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Abstract—We study the problem of dynamic spectrum sensing
and access in cognitive radio systems as a partially observed
Markov decision process (POMDP). A group of cognitive users
cooperatively tries to exploit vacancies in primary (licensed)
channels whose occupancies follow a Markovian evolution. We
first consider the scenario where the cognitive users have perfect
knowledge of the distribution of the signals they receive from the
primary users. For this problem, we obtain a greedy channel selec-
tion and access policy that maximizes the instantaneous reward,
while satisfying a constraint on the probability of interfering with
licensed transmissions. We also derive an analytical universal
upper bound on the performance of the optimal policy. Through
simulation, we show that our scheme achieves good performance
relative to the upper bound and improved performance relative to
an existing scheme. We then consider the more practical scenario
where the exact distribution of the signal from the primary is
unknown. We assume a parametric model for the distribution
and develop an algorithm that can learn the true distribution,
still guaranteeing the constraint on the interference probability.
We show that this algorithm outperforms the naive design that
assumes a worst case value for the parameter. We also provide a
proof for the convergence of the learning algorithm.

Index Terms—Channel selection, cognitive radio, dynamic spec-
trum access, learning, partially observed Markov decision process
(POMDP).

I. INTRODUCTION

C OGNITIVE radios that exploit vacancies in the licensed
spectrum have been proposed as a solution to the ever-in-

creasing demand for radio spectrum. The idea is to sense times
when a specific licensed band is not used at a particular place
and use this band for unlicensed transmissions without causing
interference to the licensed user (referred to as the “primary”).
An important part of designing such systems is to develop an ef-
ficient channel selection policy. The cognitive radio (also called
the “secondary user”) needs to adopt the best strategy for se-
lecting channels for sensing and access. The sensing and access
policies should jointly ensure that the probability of interfering
with the primary’s transmission meets a given constraint.
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In the first part of this paper, we consider the design of such
a joint sensing and access policy, assuming a Markovian model
for the primary spectrum usage on the channels being moni-
tored. The secondary users use the observations made in each
slot to track the probability of occupancy of the different chan-
nels. We obtain a suboptimal solution to the resultant POMDP
problem.

In the second part of the paper, we propose and study a more
practical problem that arises when the secondary users are not
aware of the exact distribution of the signals that they receive
from the primary transmitters. We develop an algorithm that
learns these unknown statistics and show that this scheme gives
improved performance over the naive scheme that assumes a
worst-case value for the unknown distribution.

A. Contribution

When the statistics of the signals from the primary are known,
we show that, under our formulation, the dynamic spectrum ac-
cess problem with a group of cooperating secondary users is
equivalent in structure to a single user problem. We also ob-
tain a new analytical upper bound on the expected reward under
the optimal scheme. Our suboptimal solution to the POMDP is
shown via simulations to yield a performance that is close to the
upper bound and better than that under an existing scheme.

The main contribution of this paper is the formulation and
solution of the problem studied in the second part involving un-
known observation statistics. We show that unknown statistics
of the primary signals can be learned and provide an algorithm
that learns these statistics online and maximizes the expected
reward still satisfying a constraint on interference probability.

B. Related Work

In most of the existing schemes [1], [2] in the literature on
dynamic spectrum access for cognitive radios, the authors as-
sume that every time a secondary user senses a primary channel,
it can determine whether or not the channel is occupied by the
primary. A different scheme was proposed in [3] and [4] where
the authors assume that the secondary transmitter receives error-
free ACK signals from the secondary’s receivers whenever their
transmission is successful. The secondary users use these ACK
signals to track the channel states of the primary channels. We
adopt a different strategy in this paper. We assume that every
time the secondary users sense a channel they see a random ob-
servation whose distribution depends on the state of the channel.
Our approach is distinctly different from and more realistic than
that in [1], [2] since we do not assume that the secondary users
know the primary channel states perfectly through sensing. We
provide a detailed comparison of our approach with that of [3]
and [4] after presenting our solution. In particular, we point out
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that while using the scheme of [4] there are some practical dif-
ficulties in maintaining synchronization between the secondary
transmitter and receiver. Our scheme provides a way around this
difficulty, albeit we require a dedicated control channel between
the secondary transmitter and receiver.

The problem studied in the second part of this paper that in-
volves learning of unknown observation statistics is new. How-
ever, the idea of combining learning and dynamic spectrum ac-
cess was also used in [5] where the authors propose a reinforce-
ment-learning scheme for learning channel idling probabilities
and interference probabilities.

We introduce the basic spectrum sensing and access problem
in Section II and describe our proposed solution in Section III. In
Section IV, we elaborate on the problem where the distributions
of the observations are unknown. We present simulation results
and comparisons with some existing schemes in Section V, and
our conclusions in Section VI.

II. PROBLEM STATEMENT

We consider a slotted system where a group of secondary
users monitor a set of primary channels. The state of each
primary channel switches between ’occupied’ and ’unoccupied’
according to the evolution of a Markov chain. The secondary
users can cooperatively sense any one out of the channels in
in each slot, and can access any one of the channels
in the same slot. In each slot, the secondary users must satisfy
a strict constraint on the probability of interfering with poten-
tial primary transmissions on any channel. When the secondary
users access a channel that is free during a given time slot, they
receive a reward proportional to the bandwidth of the channel
that they access. The objective of the secondary users is to select
the channels for sensing and access in each slot in such a way
that their total expected reward accrued over all slots is maxi-
mized subject to the constraint on interfering with potential pri-
mary transmissions every time they access a channel1. Since the
secondary users do not have explicit knowledge of the states of
the channels, the resultant problem is a constrained partially ob-
servable Markov decision process (POMDP) problem.

We assume that all channels in have equal bandwidth ,
and are statistically identical and independent in terms of pri-
mary usage. The occupancy of each channel follows a stationary
Markov chain. The state of channel in any time slot is rep-
resented by variable and could be either 1 or 0, where
state 0 corresponds to the channel being free for secondary ac-
cess and 1 corresponds to the channel being occupied by some
primary user.

The secondary system includes a decision center that has ac-
cess to all the observations made by the cooperating secondary
users2. The observations are transmitted to the decision center
over a dedicated control channel. The same dedicated channel
can also be used to maintain synchronization between the sec-
ondary transmitter and secondary receiver so that the receiver

1We do not consider scheduling policies in this paper and assume that the
secondary users have some predetermined scheduling policy to decide which
user accesses the primary channel every time they determine that a channel is
free for access.

2The scheme proposed in this paper and the analyses presented in this paper
are valid even if the cooperating secondary users transmit quantized versions of
their observations to the fusion center. Minor changes are required to account
for the discrete nature of the observations.

can tune to the correct channel to receive transmissions from
the transmitter. The sensing and access decisions in each slot are
made at this decision center. When channel is sensed in slot ,
we use to denote the vector of observations made by the
different cooperating users on channel in slot . These obser-
vations represent the sampled outputs of the wireless receivers
tuned to channel that are employed by the cognitive users. The
statistics of these observations are assumed to be time-invariant
and distinct for different channel states. The observations on
channel in slot have distinct joint probability density func-
tions and when and respectively.
The collection of all observations up to slot is denoted by ,
and the collection of observations on channel up to slot is
denoted by . The channel sensed in slot is denoted by ,
the sequence of channels sensed up to slot is denoted by ,
and the set of time slots up to slot when channel was sensed
is denoted by . The decision to access channel in slot is
denoted by a binary variable , which takes value 1 when
channel is accessed in slot , and 0 otherwise.

Whenever the secondary users access a free channel in some
time slot , they get a reward equal to the bandwidth of
each channel in . The secondary users should satisfy the fol-
lowing constraint on the probability of interfering with the pri-
mary transmissions in each slot

In order to simplify the structure of the access policy, we also
assume that in each slot the decision to access a channel is made
using only the observations made in that slot. Hence it follows
that in each slot , the secondary users can access only the
channel they sense in slot , say channel . Furthermore, the
access decision must be based on a binary hypothesis test [6]
between the two possible states of channel , performed on the
observation . This leads to an access policy with a struc-
ture similar to that established in [4]. The optimal test [6] is to
compare the joint log-likelihood ratio (LLR) given
by

to some threshold that is chosen to satisfy

(1)

and the optimal access decision would be to access the sensed
channel whenever the threshold exceeds the joint LLR. Hence

(2)

and the reward obtained in slot can be expressed as

(3)

where represents the indicator function of event . The main
advantage of the structure of the access policy given in (2) is
that we can obtain a simple sufficient statistic for the resultant
POMDP without having to keep track of all the past observa-
tions, as discussed later. It also has the added advantage [4] that
the secondary users can set the thresholds to meet the con-
straint on the probability of interfering with the primary trans-
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missions without relying on their knowledge of the Markov sta-
tistics.

Our objective is to generate a policy that makes optimal use
of primary spectrum subject to the interference constraint. We
introduce a discount factor and aim to solve the in-
finite horizon dynamic program with discounted rewards [7].
That is, we seek the sequence of channels , such
that the is maximized, where the expectation is
performed over the random observations and channel state re-
alizations. We can show the following relation based on the as-
sumption of identical channels:

(4)

where

(5)

Since all the channels are assumed to be identical and the statis-
tics of the observations are assumed to be constant over time,
given by (5) is a constant independent of . From the structure
of the expected reward in (4) it follows that we can redefine our
problem such that the reward in slot is now given by

(6)

and the optimization problem is equivalent to maximizing
. Since we know the structure of the optimal

access decisions from (2), the problem of spectrum sensing and
access boils down to choosing the optimal channel to sense in
each slot. Whenever the secondary users sense some channel
and make observations with LLR lower than the threshold, they
are free to access that channel. Thus we have converted the
constrained POMDP problem into an unconstrained POMDP
problem as was done in [4].

III. DYNAMIC PROGRAMMING

The state of the system in slot denoted by

is the vector of states of the channels in that have independent
and identical Markovian evolutions. The channel to be sensed
in slot is decided in slot and is given by

where is a deterministic function and repre-
sents the net information about past observations and decisions
up to slot . The reward obtained in slot is a function of the
state in slot and as given by (6). We seek the sequence of
channels , such that is maximized.
It is easily verified that this problem is a standard dynamic pro-
gramming problem with imperfect observations. It is known [7]
that for such a POMDP problem, a sufficient statistic at the end

of any time slot , is the probability distribution of the system
state , conditioned on all the past observations and deci-
sions, given by . Furthermore, since the Mar-
kovian evolution of the different channels are independent of
each other, this conditional probability distribution is equiva-
lently represented by the set of beliefs about the occupancy
states of each channel, i.e., the probability of occupancy of each
channel in slot , conditioned on all the past observations on
channel and times when channel was sensed. We use
to represent the belief about channel at the end of slot , i.e.,

is the probability that the state of channel in slot
is 1, conditioned on all observations and decisions up to time

slot , which is given by

We use to denote the vector representing the be-
liefs about the channels in . The initial values of the belief pa-
rameters for all channels are set using the stationary distribu-
tion of the Markov chain. We use to represent the transition
probability matrix for the state transitions of each channel, with

representing the probability that a channel that is in state
in slot switches to state in slot . We define

(7)

This represents the probability of occupancy of channel
in slot , conditioned on the observations up to slot .

Using Bayes’ rule, the belief values are updated as follows after
the observation in time slot :

(8)

when channel was selected in slot (i.e., ), and
otherwise. Thus from (8) we see that updates

for the sufficient statistic can be performed using only the joint
LLR of the observations, , instead of the entire vector
of observations. Furthermore, from (2) we also see that the ac-
cess decisions also depend only on the LLRs. Hence, we con-
clude that this problem with vector observations is equivalent to
one with scalar observations where the scalars represent the joint
LLR of the observations of all the cooperating secondary users.
Therefore, in the rest of this paper, we use a scalar observation
model with the observation made on channel in slot repre-
sented by . We use to denote the set of all observations
up to time slot and to denote the set of all observations on
channel up to slot .

Hence the new access decisions are given by

(9)

where represents the LLR of and the access
threshold is chosen to satisfy

(10)

Similarly the belief updates are performed as in (8) with the
evaluations of density functions of replaced with the
evaluations of the density functions and of

(11)
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when channel is accessed in slot (i.e., ), and
otherwise. We use to denote the

function that returns the value of given that channel was
sensed in slot . This function can be calculated using (7) and
(11). The reward obtained in slot can now be expressed as

(12)

where is given by

(13)

From the structure of the dynamic program, it can be shown
that the optimal solution to this dynamic program can be ob-
tained by solving the following Bellman equation [7] for the
optimal reward-to-go function:

(14)

where represents the initial value of the belief vector, i.e., the
prior probability of channel occupancies in slot , and is
calculated from as in (7) by

(15)

The expectation in (14) is performed over the random observa-
tion . Since it is not easy to find the optimal solution to this
Bellman equation, we adopt a suboptimal strategy to obtain a
channel selection policy that performs well.

In the rest of the paper we assume that the transition proba-
bility matrix satisfies the following regularity conditions:

Assumption 1 (16)

Assumption 2 (17)

The first assumption ensures that the resultant Markov chain is
irreducible and positive recurrent, while the second assumption
ensures that it is more likely for a channel that is free in the
current slot to remain free in the next slot than for a channel
that is occupied in the current slot to switch states and become
free in the next slot. While the first assumption is important the
second one is used only in the derivation of the upper bound on
the optimal performance and can easily be relaxed by separately
considering the case where (17) does not hold.

A. Greedy Policy

A straightforward suboptimal solution to the channel selec-
tion problem is the greedy policy, i.e., the policy of maximizing
the expected instantaneous reward in the current time slot. The
expected instantaneous reward obtained by accessing some
channel in a given slot is given by
where is given by (13). Hence, the greedy policy is to choose
the channel such that is the maximum.

(18)

In other words, in every slot the greedy policy chooses the
channel that is most likely to be free, conditioned on the past
observations. The greedy policy for this problem is in fact
equivalent to the policy, which is a standard suboptimal
solution to the POMDP problem (see, e.g., [8]). It is shown in
[1] and [2] that under some conditions on and , the greedy

policy is optimal if the observation in each slot reveals the
underlying state of the channel. Hence, it can be argued that
under the same conditions, the greedy policy would also be
optimal for our problem at high SNR.

B. An Upper Bound

An upper bound on the optimal reward for the POMDP of
(14) can be obtained by assuming more information than the
maximum that can be obtained in reality. One such assumption
that can give us a simple upper bound is the assumption
[8], which is to assume that in all future slots, the state of all
channels become known exactly after making the observation
in that slot. The optimal reward under the assumption
is a function of the initial belief vector, i.e., the prior probabili-
ties of occupancy of the channels in slot . We represent this
function by . In practice, a reasonable choice of initial value
of the belief vector is given by the stationary distribution of the
Markov chains. Hence for any solution to the POMDP that uses
this initialization, an upper bound for the optimal reward under
the assumption is given by where
represents the probability that a channel is occupied under the
stationary distribution of the transition probability matrix , and

represents an vector of all 1’s.
The first step involved in evaluating this upper bound is to de-

termine the optimal reward function under the assumption that
all the channel states become known exactly after making the
observation in each slot including the current slot. We call this
function . That is, we want to evaluate for all binary
strings of length that represent the possible values of
the vector representing the states of all channels in slot . The

assumption implies that the functions and satisfy
the following equation:

(19)

where denotes the a priori belief vector about the channel
states in slot and is obtained from just as in (15).
Hence the upper bound can be easily evaluated
using once the function is determined.

Now we describe how one can solve for the function . Under
the assumption that the states of all the channels become known
exactly at the time of observation, the optimal channel selected
in any slot would be a function of the states of the channels
in slot . Moreover, the sensing action in the current slot
would not affect the rewards in the future slots. Hence the op-
timal policy would be to maximize the expected instantaneous
reward, which is achieved by accessing the channel that is most
likely to be free in the current slot. Now under the added as-
sumption stated in (17) earlier3, the optimal policy would always
select some channel that was free in the previous time slot, if
there is any. If no channel is free in the previous time slot, then
the optimal policy would be to select any one of the channels
in , since all of them are equally likely to be free in the cur-
rent slot. Hence the derivation of the optimal total reward for
this problem is straightforward as illustrated below. The total

3It is easy to see that a minor modification of the derivation of the upper bound
works when assumption (17) does not hold.
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reward for this policy is a function of the state of the system in
the slot preceding the initial slot, i.e., .

if
if

where , , and
is an string of all 1’s. This means that we can write

(20)

where

is a scalar function of the vector state . Here the expectation is
over the random slots when the system reaches state . Now by
stationarity we have

(21)

We use to denote the matrix of size representing
the transition probability matrix of the joint Markov process that
describes the transitions of the vector of channel states .
The element of represents the probability that the state
of the system switches to in slot given that the state of the
system is in slot , where is the -bit binary representation
of and is the -bit binary representation of . Using
a slight abuse of notation we represent the element of
as itself. Now (21) can be solved to obtain

(22)

This fixed point equation which can be solved to obtain

... (23)

where is a vector whose elements are the values of
the function evaluated at the different possible values
of the vector state of the system in time slot . Again, the

element of vector is where is the -bit binary
representation of . Thus can now be evaluated by using
relation (20) and the expected reward for this problem under
the assumption can be calculated by evaluating

via (19). This optimal value yields an analytical upper
bound on the optimal reward of the original problem (14).

C. Comparison With [4] for Single User Problem

Although we have studied a spectrum access scheme for a
cooperative cognitive radio network, it can also be employed
by a single cognitive user. Under this setting, our approach to
the spectrum access problem described earlier in this section is
similar to that considered in [3] and [4] in that sensing does not
reveal the true channel states but only a random variable whose
distribution depends on the current state of the sensed channel.
As a result, the structure of our optimal access policy and the
sufficient statistic are similar to those in [4]. In this section, we
compare the two schemes.

The main difference between our formulation and that in [4]
is that in our formulation the secondary users use the primary
signal received on the channel to track the channel occupancies,
while in [4] they use the ACK signals exchanged between the
secondary transmitter and receiver. Under the scheme of [4], in
each slot, the secondary receiver transmits an ACK signal upon
successful reception of a transmission from the secondary re-
ceiver. The belief updates are then performed using the single
bit of information provided by the presence or absence of the
ACK signal. The approach of [4] was motivated by the fact
that, under that scheme, the secondary receiver knows in ad-
vance the channel on which to expect potential transmissions
from the secondary transmitter in each slot, thus obviating the
need for control channels for synchronization. However, such
synchronization between the transmitter and receiver is not reli-
able in the presence of interfering terminals that are hidden [9]
from either the receiver or transmitter, because the ACK sig-
nals will no longer be error-free. In this regard, we believe that
a more practical solution to this problem would be to set aside
a dedicated control channel of low capacity for the purpose of
reliably maintaining synchronization, and use the observations
on the primary channel for tracking the channel occupancies. In
addition to guaranteeing synchronization, our scheme provides
some improvement in utilizing transmission opportunities over
the ACK-based scheme, as we show in Section V-A.

Another difference between our formulation and that in [4]
is that we assume that the statistics of channel occupancies are
independent and identical while [4] considers the more gen-
eral case of correlated and nonidentical channels. However, the
scheme we proposed in Section III can be easily modified to
handle this case, with added complexity. The sufficient statistic
would now be the posteriori distribution of , the vector
of states of all channels, and the access thresholds on different
channels would be nonidentical and depend on the statistics of
the observations the respective channels. We avoid elaborating
on this more general setting to keep the presentation simple.

IV. THE CASE OF UNKNOWN DISTRIBUTIONS

In practice, the secondary users are typically unaware of the
primary’s signal characteristics and the channel realization from
the primary [10]. Hence, cognitive radio systems have to rely
on some form of noncoherent detection such as energy detec-
tion while sensing the primary signals. Furthermore, even while
employing noncoherent detectors, the secondary users are also
unaware of their locations relative to the primary and hence are
not aware of the shadowing and path loss from the primary to
the secondary. Hence, it is not reasonable to assume that the
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secondary users know the exact distributions of the observa-
tions under the primary-present hypothesis, although it can be
assumed that the distribution of the observations under the pri-
mary-absent hypothesis is known exactly. This scenario can be
modeled by using a parametric description for the distributions
of the received signal under the primary-present hypothesis. We
denote the density functions of the observations under the two
possible hypotheses as,

(24)

where the parameters are unknown for all channels , and
is known. We use to denote the log-likelihood function

under defined by

(25)

In this section, we study two possible approaches for dealing
with such a scenario, while restricting to greedy policies for
channel selection. For ease of illustration, in this section we con-
sider a secondary system comprised of a single user, although
the same ideas can also be applied for a system with multiple
cooperating users.

A. Worst-Case Design for Nonrandom

A close examination of Section III reveals two specific uses
for the density function of the observations under the
hypothesis. The knowledge of this density was of crucial im-
portance in setting the access threshold in (10) to meet the con-
straint on the probability of interference. The other place where
this density was used was in updating the belief probabilities in
(11). When the parameters are nonrandom and unknown,
we have to guarantee the constraint on the interference proba-
bility for all possible realizations of . The optimal access de-
cision would thus be given by

(26)

where satisfies

(27)

The other concern that we need to address in this approach is:
what distribution do we use for the observations under

in order to perform the updates in (11). An intelligent solution
is possible provided the densities described in (24) satisfy the
condition that there is a such that the for all and
for all the following inequality holds:

(28)

The condition (28) is satisfied by several parameterized densi-
ties including an important practical example discussed later.
Under (28), a good suboptimal solution to the channel selection
problem would be to run the greedy policy for channel selection
using for the density under while performing the

updates of the channel beliefs in (11). This is a consequence of
the following lemma.

Lemma 4.1: Assume (28) holds. Suppose is used in place
of for the distribution of the observations under
while performing belief updates in (11). Then:

(i) For all and for all

(29)

where represents the probability measure when
.

(ii) Conditioned on , the distribution of
given any value for is identical for all possible
values of .

Proof:
(i) Clearly, (29) holds with equality when channel is not

sensed in slot (i.e., ). When , it is easy
to see that the new belief given by (11) is a monotoni-
cally increasing function of the log-likelihood function,

. Hence, (29) follows from (28).
(ii) This is obvious since the randomness in under

is solely due to the observation
whose distribution does not depend on .

Clearly, updating using in (11) is optimal if .
When , the tracking of beliefs are guaranteed to be at
least as accurate, in the sense described in Lemma 4.1. Hence,
under (28), a good suboptimal solution to the channel selection
problem would be to run the greedy policy for channel selection
using for the density under while performing the
updates of the channel beliefs in (11). Furthermore, it is known
that [11] under (28), the set of likelihood ratio tests in the access
decision of (26) can be replaced with a single likelihood ratio
test under the worst case parameter given by

(30)

The structure of the access decision given in (30), and the con-
clusion from Lemma 4.1 suggests that is a worst-case value
of the parameter . Hence, the strategy of designing the sensing
and access policies assuming this worst possible value of the pa-
rameter is optimal in the following min-max sense: The average
reward when the true value of is expected to be no
smaller than that obtained when since the tracking of
beliefs is worst when as shown in Lemma 4.1. This
intuitive reasoning is seen to hold in the simulation results in
Section V-B.

B. Modeling as Random

In Section V-B, we show through simulations that the worst-
case approach of the previous section leads to a severe decline
in performance relative to the scenario where the distribution
parameters in (24) are known accurately. In practice it may be
possible to learn the value of these parameters online. In order to
learn the parameters we need to have a statistical model for
these parameters and a reliable statistical model for the channel
state process. In this section we model the parameters as
random variables, which are i.i.d. across the channels and in-
dependent of the Markov process as well as the noise process.
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In order to assure the convergence of our learning algorithm,
we also assume that the cardinality of set is finite4 and let

. Let denote the elements of set . The prior
distribution of the parameters is known to the secondary
users. The beliefs of the different channels no longer form a suf-
ficient statistic for this problem. Instead, we keep track of the
following set of a posteriori probabilities which we refer to as
joint beliefs:

(31)

Since we assume that the parameters take values in a finite
set, we can keep track of these joint beliefs just as we kept track
of the beliefs of the states of different channels in Section III.
For the initial values of these joint beliefs we use the product
distribution of the stationary distribution of the Markov chain
and the prior distribution on the parameters . We store these
joint beliefs at the end of slot in an array with
elements given by

(32)

The entries of the array corresponding to channel rep-
resent the joint a posteriori probability distribution of the pa-
rameter and the state of channel in slot conditioned on
the information available up to slot which we called . Now
define

Again, the values of the array represent the a posteriori
probability distributions about the parameters and the
channel states in slot conditioned on , the information
up to slot . The update equations for the joint beliefs can
now be written as follows:

if
if

when channel was accessed in slot , and
otherwise. Here is just a normalizing factor.

It is shown in Appendix that, for each channel , the a pos-
teriori probability mass function of parameter conditioned
on the information up to slot , converges to a delta-function at
the true value of parameter as , provided we sense
channel frequently enough. This essentially means that we
can learn the value of the actual realization of by just up-
dating the joint beliefs. This observation suggests that we could
use this knowledge learned about the parameters in order to ob-
tain better performance than that obtained under the policy of
Section IV-A. We could, for instance, use the knowledge of the
true value of to be more liberal in our access policy than the
satisfy-all-constraints approach that we used in Section IV-A
when we did a worst-case design. With this in mind, we pro-
pose the following algorithm for choosing the threshold to be
used in each slot for determining whether or not to access the
spectrum.

4We do discuss the scenario when � is a compact set in the example consid-
ered in Section V-B.

Assume channel was sensed in slot . We first arrange the
elements of set in increasing order of the a posteriori prob-
abilities of parameter . We partition into two groups, a
“lower” partition and an “upper” partition, such that all elements
in the lower partition have lower a posteriori probability values
than all elements in the upper partition. The partitioning is done
such that the number of elements in the lower partition is maxi-
mized subject to the constraint that the a posteriori probabilities
of the elements in the lower partition add up to a value lower
than . These elements of can be ignored while designing the
access policy since the sum of their a posteriori probabilities
is below the interference constraint. We then design the access
policy such that we meet the interference constraint conditioned
on parameter taking any value in the upper partition. The
mathematical description of the algorithm is as follows. Define

The vector represents the a pos-
teriori probability mass function of parameter conditioned
on , the information available up to slot . Now let

be a permutation of
such that are arranged in increasing

order of posteriori probabilities, i.e.,

and let . Now
define set . This set is the upper
partition mentioned earlier. The access decision on channel in
slot is given by,5

(33)

where satisfy (27). The access policy given above guarantees
that

(34)

when the same holds without conditioning on and .
Hence, the interference constraint is met on an average, aver-
aged over the posteriori distributions of . Now it is shown
in Appendix that the a posteriori probability mass function
of parameter converges to a delta function at the true value
of parameter almost surely. Hence, the constraint is asymp-
totically met even conditioned on taking the correct value.
This follows from the fact that, if is the actual realization
of the random variable , and converges to 1 almost
surely, then, for sufficiently large , (33) becomes:

with probability one and hence the
claim is satisfied.

It is important to note that the access policy given in (33)
need not be the optimal access policy for this problem. Unlike
in Section II, here we are allowing the access decision in slot

5The access policy obtained via the partitioning scheme is simple to imple-
ment but is not the optimal policy in general. The optimal access decision on
channel � in slot � would be given by a likelihood-ratio test between � and
the mixture density � ������ where � ����� represents the value of
the posterior distribution of � after slot ���, evaluated at �. However, setting
thresholds for such a test is prohibitively complex.
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to depend on the observations in all slots up to via the joint be-
liefs. Hence, it is no longer obvious that the optimal test should
be a threshold test on the LLR of the observations in the cur-
rent slot even if parameter is known. However, this structure
for the access policy can be justified from the observation that it
is simpler to implement in practice than some other policy that
requires us to keep track of all the past observations. The sim-
ulation results that we present in Section V-B also suggest that
this scheme achieves substantial improvement in performance
over the worst-case approach, thus further justifying this struc-
ture for the access policy.

Under this scheme the new greedy policy for channel selec-
tion is to sense the channel which promises the highest expected
instantaneous reward which is now given by

(35)

where

However, in order to prove the convergence of the a posteriori
probabilities of the parameters , we need to make a slight
modification to this channel selection policy. In our proof, we
require that each channel is accessed frequently. To enforce
that this condition is satisfied, we modify the channel selection
policy so that the new channel selection scheme is as follows:

if

else
(36)

where is some constant and is some
ordering of the channels in .

V. SIMULATION RESULTS AND COMPARISONS

A. Known Distributions

We consider a simple model for the distributions of the ob-
servations and illustrate the advantage of our proposed scheme
over that in [4] by simulating the performances obtained by em-
ploying the greedy algorithm on both these schemes. We also
consider a combined scheme that uses both the channel obser-
vations and the ACK signals for updating beliefs.

We simulated the greedy policy under three different
schemes. Our scheme, which we call , uses only the obser-
vations made on the channels to update the belief vectors. The
second one, , uses only the ACK signals transmitted by the
secondary receiver, while the third one, , uses both observa-
tions as well as the error-free ACK signals. We have performed
the simulations for two different values of the interference
constraint . The number of channels was kept at in both
cases and the transition probability matrix used was

where the first index represents state 0 and the second represents
state 1. Both channels were assumed to have unit bandwidth,

Fig. 1. Comparison of performances obtained with greedy policy that uses ob-
servations and greedy policy that uses ACKs. Performance obtained with greedy
policy that uses both ACKs as well as observations and the upper bound are also
shown.

and the discount factor was set to . Such a
high value of was chosen to approximate the problem with
no discounts which would be the problem of practical interest.
As we saw in Section III, the spectrum access problem with a
group of cooperating secondary users is equivalent to that with
a single user. Hence, in our simulations we use a scalar obser-
vation model with the following simple distributions for
under the two hypotheses:

(primary OFF)

(primary ON) (37)

It is easy to verify that the LLR for these observations is an in-
creasing linear function of . Hence the new access deci-
sions are made by comparing to a threshold chosen such
that

(38)

and access decisions are given by

(39)

The belief updates in (8) are now given by

when channel was selected in slot (i.e., ), and
otherwise. Here is given by (7) and

represents the value of the Gaussian density function
with mean and variance evaluated at . For the mean and
variance parameters in (37) we use and choose so that

takes values from to 5 dB. In the
case of cooperative sensing, this represents the effective
signal-to-noise ratio (SNR) in the joint LLR statistic at the
decision center, . We perform simulations for two
values of the interference constraint, and .

As seen in Fig. 1, the strategy of using only ACK signals
performs worse than the one that uses all the observations ,
especially for , thus demonstrating that relying only on
ACK signals compromises on the amount of information that
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can be learned. We also observe that the greedy policy attains
a performance that is within 10% of the upper bound. It is also
seen in the figure that the reward values obtained under and

are almost equal. For , it is seen that the two curves
are overlapping. This observation suggests that the extra advan-
tage obtained by incorporating the ACK signals is insignificant
especially when the interference constraint is low. The expla-
nation for this observation is that the ACK signals are received
only when the signal transmitted by the secondary transmitter
successfully gets across to its receiver. For this to happen the
state of the primary channel should be “0” and the secondary
must decide to access the channel. When the value of the inter-
ference constraint is low, the secondary accesses the channel
only when the value of the is low. Hence the observations
in this case carry a significant amount of information about the
states themselves and the additional information that can be ob-
tained from the ACK signals is not significant. Thus learning
using only observations is almost as good as learning using both
observations as well as ACK signals in this case.

B. Unknown Distributions

We compare the performances of the two different ap-
proaches to the spectrum access problem with unknown
distributions that we discussed in Section IV. We use a pa-
rameterized version of the observation model we used in the
example in Section V-A. We assume that the primary and sec-
ondary users are stationary and assume that the secondary user
is unaware of its location relative to the primary transmitter.
We assume that the secondary user employs some form of
energy detection, which means that the lack of knowledge
about the location of the primary manifests itself in the form of
an unknown mean power of the signal from the primary. Using
Gaussian distributions as in Section V-A, we model the lack of
knowledge of the received primary power by assuming that the
mean of the observation under on channel is an unknown
parameter taking values in a finite set of positive values .
The new hypotheses are

(40)

For the set of parameterized distributions in (40), the log-like-
lihood ratio function defined in (25) is linear in for all

. Hence comparing to a threshold is equiva-
lent to comparing to some other threshold. Furthermore,
for this set of parameterized distributions, it is easy to see that
the conditional cumulative distribution function (cdf) of the ob-
servations under , conditioned on taking value , is
monotonically decreasing in . Furthermore, under the assump-
tion that , it follows that choosing sat-
isfies the conditions of (28). Hence the optimal access decision
under the worst-case approach given in (30) can be written as

(41)

where satisfies

(42)

Fig. 2. Comparison of performances obtained with worst-case approach and
learning approach. Performance obtained with greedy policy is also shown. The
value of � � ����.

where . Thus the worst-case solution for this set
of parameterized distributions is identical to that obtained for
the problem with known distributions described in (37) with
replaced by . Thus the structures of the access policy, the
channel selection policy, and the belief update equations are
identical to those derived in the example shown in Section V-A
with replaced by .

Similarly, the access policy for the case of random param-
eters given in (33) can now be written as

(43)

where satisfies

(44)

where . The belief updates and greedy
channel selection are performed as described in Section IV-B.
The quantity appearing in (35) can now be written as

We simulated the performances of both the schemes on the
hypotheses described in (40). We used the same values of ,

, and as in Section V-A. We chose set such that the
SNR values in dB given by belong to the set

. The prior probability distribution for
was chosen to be the uniform distribution on . The interfer-
ence constraint was set to 0.01. Both channels were assumed
to have the same values of true SNR while the simulations
were performed. The reward was computed over 10 000 slots
since the remaining slots do not contribute significantly to the
reward. The value of in (36) was set to a value higher than the
number of slots considered so that the greedy channel selection
policy always uses the second alternative in (36). Although we
require (36) for our proof of convergence of the a posteriori
probabilities in the Appendix , it was observed in simulations
that this condition was not necessary for convergence.

The results of the simulations are given in Fig. 2. The
net reward values obtained under the worst-case design of
Section IV-A and that obtained with the algorithm for learning

given in Section IV-B are plotted. We have also included the
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rewards obtained with the greedy algorithm with known
values; these values denote the best rewards that can be

obtained with the greedy policy when the parameters are
known exactly. Clearly, we see that the worst-case design gives
us almost no improvement in performance for high values of
actual SNR. This is because the threshold we choose is too
conservative for high SNR scenarios leading to several missed
opportunities for transmitting. The minimal improvement in
performance at high SNR is due to the fact that the system now
has more accurate estimates of the channel beliefs although
the update equations were designed for a lower SNR level.
The learning scheme, on the other hand, yields a significant
performance advantage over the worst-case scheme for high
SNR values as seen in the figure. It is also seen that there is
a significant gap between the performance with learning and
that with known values at high SNR values. This gap is
due to the fact that the posteriori probabilities about the
parameters take some time to converge. As a result of this delay
in convergence a conservative access threshold has to be used in
the initial slots thus leading to a drop in the discounted infinite
horizon reward. However, if we were using an average reward
formulation for the dynamic program rather than a discounted
reward formulation, we would expect the two curves to overlap
since the loss in the initial slots is insignificant while computing
the long-term average reward.

Remark 5.1: So far in this paper, we have assumed that the
cardinality of set is finite. The proposed learning algorithm
can also be adapted for the case when is a compact set. A
simple example illustrates how this may be done. Assuming pa-
rameterized distributions of the form described in (40), suppose
that the value of in dB is uniformly distributed in the interval

and that we compute the posteriori probabilities of
assuming that its value in dB is quantized to the finite set

. Now if the actual realization of is be-
tween 1 and 2 dB, say 1.5 dB, then we expect to see low poste-
riori probabilities for all elements of except 1 and 2 dB and in
this case it would be safe to set the access threshold assuming
an SNR of 1 dB. Although this threshold is not the best that
can be set for the actual realization of , it is still a significant
improvement over the worst-case threshold which would corre-
spond to an SNR of . We expect the a posteriori prob-
abilities of all elements of other than 1 and 2 dB to converge
to 0, but the a posteriori probabilities of these two values may
not converge; they may oscillate between 0 and 1 such that their
sum converges to 1. A rigorous version of the above argument
would require some ordering of the parameterized distributions
as in (28).

VI. CONCLUSIONS AND DISCUSSION

The results of Section V-A and the arguments we presented
in Section III-C clearly show that our scheme of estimating the
channel occupancies using the observations yields performance
gains and may have practical advantages over the ACK-based
scheme that was proposed in [4]. We believe that these advan-
tages are significant enough to justify using our scheme even
though it necessitates the use of dedicated control channels for
synchronization.

For the scenario where the distributions of the received sig-
nals from the primary transmitters are unknown and belong to

a parameterized family, the simulation results in Section V-B
suggest that designing for worst-case values of the unknown
parameters can lead to a significant drop in performance rela-
tive to the scenario where the distributions are known. Our pro-
posed learning-based scheme overcomes this performance drop
by learning the primary signal’s statistics. The caveat is that the
learning procedure requires a reliable model for the state tran-
sition process if we need to give probabilistic guarantees of the
form (34) and to ensure convergence of the beliefs about the
parameters.

In most of the existing literature on sensing and access poli-
cies for cognitive radios that use energy detectors, the typical
practice is to consider a worst-case mean power under the pri-
mary-present hypothesis. The reasoning behind this approach is
that the cognitive users have to guarantee that the probability
of interfering with any primary receiver located within a pro-
tected region [9], [10] around the primary transmitter is below
the interference constraint. Hence, it is natural to assume that
the mean power of the primary signal is the worst-case one, i.e.,
the mean power that one would expect at the edge of the pro-
tected region. However, the problem with this approach is that
by designing for the worst-case distribution, the secondary users
are forced to set conservative thresholds while making access
decisions. Hence, even when the secondary users are close to
the primary transmitter and the SNR of the signal they receive
from the primary transmitter is high, they cannot efficiently de-
tect vacancies in the primary spectrum. Instead, if they were
aware that they were close to the transmitter they could have
detected spectral vacancies more efficiently as demonstrated by
the improvement in performance at higher SNRs observed in the
simulation example in Section V-A. This loss in performance is
overcome by the learning scheme proposed in Section IV-B. By
learning the value of the secondary users can now set more
liberal thresholds and, hence, exploit vacancies in the primary
spectrum better when they are located close to the primary trans-
mitter. Thus, using such a scheme would produce a significant
performance improvement in overall throughput of the cogni-
tive radio system.

APPENDIX

Here we show that for each channel , the a posteriori prob-
ability mass function of parameter converges to a delta-func-
tion at the true value of the parameter almost surely under the
algorithm described in Section IV-B.

Theorem A.1: Assume that the transition probability ma-
trix satisfies (16). Further assume that the conditional densi-
ties of the observations given in (24) satisfy

for all (45)

and that all densities in (24) are distinct. Then, under the channel
sensing scheme that was introduced in (36) for each channel ,

for all

Proof: Without loss of generality, we can restrict ourselves
to the proof of the convergence of the a posteriori distribu-
tion of , the parameter for the first channel. By the modified
sensing scheme introduced in (36), it can be seen that channel

is sensed at least every slots. Hence, if the a posteriori
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distribution converges for an algorithm that senses channel
exactly every slots, it should converge even for our algo-
rithm, since our algorithm updates the a posteriori probabili-
ties more frequently. Furthermore by considering an -times
undersampled version of the Markov chain that determines the
evolution of channel , without loss of generality, it is sufficient
to show convergence for a sensing policy in which channel is
sensed in every slot. It is obvious that since condition (16) holds
for the original Markov chain, it holds even for the undersam-
pled version. So now we assume that an observation is made
on channel in every slot . We use to represent all obser-
vations on channel up to slot .

We use to represent the true realization of random
variable with , and to denote the prior
distribution of . The a posteriori probability mass function of

evaluated at after time slots can be expressed as

(46)

where we use the notation to denote the distribution of
the observations conditioned on taking the value . It
follows from [12, Theorem 1, Theorem 2, and Lemma 6] that
conditioned on we have

for all

Hence, it follows from (46) that conditioned on we
have

which further implies that conditioned on we have

Since this holds for all possible realizations of , the
result follows.
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