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Decentralized Sequential Detection with 
Sensors Performing Sequential Tests* 

Venugopa l  V. Veeravalli,t:~ T a m e r  Ba~ar , t  and  H. Vincent  Poorw 

Abstract. A decentralized sequential detection problem is considered where a 
set of sensors making independent observations must decide which of the given 
two hypotheses is true. Decision errors are penalized through a common cost 
function, and each time step taken by the sensors as a team is assigned a positive 
cost. It is shown that optimal sensor decision functions can be found in the class 
of generalized sequential probability ratio tests (GSPRTs) with monotonically 
convergent thresholds. A technique is presented for obtaining the optimal thresh- 
olds. The performance of the optimal policy is compared with that of a policy 
which uses SPRTs at each of the sensors. 
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1. Introduction 

Static decentra l ized detec t ion  p rob lems  are well unde r s tood  today  and mos t  t rac-  
table  p rob lems  in this a rea  have been solved (for a comprehens ive  repor t  see 
IT3]) .  There  has  also been cons iderab le  interest  in the re la ted field of decentra l -  
ized sequent ia l  de tec t ion  (see, for example,  [TH] ,  [ L M B ] ,  [AV],  [T2] ,  [ H R ] ,  and  
[VBP2]) ;  however,  this a rea  has no t  witnessed significant progress,  and  several  
interest ing p rob lems  still r emain  open. The  goal  of  this paper  is to address  one of 
these problems.  

As an in t roduc t ion  to sequential  hypothes is  testing, let us first cons ider  the case 
when the in format ion  is centra l ized and the number  of hypotheses  is two. Here  
the de tec tor  is required to de te rmine  the t rue hypothes is  based  on a sequence of 
received observat ions .  This decis ion p rob lem can be posed  in a Bayes ian  frame- 
work  as follows: The  hypothes is  H is assumed to t ake  on the two values, H 0 and 
Ha, with p r io r  probabi l i t i es  v and 1 - v, respectively. A posi t ive cost  c is asso- 
ciated with each observa t ion  (time step) t aken  by  the detector .  The  de tec to r  s tops  
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receiving additional measurements at time z, which is assumed to be a stopping 
time for the sigma field sequence generated by the observations, and makes a final 
decision 6 based on the observations up to time z. Decision errors are penalized 
through a decision cost function W(6; H). The stopping rule together with the 
final decision rule represent the decision policy of the detector. The total expected 
cost (risk) for a given decision policy is given by E{cz + W(6; H)}. The central- 
ized Bayesian sequential detection problem, which is sometimes referred to as the 
Wald problem, is to find a decision policy leading to minimum total expected cost. 
The solution to this problem for the case in which the observations are indepen- 
dent and identically distributed (i.i.d.), conditioned on each hypothesis, is the 
well-known sequential probability ratio test (SPRT) [L]. 

In decentralized sequential detection, each one of a set of sensors receives a 
sequence of observations about  the hypothesis. Two distinct formulations are 
possible. In one case each sensor sends a sequence of summary messages to a 
fusion center, where a sequential test is carried out to determine the true hypoth- 
esis. In the other case each sensor first performs a sequential test on its observa- 
tions and arrives at a final local decision; subsequently the local decisions are 
used for a common purpose at a site possibly remote to all the sensors. In this 
paper we study the latter case. We consider a Bayesian formulation of this prob- 
lem with two hypotheses, 1 and, for simplicity of presentation, we study the case of 
two sensors. 

We denote the sensors by $1 and $2. Sensor Si stops at time % and makes a 
decision u i based on its observations up to time z~. The combined decision policy 
of the two sensors is denoted by V = (V~, V2), where Vi := (ui, Ti) is the decision 
policy of sensor S t. 

Since the two decisions Ux and u2 are used for a common goal, it is natural to 
assume that decision errors are penalized through a common decision cost func- 
tion W(u~, u2; H). The choice of a time penalty is, however, not as unambiguous. 
If we are concerned with processing cost at the sensors, then we associate a posi- 
tive cost c i with each observation taken by sensor S~. On the other hand, there 
may be situations where we may wish to limit the time it takes for both decisions 
to be available at the remote site. In this case it may be more reasonable to asso- 
ciate a positive cost c with each time step taken by the sensors as a team. 

Teneketzis and Ho [TH]  considered the situation where a positive cost c~ is 
associated with each observation taken by sensor S~. In this case the total 
expected cost for a given combined decision policy 7 is E{cI~ 1 q-C2~ 2 q- 
W(u~, u2, H)}. The Bayesian optimization problem is then to find the decision 
policy that minimizes this expected cost. A special case arises when the decision 
cost function is decoupled, i.e., W(ul, u2; H) = Wl(ul; H) + Wz(U2; H). This is the 
case when the sensor decisions are used for independent purposes. In this case we 
have two decoupled Wald problems to solve, one at each of the sensors, and the 
solution is two independent SPRTs. Teneketzis and Ho showed in [TH]  that 

x We restrict our attention to binary hypothesis testing in this paper. Problems in sequential testing 
of multiple hypotheses are known to be very difficult and do not admit closed-form solutions even 
when the information is centralized [T1]. 
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even when there is coupling, optimal sensor decision policies can be found within 
the class of SPRTs. Their result can be derived immediately by recognizing that 
once the decision policy of sensor $2 is fixed, sensor S~ is faced with a classical 
Wald problem. This point was later clarified in [LMB],  where a continuous time 
extension of this problem was solved. 

In our analysis in this paper, we associate a positive cost c with each time step 
taken by the detectors as a team. The expected cost we wish to minimize over all 
admissible policies is then given by 

E{c max(z1, z2) + W(u 1, l/2; H)}. 

The nonlinearity introduced by considering the maximum of the two stopping 
times makes this problem more difficult than the one solved in [TH].  An earlier 
version of this paper was presented in [VBP1]. 

The rest of this paper is organized as follows. In Section 2 we provide a more 
formal description of the problem. Then in Section 3 we focus on the structure of 
optimal solutions to this problem. In particular, we show that optimal solutions 
can be found in the class of generalized SPRTs (GSPRTs) with monotonically 
convergent thresholds. In Section 4 we address the problem of finding optimal 
GSPRT thresholds numerically. In Section 5 we present some numerical results 
for the case when the sensor observations are Gaussian under each hypothesis. 
We also compare the performance of optimal GSPRTs with the best performance 
that is obtained when the sensors are restricted to using SPRTs. Finally, Section 
6 gives some concluding remarks. 

2. Mathematical Description 

We begin with a formal description of the decentralized sequential detection 
problem we wish to analyze here. 

1. The hypothesis is denoted by a binary random variable H which takes on 
values Ho and HI, with prior probabilities q and 1 - q, respectively. 

2. At time k, sensor Si receives observation X~, i = 1, 2. The sequences {X~ }~=1 
and 2 o~ {X~ }k=~ are mutually independent i.i.d, sequences, conditioned on each 
hypothesis. The probability distributions of the sensor observations are as- 
sumed to have densities, and we denote the conditional density of X~ given 

Hj by f t .  
3. There is no communication between the sensors, i.e., the final decision at 

each sensor is based only on its own observations. 
4. Let ~f~ = a(X), j  = 1, 2 . . . . .  k). The decision policy 7i for sensor S t involves 

the selection of a termination time zl, and a binary-valued decision u i. For  
an admissible policy, z i is a {;~, k -- 1, 2 , . . .  } stopping time, and ul is mea- 
surable ~f~. The set of admissible policies is denoted by F~. 

5. If ui denotes the final decision at sensor S~, then the decision cost W(u~, u2; 
H) satisfies the following inequalities for u 2 -- 0 and u 2 = 1: 

W(0, u2; H1) -> W(1, Uz; H1), 

W(1, u2; Ho) >- W(1, u2; H1) , 
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W(1, u2; Ho) _> W(0,/12; Ho), 

W(0, u2; H1) -> W(0, u2;/4o). 

Similar inequalities hold for ul, i.e., at most one error is not more costly 
than at least one error. Also, each unit of time taken by the sensors as a 
team costs a positive amount c. 

The problem that we wish to solve is the following: 

Problem (PI). 

min E{c max(z1,772) -'[- W(//1, //2; H)}.  

3. The Structure of Optimal Solutions 

In this section we study the common structure of all person-by-person optimal 
(p.b.p.o.) decision policies. 2 This structure would obviously be valid for globally 
optimal (g.o.) decision policies as well, since every g.o. decision policy is also 
p.b.p.o. 

If 72 is fixed, possibly at the optimum, then u 2 and r 2 have fixed distributions 
conditioned on each hypothesis. At sensor $1, we are faced with the following 
optimization problem: 

min E{c max(z1, "t'2) + W(Ul, u2; H)}. (1) 
{~1 erl} 

This can be posed as an infinite-horizon hynamic programming (DP) problem 
[B]. A sufficient statistic for this is given by 

Pk = P(H = HoIY'~). 

A recursion for Pk is easily obtained by using Bayes' rule, 

Pkfo(Xlk+O 
Pk+l Pkfo(X~+l) + (1 1 , Po q, -- pk)fl(X/,+O 

where f~(.) is the probability density of Xkt+~ conditioned on Hj, j = 0, 1. Note 
that the conditional density of X~+I given ~k ~, which we denote by f(Pk; "), is 
given by 

f(Pk; X) = Pkfo(X) + (1 -- Pk)fl(x). 

In order to solve the problem of (1), we first restrict the stopping time zl to a 
finite horizon, say [0, T]. The finite-horizon DP equations are derived as follows. 
The minimum expected cost-to-go at time k is a function of the sufficient statistic 

z A set of policies is said to be person-by-person optimal if it is not possible to improve the corre- 
sponding team performance by unilaterally changing any one of the policies. Clearly, globally optimal 
decision policies are also person-by-person optimal. 
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Pk, which we denote by jT(pk). It is easily seen that 

JrT(pT) = min{Gop T + Ko, Glp r + K~}, 
where 

1 
Ki = ~ Pt(u2 =j)W(i , j ;  H,), i = 0, 1, 

j=0 

1 

Gi = ~ Po(u2 =j)W(i , j ;  Ho) - Ki, i = O, 1, 
j=0 

and where Pj denotes the probability measure conditioned on// j .  
For 0 < k < T - 1, a standard DP argument yields the following recursion: 

Jkr(Pk) -= min{Gop k + K o, Gtp k + Kt ,  CpkPo('C2 "< k) 
T + c(1 - pk)Pl(z 2 < k) + A k (Pk)}, 

where 

(2) 

Ar(pk) = t~SS_. ~ Ex]'+lIx~ Jirt \ f (Pk,  k+t)JJ 

C .r ['Pkfo(X)'~ . . . .  
= J Jk+t ~ ) J t P k ,  X, dx. (3) 

In (2) the term GoPk + Ko represents the cost (conditioned on ~gk 1) of stopping 
at time k and choosing Ho, the term Glp k + KI represents the cost of stopping at 
time k and choosing Ht, and the last term represents the cost of continuing at 
time k. Note that sensor St is penalized for taking an additional step at time k 
only if sensor Sz has stopped before time k. 

The lemmas below present some useful properties of the functions j r  and A r. 

Lemma 1. The functions jr(p) and Ar(p) are nonnegative concave functions of p, 
for p e [0, 1]. 

Lemma 2. The functions J~(p) and At(p) are monotonically nondecreasing in k, 
that is, for each p E [0, 1], 

jr(p) < jr+l(p), 0 _< k _< T -  1, 

A/(p) _< Ar~(p), 0 < k < T -  2. 

Lemma 3. The functions A~(p) satisfy the following properties: 

At(0) -- min{K o, K~} = K1, 

Akr(1) ---- min{Ko + Go, K1 + Gt} = Ko + Go. 

The above lemmas are easily proven by simple induction arguments. Let us 
now assume that the following condition holds: 

cp*Po(z2 <_ r - 1) + c(1 - p*)Pl(z2 <_ T -  1) + Arr_l(p *) _< GIKo - GoKI 
G1 - Go , (4) 
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with p* defined by 

p* - Ko - K 1 

GI - Go" 

Then, using Lemmas 1-3, we can prove the following threshold property of an 
optimal finite-horizon policy at S~ (see Section 3.5 of [B] for a similar analysis). 

Theorem 1. 
horizon policy at sensor S~ is of the form 

accept H o if Pk >-- at ,  

accept H 1 if Pk <-- b[, 

continue taking observations if b[ < Pk < at ,  

For fixed ~2 ~ F2 ,  let condition (4) hold. Then an optimal finite- 

where the scalars ak T, b[, k = 0, 1, . . . ,  T - 1, are determined from the relations 

T T G~ b~ + K~ = cbT po(z2 g k) + c(1 - bT)p~(% <_ k) + Ak (bk ), 

T T Goak T + K o = ca[Po(z z <_ k) + e(1 - a[)Pl(Z 2 < k) + hk(a k ). 

Ib r / r - 1  is a nondecreasing Furthermore, fa TIT-1 is a nonincreasing sequence and t k Sk=O ~. k S k = O  

sequence. 

Remark 1. If condition (4) does not hold, then the thresholds ak r and bk r of The- 
orem 1 are both identically equal to (K o - Ka)/(Gi - Go) for all k greater than 
some m, 1 _< m < T, which essentially reduces the finite horizon to m. Hence, con- 
dition (4) does not impose any restrictions on the problem parameters. 

3.1. Infinite-Horizon Optimization 

In order to solve the infinite-horizon problem of (1), we need to remove the re- 
striction that z~ belongs to a finite interval by letting T ~ ~ .  By an argument 
similar to the one in Section 3.3 of [TH],  we can establish that, for each k, the 
following limit is well defined: 

lim J[(p) = inf J[(p) =: Jk(P). 
T~oo, T>k T>k 

The function Jk(P) is the infinite-horizon cost-to-go at time k. Unlike the infinite- 
horizon solution in [TH],  this limit need not be independent of k. In fact, if we let 
T ~ oe in Lemma 2, we see that the following monotonicity holds in the limit: 

Jk(P) <- Jk+~ (P), for all k. 

Also, it is clear that Jk(P) is bounded above by min{Gop + K o, Glp + K~} for all 
k. Hence, the limit 

lira Jk(P) = sup Jk(P) =: J(P) 
k~oo  k 
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is also well defined, and satisfies the Bellman equation [B] 

J(p) = min GoP + Ko, GlP + K1, c + j a  ~ ; J t P ,  x) dx . (5) 

Teneketzis and Ho obtain exactly the same Bellman equation in the context of 
the decentralized Wald problem with linear time penalty, where they also show 
that the equation has a unique solution (see Lemma 3.3 of [TH]). 

Now, by the Dominated Convergence Theorem the following limits are well 
defined: 

f {, pfo(x) "~ ~, , Ak(p):= l im A/ (p )=  J k + t ~ ; J t p ; x ) d x  

and 

I/pro(x) Aj(p) := lim Ak(p) = J | ~ J J t P ,  x)dx.  
k~oo \ j  tp, :cU 

Hence the infinite-horizon cost-to-go function satisfies the recursion 

Jk(P) = min{GoP + Ko, GlP + K1, cpPo(z2 < k) + c(1 - p)Pl(z2 < k) + Ak(p) }. 
(6) 

Taking limits as T ~ o0 in Lemmas 1-3, we obtain the following result. 

Lemma 4. The functions Ak(p) are concave and satisfy 

Ak(P) --< Ak+I(P), for all p ~ [0, 1], 

Ak(0) = K1, Ak(1) = Ko + Go. 

It follows from Lemma 4 that provided the condition 

( K o - K 1 )  G 1 K o - G o K 1  
c + A j  ~ _ ~  < G 1 - G o  (7) 

holds, we have the following result (see Section 6.3 of [B] for a similar analysis). 

Theorem 2. For fixed ~)2 ~ F2, let condition (7) hold. Then an optimal infinite- 
horizon policy at sensor S 1 is of the form 

accept H o if Pk > ak, 

accept H 1 if Pk ~-- bk, 

continue if  bk ~ Pk "( ak, 

where the scalars ak, bk, k = 0, l ,  2 . . . . .  are obtained from the relations 

C~bk + K I  = cbkPo(v2 <- k) + c(1 - bk)P~(~2 <-- k) + Ak(b~), 

Goak + K o = CakPo(Z2 < k) + c(1 - ak)Pl(z2 <-- k) + Ak(ak). 

Furthermore, {ak}~=a is a nonincreasing sequence converging to a and {bk}~= 1 is a 
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nondecreasin9 sequence convergin 9 to b, where a and b satisfy 

c + As(b ) = Glb + K 1, 

c + As(a ) = Goa + K o. 

Remark 2. If condition (7) does not hold, then the sequences a k and bk are 
both identically equal to (Ko -- K1)/(GI - Go) for all k larger than some positive 
integer m, i.e., termination is guaranteed by time m. Hence, condition (7) does not 
entail any loss of generality. 

For  any fixed 3:2 ~ F2, Theorem 2 gives us the structure of any optimal infinite- 
horizon policy at sensor $1. A similar structure is optimal at sensor Sz for any 
fixed 71 ~ F1. Hence, every p.b.p.o, decision policy (at either of the sensors) has 
the structure given in Theorem 2. The existence of p.b.p.o, solutions can be estab- 
lished using sequential compactness arguments 3 as in [TH].  However, unlike the 
result of [TH],  optimal sensor decision policies can be found not in the class of 
SPRTs, but rather in the class of GSPRTs,  which as shown above in Theorem 2 
have monotonically convergent thresholds. 

Remark 3. At this point it should be noted that the structure of p.b.p.o, decision 
policies remains the same (as specified in Theorem 2) even when the number  of 
sensors is N (N > 2). To see this, we fix the decision policies of all the sensors 
except sensor Si. Then we use a D P  argument similar to the one used in estab- 
lishing Theorem 2 to find an optimal policy at $1. The structure of the optimal 
policy at $1 is identical to the one in Theorem 2, with modified definitions for G~ 
and K s and with Pj('/7 2 ~ k) replaced by HN=2 Pj('~/_~ k), j  = O, 1. 

4. Threshold Computation 

We now address the problem of finding optimal G S P R T  thresholds numerically. 
Since the thresholds are known to be monotonically convergent, we could param- 
etrize them as functions of time involving only a few parameters, and then opti- 
mize the expected cost over these parameters. This procedure would be facilitated 
if we could find good approximations for the error probabilities as well as for 
E max(z 1, z2) in terms of the parameters. The usual Wald approximations, used 
in [TH],  cannot be used here; it is well known in sequential analysis that such 
approximations for time-varying threshold tests are very difficult to obtain I-S]. 

An alternative to the above technique for finding optimal thresholds is the fol- 

3 An outline of the existence proof is the following: Start with any fixed policy ])~o) at $2, and find an 
optimal policy at $1, say ])~1). Then fix the policy of S 1 at ])~1) and find an optimal policy at $2, say ])2(1). 
Continue in this fashion, alternately optimizing at S I and S 2 to generate sequences of policies {])~i), 
i = 1, 2 .... } and {])~0, i = 0, 1 .... }. These sequences must have convergent subsequences by the se- 
quential compactness of the policy spaces [TH]. The policies to which these subsequences converge 
define a p.b.p.o, solution. 
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lowing recursive algorithm, that is motivated by the sequential compactness argu- 
ment of the previous section (see footnote 3): 

I. Fix the decision policy of $1 (an SPRT policy would be a reasonable starting 
point). 

2. Run a simulation to obtain the probability distributions of zt and error 
probabilities at S~. 

3. Use the result of step 2 in a DP recursion at $2 (with a sufficiently large 
horizon) to obtain the thresholds at $2 as described in Theorem 2. 

4. Run a simulation to obtain the probability distributions of z2 and error 
probabilities at $2. 

5. Use the result of step 4 in a DP recursion at S~ to obtain a new set of 
thresholds at $1 as described in Theorem 2. 

6. Stop if the policies at S~ and $2 have converged. Otherwise, go back to step 
2. 

If the above algorithm converges, it must converge to a p.b.p.o, solution of 
problem (P1). One of these p.b.p.o, solutions is a g.o. solution to (P1), if a g.o. 
solution exists. 

4.1. Optimal S P R T  Policies 

The simplicity of the SPRT structure makes it a good candidate sequential test 
even when it may not be an optimal test. Hence it is of interest to optimize the 
expected cost of problem (P1) over decision policies which use SPRTs at the 
sensors. However, even if we restrict ourselves to using SPRTs, finding optimal 
thresholds numerically is difficult because an approximation for E max {z 1, z 2 } is 
required for this purpose. We have derived one such approximation using charac- 
teristic functions, which we describe below. 

An SPRT policy at sensor S~ has the following form: 

accept H o if p~ > a ~, 

accept H a if p~ _< b i, 

continue if b i < p~ < a i, 

where p~ denotes the a posteriori probability of Ho given the observations up to 
time k at sensor Si. The thresholds (a i, b i) are related to the thresholds (A, Bi) of 
the SPRTs written in terms of the likelihood ratio [W1] in the following way: 

q(1 -- a i) q(1 -- b i) 
Ai - (1 - q)a ~ '  Bi - ( l ~ ) b i .  (8) 

Now let the error probabilities at Si under H o and HI be denoted, respectively, by 
~ and/3z. Then Wald's approximations [W1] give us the following approximate 
expressions for ~ and fl~: 

1 - -  A i A i B  i - -  A i 

~ i  "~ B i  __ A~--~' fii ~ B i  __ A i  (9) 
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We can also use renewal theory approximations for the error probabilities, which 
are known to be more accurate than Wald's approximations when the error 
probabilities are small [W2]. With 7i as defined in Theorem 3.1 of [W2], we have 
the following approximations: 

Yi 
~i ~ --,  fli ~ ?iAi. (10) 

Bi 

Using (8) and (9) or (10), we obtain an approximate expression for the expected 
decision cost E{W(u i, u2; H)} in terms of the thresholds (a ~, b~). 

An approximation for E max{zi, T2} is not obtained as easily, since the basic 
Wald approximations are only for the first moments of z 1 and zz, and we need 
the entire distributions to compute this expectation. If f~, denotes the probability 
mass function of % then 

E{max(zl 'Z2)} = n=0~(~m=O nf~'(n)f~2(m) + ,,=,+1 ~ mf~l(n)f~2(m))" (11) 

It is straightforward to show that the above expectation can also be written in 
terms of characteristic functions as given below: 

E{max(zx, z2)} = e{zz} + ~ cosec2 Re(qh(@(1 - (o~(m))) do) 

+ e{ l} 
~ - f f ( R e ( ( o z ( c o ) ) + l m ( q h ( c ~ ) ) c o t ( 2 ) ) d ~ o ,  (12) 

where (o~(co) = E{exp(-jcozi)}, i = 1, 2 a n d j  here is ~ 1. The conditional expec- 
tations of zl and z2 are given by the standard Wald approximations, 

E{z, lHo} ,,~ --2v(log(A,)(1 - ~,) + log(Bi)~i) , i = 1, 2, 

E{zi[Hi} ,,~ 2v(fll log(A/) + log(B~)(1 - ill)), i = 1, 2. 

The conditional characteristic functions under H1 and Ho can be approximated 
using Wald's fundamental identity (for details, see I-W1]). If we define t~o(@, 
t2o(~O), tl l(co), and t21(co) by 

tlo(O ) = 0.5(1 + x /q - -  Svcoj), 

= o . 5 ( 1  - , / 1  - 8v,oj), 

tn(co) = 0 .5(-1  + w / 1 -  8vcoj), 

t21( ) = 0 . 5 ( - 1  - 8vo /), 

then we can obtain the following approximations for the conditional characteris- 
tic functions under Ho: 

A~o(*) _ Al~or + B[~o('~) _ B~,or 
E{exp(--jeozi)[Uo} ,~ Rtio(O~)At2o(~ ) Atio(~)Rtzo(~) (13) 

-- i  " - i  - -  - - i  - - i  

Similar expressions hold for E{exp(-jcoz~)lH~}, i = 1, 2, with 0 replaced by 1 in 
(13). 
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All the approximations given so far can be put together to yield an approxi- 
mate expression for the total expected cost in terms of the thresholds (a t, b a, a 2, 
b2). This expression is then minimized over [0, 1 ]  4 t o  obtain the best SPRT 
thresholds for problem (P1). 

5. Numerical Results 

For the numerical results presented in this section, we assume that the observa- 
tions {X~}~=I and {Xk2}~~ are mutually independent i.i.d. Gaussian sequences 
with mean 0 and variance v under Ho, and mean 1 and variance v under H1. We 
also assume that the decision cost is of the form 

f 
01 if u 1 = u 2 = H, 

W(ul ,  u2; H) = if u l ~ u 2 ,  

ke if u~ = uz C H, l < k e < o o .  

In Table 1 we present optimization results for the best SPRT thresholds at the 
sensors. The optimization was done using the approximate expected cost expres- 
sion derived in the previous section. Renewal theory approximations were used 
for the error probabilities. Optimal thresholds and the corresponding expected 
cost are listed. We have also listed the expected cost for these SPRT policies 
obtained by Monte-Carlo simulations. 

We obtained optimal GSPRT policies by using the recursive algorithm described 
in the previous section. The algorithm was initialized by using an SPRT policy at 
$1. We experimented with a variety of starting policies. A finite horizon of 100 
was used for the DP recursions. This was considered to be a reasonable choice for 
the horizon because in the simulations of the SPRT policies the stopping time at 
either sensor never exceeded 50. The resulting GSPRT thresholds at the end of 10 
iterations are shown in Fig. 1 for a representative case. The policies at the two 
sensors converged to the same policy in all cases. Also, the sup-norm difference 
between the threshold vectors at the 9th and 10th iterates was less than 10 -3 in 
all cases. The various choices of starting policies that we experimented with con- 
verged to the same GSPRT policy (i.e., the resulting threshold vectors differed in 
sup-norm by less than 10 -3) in 10 iterations. Table 2 lists the expected cost of the 

Table 1. O p t i m i z a t i o n  r e su l t s  fo r  t he  b e s t  S P R T  po l i c i e s  fo r  t he  c a s e  w h e r e  c = 0.01,  v = 1.0, a n d  

k e = 4.0. 

S P R T  t h r e s h o l d s  E x p e c t e d  c o s t  

q 1 a ~ 1 - a 2 b 1 b 2 O p t i m i z a t i o n  S i m u l a t i o n  

0.1 4.87 x 10 -3  4.87 x 10 -3  5.14 x 10 -3  5.14 x 10 -3  4.96 x 10 -2  5.90 x 10 . 2  

0.2 4.25 x 10 3 4.25 x 10 . 3  4.36 x 10 . 3  4.36 x 10 - a  5.59 x 10 . 2  7.16 x 10 -2  

0.3 4 .04 x 10 . 3  4 .04 x 10 . 3  4.03 x 10 -3  4.03 x 10 . 3  5.98 x 10 . 2  7.83 x 10 . 2  

0.4 3.93 • 10 -3  3.93 x 10 3 3.91 x 10 3 3.91 x 10 -3  6.17 x 10 - z  8.15 x t 0  - z  

0.5 3.88 x 10 -3  3.88 x 10 . 3  3.88 x 10 -3  3.88 x 10 -3  6.23 x 10 . 2  8.26 x 10 - z  
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Optimal GSPRT thresholds for the case where c = 0.01, v = 1.0, and ke = 4.0. 

GSPRT policies obtained from the DP recursions. The expected cost was also 
obtained by direct Monte-Carlo simulations of the optimal GSPRT policies. The 
expected cost for the corresponding best SPRT policies are repeated in this table 
for comparison. We note that, as expected, the GSPRT policies perform consis- 
tently better than the SPRT policies, and the improvement in performance is 
about 15-20~o. In a practical application, a tradeoff might be made between the 
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Table 2. Comparison of the performance of GSPRT and SPRT policies 
for the case where c = 0.01, v = 1.0, and ke = 4.0. 

Expected cost 

SPRT policy GSPRT policy 

q Optimization Simulation DP recursion Simulation 

0.1 4.96 x 10 -2 5.90 x 10 -2 4.80 x 10 -z 4.91 x 10 -2 
0.2 5.59 x 10 -2 7.16 x 10 -2 5.16 x 10 -2 5.99 x 10 -2 
0.3 5.98 • 10 -2 7.83 • 10 -2 5.34 • 10 -2 6.56 • 10 -2 
0.4 6.17 x 10 .2 8.15 x 10 .2 5.45 x 10 -2 6.86 x 10 -2 
0.5 6.23 x 10 .2 8.26 x 10 .2 5.53 x 10 -2 6.97 x 10 -2 

simplicity of the SPRT policy and the performance gain obtainable with the 
GSPRT policy. 

6. Conclusion 

In this paper we formulated an extension of the Wald problem to the decentral- 
ized case. We used a dynamic programming argument to show that optimal 
sensor decision functions can be found in the class of GSPRTs with mono- 
tonically convergent thresholds. We presented some numerical results which illus- 
trate a proposed technique to obtain optimal GSPRT thresholds. We also com- 
pared the performance of the GSPRT policies with that of the best SPRT 
policies. 

The analysis contained in this paper can routinely be extended to the general 
case in which there are N (N > 2) sensors, without any conceptual difficulties (see 
Remark 3). Also, the case where the stopping time penalty is of the form ely1 + 
C2Vz + c max(z1, ~2) is easily handled through minor modifications. Here again it 
can be shown that optimal solutions can be found in the class of GSPRTs with 
monotonically convergent thresholds. 

References 

I-LMB] 

[-AV] M. M. Al-Ibrahim and P. K. Varshney, A simple multi-sensor sequential detection proce- 
dure, Proceedin#s of the 27th 1EEE Conference on Decision and Control, Austin, TX, 1988, 
pp. 2479-2483. 

[-B]D. Bertsekas, Dynamic Programming, Prentice-Hall, Englewood Cliffs, NJ, 1987. 
[HR] H. R. Hashemi and I. B. Rhodes, Decentralized sequential detection, IEEE Trans. Inform. 

Theory, 35 (1989), 509-520. 
A. LaVigna, A. M. Makowski, and J. S. Baras, A continuous-time distributed version of 
Wald's sequential hypothesis testing problem, Proceedin#s of the 7th International Confer- 
ence on Analysis and Optimization of Systems, Antibes (A. Bensoussan and J. L. Lions, eds.), 
Springer-Verlag, New York, 1986, pp. 533-543. 

[ L ] E .  L. Lehmann, Testin9 Statistical Hypotheses, Wiley, New York, 1959. 
IS] D. Siegmund, Sequential Analysis: Tests and Confidence Intervals, Springer-Verlag, New 

York, 1985. 



Decentralized Sequential Detection with Sensors Performing Sequential Tests 305 

[T1] 

[TH] 

IT2] 

IT3] 

[VBP1] 

[VBP2] 

[Wl] 
[W23 

A. G. Tartakovskii. Sequential testing of many simple hypotheses with independent observa- 
tions. Problems Inform. Transmission, 24 (1988), 299-309. 
D. Teneketzis and Y. C. Ho, The decentralized Wald problem, Inform. and Comput., 73 
(1987), 23-44. 
J. N. Tsitsiklis, On threshold rules in decentralized detection, Proceedings of the 25th IEEE 
Conference on Decision and Control, Athens, 1986, pp. 232-236. 
J. N. Tsitsiklis, Decentralized detection, in Advances in Statistical Sional Processin O, vol. 2 
(H. V. Poor and J. B. Thomas, eds.), JAI Press, Greenwich, CT, 1993. 
V. V. Veeravalli, T. Ba~ar, and H. V. Poor, The decentralized Wald problem with a nonlinear 
penalty on stopping times, Proceedin#s of the 25th Annual Conference on Information Sci- 
ences and Systems, Johns Hopkins University, Baltimore, MD, 1991, pp. 277-282. 
V. V. Veeravalli, T. Ba~ar, and H. V. Poor, Decentralized sequential detection with a fusion 
center performing the sequential test, IEEE Trans. lnform. Theory, 39 (1993), 433-442. 
A. Wald, Sequential Analysis, Wiley, New York, 1947. 
M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, PA, 
1982. 


