, i.e., the probability
of correct classification under . The various points on each
ROC curve are obtained by varying the threshold used in the
Hoeffding test of (4) and mismatched test of (19).

From Fig. 4 we see that as increases the performance of the
mismatched tests degrades. This is consistent with the approxi-
mation (65) which suggests that the variance of the mismatched
divergence increases with . Furthermore, as we saw earlier,
the Hoeffding test can be interpreted as a special case of the
mismatched test for a specific choice of the function class with

and hence, the performance of the mismatched test
matches the performance of the Hoeffding test when .

To summarize, the above results suggest that although the
Hoeffding test is optimal in an error-exponent sense, it is dis-
advantageous in terms of finite sample error probabilities to
blindly use the Hoeffding test if it is known a priori that the
alternate distribution belongs to some parameterized family of
distributions.

IV. CONCLUSION

The mismatched test provides a solution to the universal hy-
pothesis testing problem that can incorporate prior knowledge
in order to reduce variance. The main results of Section III show
that the variance reduction over Hoeffding’s optimal test is sub-
stantial when the state space is large.

The dimensionality of the function class can be chosen by
the designer to ensure that the the bias and variance are within
tolerable limits. It is in this phase of design that prior knowledge
is required to ensure that the error-exponent remains sufficiently
large under the alternate hypothesis (see, e.g., Corollary II.1). In
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Fig. 4. Comparison of ROCs of Hoeffding and mismatched tests.

this way the designer can make effective tradeoffs between the
power of the test and the variance of the test statistic.

The mismatched divergence provides a unification of several
approaches to robust and universal hypothesis testing. Although
constructed in an i.i.d. setting, the mismatched tests are appli-
cable in very general settings, and the performance analysis pre-
sented here is easily generalized to any stationary process satis-
fying the Central Limit Theorem.

There are many directions for future research. Topics of cur-
rent research include,

(i) Algorithms for basis synthesis and basis adaptation.
(ii) Extensions to Markovian models.

(iii) Extensions to change detection.
Initial progress in basis synthesis is reported in [22]. Re-
cent results addressing the computational complexity of the
mismatched test are reported in [20]. Although the exact com-
putation of the mismatched divergence requires the solution
of an optimization problem, we describe a computationally
tractable approximation in [20]. We are also actively pursuing
applications to problems surrounding building energy and
surveillance. Some initial progress is reported in [23].

APPENDIX

1) Excess Codelength for Source Coding With Training:
The results in Theorem III.2 give us the asymptotic behavior of

but what we need here is the behavior of .
Define

if
else

It is clear that is uniformly bounded from above by . Al-
though is not continuous at the boundary of , a modified
version of Lemmas III.5 and III.6 can be applied to the function

to establish the results of (16) following the same steps used

in proving Theorem III.2. The Hessian matrix appearing in
the statement of the lemmas is given by

Hence, .
2) Proof of Lemma III.4:
Proof: In the following chain of identities, the first, third

and fifth equalities follow from relation (25) and Proposition II.5

3) Proof of Lemma III.5: The following simple lemma will
be used in multiple places in the proof that follows.

Lemma A.1: If a sequence of random variables satis-
fies and is a bounded sequence, and

another sequence of random variables satisfies

, then .

4) Proof of Lemma III.5: Without loss of generality, we
can assume that the mean is the origin in and that

.
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Since the Hessian is continuous over the set , we have by
Taylor’s theorem

(66)

(67)

where for some . By the strong
law of large numbers we have . Hence

and since is continuous at
. Now by the boundedness of the second derivative over and

the fact that

we have .

Under the assumption that is i.i.d. on the compact set ,
we have

and converges to a finite quantity as .
Hence, the results of Lemma A.1 are applicable with

and , which gives

(68)

Thus, we have

(69)

Since is compact, is continuous, and is differentiable
at , it follows that there are scalars and such that

and . Hence

(70)

where we use the assumption that the decays expo-
nentially in . Combining (69) and (70) and using the fact that

has zero mean, we have

This establishes the result of (i).
Under the condition that the directional derivative is zero,

(67) can be written as

(71)

Now by squaring (71), we have

As before, by the boundedness of the Hessian, we have

It can also be shown that

where . Moreover,
is finite for each and con-

verges to a finite quantity as since the moments of
are finite. Thus, we can again apply Lemma A.1 to see that

Putting together terms and using (71), we obtain

Now similar to (70), we have

(72)

Consequently

which gives (ii).

5) Proof of Lemma III.6: We know from (2) that can
be written as an empirical average of i.i.d. vectors. Hence, it
satisfies the central limit theorem, which says that

(73)

where the distribution of is defined below (40).
Considering a second-order Taylor’s expansion and using the

condition on the directional derivative, we have

where for some .
We also know by the strong law of large numbers that and
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hence converge to almost surely. By the continuity of the
Hessian, we have

(74)

By applying the vector-version of Slutsky’s theorem [24], to-
gether with (73) and (74), we conclude

thus establishing the lemma.
6) Proof of Lemma III.7:
Proof: The assumption that is a projection matrix im-

plies that . Let denote an orthonormal
basis, chosen so that the first vectors span the range space of

. Hence, for , and for all other
.

Let denote the unitary matrix whose columns are
. Then is also an random

variable, and hence, and have the same Gaussian
distribution.

To complete the proof we demonstrate that has a chi-
squared distribution: By construction the vector has
components given by

It follows that has a chi-
squared distribution with degrees of freedom.
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